TWI571302B - Manufacturing method of nano material - Google Patents
Manufacturing method of nano material Download PDFInfo
- Publication number
- TWI571302B TWI571302B TW105110729A TW105110729A TWI571302B TW I571302 B TWI571302 B TW I571302B TW 105110729 A TW105110729 A TW 105110729A TW 105110729 A TW105110729 A TW 105110729A TW I571302 B TWI571302 B TW I571302B
- Authority
- TW
- Taiwan
- Prior art keywords
- reaction solution
- electrode
- quantum dots
- producing
- precursor
- Prior art date
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本發明是有關於一種奈米材料的製造方法,且特別是有關於一種藉由電漿處理以形成奈米材料的製造方法。This invention relates to a method of making a nanomaterial, and more particularly to a method of making a nanomaterial by plasma treatment.
量子點為零維度的奈米材料,其尺寸被定義為小於100 nm的粒徑大小。近年來,量子點逐漸受到注視,是由於其粒徑極小,電子會受到量子侷限所束縛而產生與半導體相似的特性。而具有能隙特性的量子點材料可廣泛應用於生醫、太陽能電池以及電子元件等領域。在生醫上的應用大多是使用在感測元件或影像系統上,主要是利用量子點的螢光性質。量子點的螢光性質是受控於能隙的大小,因此對於能隙的控制尤其重要,其影響因素主要是量子點的粒徑尺寸與其表面官能基的種類及含量。A nanomaterial with a quantum dot of zero dimension whose size is defined as a particle size smaller than 100 nm. In recent years, quantum dots have been gradually observed because their particle size is extremely small, and electrons are bound by quantum confinement to produce similar properties to semiconductors. Quantum dot materials with energy gap characteristics can be widely used in biomedical, solar cells and electronic components. Most of the applications in biomedicine are used in sensing elements or imaging systems, mainly using the fluorescent properties of quantum dots. The fluorescence properties of quantum dots are controlled by the size of the energy gap, so it is especially important for the control of the energy gap. The influencing factors are mainly the size of the quantum dots and the type and content of their surface functional groups.
目前用以合成量子點的方法主要分為由下而上(bottom-up)與由上而下(top-down)的兩種方法。使用由上而下的方法包括雷射裁切、化學氧化還原法、微波合成法與水熱法等。但使用由上而下的方法較不易於控制量子點產物的尺寸,這不僅影響材料的螢光效能也限制了其後續應用的發展。Current methods for synthesizing quantum dots are mainly divided into bottom-up and top-down methods. Top-down methods include laser cutting, chemical redox, microwave synthesis, hydrothermal, and the like. However, the use of a top-down approach is less likely to control the size of the quantum dot product, which not only affects the phosphorescent efficacy of the material but also limits the development of its subsequent applications.
另一方面,由下而上的合成技術可例如是化學法合成、富勒烯材料裁剪等方法。也就是說,是由單位材料分子合成到大尺寸。因此,由下而上的方法較易於控制產物的尺寸與其表面結構,以形成具有均一尺寸的量子點材料。On the other hand, the bottom-up synthesis technique can be, for example, a chemical synthesis, a fullerene material cutting or the like. That is to say, it is synthesized from a unit material molecule to a large size. Therefore, the bottom-up method makes it easier to control the size of the product and its surface structure to form a quantum dot material having a uniform size.
本發明提供一種藉由電漿處理以形成奈米材料的製造方法,其具有簡易操作、反應速度快以及可控制奈米材料結構特性等的優點。The present invention provides a method for producing a nanomaterial by plasma treatment, which has the advantages of simple operation, fast reaction speed, and controllable structural characteristics of the nanomaterial.
本發明提供一種藉由電漿處理以形成奈米材料的製造方法,其可調控不同螢光性質的量子點材料,進而廣泛應用在生醫感測元件、電子元件、能源發展等不同領域。The invention provides a manufacturing method for forming a nano material by plasma treatment, which can adjust quantum dot materials with different fluorescent properties, and is widely applied in different fields such as biomedical sensing components, electronic components, and energy development.
本發明提供一種奈米材料的製造方法,其步驟如下。提供反應溶液。反應溶液至少包括前驅物。對反應溶液進行電漿處理,以於反應溶液中形成多個奈米粒子。奈米粒子均勻分布在反應溶液中。The present invention provides a method of producing a nanomaterial, the steps of which are as follows. A reaction solution is provided. The reaction solution includes at least a precursor. The reaction solution is subjected to a plasma treatment to form a plurality of nanoparticles in the reaction solution. The nanoparticles are evenly distributed in the reaction solution.
在本發明的一實施例中,所述前驅物包括含碳前驅物、含矽前驅物、含鎘前驅物、含鉛前驅物、含第六族材料前驅物或其組合。In an embodiment of the invention, the precursor comprises a carbon-containing precursor, a ruthenium-containing precursor, a cadmium-containing precursor, a lead-containing precursor, a precursor containing a Group VI material, or a combination thereof.
在本發明的一實施例中,所述含碳前驅物包括十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS)、溴化十六烷基三甲銨(Hexadecyl-trimethyl-ammonium bromide,CTAB)、十二烷基苯磺酸鈉(SDBS)、檸檬酸(Citric acid)、葡萄糖(Glucose)、果糖(Fructose)、蔗糖(Sucrose)、麥芽糖(Maltose)、聚乙二醇(Polyethylene glycol,PEG)或其組合。In an embodiment of the invention, the carbon-containing precursor comprises sodium dodecyl sulfate (SDS), Hexadecyl-trimethyl-ammonium bromide (CTAB), ten Sodium dialkyl benzene sulfonate (SDBS), citric acid, glucose (Glucose), fructose, sucrose, maltose, polyethylene glycol (PEG) or combination.
