TWI570239B - 植物種子中ω-7脂肪酸的聚積技術 - Google Patents
植物種子中ω-7脂肪酸的聚積技術 Download PDFInfo
- Publication number
- TWI570239B TWI570239B TW100122017A TW100122017A TWI570239B TW I570239 B TWI570239 B TW I570239B TW 100122017 A TW100122017 A TW 100122017A TW 100122017 A TW100122017 A TW 100122017A TW I570239 B TWI570239 B TW I570239B
- Authority
- TW
- Taiwan
- Prior art keywords
- plant
- seq
- plant material
- gene
- com25
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8247—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/823—Reproductive tissue-specific promoters
- C12N15/8234—Seed-specific, e.g. embryo, endosperm
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0083—Miscellaneous (1.14.99)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/19—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
- C12Y114/19001—Stearoyl-CoA 9-desaturase (1.14.19.1), i.e. DELTA9-desaturase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Nutrition Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Developmental Biology & Embryology (AREA)
- Pregnancy & Childbirth (AREA)
- Reproductive Health (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Description
此申請案以2010年6月24號提申之美國臨時專利申請案第61/358,318,號“N-7脂肪酸在植物種子中之聚積”主張優先權。
在特別的實施例中,本發明係關於一新穎的突變蓖麻屬(Ricinus)Δ9-18:0-ACP去飽和酶,稱呼為Com25,該者作用為一Δ9-16:0-ACP去飽和酶。另一實施例關於代謝工程方法以操控在植物中的代謝分支點,舉例而言,將碳再指向至ω-7脂肪酸。在某些實施例中,本發明係關於以代謝工程策略之一部分表現Com25之方法,藉由此,碳在植物種子中係再指向至ω-7脂肪酸。
據估計,在天然界可能有1000種以上的脂肪酸結構。Millar等人之“Trends Plant Sci 5(3):95-101(2000)”。這些脂肪酸許多係藉由一批原型去飽和酶之變體由脂肪酸等之衍生化而合成的。這些最初被單離出的去飽和酶變體係為源自蓖麻胚乳之蓖麻屬油酸酯羥化酶,該者負責蓖麻油酸(ricinoleic acid)的合成。Van de Loo等人之“Proc. Natl. Acad. Sci. USA 92(15):6743-6747(1995)”。繼之此後的係為該斑鳩菊屬(Vernonia)亞麻油酸酯環氧酶與該還陽蔘屬(Crepis)油酸酯乙炔酶(actylenase)之基因編碼。Lee等人之“Science 280(5365):915-18(1998)”。這些基因的單離導致了它們在油作物(oil crop)植物中之異源表現能促進該等相應稀少脂肪酸之聚積的想法。Broun等人之“Plant Journal 13:201-10(1997)”。然而,由此產生的稀少脂肪酸之聚積總是低於在該基因所單離自的天然來源植物中所發現者。Napier,J.A.之“Annu. Rev. Plant Biol. 58:295-319(2007)”。
已從組織單離、聚積稀少脂肪酸的變體去飽和酶酵素之特異活性量變曲線與產生該相應稀少脂肪酸的角色係為一致的。然而,相較於至今報導的所有硬酯醯基-ACP去飽和酶,它們展現非常貧乏的特異活性,且當異源表現時在產生修改的脂肪酸表型上已證明無效果的。Cahoon等人之“Prog. Lipid Res. 33:155-63(1994)”。譬如,在一強大的種子特異性啟動子控制下於該模式植物擬南芥中之蓖麻羥化酶的種子特異性表現僅導致約17%的蓖麻酸聚積,遠遠短於在蓖麻種子中所發現的約90%。Broun及Somerville之“Plant Physiol. 113:933-42(1997)”。針對環氧脂肪酸與乙炔脂肪酸,同樣令人失望的結果已被報導的,該者取決於在擬南芥中環氧化酶(epoxygenase)與乙炔酶(acetylenase)之異源表現已被報導分別聚積至15與25%。Lee等人之“Science 280(5365):915-18(1998)”。除了顯示貧乏的活性,變體去飽和酶純化時趨向於形成不溶性的聚合體。低安定性與貧乏的催化速率是許多起源於基因複製事件其中安定性及/或週轉之選擇係被免除之新發展酵素的共同性質,而突變聚積最終導致功能之修改。Govindarajan與Goldstein之“Proc.Natl.Acad.Sci.USA 95:5545-49(1998)”;Goldstein之”(2001)Protein Folding,Evolution and Design”卷CXLIV,I.O.S.出版,Broglia、R.A.、Shakhnovich、E.I.與Tiana,G.校訂,阿姆斯特丹。
對於目標脂肪酸低水平之聚積,許多可能的解釋已提出了。Napier,J.A.之“Annu.Rev.Plant Biol.58:295-319(2007)”。證據支持特定的酵素在該稀少脂肪酸併入成甘油三酯中可能扮演一關鍵角色。譬如,月桂酸在轉基因大油菜(Brassica napus)種子之聚積取決於一椰子溶血磷脂酸(lysophosphatidic acid)酰基轉移酶與加州月桂樹(California bay)長鏈硫酯酶之共表現由50%提高至60%。Knutzon等人之“Plant Physiol.120(3):739-46(1999)”。近來,蓖麻類型-2醯基-輔酶A:二酰基甘油酰基轉移酶(RcDGAT2)與該蓖麻羥化酶之共表現將蓖麻油酸之聚積從約17%提高至約30%。Burgal等人之“Plant Biotechnol.J.6(8):819-31(2008)”。
在轉基因植物中,其聚積相當於在天然發生物種中所發現的高水平稀少脂肪酸者尚未被報導的。由於稀少脂肪酸在各種工業及應用中係高度想望的,對於轉基因植物其針對稀少脂肪酸之生產設計一較佳表現者係為有需要的。
於此所揭露的係為編碼一新穎去飽和酶變體之核苷酸序列,稱呼為Com25,及其之胺基酸序列。
亦為揭露的是在植物細胞中表現Com25之方法,以利用該Com25酵素增強的去飽和酶活性,相對於該WT蓖麻△9-18:0去飽和酶,藉由此,該等稀少脂肪酸在植物種子中之百分比組成係提高的。在有些實施例中,該方法包括在擬南芥中表現Com25。在某些實施例中,在植物種子中提高之該等稀少脂肪酸係為ω-7脂肪酸。在這些實施例中,該ω-7脂肪酸可能為16:1△9及/或18:1△11。
用於在一植物細胞中表現Com25之方法亦為提供的,其中,該植物細胞在質體中及質體外的脂肪酸延長係受損的,藉由此,該等稀少脂肪酸在植物種子中的百分比組成係提高的。在一些實施例中,該方法包括在擬南芥中表現Com25。在某些實施例中,在植物種子中提高之該等稀少脂肪酸係為ω-7脂肪酸。在這些實施例中,該等ω-7脂肪酸可能為16:1△9及/或18:1△11。
用於在一植物細胞中表現Com25之進一步方法亦為提供的,其中在該植物細胞中KASII係受到抑制的,藉由此,該等稀少脂肪酸在植物種子中的百分比組成係提高的。在一些實施例中,該方法包括在擬南芥中表現Com25。在某些實施例中,在植物種子中提高之該等稀少脂肪酸係為ω-7脂肪酸。在這些實施例中,該等ω-7脂肪酸可能為16:1△9及/或18:1△11。
用於在一植物細胞中表現Com25之方法亦為提供的,其中在該植物細胞中KASII與質體及質體外脂肪酸延長係受到抑制的,藉由此,該等稀少脂肪酸在植物種子中的百分比組成係提高的。在一些實施例中,該方法包括在擬南芥中表現Com25。在某些實施例中,在植物種子中提高之該等稀少脂肪酸係為ω-7脂肪酸。在這些實施例中,該等ω-7脂肪酸可能為16:1△9及/或18:1△11。
從下面幾個實施例的詳細說明,前述特徵與其他特徵將更為明顯的,該者係參照該等伴隨圖表而展開。
第1圖描繪在擬南芥之質體與內質網中脂肪酸之合成與修飾的示意圖。由16:0去飽和酶媒介之反應係指出為1:△9-16:0-ACP去飽和酶;2:質體外:△9-16:0-ACP去飽和酶。ω-7 FA,即16:1△9與18:1△11係為方塊的。
第2圖顯示FAMEs之之一代表性氣相色層分離,其取決Com25在擬南芥之各種背景中的表現。分圖A與B,WT;C與D,fab1;E與F,fab1/fae1。分圖A、C與E,未轉形;B、D與F,以Phas:Com25轉形。FAME波峰係指出為:16:0(1)、16:1△9(2)、16:2(3)、18:0(4)、18:1△9(5)、18:1△11(6)、18:2(7)、20:0(8)、20:1△11(6)、18:2(7)、20:0(8)、20:1△11(9)、18:3+20:1△13(10)、及22:1(11)。
第3圖顯示在宿主種子中16:0與ω-7聚積之間的關係(以莫耳百分比)。
第4圖顯示FAMEs之之一代表性氣相色層分離,其取決