在本發明的一實施例中,所述含矽前驅物包括四氯化矽(SiCl 4)、四溴化矽(SiBr 4)、二氧化矽(SiO 2)或其組合。 In an embodiment of the invention, the cerium-containing precursor comprises cerium tetrachloride (SiCl 4 ), cerium tetrabromide (SiBr 4 ), cerium oxide (SiO 2 ), or a combination thereof.
在本發明的一實施例中,所述含鎘前驅物包括硫酸鎘(CdSO 4),所述含鉛前驅物包括乙酸鉛(Pb(CH 3COO) 2)、二氯化鉛(PbCl 2)或其組合,所述含第六族材料前驅物包括硒代硫酸鈉(Na 2SeSO 3)、硫粉(S)或其組合。 In an embodiment of the invention, the cadmium-containing precursor comprises cadmium sulfate (CdSO 4 ), and the lead-containing precursor comprises lead acetate (Pb(CH 3 COO) 2 ), lead dichloride (PbCl 2 ) Or a combination thereof, the Group 6-containing material precursor comprises sodium selenate (Na 2 SeSO 3 ), sulfur powder (S), or a combination thereof.
在本發明的一實施例中,所述反應溶液更包括添加劑。所述添加劑包括乙二胺(Ethylenediamine)、二級丁胺(sec-Butylamine)、苯二胺(Phenylenediamines)、多巴胺(Dopamine)、次氮基三乙酸鉀(Potassium nitriloacetate)、氯化鉀(KCl)、氯化鋰(LiCl)、十二烷基硫酸鈉(SDS)、溴化十六烷基三甲銨(CTAB)、乙二胺四乙酸(EDTA)、硫脲(sulfourea)、氫氧化鈉或其組合。In an embodiment of the invention, the reaction solution further includes an additive. The additives include Ethylenediamine, sec-Butylamine, Phenylenediamines, Dopamine, Potassium nitriloacetate, and Potassium Chloride (KCl). , lithium chloride (LiCl), sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), ethylenediaminetetraacetic acid (EDTA), thiourea (sulfourea), sodium hydroxide or combination.
在本發明的一實施例中,所述反應溶液更包括電解質。所述電解質包括鹽酸、氫氧化鈉或其組合。In an embodiment of the invention, the reaction solution further includes an electrolyte. The electrolyte includes hydrochloric acid, sodium hydroxide or a combination thereof.
在本發明的一實施例中,所述電漿處理的步驟如下所述。於反應裝置中置入反應溶液。於反應溶液上設置電漿產生裝置。所述電漿產生裝置包括第一電極、第二電極以及電源供應器。所述電源供應器分別電性連接第一電極與第二電極。將第一電極浸入反應溶液中。對第二電極通入惰性氣體,並將第二電極配置於反應溶液的液面上。開啟電源供應器,使得第二電極產生電漿於反應溶液中,以將前驅物合成為奈米粒子。In an embodiment of the invention, the step of plasma treatment is as follows. A reaction solution was placed in the reaction apparatus. A plasma generating device is disposed on the reaction solution. The plasma generating device includes a first electrode, a second electrode, and a power supply. The power supply is electrically connected to the first electrode and the second electrode, respectively. The first electrode is immersed in the reaction solution. An inert gas is introduced into the second electrode, and the second electrode is disposed on the liquid surface of the reaction solution. The power supply is turned on so that the second electrode generates plasma in the reaction solution to synthesize the precursor into nanoparticle.
在本發明的一實施例中,所述第一電極包括鉑電極。In an embodiment of the invention, the first electrode comprises a platinum electrode.
在本發明的一實施例中,所述奈米粒子包括碳量子點(Carbon quantum dot,CQD)、石墨烯量子點(Graphene quantum dot,GQD)、矽量子點(Silicon quantum dot,Si-dot)、硒化鎘(Cadmium selenide,CdSe)量子點、硒化鉛(Lead selenide,PdSe)量子點、硫化鉛(Lead sulfide,PdS)量子點或其組合。In an embodiment of the invention, the nanoparticle comprises a carbon quantum dot (CQD), a graphene quantum dot (GQD), and a silicon quantum dot (Si-dot). Cadmium selenide (CdSe) quantum dots, lead selenide (PdSe) quantum dots, lead sulfide (PdS) quantum dots or a combination thereof.
基於上述,本發明藉由電漿處理以於反應溶液中形成多個奈米粒子。相較於其他電化學系統,本實施例具有簡易操作的優勢。另外,與傳統電漿相比,本發明之電漿處理可在單位體積中具有較高的電子密度與能量,以促使反應溶液的液面下的電化學反應與非電化學反應更加快速且多元。此外,由下而上的方法亦可控制奈米材料的粒徑尺寸與表面特性,進而應用在感測元件上。而且,本發明所合成的量子點具有多放射波長。因此,本發明所合成的量子點可廣泛應用在生醫、電子元件、能源設備等不同領域上。Based on the above, the present invention treats a plurality of nanoparticles in a reaction solution by plasma treatment. This embodiment has the advantage of simple operation compared to other electrochemical systems. In addition, compared with the conventional plasma, the plasma treatment of the present invention can have a higher electron density and energy per unit volume, so as to promote a faster and more diverse electrochemical reaction and non-electrochemical reaction under the liquid surface of the reaction solution. . In addition, the bottom-up method can also control the particle size and surface characteristics of the nanomaterial, and then be applied to the sensing element. Moreover, the quantum dots synthesized by the present invention have multiple emission wavelengths. Therefore, the quantum dots synthesized by the present invention can be widely applied to different fields such as biomedicine, electronic components, and energy equipment.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1為本發明之一實施例的一種反應裝置的示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of a reaction apparatus in accordance with one embodiment of the present invention.
請參照圖1,本實施例提供一種藉由電漿處理以形成奈米材料的製造方法,其步驟如下。首先,於反應裝置100中置入反應溶液102。在一實施例中,反應裝置100可例如是燒杯、培養皿或是其他適合用以容置反應溶液102,且不會與反應溶液102發生化學反應的各種容器。Referring to FIG. 1, this embodiment provides a manufacturing method for forming a nano material by plasma treatment, and the steps are as follows. First, the reaction solution 102 is placed in the reaction apparatus 100. In one embodiment, the reaction device 100 can be, for example, a beaker, a petri dish, or other various containers suitable for containing the reaction solution 102 without chemically reacting with the reaction solution 102.
反應溶液102至少包括前驅物。所述前驅物可視為欲合成的奈米材料的主成分。以反應溶液102的總重量計,所述前驅物的含量為1 wt%至20 wt%。舉例來說,若欲形成碳量子點或是石墨烯量子點,其前驅物可例如是含碳前驅物。若欲形成矽量子點,其前驅物可例如是含矽前驅物。若欲形成II-VI族或是IV-VI族半導體量子點,像是硒化鎘(CdSe)量子點、硒化鉛(PbSe)量子點、硫化鉛(PbS)量子點等,其前驅物可例如是含鎘前驅物、含鉛前驅物、含第六族材料前驅物或其組合。但本發明不以此為限,在其他實施例中,可依需求來調整所述前驅物的種類。The reaction solution 102 includes at least a precursor. The precursor can be regarded as a main component of the nanomaterial to be synthesized. The precursor is contained in an amount of from 1% by weight to 20% by weight based on the total weight of the reaction solution 102. For example, if a carbon quantum dot or a graphene quantum dot is to be formed, the precursor may be, for example, a carbon-containing precursor. If a ruthenium quantum dot is to be formed, its precursor may be, for example, a ruthenium-containing precursor. If you want to form II-VI or IV-VI semiconductor quantum dots, such as cadmium selenide (CdSe) quantum dots, lead selenide (PbSe) quantum dots, lead sulfide (PbS) quantum dots, etc., the precursors can be For example, a cadmium-containing precursor, a lead-containing precursor, a precursor containing a Group VI material, or a combination thereof. However, the present invention is not limited thereto, and in other embodiments, the type of the precursor may be adjusted as needed.
在一實施例中,含碳前驅物可例如是十二烷基硫酸鈉、溴化十六烷基三甲銨、十二烷基苯磺酸鈉、檸檬酸、葡萄糖、果糖、蔗糖、麥芽糖、聚乙二醇或其組合。In one embodiment, the carbonaceous precursor can be, for example, sodium lauryl sulfate, cetyltrimethylammonium bromide, sodium dodecylbenzene sulfonate, citric acid, glucose, fructose, sucrose, maltose, poly Ethylene glycol or a combination thereof.
在一實施例中,含矽前驅物可例如是四氯化矽、四溴化矽、二氧化矽或其組合。In one embodiment, the ruthenium containing precursor can be, for example, ruthenium tetrachloride, ruthenium tetrabromide, ruthenium dioxide, or a combination thereof.
在一實施例中,含鎘前驅物可例如是硫酸鎘。含鉛前驅物可例如是乙酸鉛、二氯化鉛或其組合。含第六族材料前驅物可例如是硒代硫酸鈉、硫粉或其組合。In an embodiment, the cadmium-containing precursor can be, for example, cadmium sulfate. The lead-containing precursor can be, for example, lead acetate, lead dichloride or a combination thereof. The precursor containing the Group 6 material can be, for example, sodium selenosulfate, sulfur powder, or a combination thereof.
在另一實施例中,反應溶液102可更包括添加劑,以加速或促使所述前驅物進行電化學反應或是非電化學反應。以反應溶液102的總重量計,所述添加劑的含量為0.01 wt%至5 wt%。所述添加劑可例如是乙二胺、二級丁胺、苯二胺、多巴胺、次氮基三乙酸鉀、氯化鉀、氯化鋰、十二烷基硫酸鈉、溴化十六烷基三甲銨、乙二胺四乙酸、硫脲、氫氧化鈉或其組合。In another embodiment, the reaction solution 102 may further include an additive to accelerate or cause the precursor to undergo an electrochemical reaction or a non-electrochemical reaction. The content of the additive is from 0.01 wt% to 5 wt% based on the total weight of the reaction solution 102. The additive may, for example, be ethylenediamine, secondary butylamine, phenylenediamine, dopamine, potassium nitrilotriacetate, potassium chloride, lithium chloride, sodium lauryl sulfate, cetyltrimethyl bromide Ammonium, ethylenediaminetetraacetic acid, thiourea, sodium hydroxide or a combination thereof.
在另一實施例中,反應溶液102可更包括電解質,以提升反應溶液102的導電性,使得後續電漿210更容易產生且更穩定。以反應溶液102的總重量計,所述電解質的含量為0.0001 wt%至2 wt%。所述電解質可例如是鹽酸、氫氧化鈉或其組合。In another embodiment, the reaction solution 102 may further include an electrolyte to enhance the conductivity of the reaction solution 102, so that the subsequent plasma 210 is more likely to be produced and more stable. The electrolyte is contained in an amount of 0.0001 wt% to 2 wt% based on the total weight of the reaction solution 102. The electrolyte can be, for example, hydrochloric acid, sodium hydroxide or a combination thereof.