Com25在擬南芥或各種背景中的表現。分圖A:最佳的fab1/fae1,Phas:Com25,Fab1-HPAS,An△9DS,Ln△9DS轉形品系;分圖B:榮花屬(Doxantha)種子。波峰命名係如第2圖中所說明。
第5圖係為本發明之一特別構築實施例中DNA元素之一示意比對。
用於施行本發明之模式(等)
於此揭露的係為核苷酸分子其編碼一△9去飽和酶酵素者,該者包含一核苷酸序列其至少有60%相同於SEQ ID NO:1。該核酸分子可能進一步包含一基因調控元素。在一些實施例中,該基因調控元素可能為一菜豆蛋白(phaseolin)啟動子。
亦揭露的是△9去飽和酶酵素其包含至少80%相同於SEQ ID NO:2之一胺基酸序列者。本發明其中該胺基酸序列係至少80%相同於SEQ ID NO:2之△9去飽和酶酵素可能進一步在類似於SEQ ID NO:2中位置114之位置包含一絲胺酸;在類似於SEQ ID NO:2中位置117之位置包含一精胺酸;在類似於SEQ ID NO:2中位置118之位置包含一半胱胺酸;在類似於SEQ ID NO:2中位置179之位置包含一白胺酸;及/或在類似於SEQ ID NO:2中位置188之位置包含一蘇胺酸。
本發明之核酸分子與△9去飽和酶酵素可以在植物材料、細胞、組織或整個植物中表現,以提高稀少脂肪酸在該植物材料、細胞、組織或整個植物中的數量,相對於在同一物種野生型植物中觀察到之數量。本發明之替代實施例包括用於提高稀少脂肪酸在該植物材料、細胞、組織或整個植物中之數量的方法,該等者包含以SEQ ID NO:1核酸分子轉形的植物材料、細胞、組織或整個植物,藉由此,稀少脂肪酸在該植物材料、細胞、組織或整個植物中的數量係提高的。
在較佳實施例中,藉由該揭露方法轉形的植物材料、細胞、組織或整個植物進一步包含一或多種手段用於提高16:0-ACP在該植物材料、細胞、組織或整個植物中之水平。在某些實施例中,用於提高16:0-ACP在該植物材料、細胞、組織或整個植物中水平之手段可能為:一質體外去飽和酶之表現;KASII之抑制,舉例而言,藉由在該fab1基因中引入一突變;及/或減少該16:0脂肪酸之延長,舉例而言,藉由在該fae1基因中引入一突變。
於此揭露方法可能,舉例而言,在擬南芥屬之植物上或植物材料其衍自於擬南芥屬之植物上執行。一特別之實施例係描寫用於創造或再生一遺傳工程植物之方法,該者在包含以SEQ ID NO:1核酸分子轉形之植物材料的該植物中包含提高數量之稀少脂肪酸,相較於同一物種之野生型植物;及培養該轉形植物材料以獲得一植物。藉由前述方法獲得之植物、植物材料、植物細胞及種子亦為揭露的。
脂肪酸:如於此所使用,該術語『脂肪酸』意指不同鏈長之長鏈脂肪酸(烷酸),約從C12至C22,儘管較長與較短鏈長之脂肪酸兩者都係知悉的。脂肪酸之結構係由該標示法所表示,x:yΔz,其中“x”係為在該特別脂肪酸中碳(C)原子之總數目,而“y”係為從該脂肪酸之羧化端數來在該碳鏈中於該位置“z”中之雙鍵數目。
稀少脂肪酸:為了達成本發明之目的,稀少脂肪酸係為那些在天然系統中其合成係藉由一變體去飽和酶酵素修飾FAS之一中間物而引起的。
代謝途徑:該術語『代謝途徑』意指在一細胞內發生的一系列化學反應,由酵素催化,以達到一代謝產物之形成,或另一代謝途徑之引發。一代謝途徑可能涉及數個或許多步驟,且可能與不同代謝途徑競爭特定的反應受質。同樣地,一代謝途徑之產物可能為另一代謝途徑之受質。
代謝工程:為了達成本發明之目的,『代謝工程』意指策略之合理設計以修改在一細胞中之一或多個代謝途徑,藉由此,逐步修飾一起始物質成為具有確切所欲化學結構之產物係在該細胞內運行之總代謝途徑的整體方案中實現的。
去飽和酶:如於此所使用,該術語『去飽和酶』意指一種多肽其能在一或多個脂肪酸中去飽和(即引入一雙鍵)以產生所關注之脂肪酸或前驅物。植物可溶性脂肪酸去飽和酶酵素將一雙鍵部位特定地引入至一飽和醯基-ACP受質。該反應涉及藉由一兩電子還原的二鐵中心活化分子氧,形成該去飽和酶構造核心之該二鐵中心係由四螺旋束配位的。於此特別關注的係為Δ9去飽和酶。
該Δ9-18:01-ACP去飽和酶是所有植物維持細胞膜流動性所要求的。雖然此酵素主要去飽和硬酯醯基-ACP,其對棕櫚醯基-ACP亦具有較小程度之活性。
變體去飽和酶:如於此所使用,該術語『變體去飽和酶』含括那些去飽和酶其展示特定的活性量變曲線一致於製造稀少脂肪酸中之一角色。一變體去飽和酶可能從生物體中單離,或經由一定向演化計畫建造的。
後代植物:為了達成本發明之目的,『後代植物』意指由此獲得之任何植物或植物材料,該等者可能藉由植物育種方法獲得。植物育種方法在該技藝中係廣為知悉的,包括天然育種、人工育種、涉及DNA分子標記分析的選擇育種、基因轉殖及商業育種。
植物材料:如於此所使用,該術語『植物材料』意指從植物獲得之任何細胞或組織。
核酸分子:一種聚合性形式的核苷酸,其可以包括正義與反義股RNA、cDNA、基因組DNA、及以上之合成形式與混合聚合物。一核苷酸意指一核糖核苷酸、去氧核苷酸或兩種核苷酸類型任一種的修飾形式。一『核酸分子』如於此所使用係與『核酸』及『聚核苷酸』同義的。該術語包括單股及雙股形式的DNA。一個核酸分子可以包括天然發生核苷酸與修飾核苷酸兩者任一或兩者,該等者係藉由天然發生及/或非天然發生的核苷酸連結而連結在一起。
核酸分子可以化學或生物化學修飾地,或可以含有非天然的或衍生的核苷酸鹼基,該者將為一般技藝人士所輕易體會的。此種修飾包括,舉例而言,標誌;甲基化;以一類似物取代該一或多個天然發生的核苷酸;核苷酸間修飾,諸如不帶電的連結(舉例而言,甲基膦、磷酸三酯(phosphotriesters)、胺基磷酸酯(phosphoramidates)、胺基碳酸鹽......等等)、帶電連結(舉例而言,硫代磷酸酯(phosphorothioates)、二硫代磷酸酯(phosphorodithioates)......等等)、下垂主體(pendent moieties)(舉例而言,肽)、嵌入劑(舉例而言,吖啶、補骨脂(psoralen)......等等)、螯合劑、烷化劑及修飾連結(舉例而言,阿法變旋異構核酸......等等)。該術語『核酸分子』亦包括任何拓撲構形,包括單股、雙股、部分雙鏈、三鏈、之字形、圓形及掛鎖構形。
操縱連結:當一第一核酸序列與一第二核酸序列係在一功能關係中時,該第一核酸序列係與該第二核酸序列係操縱連結的。譬如,一啟動子係操縱連結至一編碼序列假若該啟動子影響該編碼序列之轉錄或表現時。當重組製造時,操縱連結核酸序列一般係連續的,且必須接合兩蛋白質編碼區域在相同的閱讀框架中。然而,核酸不需要被連續地操縱連結。
調控元素:如於此所使用,該術語『調控元素』意指一核酸分子其具有基因調控活性;也就是說,具有影響操縱連結可轉錄核酸分子之轉錄或轉譯能力之一者。調控元素,諸如啟動子、前導序列(leaders)、內含子與轉錄終止區係為非編碼核酸分子其具有基因調控活性者,該者在活細胞之整體基因表現中扮演不可缺少之一部分。在植物中作用之單離的調控元素對經由分子工程技術修飾植物表型因此係為有用的。『調控元素』係預期為一系列之核苷酸其決定一特定基因是否、何時以及什麼程度的表現。該調控DNA序列與調控蛋白質或其他蛋白質特異地交互作用。
如於此所使用,該術語『基因調控活性』意指一核酸分子其能影響一操縱連結核酸分子之轉錄或轉譯。一個具有基因調控活性之單離的核酸分子可能提供該操縱連結核酸分子時間或空間之表現,或調控其表現的程度與速率。一個具有基因調控活性之單離的核酸分子可能包含一啟動子、內含子、前導序列或3'轉錄終止區。
啟動子:如於此所使用,該術語『啟動子』意指一核酸分子其涉及了RNA聚合酶II或諸如轉錄因子(反式作用蛋白質因子其調控轉錄者)之其他蛋白質的識別及鍵結以引發一操縱連結基因之轉錄。啟動子本身可能含有子元素,諸如影響操縱連結基因轉錄之順式元素或增強域。一『植物啟動子』係為一種在植物細胞中作用的原生或非原生啟動子。一『植物啟動子』可以作為5'調控元素用於調控一操縱連結基因之表現。植物啟動子可能藉由其等之時間、空間或發育表現模式而界定。於此所描述之該核酸分子可能包含核酸序列其包含啟動子者
序列同一性:兩個核酸序列之間或兩個胺基酸序列之間的相似性係於該等序列之間共享的序列同一性程度術語中表現。序列同一性典型地於同一性百分比術語中表現;百分比越高,該兩個序列越相似。用於比對序列以比較的方法係於下文詳細說明。
在一胺基酸序列中類似的位置:核酸及胺基酸序列可以藉由在下列段落中描述之該等方法而比對。當比對時,在一個序列中之一位置係與該比對序列之一位置在一類似位置中,假若該等位置在該共識序列之中係為同一的。
用於比對序列進行比較之方法在該技藝中係廣為知悉的。各種程式與比對演算法係描述於:Smith與Waterman之“Adv. Appl. math. 2:482,1981”;Needleman與Wunsch之“J. Mol. Biol. 48:443,1970”;Pearson與Lipman之“Proc. Natl. Acad. Sci. USA 85:2444,1988”;Higgins與Sharp之“Gene 73:237-44,1988”;Higgins與Sharp之“CABIOS 5:151-3,1989”;Corpet等人之“Nucleic Acids Research 16:10881-10890,1988”;Huang等人之“Computer Applications in the Biosciences 8:155-65,1992”;Pearson等人之“Methods in Molecular Biology 24:307-31,1994”;Tatiana等人之“FEMS Microbiol. Lett.,174:247-50,1990”;Altschul等人之“J. Mol. Biol. 215:403-10,1990”(序列-比對方法與同源性計算之詳細考量)。
國家生物技術資訊中心(NCBI)基本局部比對搜尋引擎(BLAST)可在網際網路上獲得的(於blast.ncbi.nlm.nih.gov/Blast.cgi),該者與序列分析程式結合使用,舉例而言,blastp與blastn。使用此程式如何決定序列同一性之一說明係可經由NCBI於blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs從網際網路上獲得的。