具體來說,欲合成不同的奈米材料,其反應溶液102需要不同的前驅物、添加劑、電解質或其組合。詳細的實施例如下表1所示,但本發明不以此為限。Specifically, to synthesize different nanomaterials, the reaction solution 102 requires different precursors, additives, electrolytes, or a combination thereof. The detailed implementation is shown in Table 1 below, but the invention is not limited thereto.
表1 <TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> 欲合成的奈米材料 </td><td> 前驅物 </td><td> 添加劑 </td><td> 電解質 </td></tr><tr><td> 碳量子點或石墨烯量子點 </td><td> 十二烷基硫酸鈉 </td><td> </td><td> 鹽酸 </td></tr><tr><td> 溴化十六烷基三甲銨 </td><td> </td><td> 鹽酸 </td></tr><tr><td> 葡萄糖 </td><td> 氫氧化鈉 </td><td> 氫氧化鈉 </td></tr><tr><td> 果糖 </td><td> 氫氧化鈉 </td><td> 氫氧化鈉 </td></tr><tr><td> 檸檬酸 </td><td> 乙二胺 </td><td> </td></tr><tr><td> 檸檬酸 </td><td> 多巴胺 </td><td> </td></tr><tr><td> 檸檬酸 </td><td> 二級丁胺 </td><td> </td></tr><tr><td> 葡萄糖 </td><td> 乙二胺 </td><td> </td></tr><tr><td> 葡萄糖 </td><td> 二級丁胺 </td><td> </td></tr><tr><td> 果糖 </td><td> 乙二胺 </td><td> </td></tr><tr><td> 果糖 </td><td> 二級丁胺 </td><td> </td></tr><tr><td> 蔗糖 </td><td> 乙二胺 </td><td> </td></tr><tr><td> 蔗糖 </td><td> 二級丁胺 </td><td> </td></tr><tr><td> 麥芽糖 </td><td> 乙二胺 </td><td> </td></tr><tr><td> 麥芽糖 </td><td> 二級丁胺 </td><td> </td></tr><tr><td> 硒化鎘量子點 </td><td> 硫酸鎘、硒代硫酸鈉 </td><td> 次氮基三乙酸鉀 </td><td> </td></tr><tr><td> 矽量子點 </td><td> 四氯化矽 </td><td> </td><td> </td></tr><tr><td> 四溴化矽 </td><td> </td><td> </td></tr><tr><td> 二氧化矽 </td><td> 氯化鉀、氯化鋰 </td><td> </td></tr><tr><td> 硒化鉛量子點 </td><td> 乙酸鉛、硒代硫酸鈉 </td><td> 次氮基三乙酸鉀 </td><td> </td></tr><tr><td> 硫化鉛 </td><td> 二氯化鉛、硫粉(以油胺當作溶劑) </td><td> </td><td> </td></tr><tr><td> 乙酸鉛 </td><td> 十二烷基硫酸鈉、溴化十六烷基三甲銨、乙二胺四乙酸以及硫脲 </td><td> </td></tr></TBODY></TABLE>Table 1 <TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> Nanomaterial to be synthesized</td><td> Precursor</td><td> Additives</td><td> Electrolyte</td></tr><tr><td> Carbon Quantum Dots or Graphene Quantum Dots</td><td> Sodium Dodecyl Sulfate</td><td > </td><td> Hydrochloric acid</td></tr><tr><td> Cetyltrimethylammonium bromide</td><td> </td><td> Hydrochloric acid</td> </tr><tr><td> glucose</td><td> sodium hydroxide</td><td> sodium hydroxide</td></tr><tr><td> fructose</td> <td> Sodium hydroxide</td><td> Sodium hydroxide</td></tr><tr><td> Citric acid</td><td> Ethylenediamine</td><td> < /td></tr><tr><td> Citric acid</td><td> Dopamine</td><td> </td></tr><tr><td> Citric acid</td> <td> secondary butylamine</td><td> </td></tr><tr><td> glucose</td><td> ethylenediamine</td><td> </td> </tr><tr><td> glucose</td><td> secondary butylamine</td><td> </td></tr><tr><td> fructose</td><td > Ethylenediamine</td><td> </td></tr><tr><td> Fructose</td><td> Secondary butylamine</td><td> </td></ Tr><tr><td> sucrose</td><td> ethylenediamine</td><td> </td></tr> <tr><td> sucrose</td><td> secondary butylamine</td><td> </td></tr><tr><td> maltose</td><td> ethylenediamine </td><td> </td></tr><tr><td> maltose</td><td> secondary butylamine</td><td> </td></tr><tr ><td> Cadmium selenide quantum dots</td><td> Cadmium sulfate, sodium selenate</td><td> Potassium nitrilotriacetate</td><td> </td></tr ><tr><td> 矽 quantum dot</td><td> bismuth tetrachloride</td><td> </td><td> </td></tr><tr><td> four Barium bromide</td><td> </td><td> </td></tr><tr><td> cerium oxide</td><td> potassium chloride, lithium chloride Td><td> </td></tr><tr><td> lead selenide quantum dots</td><td> lead acetate, sodium selenate</td><td> nitrilotriacetic acid Potassium</td><td> </td></tr><tr><td> lead sulfide</td><td> lead dichloride, sulfur powder (using oleylamine as solvent) </td> <td> </td><td> </td></tr><tr><td> lead acetate</td><td> sodium lauryl sulfate, cetyltrimethylammonium bromide, B Diaminetetraacetic acid and thiourea</td><td> </td></tr></TBODY></TABLE>
接著,請繼續參照圖1,在反應溶液102上設置電漿產生裝置200。電漿產生裝置200包括第一電極202、第二電極204以及電源供應器206。電源供應器206分別電性連接第一電極202與第二電極204。Next, referring to FIG. 1, the plasma generating apparatus 200 is placed on the reaction solution 102. The plasma generating device 200 includes a first electrode 202, a second electrode 204, and a power supply 206. The power supply 206 is electrically connected to the first electrode 202 and the second electrode 204, respectively.
之後,將第一電極202浸入反應溶液102中。在一實施例中,第一電極202可例如是鉑電極,其不容易與反應溶液102進行化學反應而被腐蝕或耗損。Thereafter, the first electrode 202 is immersed in the reaction solution 102. In an embodiment, the first electrode 202 may be, for example, a platinum electrode that is not easily chemically reacted with the reaction solution 102 to be corroded or worn.
如圖1所示,第二電極204例如是一中空的管狀結構。所述管狀結構可外接氣體鋼瓶(未繪示),並將惰性氣體208通入所述管狀結構。之後,藉由施加電壓以於反應溶液102的液面中形成電漿210。在一實施例中,電漿210可例如是常壓電漿或是低壓電漿。惰性氣體208可例如是氬氣或是氦氣等氣體。As shown in FIG. 1, the second electrode 204 is, for example, a hollow tubular structure. The tubular structure may be externally connected to a gas cylinder (not shown) and an inert gas 208 is introduced into the tubular structure. Thereafter, a plasma 210 is formed in the liquid surface of the reaction solution 102 by applying a voltage. In an embodiment, the plasma 210 can be, for example, a normal piezoelectric slurry or a low pressure plasma. The inert gas 208 can be, for example, a gas such as argon or helium.
電源供應器206可用以提供直流電壓,其利用高電壓通過高功率電阻R,以穩定通入第二電極204的電流。之後,再將通入第二電極204的惰性氣體208離子化(ionization),進而形成一個由電子、正離子、活性自由基以及中性氣體分子所組成的高活性氣體團,亦即電漿210。The power supply 206 can be used to provide a DC voltage that passes through the high power resistor R with a high voltage to stabilize the current flowing into the second electrode 204. Thereafter, the inert gas 208 passing through the second electrode 204 is ionized to form a highly reactive gas group composed of electrons, positive ions, living radicals, and neutral gas molecules, that is, the plasma 210. .
對於本實施例之奈米材料而言,電漿產生裝置200的操作條件如下所示。惰性氣體208的流量可例如是15 sccm至150 sccm。操作電壓可例如是500伏特至3000伏特。輸出電流可例如是1 mA至100 mA。處理時間可例如是1分鐘至5小時。但本發明不以此為限。For the nanomaterial of the present embodiment, the operating conditions of the plasma generating apparatus 200 are as follows. The flow rate of the inert gas 208 can be, for example, 15 sccm to 150 sccm. The operating voltage can be, for example, from 500 volts to 3000 volts. The output current can be, for example, 1 mA to 100 mA. The treatment time can be, for example, from 1 minute to 5 hours. However, the invention is not limited thereto.
另外,雖然圖1中所繪示的第一電極202為陽極;第二電極204為陰極。但本發明不以此為限,在其他實施例中,第一電極202可為陰極;而第二電極204可為陽極。In addition, although the first electrode 202 illustrated in FIG. 1 is an anode; the second electrode 204 is a cathode. However, the invention is not limited thereto. In other embodiments, the first electrode 202 may be a cathode; and the second electrode 204 may be an anode.
值得注意的是,在進行電漿處理時,電漿210中高能的電子、正離子、活性自由基以及中性氣體分子等可撞擊反應溶液102的液面,並產生水合電子。在反應溶液102的液面下,所述水合電子與前驅物產生電化學反應或非電化學反應,以將所述前驅物合成為多個奈米粒子。在本實施例中,藉由電漿處理形成奈米粒子的同時,亦會使得反應溶液102中帶有大量電荷或帶電粒子,因此,所述奈米粒子不容易聚集且能更均勻分布在反應溶液102中。It should be noted that in the plasma treatment, high-energy electrons, positive ions, active radicals, and neutral gas molecules in the plasma 210 may strike the liquid surface of the reaction solution 102 and generate hydrated electrons. Under the liquid surface of the reaction solution 102, the hydrated electrons are electrochemically or non-electrochemically reacted with the precursor to synthesize the precursor into a plurality of nanoparticles. In the present embodiment, the formation of the nanoparticles by the plasma treatment also causes the reaction solution 102 to carry a large amount of charged or charged particles. Therefore, the nanoparticles are not easily aggregated and can be more uniformly distributed in the reaction. In solution 102.
在一實施例中,所述奈米粒子包括零維奈米材料,其可例如是碳量子點、石墨烯量子點、矽量子點、硒化鎘量子點、硒化鉛量子點、硫化鉛量子點或其組合。所述奈米粒子的粒徑可介於1 nm至100 nm之間。但本發明不以此為限,在其他實施例中,所述奈米粒子亦可形成一維、二維或三維奈米材料。In one embodiment, the nanoparticle comprises a zero-dimensional nanomaterial, which may be, for example, a carbon quantum dot, a graphene quantum dot, a germanium quantum dot, a cadmium selenide quantum dot, a lead selenide quantum dot, a lead sulfide quantum. Point or a combination thereof. The nanoparticles may have a particle size between 1 nm and 100 nm. However, the invention is not limited thereto. In other embodiments, the nano particles may also form a one-dimensional, two-dimensional or three-dimensional nano material.