為了比較胺基酸序列,該BLAST程式之『Blast2序列』(bl2seq)功能係使用該預設參數而採用的。特異性參數可以在一般技藝人士之自由裁量中調整的,舉例而言,對不匹配提供一懲罰或匹配提供獎勵。
轉形:如於此所使用,該術語『轉形』意指已引入了諸如一構築之外來核酸分子的一細胞、組織、器官或生物。該引入的核酸分子可能被併入至該受體細胞、組織、器官或生物之基因組DNA中,藉由此,該引入的聚核苷酸分子係由隨後的後代繼承。一『轉基因』或『轉形』細胞或生物體亦包括該細胞或生物體之後代,及來自採用此一轉基因植物作為親代之育種計劃所產生之後代,舉例而言,起源於一外來核酸分子存在之雜交並展示一變化的表型。
本發明之一實施例包括一系統化方法以代謝工程ω-7脂肪酸(FA)之聚積,該者,舉例而言,在植物種子中係由棕櫚油酸(16:1Δ9)與反11-十八烯酸(vaccenic acid)(18:1Δ11)組成。為了舉例說明在質體中用於截取新合成脂肪酸流之方法,Com25,一16:0-ACP去飽和酶其起源於一直接演化計畫以增強該蓖麻Δ9-18:0-去飽和酶之16:0-去飽和酶活性,該者係於種子特異性菜豆蛋白啟動子控制下表現。任何種子特異性啟動子可以在於此揭露之該實施例中使用。此方法提高了ω-7FA之聚積,從在野生型(WT)中小於2%,至在Com25轉形中約14%。
在進一步之示範方法中,在該fab1/fae1雙突變中,該者在質體與質體外之脂肪酸延長係為損害的,Com25之表現分別造成ω-7 FA聚積提高至約50%。再者,在LTP170啟動子控制下引入一額外的Com25提高ω-7 FA聚積至約58%,暗示可能源自低周轉率的去飽和酶活性限制已被克服。該菜豆蛋白:Com25構築係於一系列KASII缺乏之背景中表現,且ω-7 FA含量提高係正比於高達約30%之16:0含量,高達約55%之總ω-7 FA聚積係觀察到的。有趣的是,轉基因聚積了56%之ω-7 FA仍然含有約19%之16:0,超過WT植物者之兩倍。質體外16:0去飽和酶表現以在16:0流至三醯基甘油途中截流係調查的。在fab1/fae1雙突變背景中,質體與質體外去飽和酶之共同表現伴隨著KASII抑制造成ω-7 FA提高的聚積從WT中約2%到在最佳工程品系中約71%,相當於在榮花屬種子所發現者。
ω-7 FAs係被選作為目標,因為如同其他那些稀少FA一樣,其在自然系統中的合成係藉由一變體去飽和酶酵素修飾FAS之中間物而起始的。Cahoon等人之“Plant Mol. Biol. 33:1105-10(1997)”;及Cahoon等人之“Plant Physiol. 117(2):593-8(1998)”。此外,ω-7 FA做為聚合物原料具有潛在的商業應用而同時具有類似於天然不飽和脂肪酸之物理性質。
代謝工程研究係藉由將一先前未報導過的Δ9-16:0-醯基載體蛋白質(ACP)去飽和酶,Com25,在一種子特異性啟動子控制下引入至該模式植物擬南芥中而起始的。藉由突變背景其含有上升水平之16:0的選擇,且藉由構築其係設計透過影響受質競爭將該碳流轉向至目標脂肪酸的共表現,將碳流轉向至ω-7 FA之方法係探討的。質體外去飽和酶酵素係表現以在從該質體輸出後去飽和殘餘的16:0。
質體及質體外去飽和酶之共表現伴隨KASII在該fab1/fae1背景中之抑制導致ω-7 FA從野生型中少於2%至高達約71%之提高的聚積,高於在馬利筋屬(Asclepias)中所發現者且相當於在榮花屬種子中發現者。
ω-7脂肪酸之前驅物,16:0-ACP,係於脂肪酸生合成之該第一分枝點,該者係由FatB硫酯酶與KASII延長酶所競爭;且一16:0-ACP去飽和酶之引入使此成為一三向競爭。KASII與FATB之抑制係為降低對受質之競爭並提高ω-7 FA聚積的有效方式。在該宿主品系中,ω-7 FA聚積之提高係於約30%時飽和的,因為在此水平之上該去飽和酶係限制的。藉由在一種子-特異性啟動子控制下表現一第二複製提高了Com25之劑量,進一步提高ω-7脂肪酸之聚積。然而,高ω-7 FA聚積之種子亦含有範圍約20%水平之16:0,代表去飽和質體外16:0之一機會。兩個質體外去飽和酶之表現提高了該ω-7 FA之聚積,造成16:0在成熟種子中大約50%之減少。
如下文詳細說明,系統性代謝工程可以成為一個成功的策略以操縱稀少脂肪酸聚積程度媲美於在天然來源中所觀察到者,因為該最佳的fab1/fae1/Com25/Ln△9D與An△9D品系聚積71%之ω-7 FA,本質上高於在馬利筋屬中之水平並相當於在榮花屬種子發現之水平。
當與SEQ ID NO:1比對時,在本發明之一些實施例中的核酸序列顯示提高的同一性百分比。在這些與其他實施例之中的特異性核酸序列可能包含序列其與SEQ ID NO:1,舉例而言,具有至少有60%、65%、70%、75%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或100%之同一性。對一般技藝人士而言,係為不言而明的是該核酸分子可能在本質上未改變一編碼多肽之胺基酸序列下而修飾的,舉例而言,根據允許的核苷酸替換其係根據密碼子簡併者。
在一些實施例中,本發明之核酸分子包含啟動子。啟動子可能以該載體構築將被插入之細胞類型為基礎而選擇的。在該項技藝中,在細菌、酵母菌與植物中作用之啟動子係廣為知悉的。該等啟動子亦可能以其等之可調控特徵為基礎選擇的。此種特徵之例子包括:轉錄活性、誘導性、組織特異性與發育階段特異性之增強。在植物中,啟動子其係病毒或合成起源之可誘導者、持續活化者、時間調控者、及空間調控者已被描述的(舉例而言,見Poszkowski等人之“EMBO J.3:2719(1989)”;Odell等人之“Nature 313:810(1985)”;Chau等人之“Science 244:17481(1989)”)。
常常使用的持續性啟動子包括,舉例而言,CaMV 35S啟動子、增強的CaMV 35S啟動子、玄參嵌紋病毒(Figwort Mosaic Virus)啟動子、甘露胺酸(mannopine)合成酶啟動子、胭脂鹼(opaline)合成酶啟動子及章魚肉鹼(octopine)合成酶啟動子。
有用的可誘導啟動子包括,舉例而言,啟動子其由水楊酸或聚丙烯酸誘導者,該者係藉由安全劑(取代苯磺酰胺除草劑)之應用而誘導;熱休克啟動子;硝酸鹽誘導啟動子其衍自於菠菜硝酸還原酶可轉錄核酸分子序列;激素誘導啟動子;及光誘導啟動子其與RuBP羧化酶之小的次單元及LHCP族聯合者。
組織特異性、發育調控啟動子之有用例子等包括該β-黃豆伴清蛋白(β-conglycinin)7S啟動子及該等種子特異性啟動子。在種子質體中較佳表現之有用的植物作用啟動子包括那些源自在油種子中涉及脂肪酸生合成之蛋白質者,及源自植物儲存蛋白質者。此種啟動子之例子等包括源自如菜豆蛋白、油菜子蛋白(napin)、醇溶蛋白(zein)、大豆胰蛋白酶抑製劑、ACP、硬脂酰ACP去飽和酶與油體膜蛋白(oleosin)此種可轉錄核酸分子序列之5’調控區。另一示範性的組織特異性啟動子係為該凝集素啟動子,該者係針對種子特異的。
其他有用的啟動子包括胭脂鹼合成酶、甘露胺酸合成酶與章魚肉鹼合成酶啟動子,該等者係運載於農桿腫瘤菌(Agrobacterium tumefaciens)之腫瘤誘導質體上;玄蔘嵌紋病毒(CaMV)19S與35S啟動子;增強的CaMV 35S啟動子;玄參嵌紋病毒之35S啟動子;源自核酮糖-1,5-二磷酸羧化酶小次單元(ssRUBISCO)的光誘導啟動子;源自煙草之EIF-4A啟動子(Mandel等人之“Plant Mol. Biol. 29:995-1004(1995)”);玉米蔗糖合成酶;玉米乙醇脫氫酶I;玉米捕光複合體(light harvesting compolex);玉米熱休克蛋白質;源自擬南芥的幾丁質酶啟動子;LTP(脂質轉移蛋白質)啟動子;矮牽牛查爾酮(chalcone)異構酶;綠豆富含甘氨酸之蛋白質1;馬鈴薯塊莖儲藏蛋白(patatin);泛蛋白(ubiquitin)啟動子;及肌動蛋白啟動子。有用的啟動子較佳地係為種子選擇性、組織選擇性或可誘導的。種子特異性調控係於,舉例而言,EP 0255378中討論的。
當與SEQ ID NO:2比對時,根據本發明一些實施例之胺基酸序列顯示提高的同一性百分比。在這些與其他實施例之中的特異性胺基酸序列可能包含序列其與SEQ ID NO:2,舉例而言,具有至少有70%、75%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或100%之同一性。對一般技藝人士而言,係為不言而明的是該核酸分子可能在本質上未改變一編碼多肽之胺基酸序列下而修飾的,舉例而言,根據允許的核苷酸替換其係根據密碼子簡併者。在許多實施例中,當與SEQ ID NO:2比對時具有前述提及序列同一性之該胺基酸序列編碼一多肽其具有酵素性Δ9-18:0-ACP去飽和酶活性。D. Com25之變更:5突變
本發明之觀點係關注衍自於一親代蓖麻去飽和酶的新穎遺傳工程去飽和酶。在特定實施例中,該遺傳工程去飽和酶係為Com25。Com25在下列5個胺基酸位置不同於其親代蓖麻去飽和酶:M114S、T117R、L118C、P179L與G188T(編號係根據成熟蓖麻去飽和酶PDB entry 1AFR)。在進一步之實施例中,該遺傳工程去飽和酶可能包含Com25中這5突變中之一或多個。舉例而言,一個遺傳工程去飽和酶,可能在下列該等位置中不同於親代的蓖麻去飽和酶:M114S;T117R;L118C;P179L;G188T;M114S與T117R;M114S與L118C;M114S與P179L;M114S與G188T;T117R與L118C;T117R與P179L;T117R與G188T;L118C與P179L;L118C與G188T;P179L與G188T;M114S、T117R與L118C;M114S、T117R與P179L;M114S、T1117R與G188T;M114S、L118C與P179L;M114S、L118C與G188T;M114S、P179L與G188T;T117R、L118C與P179L;T117R、L118C與G188T;T117R、P179L與G188T;或L118C、P179L與G188T.