綜合上述,相較於其他電化學系統,本實施例具有簡易且快速的合成步驟以及獨特的形成機制。與傳統電漿相比,本實施例之電漿處理可在單位體積中具有較高的電子密度與能量,以促使反應溶液的液面下的電化學反應與非電化學反應更加快速且多元。In summary, this embodiment has a simple and rapid synthesis step and a unique formation mechanism compared to other electrochemical systems. Compared with the conventional plasma, the plasma treatment of the present embodiment can have a higher electron density and energy per unit volume, so as to promote a faster and more diverse electrochemical reaction and non-electrochemical reaction under the liquid surface of the reaction solution.
為了證明本發明的可實現性,以下列舉多個實例來對本發明之奈米材料做更進一步地說明。雖然描述了以下實驗,但是在不逾越本發明範疇的情況下,可適當改變所用材料、其量及比率、處理細節以及處理流程等等。因此,不應根據下文所述的實驗對本發明作出限制性的解釋。In order to demonstrate the achievability of the present invention, a number of examples are given below to further illustrate the nanomaterial of the present invention. Although the following experiments are described, the materials used, the amounts and ratios thereof, the processing details, the processing flow, and the like can be appropriately changed without departing from the scope of the invention. Therefore, the invention should not be construed restrictively based on the experiments described below.
實例Instance 11 :製備:preparation SDSSDS 石墨烯量子點Graphene quantum dots
首先,將1 wt%的十二烷基硫酸鈉(SDS)與0.000135 wt%的鹽酸加入去離子水溶劑中,以形成反應溶液。接著,將所述反應溶液放置在結晶皿中。之後,在反應溶液上設置電漿產生裝置。具體來說,是將由金屬鉑所構成的陽極電極浸入反應溶液中。再將流量25 sccm的氬氣通入由中空管所構成的陰極電極中。之後,對陰極電極施加約1900伏特的操作電壓、9.6 mA的輸出電流以及3小時的處理時間,以將氬氣離子化,進而形成電漿。所述電漿轟擊反應溶液的液面並產生水合電子,使得十二烷基硫酸鈉產生電化學反應或非電化學反應,以將十二烷基硫酸鈉合成為多個石墨烯量子點,以下稱為SDS石墨烯量子點。First, 1 wt% of sodium dodecyl sulfate (SDS) and 0.000135 wt% of hydrochloric acid were added to a deionized water solvent to form a reaction solution. Next, the reaction solution was placed in a crystallizing dish. Thereafter, a plasma generating device is disposed on the reaction solution. Specifically, an anode electrode composed of metal platinum is immersed in the reaction solution. An argon gas having a flow rate of 25 sccm was introduced into the cathode electrode composed of a hollow tube. Thereafter, an operating voltage of about 1900 volts, an output current of 9.6 mA, and a treatment time of 3 hours were applied to the cathode electrode to ionize argon gas to form a plasma. The plasma bombards the liquid surface of the reaction solution and generates hydrated electrons, so that sodium dodecyl sulfate generates an electrochemical reaction or a non-electrochemical reaction to synthesize sodium lauryl sulfate into a plurality of graphene quantum dots, It is called SDS graphene quantum dots.
圖2為實例1之石墨烯量子點的穿透式電子顯微鏡影像。圖3為實例1之石墨烯量子點的粒徑分布圖。2 is a transmission electron microscope image of the graphene quantum dots of Example 1. 3 is a particle size distribution diagram of graphene quantum dots of Example 1.
如圖2所示,依據實例1之步驟所形成的SDS石墨烯量子點(亦即圖2的黑點)均勻分布在碳膜(亦即圖2的黑點以外的區域)上,且沒有聚集在一起。進一步統計分散的SDS石墨烯量子點之後,如圖3所示,其平均粒徑為4.9 nm,符合石墨烯量子點所定義的尺寸。As shown in FIG. 2, the SDS graphene quantum dots (that is, the black dots of FIG. 2) formed according to the procedure of Example 1 are uniformly distributed on the carbon film (that is, the region other than the black dots in FIG. 2), and are not aggregated. Together. After further dispersing the dispersed SDS graphene quantum dots, as shown in FIG. 3, the average particle diameter is 4.9 nm, which is in accordance with the size defined by the graphene quantum dots.
圖4為實例1之石墨烯量子點的拉曼光譜圖。圖5為實例1之石墨烯量子點的二維光致發光等高線圖。4 is a Raman spectrum of the graphene quantum dots of Example 1. 5 is a two-dimensional photoluminescence contour map of the graphene quantum dots of Example 1.
在圖4的拉曼光譜中,SDS石墨烯量子點的特徵峰分別落在1586.8 cm -1及1347.9 cm -1附近,前者稱為G-band,為碳分子沿著石墨平面方向的振動所產生,故可視為碳材石墨化的程度。後者為D-band,來自於結構上的缺陷或碳材的邊界,訊號越強代表石墨結構越不完整。當G-band的強度大於D-band的強度,其表示SDS石墨烯量子點具有sp 2碳分子鍵結與些許結構缺陷。此外,微弱的2D-band(即2781.1 cm -1)表示SDS石墨烯量子點之材料結構具有結晶特性。 In the Raman spectrum of Fig. 4, the characteristic peaks of SDS graphene quantum dots fall near 1586.8 cm -1 and 1347.9 cm -1 , respectively. The former is called G-band, which is generated by the vibration of carbon molecules along the plane of graphite. Therefore, it can be regarded as the degree of graphitization of carbon materials. The latter is D-band, which is derived from structural defects or carbon material boundaries. The stronger the signal, the less complete the graphite structure. When the intensity of the G-band is greater than the intensity of the D-band, it indicates that the SDS graphene quantum dots have sp 2 carbon molecular bonds and some structural defects. In addition, the weak 2D-band (ie, 2781.1 cm -1 ) indicates that the material structure of the SDS graphene quantum dots has crystalline characteristics.