在較佳實施例中,以Com25轉形之宿主細胞或材料可能展現提高的16:0脂肪酸水平。宿主細胞可能會出現提高水平的16:0脂肪酸,舉例而言,藉由降低16:0-ACP在這些宿主細胞中之代謝。其他提高16:0脂肪酸在宿主細胞中水平的方法可以使用的,且這種方法可能會由熟習該項技藝者透過判斷力行使而選擇。提高16:0脂肪酸在宿主細胞中水平之方法的例子包括但不限於:1)在宿主細胞中一表現一質體外去飽和酶;2)抑制宿主細胞中的KASII,舉例而言,藉由在該fab1基因中引入一突變;及3)減少16:0脂肪酸之延長,舉例而言,藉由在該fae1基因中引入一突變。
本發明亦針對產生轉形細胞之方法,該轉形細胞包含一或多個核酸分子其包含至少60%相同於SEQ ID NO:1之一核酸序列。此種核酸分子亦可能包含,舉例而言,非編碼的調控元素,諸如啟動子等。其他序列亦可能隨著該非編碼之調控元素與可轉錄的核酸分子序列引入至細胞。這些其他序列可能包括3'轉錄終止子、3'聚腺苷酸訊號、其他非轉錄序列、轉運序列或導向序列、選擇標記、增強子及操作子。
該轉形方法一般包含選擇一合適的宿主細胞、以一重組載體轉形該宿主細胞、並獲得該轉形的宿主細胞。
用於引入DNA進入細胞之技術對熟習該項技術者係廣為知悉的。這些方法一般可以分為五類:(1)化學方法(Graham與Van der Eb之“Virology 54(2):536-9(1973)”;Zatloukal等人之“Ann. N.Y. Acad. Sci. 660:136-53(1992)”);(2)物理方法,諸如顯微注射(Capechi之“Cell 22(2):479-88(1980)”)、電穿孔(Wong與Neumann之“Biochim. Biophys. Res. Commun.(1982) 107(2):584-7”;Fromm等人之“Proc. Natl. Acad. Sci. USA 82(17):5824-8(1985)”;美國專利第5,384,253號),及粒子加速器(particle acceleration)(Johnston與Tang之“Methods of Cell Biol. 43(A):353-65(1994)”;Fynan等人之“Proc. Natl. Acad. Sci. USA 90(24):11478-82(1993)”;(3)病毒載體(Clapp之“Clin. Perinatol. 20(1):155-68(1993)”;Lu等人之“J. Exp. Med. 178(6):2089-96(1993)”;Eglitis與Anderson之“Biotechniques 6(7):608-14(1988)”);(4)受體-媒介機制(Curiel等人之”Hum. Gen. Ther. 3(2):147-54(1992)”;Wagner等人之“Proc. Natl. Acad. Sci. USA 89(13):6099-103(1992)”);及(5)細菌-媒介機制,諸如藉由農桿菌。或者,藉由直接注入至植物的生殖器官,核酸可以直接引入到花粉(Zhou等人之“Methods in Enzymology 101:433(1983)”;Hess之“Intern. Rev. Cytol. 107:367(1987)”;Luo等人之“Plant Mol. Biol. Reporter 6:165(1988)”;Pena等人之“Nature 325:274(1987)”)。其他轉形方法包括,舉例而言,如美國專利第5,508,184號中所例示之原生質體轉形。該核酸分子亦可能被注入到未成熟之胚胎(Neuhaus等人之“Theor. Appl. Genet. 75:30(1987)”)。
最常使用的植物細胞轉形方法係為:農桿菌-媒介DNA轉移法(Fraley等人之“Proc. natl. Acad. Sci. USA 80:4803(1983)”)(如例示於美國專利第5,824,877號中;美國專利第5,591,616號;美國專利第5,981,840號;與美國專利第6,384,301號),及砲擊(biolistics)或粒子轟擊(microprojectile bombardment)媒介法(即基因槍)(諸如描述於美國專利第5,550,318號中;美國專利第5,538,880號;美國專利第6,160,208號;美國專利第6,399,861號;與美國專利第6,403,865號)。典型地,細胞核轉形係為所欲的,但在特異性轉形諸如葉綠體或澱粉體質體係為所欲時,植物質體轉形可能會利用粒子轟擊媒介交付所欲的核酸分子至某些植物品種,如擬南芥、煙草、馬鈴薯與芸苔屬(Brassica)物種。
農桿菌媒介轉形係透過使用一種屬於農桿菌屬之遺傳工程土壤細菌而實現。數種農桿菌物種媒介被稱為『T-DNA』的特異性DNA之轉移,該者可以遺傳工程將任何所欲的DNA片段攜帶到許多植物物種中。標記T-DNA媒介致病機轉方法的主要事件係為:致病力基因之誘導及T-DNA之加工與轉移。此方法係為許多評論之主題(Ream之“Ann. Rev. Phytopathol. 27:583-618(1989)”;Howard與Citovsky之“Bioassays 12:103-8(1990)”;Kado之“Crit. Rev. Plant Sci. 10:1-32(1991)”;Zambryski之“Annual Rev. Plant Physiol. Plant Mol. Biol. 43:465-90(1992)”;Gelvin之“Transgenic Plants”Kung與Wu編輯之,Academic出版,聖地牙哥,頁49-87(1993);Binns與Howitz之“In Bacterical Pathogeneis of Plants and Animals”Dang編輯,柏林:Springer Verlag,頁119-38(1994);Hooykaas與Beijersbergen之“Ann. Rev. Phytopathol. 32:157-79(1994)”;Lessl與Lanka之“Cell 77:321-4(1994)”;Zupan與Zambryski之“Annual Rev. Phytopathol. 27:583-618(1995)”)。
不管轉形方法學,為了選擇或標示轉形的植物細胞,引入細胞之該DNA可能含有一基因其在再生植物組織中作用以產生一種化合物,該者賦予植物組織對一否則有毒性之化合物之抗性。使用做為一可選擇、可篩選或可標示標記的感興趣基因包括但不限於,GUS、螢光蛋白質(GFP)、螢光素酶及抗生素或除草劑耐受性基因。抗生素抗藥性基因之例子包括基因其賦予抗藥性針對於青黴素、康黴素(及新黴素、G418、博萊黴素(bleomycin));甲氨蝶呤(methotrexate)(及甲氧苄氨嘧啶(trimethoprim));氯黴素;及四環黴素。舉例而言,草甘膦抗藥性可能藉由一除草劑抗藥性基因而賦予的。Della-Cioppa等人之“Bio/Technology 5:579-84(1987)”。其他亦可以履行之選擇元件包括但不限於,對草胺膦(phosphinothricin)、畢拉草(bialaphos)之耐受性、及正向選擇機制,Joersbro等人之“Mol. Breed. 4:111-7(1998)”,且係視為在本發明之發明範圍之內。
藉由選擇與篩選而鑑定並在支持再生之一適當介質中培養的該等轉形細胞然後可能容許其成熟成植物。
本揭露方法可能使用任何可轉形之植物細胞或組織。該等可轉形之細胞與組織,如於此所使用,包括但不限於那些能夠進一步繁衍以產生一植物之細胞或組織。熟習該項技藝者認識一些植物細胞或組織中其在插入外源DNA後係為可轉形的,且在適當的培養條件下該植物細胞或組織可以形成一個分化的植物。適合這些目的之組織可以包括但不限於,成熟的胚胎、胚盤(scutellar)組織、懸浮細胞培養、未成熟花序、莖分生組織、節點外植體、癒合組織、胚軸組織、子葉、根與葉。
從轉形植物原生質體或外植體再生、發育並培養植物在該項技藝中係為知悉的。Weissbach與Weissbach之“Methods for Plant Molecular Biology,(Eds.) Academic Press,Inc.,San Diego,CA(1988)”;Horsch等人之“Science 227:1229-31(1985)”。此再生與生長過程典型地包括選擇轉形細胞,及培養這些細胞經過正常的胚胎發育階段、經過該紮根小植株階段之該等步驟。轉基因胚胎及種子係類似地再生。在此方法中,轉形物一般係於一選擇性培養基存在下培養的,該者選擇成功轉形之細胞並誘導植物芽之再生。Fraley等人之“Proc. Natl. Acad. Sci. USA 80:4803(1993)”。這些芽等典型地係於二至四個月之內獲得的。該所得到的轉基因發根小芽此後係種植在一適當的植物生長培養基中,諸如土壤。細胞其從一選擇劑之曝露中存活者,或細胞其已在一篩選分析中標示陽性者可以在支持植物再生之一培養基中培養。該等芽然後可以轉移至一適當的根誘導培養基中,該培養基含有該選擇劑及一抗生素以防止細菌生長。該等芽中許多會發育根。這些然後係移植至土壤或其他介質,以容許該等根系之持續發育。該方法,如上所綜述,一般將依據所採用的特定植物株而變異,且該特殊之方法學因此係於一般技藝人士之判斷力之中。
該等再生的轉基因植物可能為自花授粉以提供同源的轉基因植物。或者,從該等再生轉基因植物獲得之花粉可能與非轉基因植物雜交,較佳的,重要農藝品種之自交品系。相反地,源自非轉基因植物之花粉可能使用以授粉該等再生的轉基因植物。
該等轉基因植物可能將該轉形核酸序列傳遞給其後代。針對該轉形的核酸序列,較佳地,該等轉基因植物係為同源的,且根據有性生殖之結果傳送那個序列給其所有的後代。後代可能從由該轉基因植物產生之種子生長的。這些額外的植物然後可能自花授粉以生成一真正的植物育種品系。
源自這些植物之該等後代除了別的之外可能就基因表現進行評估的。該基因表現可能藉由數種常見的方法偵測,諸如西方墨點法、北方墨點法、免疫沈澱及ELISA(酵素結合免疫吸附分析法)。該等轉形植物亦可能針對該引入之DNA之存在與表現水平及/或由本發明之該核酸分子及胺基酸分子賦予的脂肪酸量變曲線分析的。熟習該項技藝者知道許多可用於分析轉形植物之方法。舉例而言,用於植物分析之方法包括但不限於,南方墨點法或北方墨點法、PCR為基礎的方法、生化分析、表型篩選方法、田野評估及免疫診斷分析法。
用於特異地轉形雙子葉植物之方法對熟習該項技藝者係廣為知悉的。使用這些方法轉形並再生植物已於一些作物中描述的,包括但不限於,擬南芥屬之植物成員、棉花(Gossypium hirsutum)、大豆(Glycine max)、花生(Arachis hypogaea)及芸苔屬之成員。用於轉形雙子葉植物,主要藉由使用農桿腫瘤菌,並獲得轉基因植物之方法已針對棉花發表的(美國專利第5,004,863號;美國專利第5,159,135號;美國專利第5,518,908號);大豆(美國專利第5,569,834號;美國專利第5,416,011號;McCabe等人之”Biotechnology 6:923(1988)”;Christou等人之”Plant Physiol. 87:671-4(1988)”;芸苔屬(美國專利第5,463,174號);花生(Cheng等人之”Plant Cell Rep. 15:653-7(1996)”;McKently等人之”Plant Cell Rep. 14:699-703(1995)”);木瓜;及豌豆(Grant等人之”Plant Cell Rep. 15:254-8(1995)”)。
用於轉形單子葉植物之方法在該項技藝中亦是廣為知悉的。使用這些方法轉形並再生植物已於一些作物中描述的,包括但不限於,大麥(Hordeum vulgarae);玉米(Zea mays);燕麥(Avena sativa);果園草(Dactylis glomerata);稻米(Oryza sativa,包括秈稻與粳稻品種);高粱(Sorghum bicolor);甘蔗(Saccharum sp);高羊茅(Festuca arundinacea);草坪草品種(例如Agrostis stolonifera、Poa pratensis、Stenotaphrum secundatum);小麥(Triticum aestivum);及苜蓿(Meaicago sativa)。對熟習該項技藝者而言,為了使任何有興趣之目標作物產生穩定的轉基因植物,係為明顯的是許多轉形方法可以使用並修改的。
任何植物可能被選擇使用在本揭露方法中。根據本發明,用於修飾之較佳植物包括擬南芥(Arabidopsis thaliana)、琉璃苣(琉璃苣屬物種(Borago spp.))、芥花籽油(Canola)、蓖麻(Ricinus communis)、可可豆(Theobroma cacao)、玉米(Zea mays)、棉花(Gossypium spp)、海邊芥蘭屬物種(Crambe spp.)、克非亞草屬物種(Cuphea spp.)、亞麻(亞麻屬物種(Linum spp.))、雷斯克勒屬(Lesquerella)物種與澤花屬(Limnanthes)物種、亞麻籽(Linola)、金蓮花(金蓮花屬物種(Tropaeolum spp.))、月見草屬物種(Oenothera spp.)、橄欖(木犀屬物種(Olea spp.))、棕櫚(油椰子屬物種(Elaeis spp.))、花生(落花生屬物種(Arachis spp.))、油菜籽、紅花(紅花屬物種(Carthamus spp.))、大豆(大豆亞屬(Glycine)與黃豆亞屬(Soja)物種)、向日葵(向日葵屬物種(Helianthus spp.))、煙草(煙草屬物種(Nicotiana spp.))、斑鳩菊屬物種(Vernonia spp.)、小麥(小麥屬物種(Triticum spp.))、大麥(大麥屬物種(Hordeum spp.))、稻米(水稻屬物種(Oryza spp.))、燕麥(燕麥屬物種(Avena spp.))、高粱(高粱屬物種(Sorghum spp.))、黑麥(黑麥屬物種(Secale spp.)),或其他禾本科成員。
對熟習該項技藝者而言,為了自任何有興趣之目標作物產生穩定的轉基因植物,係為明顯的是許多轉形方法可以使用並修改的。
在本發明之一些實施例中,一轉基因種子其包含一多肽,該多肽包含一胺基酸序列其至少有90%相同於SEQ ID NO:2。在這些與其他實施例中,該轉基因種子包含一核酸序列其至少有60%相同於SEQ ID NO:1。在某些實施例中,本發明之該種子展現提高的稀少脂肪酸水平,舉例而言,ω-7脂肪酸,諸如16:1△9及/或18:1△11。該種子可以從可繁殖的轉基因植物收穫的並被使用以生長此發明之轉形植物的後代子代,包括雜種植物品系其包含根據本發明之一核酸序列及另一有興趣之基因或核酸構築。
下列之該等例子係提供以例示某些特定的特徵及/或實施例。這些例子不應該解釋為限制本發明於該等描述之特定特徵及/或實施例。
擬南芥屬植物係於E7/2TM控制的環境生長室(Conviron)中連續暴露於300微愛因斯坦光線(1微愛因斯坦=1摩爾光)下生長在土壤中。該等植物係根據Clough與Bcnt之方法轉形的,Clough與Bent之“Plant J.16(6):735-43(1998)”,該者係使用農桿腫瘤菌菌株GV3101。我們藉由螢光發射鑑定了攜帶該轉基因之個別T1種子,Stuitjc等人之“Plant Biotechnol.J.1(4):301-9(2003)”,該者係取決於源自連結一25A紅色相機濾鏡之X5 LEDTM手電筒(Inova)之綠光照明。Pidkowich等人之“Proc. Natl. Acad. Sci. USA 104(11):4742-7(2007)”。配備Olympus U-LH100HGTM之一WILDTM M3Z解剖顯微鏡照明系統係藉由FITC 535與FITC 515濾鏡分別之使用以區分種子其攜帶Zs-綠色與Ds-紅色標記者。種子-特異性表現係藉由放置一種子-儲存蛋白質啟動子或LTP170啟動子控制之構築而實現。Slightom等人之“Proc. Natl. Acad. Sci. USA 80(7):1897-1901(1983)”;及van der Geest與Hall之“Plant Mol Biol. 33(3):553-7(1997)”。
Com25係為蓖麻之Δ9-18:0-ACP去飽和酶之一變體,其係起源於一重組飽和突變誘發/選擇計畫,該者係設計以鑑定變體其具有朝向醯基鏈長度小於18C之改良活性者。Whittle與Shanklin之“J. Biol. Chem. 276(24):21500-5(2001)”。Com25在以下5個胺基酸位置不同於其親代蓖麻去飽和酶:M114S、T117R、L118C、P179L與G188T(編號係根據該成熟蓖麻去飽和酶PDB登錄1AFR者)。
Phas:Com25。蓖麻變體Com25之整個開放閱讀框架,該者係建造以含有有效的轉運肽(transit peptide)且由5’PacI與3’XhoI限制位包夾,係選殖到質體pDs-Red-Phas的相應位置,Pidkowich等人之“Proc. Natl. Acad. Sci. USA 104(11):4742-7(2007)”,(具有Ds-Red標記)以創造Phas:Com25(第5圖)。
Phas:Com25,LTP170:Com25。該LTP170啟動子係使用引子P17-5’BamHI(GGGATCCCCGGGTTGACATTTTTACCTTTTT;SEQ ID NO:3)與P17-3’PacI(GGTTAATTAAGTCTTCAAACTCTAGGA;SEQ ID NO:4)從擬南芥基因組DNA放大的,在單離該BamHI-PacI片段前次選殖至一Pgemt-Easy,該BamHI-PacI片段係選殖至pDs-Red-Phas:Com25(在上文描述的)相對應位置以創造pDs-Red-LTP170:Com25。含有Com25與菜豆蛋白終止子之一片段係使用BamHI與EcoRV切除並選殖至在pDs-Red-LTP170-Com25載體之內的該BamHI與SmaI限制位中以創造Phas:Com25/LTP170:Com25(第5圖)。
Phas:Fab1-HPAS。此構築係於兩步驟中創造的,首先係為該Phas:FatB-HP之構築,及事後該FatB基因之反義部分之插入以取代隔開包含該之字形(hairpin)之FatB基因的正義和反義部分之該Fad2內含子。為了實現此一點,150 bp的擬南芥FatB 3’UTR係從基因組DNA放大正義(使用引子FatB-hps-5’PstI GGGCTGCAGAAACAAGTTTCGGCCACCAACC C;SEQ ID NO:5與FatB-hps-3’XhoI CCCCTCGAGACATCAGAATTCGTAATGAT;SEQ ID NO:6),及放大反義(使用引子FatB-hpa-5’NheI GGGGCTAGCAAGTTTCGGCCACCAAC CC;SEQ ID NO:7與FatB-hpa-3’PacI CCCTTAATTAAACATCAGAATTCGTAATGAT;SEQ ID NO:8)兩者方向。這些片段係以PstI/XhoI與NheI/PacI限制且使用以在其相等位置替代pGEM-T-Easy-HTM3中該FabI之5’UTR正義與反義部分,Pidkowich等人之“Proc. Natl. Acad. Sci. USA 104(11):4742-7(2007)”,以創造該中間物質體pGEM-T-Easy-HTM4。為了創造一300 bp的FatB編碼區域之反義部分,一片段係以引子FatB-Exon-5’Sp-Bam(CCACTAGTGGATCCACCTCTGCTACGTCGTCATT;SEQ ID NO:9)與FatB-Exon-3’Bg-Sal(GGAGATCTGTCGACGTAGTTATAGCAGCAAGA AG;SEQ ID NO:10)放大的,且以BamHI與SalI限制之該片段在以BglII與SpeI限制之後係使用以替代部分的該Fad2-內含子,以創造pGEM-T-Easy-HTM5。
該組合之HPAS片段係藉由使用PacI與XhoI切除並選殖至pZs-Green-Phas:Com25(質體pDs-Red-Phas:Com25,如上文所描述,在其中該螢光標記pCVMV:Ds-Red已由一綠色螢光蛋白質標記pCVMV:Zs-GreenTM(Clonetech)替代)之相等位置中以創造質體Phas:FatB-HPAS(第5圖)。
Phas:AnD9d,Phas:LnD9D。兩個真菌醯基-輔酶A D9去飽和酶係結合於質體pDAB7318中,伴隨兩基因皆由源自菜豆(Phaseolus vulgaris)之種子特異性Phas啟動子驅動。在該構築中之第一基因係為源自小巢狀麴菌(Aspergillus nidulans)之一醯基-輔酶A Δ9-去飽和酶,該者係針對在植物中最理想的表現而重新設計與合成(美國專利申請案20080260933A1),並融合至源自菜豆之菜豆蛋白基因的3’非轉譯區域與3’MAR。在此一構築中之該第二去飽和酶基因係為係為源自小麥潁枯病病菌(Leptosphaeria nodorum)之一醯基輔酶A Δ9-去飽和酶,該者係針對植物表現重新設計與合成,並融合至該農桿腫瘤菌ORF23之3'非轉譯區。此去飽和酶係由哈佛與MIT布洛德研究所(http://www.broad.mit.edu)之該小麥潁枯病病菌定序計畫所釋放出的S. nodorum基因序列的同源性搜尋所鑑定的。藉由啤酒酵母菌(Saccharomyces cerevisiae)之ole1突變互補,該者顯示對棕櫚酸酯之去飽和具有一偏愛。Phas:Fab1-HPAS-Phas:Com25。為了簡化基因疊加實驗,質體Phas:Fab1/HPAS-Phas:Com25係構築以結合Com25之表現與KASII之抑制。為了實現這一目標,該菜豆蛋白終止子係從Phas:Com25單離並選殖到該中間物載體pBL,伴隨含有菜豆蛋白啟動子驅動之Com25的該EcoRV-EcoRV片段,以創造PBL PHAS:Com25 PhasTer。此Com25表現匣係使用包夾的EcoRI-EcoRI限制位切除並選殖到Phas:Fab1-HPA中之相應位置以創造Phas:Fab1-HPAS-Phas-Com25。見第5圖。