另外,從圖5的二維光致發光等高線圖可知,在激發波長範圍為325 nm至425 nm的情況下,SDS石墨烯量子點的發光波長為400 nm至520 nm之間,也就是可見光藍光的波長,亦即SDS石墨烯量子點可發出藍光。In addition, from the two-dimensional photoluminescence contour map of FIG. 5, in the excitation wavelength range of 325 nm to 425 nm, the SDS graphene quantum dots have an emission wavelength of 400 nm to 520 nm, that is, visible blue light. The wavelength, that is, the SDS graphene quantum dots, emits blue light.
實例Instance 22 :製備:preparation CACA 石墨烯量子點Graphene quantum dots
首先,將10.6 wt%的檸檬酸(CA)與0.0335 wt%的乙二胺加入去離子水溶劑中,以形成反應溶液。接著,將所述反應溶液放置在結晶皿中。在反應溶液上設置電漿產生裝置。具體來說,是將由金屬鉑所構成的陽極電極浸入反應溶液中。再將流量25 sccm的氬氣通入由中空管所構成的陰極電極中。之後,對陰極電極施加約2000伏特的操作電壓、9.6 mA的輸出電流以及1小時的處理時間,以將氬氣離子化,進而形成電漿。所述電漿轟擊反應溶液的液面並產生水合電子,使得檸檬酸產生電化學反應或非電化學反應,以將檸檬酸合成為多個石墨烯量子點,以下稱為CA石墨烯量子點。First, 10.6 wt% of citric acid (CA) and 0.0335 wt% of ethylenediamine were added to a deionized water solvent to form a reaction solution. Next, the reaction solution was placed in a crystallizing dish. A plasma generating device is disposed on the reaction solution. Specifically, an anode electrode composed of metal platinum is immersed in the reaction solution. An argon gas having a flow rate of 25 sccm was introduced into the cathode electrode composed of a hollow tube. Thereafter, an operating voltage of about 2000 volts, an output current of 9.6 mA, and a processing time of 1 hour were applied to the cathode electrode to ionize argon gas to form a plasma. The plasma bombards the liquid surface of the reaction solution and produces hydrated electrons, such that the citric acid produces an electrochemical reaction or a non-electrochemical reaction to synthesize citric acid into a plurality of graphene quantum dots, hereinafter referred to as CA graphene quantum dots.
圖6為實例2之石墨烯量子點的螢光光譜圖。6 is a fluorescence spectrum of the graphene quantum dots of Example 2.
從圖6的螢光光譜圖可知,當激發波長從340 nm改變到410 nm時,CA石墨烯量子點的螢光放光波長會從425 nm改變到525 nm。也就是說,CA石墨烯量子點會從藍光轉變為綠光。另外,CA石墨烯量子點在525 nm的螢光強度亦高於425 nm的螢光強度。詳細地說,實例2所形成的CA石墨烯量子點具有多種粒徑尺寸,因此,當激發波長增加時,CA石墨烯量子點的螢光放光波長也會隨之增加。由此可知,本發明所合成的量子點具有多放射波長。因此,本發明所合成的量子點可廣泛應用在生醫、電子元件、能源設備等不同領域上。From the fluorescence spectrum of Fig. 6, when the excitation wavelength is changed from 340 nm to 410 nm, the fluorescence emission wavelength of CA graphene quantum dots changes from 425 nm to 525 nm. That is, the CA graphene quantum dots will change from blue light to green light. In addition, the fluorescence intensity of CA graphene quantum dots at 525 nm is also higher than that at 425 nm. In detail, the CA graphene quantum dots formed in Example 2 have various particle size sizes, and therefore, as the excitation wavelength increases, the fluorescence emission wavelength of the CA graphene quantum dots also increases. From this, it is understood that the quantum dots synthesized by the present invention have multiple emission wavelengths. Therefore, the quantum dots synthesized by the present invention can be widely applied to different fields such as biomedicine, electronic components, and energy equipment.
綜上所述,本發明藉由電漿處理以於反應溶液中形成多個奈米粒子。相較於其他電化學系統,本實施例具有簡易操作的優勢。另外,與傳統電漿相比,本發明之電漿處理可在單位體積中具有較高的電子密度與能量,以促使反應溶液的液面下的電化學反應與非電化學反應更加快速且多元。此外,由下而上的方法亦可控制奈米材料的粒徑尺寸與表面特性,進而應用在感測元件上。而且,本發明所合成的量子點具有多放射波長。因此,本發明所合成的量子點可廣泛應用在生醫、電子元件、能源設備等不同領域上。In summary, the present invention treats a plurality of nanoparticles in a reaction solution by plasma treatment. This embodiment has the advantage of simple operation compared to other electrochemical systems. In addition, compared with the conventional plasma, the plasma treatment of the present invention can have a higher electron density and energy per unit volume, so as to promote a faster and more diverse electrochemical reaction and non-electrochemical reaction under the liquid surface of the reaction solution. . In addition, the bottom-up method can also control the particle size and surface characteristics of the nanomaterial, and then be applied to the sensing element. Moreover, the quantum dots synthesized by the present invention have multiple emission wavelengths. Therefore, the quantum dots synthesized by the present invention can be widely applied to different fields such as biomedicine, electronic components, and energy equipment.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧反應裝置
102‧‧‧反應溶液
200‧‧‧電漿產生裝置
202‧‧‧第一電極
204‧‧‧第二電極
206‧‧‧電源供應器
208‧‧‧惰性氣體
210‧‧‧電漿
R‧‧‧電阻100‧‧‧Reaction device
102‧‧‧Reaction solution
200‧‧‧ Plasma generating device
202‧‧‧First electrode
204‧‧‧second electrode
206‧‧‧Power supply
208‧‧‧Inert gas
210‧‧‧ Plasma
R‧‧‧resistance
圖1為本發明之一實施例的一種反應裝置的示意圖。 圖2為實例1之石墨烯量子點的穿透式電子顯微鏡(TEM)影像。 圖3為實例1之石墨烯量子點的粒徑分布圖。 圖4為實例1之石墨烯量子點的拉曼光譜圖。 圖5為實例1之石墨烯量子點的二維光致發光等高線圖(2D Photoluminescence contour map)。 圖6為實例2之石墨烯量子點的螢光光譜圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of a reaction apparatus in accordance with one embodiment of the present invention. 2 is a transmission electron microscope (TEM) image of the graphene quantum dots of Example 1. 3 is a particle size distribution diagram of graphene quantum dots of Example 1. 4 is a Raman spectrum of the graphene quantum dots of Example 1. 5 is a two-dimensional photoluminescence contour map of the graphene quantum dots of Example 1. 6 is a fluorescence spectrum of the graphene quantum dots of Example 2.