為了分析單一種子之脂肪酸,脂肪酸甲基酯(FAMEs)係藉由在甲醇中以0.2M之三甲基氫氧化鋶培養而製備。Butte等人之“Anal. Lett. 15(10):841-50(1982)”。為了類似地分析散裝bulk種子,FAMEs係藉由在在0.5 mL BCl3中於80℃下培養該種子1 h而製備,以1 mL正己烷提取,且然後在N2之下乾燥。FAMEs係以配有60-m×250-M SP2390毛細管柱(Supelco公司)之HP6890TM氣相色譜儀火焰離子化檢測器(安捷倫科技)或HP5890TM氣相色譜質譜儀(惠普)分析。在分析期間該烤箱溫度係以15℃/min從100℃上升至240℃,伴隨1.1 mL/min之一流速。質譜係以一HP5973TM質譜檢測器(惠普)執行。藉由二甲基硫醚衍生化,我們確定了單不飽和FAMEs雙鍵的位置。Yamamoto等人之”Chem. and Phys. Lipids 60(1):39-50(1991)”。
數種植物已被報導在其等之種子中聚積ω-7 FA,包括馬利筋屬,Hopkins與Chisholm之“Can. J. Biochem. Physiol. 39:829-35(1961)”;及榮花屬,Chisholm與Hopkins之”J. Am. Oil Chem. Soc. 42:49-50(1965)”。基因其編碼負責合成棕櫚油酸酯之該去飽和酶酵素者已被單離出。該相應的重組去飽和酶酵素之活性,Cahoon等人之“植物Mol. Biol. 33:1105-10(1997)”;Cahoon等人之“Plant Physiol. 117(2):593-8(1998)”,如許多變體去飽和酶者,低於那些被報導之原型硬脂酰-ACP去飽和酶。Whittle與Shanklin之“J. Biol. Chem. 276(24):21500-5(2001)”。我們比較了馬利筋與榮花屬去飽和酶及數種蓖麻去飽和酶變體之表現效果,包括源自蓖麻品種5.2及源於定向演化實驗其提升該蓖麻Δ9-18:0-去飽和酶在擬南芥中之16:0去飽和酶活性的Com25,Whittle與Shanklin之“J. Biol. Chem. 276(24):21500-5(2001)”,Bondaruk等人之“Plant Breeding 126:18694(2007)”,提高了16:1Δ9之聚積與其延長產物,18:1Δ11,在WT擬南芥中從未轉形植物勉強可偵測程度分別至約2%與約12%;在Com25轉形物中產生了總共約14%之ω-7。第2A圖;第2B圖。
表1顯示,對於16:0-ACP受質,雖然Com25超過蓖麻WT(2.8 min-1)具有一個改良許多的kcat(11.1 min-1),其變得不及於蓖麻變體5.2所報導者(25.3 min-1)。Whittle與Shanklin之“J. Biol. Chem. 276(24):21500-5(2001)”。然而,對於16:0-ACP,Com25之Km(0.12 M)係4.6倍低於蓖麻變體5.2(0.55)者且42倍低於蓖麻WT(5.0)者。對於com25,該所得到之16:0-ACP受質的特異性因子91 M-1‧min-1係大約為蓖麻變體5.2之兩倍及蓖麻WT之163倍。事實上,Com25之與16:0-ACP特異性因子係相當於蓖麻WT與天然的18:0-ACP受質者(92 M-1‧min-1)。對於16:0-ACP,Com25相對於蓖麻變體5.2之改良暗示了其與FatB及KASII對受質之競爭更有效率地,該者提供了一個解釋,為何其表現促進了高於蓖麻變體5.2的ω-7 FA聚積,儘管其較低的Kcat。
蓖麻去飽和酶及其變體與不同受質之動力學參數。
在WT擬南芥中,脂肪酸係透過ACP支線至16:0-ACP水平之一第一分支點重新合成。第1圖。假若由FATB作用,該棕櫚醯基硫酯酶,16:0自由脂肪酸係從質體釋放到其酯化成輔酶A的細胞質中,且隨後轉酯化到內膜系統的磷脂上。或者,β-酮基醯基-ACP合成酶Ⅱ(KASII)將大部分16:0-ACP延長至18:0-ACP,據此,其由Δ9-硬酯醯基-ACP去飽和酶去飽和以產生油醯-ACP。FATA,該油醯-ACP硫酯酶釋放油酸,該者離開該質體且,如棕櫚酸酯,變成激活的輔酶A-硫酯,並轉移到該磷脂。在ER中,油酸酯可以透過該脂肪酸延長酶(FAE)I延長至10:1Δ11,或由FAD2與FAD3之作用連續地去飽和以分別地產生亞麻酸或亞麻酸。
16:0-ACP係為FA合成途徑中較早的代謝物,藉由其去飽和為16:1Δ9-ACP,該者可以提交至ω-7的生產。為了實現這一目標,在一種子特異性啟動子控制下表現一質體Δ9-16:0-ACP-特異性去飽和酶之可行性係探討的(見第1圖(反應1))。
如上所述,β-酮基醯-ACP合成酶Ⅱ(KAS II)將16:0-ACP延長為18:0-ACP。所以,具有降低KASII活性之品系係尋找的,該者將含有提高水平的16:0受質。第2圖顯示種子FA甲基酯之代表性GC線。儘管許多突變誘發係掃瞄,只有fab1一個突變已被報導,James與Dooner之“Theor. Apple Genet. 80:241-45(1990)”,該者在葉子與種子中展示提高的16:0水平,其相較於WT中約10%,含有約21%的16:0,如第2c圖所顯示;及表2。生化證據顯示,該fab1損害係於KASII中,因為在該突變中其活性係降低的。Carlsson等人之“植物J. 29(6):761-70(2002)”。在fab1中表現Com25提高16:1Δ9與18:1Δ11之聚積分別至約23%與約16%,產生了總共約39%之ω-7 FA。第2D圖與表2。取決於Com25在該 fab1-1背景中之表現,此ω-7 FA之大大提高與成熟種子中16:0之總聚積有關聯,並可能起源於與KASII對16:0-ACP受質競爭減少的結果。
我們亦將該fab1突變與fae1結合了,由於其在質體外C18至C20脂肪酸延長之缺陷,進一步提高16:0脂肪酸的數量,並簡化了分析。該未轉形之雙突變含有約9%的ω-7脂肪酸,大概是反映提高的16:0-ACP去飽和,該者係在提高16:0-ACP的受質水平下藉由Δ9-18:0-ACP去飽和酶。第2E圖;及表2。Com25在fab1/fae1中之表現造成16:1Δ9與18:1Δ11分別提高至約26%、約23%,產生ω-7 FA約50%之一提高。第2F圖;及表2。
從上面的結果,16:1在fab1與fab1/fae1種子中提高的聚積與提高16:0有關,且所以我們尋找表現Com25之品系在其中16:0水平係高於該fab1/fae1雙突變者。兩種這樣的突變最近係報導的,在其中Fab1係被抑制的,一個由髮夾(HP)RNAi,Pidkowich等人之“Proc. Natl. Acad. Sci. USA 104(11):4742-7(2007)”,另一者由一新穎的抑制方法,稱之為髮夾的反義(HPAS)RNAi,Nguyen與Shanklin之”Journal of the American Oil Chemists Society 86:41-9(2009)”。這些品系分別含有強烈上升的種子16:0聚積水平為42%與46%。第3圖。以Com25轉形在兩者事例中進一步產生約5% ω-7 FA之提高。表2。因此,在低水平16:0中提高16:0聚積係為Com25去飽和作用提高之前兆,該者係由ω-7 FA中正比之提高而證明的,但此種反應在超過30%一點點時顯然是飽和的,因為在宿主其聚積42%或46%16:0者其在ω-7 FA聚積表現上之間係沒有差別的。第3圖。非意欲受任何特定學說之約束,係為可能的是除了受質之外的因子,換言之去飽和酶的數量及/或還原劑的可獲得性成為這些轉基因的限制。
近來,一T-DNA剔除對偶基因,fab1-2係被描述其在該異型合子具有提高的16:0水平;然而,該同源合子係顯示為胚胎致死的。Pidkowich等人之“Proc. Natl. Acad. Sci. USA 104(11):4742-7(2007)”。我們假設該致死的表型是不飽和脂肪酸降低的結果,並推論說,在此品系中表現Com25可賦予活力。相反的,該fab1/fae1雙突變在同源合子狀態下係為可活的,且在生長及發育階段係無法與WT區分的。所以,我們使用該fab1/fae1雙突變作為後續實驗之一實驗主體。
原型蓖麻Δ9-18:0-ACP去飽和酶具有42 min-1之一kcat,Whittle與Shanklin之“J. Biol. Chem. 276(24):21500-5(2001)”;該者係高於Δ9-16:0-ACP去飽和酶所報導之那些數倍。Cahoon等人之“Plant Mol. Biol. 33:1105-10(1997)”;及Cahoon等人之“Plant Physiol. 117(2):593-8(1998)”。雖然此週轉係相當於類似的鐵依賴氧化反應,諸如細胞色素P450,這些速率係低於許多代謝酵素(在許多事例中,級數等級之強度)。該去飽和酶之低週轉率迫使高程度的蛋白質表現以為了負責儲存在種子中之大部分之碳的去飽和作用,提高了去飽和酶酵素之數量可能抑制ω-7聚積之該可能性。為了驗證此假說,Com25係建造於一種子特異性LTP170啟動子(該者控制一種子貯藏蛋白質之表現)控制之下,並與上文描述之該菜豆蛋白驅動Com25構築一起共表現的。在該fab1/fae1背景中於菜豆蛋白及LTP170啟動子控制下之Com25的共表現造成ω-7FA聚積從約50%至58%之一提高;在該16:1Δ9中之提高(約6%)係大於18:1Δ11者(約2%)。在ω-7FA聚積之此提高係為中度moderate的,暗示在表現兩種Com25構築之種子中Com25可能不受限的。
如先前所討論,使用背景擬南芥其聚積高水平16:0者取決於一16:0-ACP去飽和酶之表現與ω-7 FA之形成有關聯,但該16:0許多還是離開該質體且聚積在種子油中。見表2。所以,兩種降低16:0在種子中聚積的方法係考量的。一種策略係為降低從16:0-ACP分開成16:0之該棕櫚酸硫酯酶FATB的活性(第1圖)。透過HPAS-RNAi抑制FATB降低了約3%之16:0聚積,約提高了6% ω-7 FA。見表2。在從該質體運出後去飽和該16:0以進一步降低種子16:0聚積超越藉由FATB抑制所觀察者的可行性係探討的。
從質體釋放出的自由脂肪酸在以三醯基甘油聚積的途中藉由醯基輔酶A合成酶變成酯化為Co-A。Shockey等人之”Plant Physiol. 132(2):1065-76(2003)”。這些細胞質脂肪醯基Co-A及磷脂連結之FA代表用於質體外去飽和酶之可能可獲得的受質庫。質體外真菌小巢狀麴菌(An)與小麥潁枯病病菌(Ln)去飽和酶之表現,單獨或結合,係就擬南芥中降低16:0水平之觀點評估的。在該菜豆蛋白啟動子控制下來自Ln與An兩個去飽和酶之共表現在WT擬南芥中降低16:0上產生可喜的結果。所以,在一KASII HPAS-RNAi抑制品系中該Ln與An構築之表現與一單一Com25複製之表現係測試的。LnΔ9D與AnΔ9去飽和酶之表現導致近乎一半的16:0轉換為16:1Δ9,導致16:0在種子中聚積從約19%至約11%之一減少(接近在WT種子中所看到者),伴隨16:1Δ9從約27%至約43%之一相應提高。在該宿主fab1/fae1/Com25品系中,18:1Δ11之水平依舊相同的,且以LnΔ9D與AnΔ9去飽和酶轉形(分別約25%與約23%)之此品系,該者顯示該fae1突變,在16:1Δ9延長活性中係幾乎完全沒有的。質體與質體外去飽和酶共表現之此策略產生約67% ω-7 FA之一平均聚積,伴隨個別植物其顯示大於71%者。
<110> 陶氏農業生技
Shanklin,John
Nguyen,Huu Tam
Walsh,Terence A.
<120> 植物種子中ω-7脂肪酸的聚積技術
<130> 2971.01-9666.1TW
<160> 10
<170> 專利3.4版
<210> 1
<211> 1092
<212> DNA
<213> 人工的
<220>
<223> 從蓖麻Δ9-18:0-去飽和酶建造之Com25
<400> 1
<210> 2
<211> 363
<212> PRT
<213> 人工的
<220>
<223> 從蓖麻Δ9-18:0-去飽和酶建造之Com25
<400> 2
<210> 3
<211> 31
<212> DNA
<213> 人工的
<220>
<223> P17-5’BamHI引子
<400> 3
<210> 4
<211> 27
<212> DNA
<213> 人工的
<220>
<223> P17-3’PacI引子
<400> 4
<210> 5
<211> 32
<212> DNA
<213> 人工的
<220>
<223> FatB-hps-5’PstI引子
<400> 5
<210> 6
<211> 29
<212> DNA
<213> 人工的
<220>
<223> FatB-hps-3’XhoI引子
<400> 6
<210> 7
<211> 28
<212> DNA
<213> 人工的
<220>
<223> FatB-hpa-5’NheI引子
<400> 7
<210> 8
<211> 31
<212> DNA
<213> 人工的
<220>
<223> FatB-hpa-3’PacI引子
<400> 8
<210> 9
<211> 34
<212> DNA
<213> 人工的
<220>
<223> FatB-Exon-5’Sp-Bam引子
<400> 9
<210> 10
<211> 34
<212> DNA
<213> 人工的
<220>
<223> FatB-Exon-3’Bg-Sal引子
<400> 10
第1圖描繪在擬南芥之質體與內質網中脂肪酸之合成與修飾的示意圖。由16:0去飽和酶媒介之反應係指出為1:Δ9-16:0-ACP去飽和酶;2:質體外:Δ9-16:0-ACP去飽和酶。ω-7 FA,即16:1Δ9與18:1 Δ11係為方塊的。
第2圖顯示FAMEs之之一代表性氣相色層分離,其取決Com25在擬南芥之各種背景中的表現。分圖A與B,WT;C與D,fab1;E與F,fab1/fae1。分圖A、C與E,未轉形;B、D與F,以Phas:Com25轉形。FAME波峰係指出為:16:0(1)、16:1Δ9(2)、16:2(3)、18:0(4)、18:1 Δ9(5)、18:1Δ11(6)、18:2(7)、20:0(8)、20:1Δ11(6)、18:2(7)、20:0(8)、20:1Δ11(9)、18:3+20:1Δ13(10)、及22:1(11)。
第3圖顯示在宿主種子中16:0與ω-7聚積之間的關係(以莫耳百分比)。
第4圖顯示FAMEs之之一代表性氣相色層分離,其取決Com25在擬南芥或各種背景中的表現。分圖A:最佳的fab1/fae1,Phas:Com25,Fab1-HPAS,AnΔ9DS,LnΔ9DS轉形品系;分圖B:榮花屬(Doxantha)種子。波峰命名係如第2圖中所說明。
第5圖係為本發明之一特別構築實施例中DNA元素之一示意比對。
Claims (23)
- 一種用於產生一轉殖基因植物材料之方法,該方法包含:以一包含一多核苷酸之核酸分子轉形包含一Ln△9D或An△9去飽合酶之植物材料,該多核苷酸係至少60%相同於SEQ ID NO:1且編碼一具有至少90%相同於SEQ ID NO:2之多肽,以使得於該植物材料中之該等稀少脂肪酸數量提高。
- 如申請專利範圍第1項之方法,其進一步包含以另外的核酸分子轉形植物材料,該額外的核酸分子係至少60%相同於SEQ ID NO:1且編碼一具有至少90%相同於SEQ ID NO:2之多肽。
- 如申請專利範圍第1項之方法,其中該植物材料包含用於在該植物材料中抑制KASII的一手段,或是用於在該植物材料中減少16:0脂肪酸之延長的一手段。
- 如申請專利範圍第3項之方法,其中該植物材料包含用於抑制KASII之一手段,該手段為在fab1基因中的一突變。
- 如申請專利範圍第3項之方法,其中該植物材料包含用於在該植物材料中減少16:0脂肪酸之延長的一手段,該手段為在fae1基因中的一突變。
- 如申請專利範圍第1項之方法,其中該植物材料係從選自於一屬之一植物獲得,該屬係選自包含下述之群組: 擬南芥屬(Arabidopsis)、琉璃苣屬(Borago)、芥花籽油(Canola)、蓖麻屬(Ricinus)、可可屬(Theobroma)、玉米屬(Zea)、棉花屬(Gossypium)、海邊芥蘭屬(Crambe)、克非亞草屬(Cuphea)、亞麻屬(Linum)、雷斯克勒屬(Lesquerella)與澤花屬(Limnanthes)、亞麻籽(Linola)、金蓮花屬(Tropaeolum)、月見草屬(Oenothera)、木犀屬(Olea)、油椰子屬(Elaeis)、落花生屬(Arachis)、油菜籽、紅花屬(Carthamus)、大豆亞屬(Glycine)與黃豆亞屬(Soja)、向日葵屬(Helianthus)、煙草屬(Nicotiana)、斑鳩菊屬(Vernonia)、小麥屬(Triticum)、大麥屬(Hordeum)、水稻屬(Oryza)、燕麥屬(Avena)、高粱屬(Sorghum)、黑麥屬(Secale),或其他禾本科成員。
- 如申請專利範圍第1項之方法,其中該植物材料包含在fab1基因中的一突變及在fae1基因中的一突變中之至少一者。
- 如申請專利範圍第7項之方法,其中該植物材料包含在fab1基因中的一突變及在fae1基因中的一突變。
- 一種用於創造一遺傳工程植物之方法,該方法包含:以一包含一多核苷酸之核酸分子轉形包含一Ln△9D或An△9去飽合酶之植物材料,該多核苷酸係至少60%相同於SEQ ID NO:1且編碼一具有至少90%相同於SEQ ID NO:2之多肽;以及從該經轉形之植物材料再生一植物。
- 如申請專利範圍第9項之方法,其中該植物係選自於一 屬,該屬係選自包含下述之群組:擬南芥屬、琉璃苣屬、芥花籽油、蓖麻屬、可可屬、玉米屬、棉花屬、海邊芥蘭屬、克非亞草屬、亞麻屬、雷斯克勒屬與澤花屬、亞麻籽、金蓮花屬、月見草屬、木犀屬、油椰子屬、落花生屬、油菜籽、紅花屬、大豆亞屬(Glycine)與黃豆亞屬(Soja)、向日葵屬、煙草屬、斑鳩菊屬、小麥屬、大麥屬、水稻屬、燕麥屬、高粱屬、黑麥屬,或其他禾本科成員。
- 如申請專利範圍第1項之方法,其中該多核苷酸編碼一多肽,該多肽在類似於SEQ ID NO:2位置114之位置包含一絲胺酸;在類似於SEQ ID NO:2位置117之位置包含一精胺酸;在類似於SEQ ID NO:2位置118之位置包含一半胱胺酸;在類似於SEQ ID NO:2位置179之位置包含一白胺酸;或是在類似於SEQ ID NO:2位置188之位置包含一蘇胺酸。
- 如申請專利範圍第1項之方法,其中該多核苷酸編碼一多肽,該多肽在類似於SEQ ID NO:2位置114之位置包含一絲胺酸;在類似於SEQ ID NO:2位置117之位置包含一精胺酸;在類似於SEQ ID NO:2位置118之位置包含一半胱胺酸;在類似於SEQ ID NO:2位置179之位置包含一白胺酸;以及在類似於SEQ ID NO:2位置188之位置包含一蘇胺酸。
- 如申請專利範圍第1項之方法,其中該多核苷酸編碼一具有至少95%相同於SEQ ID NO:2之多肽。
- 如申請專利範圍第1項之方法,其中該多核苷酸編碼一具有至少98%相同於SEQ ID NO:2之多肽。
- 如申請專利範圍第1項之方法,其中該多核苷酸編碼該SEQ IK NO:2之多肽。
- 如申請專利範圍第1項之方法,其中該植物材料為一植物細胞。
- 一種轉殖基因植物細胞,其包含至少60%相同於SEQ ID NO:1的一多核苷酸,其中該多核苷酸編碼至少90%相同於SEQ ID NO:2之多肽,且進一步包含一Ln△9D或An△9去飽合酶。
- 如申請專利範圍第17項之轉殖基因植物細胞,其中該植物細胞包含用於在該植物材料中抑制KASII的一手段,或是用於在該植物材料中減少16:0脂肪酸之延長的一手段。
- 如申請專利範圍第18項之轉殖基因植物細胞,其中該植物細胞包含用於抑制KASII的一手段,該手段為在fab1基因中的一突變。
- 如申請專利範圍第18項之轉殖基因植物細胞,其中該植物材料包含用於減少16:0脂肪酸之延長的一手段,該手段為在fae1基因中的一突變。
- 如申請專利範圍第17項之轉殖基因植物細胞,其中該植物細胞係從選自於一屬之一植物獲得,該屬係選自包含下述之群組:擬南芥屬(Arabidopsis)、琉璃苣屬(Borago)、芥花籽油(Canola)、蓖麻屬(Ricinus)、可可屬 (Theobroma)、玉米屬(Zea)、棉花屬(Gossypium)、海邊芥蘭屬(Crambe)、克非亞草屬(Cuphea)、亞麻屬(Linum)、雷斯克勒屬(Lesquerella)與澤花屬(Limnanthes)、亞麻籽(Linola)、金蓮花屬(Tropaeolum)、月見草屬(Oenothera)、木犀屬(Olea)、油椰子屬(Elaeis)、落花生屬(Arachis)、油菜籽、紅花屬(Carthamus)、大豆亞屬(Glycine)與黃豆亞屬(Soja)、向日葵屬(Helianthus)、煙草屬(Nicotiana)、斑鳩菊屬(Vernonia)、小麥屬(Triticum)、大麥屬(Hordeum)、水稻屬(Oryza)、燕麥屬(Avena)、高粱屬(Sorghum)、黑麥屬(Secale),或其他禾本科成員。
- 如申請專利範圍第17項之轉殖基因植物細胞,其中該植物細胞包含一突變的fab1基因或一突變的fae1基因。
- 如申請專利範圍第17項之轉殖基因植物細胞,其中該植物細胞包含一突變的fab1基因及一突變的fae1基因。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35831810P | 2010-06-24 | 2010-06-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201207110A TW201207110A (en) | 2012-02-16 |
TWI570239B true TWI570239B (zh) | 2017-02-11 |