100‧‧‧反應裝置 100‧‧‧Reaction device
102‧‧‧反應溶液 102‧‧‧Reaction solution
200‧‧‧電漿產生裝置 200‧‧‧ Plasma generating device
202‧‧‧第一電極 202‧‧‧First electrode
204‧‧‧第二電極 204‧‧‧second electrode
206‧‧‧電源供應器 206‧‧‧Power supply
208‧‧‧惰性氣體 208‧‧‧Inert gas
210‧‧‧電漿 210‧‧‧ Plasma
R‧‧‧電阻 R‧‧‧resistance
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105110729A TWI571302B (en) | 2016-04-06 | 2016-04-06 | Manufacturing method of nano material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105110729A TWI571302B (en) | 2016-04-06 | 2016-04-06 | Manufacturing method of nano material |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI571302B true TWI571302B (en) | 2017-02-21 |
TW201735995A TW201735995A (en) | 2017-10-16 |
Family
ID=58608289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105110729A TWI571302B (en) | 2016-04-06 | 2016-04-06 | Manufacturing method of nano material |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI571302B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113046767B (en) * | 2021-03-22 | 2022-05-17 | 华东交通大学 | Method for rapidly preparing graphene in batches |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102936010A (en) * | 2012-10-12 | 2013-02-20 | 南昌绿扬光电科技有限公司 | Method for growing upright graphene on substrate through vapor deposition |
TW201431782A (en) * | 2013-02-05 | 2014-08-16 | Univ Nat Chiao Tung | Graphite oxide preparation method |
-
2016
- 2016-04-06 TW TW105110729A patent/TWI571302B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102936010A (en) * | 2012-10-12 | 2013-02-20 | 南昌绿扬光电科技有限公司 | Method for growing upright graphene on substrate through vapor deposition |
TW201431782A (en) * | 2013-02-05 | 2014-08-16 | Univ Nat Chiao Tung | Graphite oxide preparation method |
Also Published As
Publication number | Publication date |
---|---|
TW201735995A (en) | 2017-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gopalakrishnan et al. | Electrochemical synthesis of luminescent MoS 2 quantum dots | |
Jiang et al. | Zinc selenide nanoribbons and nanowires | |
Huang et al. | Emerging black phosphorus analogue nanomaterials for high-performance device applications | |
He et al. | Preparation and properties of ZnO nanostructures by electrochemical anodization method | |
Zhang et al. | Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO | |
Lv et al. | Optimizing field emission properties of the hybrid structures of graphene stretched on patterned and size-controllable SiNWs | |
KR101990189B1 (en) | Methods and systems for the synthesis of nanoparticles including strained nanoparticles | |
EP2912208B1 (en) | Method to grow nanometer sized structures by pulsed laser deposition | |
CN105565297A (en) | Graphene quantum dot prepared from tip surface of carbon fiber through electrochemical oxidation and cutting, and preparation method thereof | |
JP2017222538A (en) | Method for producing graphene and chemically modified graphene | |
Tsai et al. | Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas–solid transformation and their applications as supercapacitor electrodes for p-doping of graphene transistors | |
JP2012507114A (en) | Group IVA small particle compositions and related methods | |
TWI571302B (en) | Manufacturing method of nano material | |
CN104630894B (en) | Two-dimensional carbon nitrogen single crystal alloy and preparation method thereof | |
Karami et al. | Pulsed current electrochemical synthesis of cadmium sulfide nanofibers | |
Zhuang et al. | Controlling the lateral and vertical dimensions of Bi 2 Se 3 nanoplates via seeded growth | |
Koshida et al. | Emerging functions of nanostructured porous silicon—With a focus on the emissive properties of photons, electrons, and ultrasound | |
Sahu et al. | Growth and application of ZnO nanostructures | |
Guo et al. | Controllable synthesis of MoS2 nanostructures from monolayer flakes, few-layer pyramids to multilayer blocks by catalyst-assisted thermal evaporation | |
CN108525609B (en) | Stress regulation and control method | |
Yin et al. | Postgrowth processing of carbon nanotube arrays-enabling new functionalities and applications | |
Yu et al. | Exploring kinetic control for the growth of layered MoS2 (1-x) Se2x alloy and its electrocatalytic activity in hydrogen evolution reaction | |
He et al. | Visualizing the redox reaction dynamics of perovskite nanocrystals in real and reciprocal space | |
Nunomura et al. | Plasma synthesis of silicon nanoparticles: from molecules to clusters and nanoparticle growth | |
US20180261836A1 (en) | Electrode material and method for manufacturing the same |