Family
ID=45353924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100122017A TWI570239B (zh) | 2010-06-24 | 2011-06-23 | 植物種子中ω-7脂肪酸的聚積技術 |
Country Status (21)
Country | Link |
---|---|
US (2) | US9340776B2 (zh) |
EP (1) | EP2585599B1 (zh) |
JP (1) | JP6068336B2 (zh) |
KR (1) | KR20130026487A (zh) |
CN (1) | CN103429741B (zh) |
AR (1) | AR081302A1 (zh) |
AU (1) | AU2011270751B2 (zh) |
BR (1) | BR112012033037A2 (zh) |
CA (1) | CA2803599C (zh) |
CL (1) | CL2012003663A1 (zh) |
EA (1) | EA022985B1 (zh) |
ES (1) | ES2645239T3 (zh) |
HU (1) | HUE037067T2 (zh) |
IL (1) | IL223440A (zh) |
MX (2) | MX343272B (zh) |
NZ (1) | NZ603968A (zh) |
PL (1) | PL2585599T3 (zh) |
TW (1) | TWI570239B (zh) |
UA (1) | UA113834C2 (zh) |
WO (1) | WO2011163557A2 (zh) |
ZA (1) | ZA201209082B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170098810A (ko) * | 2014-12-19 | 2017-08-30 | 다우 아그로사이언시즈 엘엘씨 | 포화 지방산을 적게 함유하거나 전혀 함유하지 않는 트랜스제닉 카놀라의 생성 |
CN105053256A (zh) * | 2015-07-29 | 2015-11-18 | 广州金酮医疗科技有限公司 | 一种风味型营养均衡调和油 |
CN114431101B (zh) * | 2022-01-28 | 2023-02-28 | 广西壮族自治区农业科学院 | 一种甘蔗13c同位素标记的方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050005325A1 (en) * | 1999-01-19 | 2005-01-06 | John Shanklin | Mutant fatty acid desaturase and methods for directed mutagenesis |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188958A (en) | 1986-05-29 | 1993-02-23 | Calgene, Inc. | Transformation and foreign gene expression in brassica species |
NZ221259A (en) | 1986-07-31 | 1990-05-28 | Calgene Inc | Seed specific transcriptional regulation |
US5004863B2 (en) | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
DE3784860D1 (de) | 1986-12-05 | 1993-04-22 | Ciba Geigy Ag | Verbessertes verfahren zur transformation von pflanzlichen protoplasten. |
US5416011A (en) | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
US7705215B1 (en) | 1990-04-17 | 2010-04-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5484956A (en) | 1990-01-22 | 1996-01-16 | Dekalb Genetics Corporation | Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin |
JP3209744B2 (ja) | 1990-01-22 | 2001-09-17 | デカルブ・ジェネティクス・コーポレーション | 結実能力のある遺伝子変換コーン |
US6403865B1 (en) | 1990-08-24 | 2002-06-11 | Syngenta Investment Corp. | Method of producing transgenic maize using direct transformation of commercially important genotypes |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
US5518908A (en) | 1991-09-23 | 1996-05-21 | Monsanto Company | Method of controlling insects |
CA2084348A1 (en) * | 1991-12-31 | 1993-07-01 | David F. Hildebrand | Fatty acid alteration by a d9 desaturase in transgenic plant tissue |
DE69334225D1 (de) | 1992-07-07 | 2008-07-31 | Japan Tobacco Inc | Verfahren zur transformation einer monokotyledon pflanze |
US7109392B1 (en) * | 1996-10-09 | 2006-09-19 | Cargill, Incorporated | Methods for increasing oleic acid content in seeds from transgenic plants containing a mutant delta 12 desaturase |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
BRPI0007815B1 (pt) | 1999-01-14 | 2016-04-19 | Monsanto Technology Llc | processo de transformação da soja |
AU5472700A (en) | 1999-06-09 | 2000-12-28 | Brookhaven Science Associates Llc | Mutant fatty acid desaturase and methods for directed mutagenesis |
US7214859B2 (en) * | 2002-08-16 | 2007-05-08 | National Research Council Of Canada | Brassica pyruvate dehydrogenase kinase gene |
US7655833B2 (en) * | 2003-05-29 | 2010-02-02 | Brookhaven Science Associates, Llc | ADS genes for reducing saturated fatty acid levels in seed oils |
US7122367B2 (en) * | 2003-06-03 | 2006-10-17 | Board Of Trustees Operating Michigan State University | Diacylglycerol acyltransferase genes, proteins, and uses thereof |
BRPI0516556B1 (pt) | 2004-10-08 | 2019-12-31 | Dow Agrosciences Llc | composição alimentícia frita, processo de obtenção de uma composição alimentícia frita, processo de redução da gordura saturada na fração de óleo de sementes de uma planta transgênica de canola e polinucleotídeo |
US20080260933A1 (en) | 2004-10-08 | 2008-10-23 | Dow Agroscience Llc | Certain Plants with "No Saturate" or Reduced Saturate Levels of Fatty Acids in Seeds, and Oil Derived from the Seeds |
NZ568562A (en) * | 2005-11-04 | 2011-03-31 | Dow Agroscience Llc | Preparation of vaccine master cell lines using recombinant plant suspension cultures |
US7943823B2 (en) | 2006-04-28 | 2011-05-17 | E.I. Du Pont De Nemours And Company | Delta-8 desaturase and its use in making polyunsaturated fatty acids |
US8957280B2 (en) * | 2007-05-03 | 2015-02-17 | E. I. Du Pont De Nemours And Company | Delta-5 desaturases and their use in making polyunsaturated fatty acids |
-
2011
- 2011-06-23 TW TW100122017A patent/TWI570239B/zh not_active IP Right Cessation
- 2011-06-23 AR ARP110102187A patent/AR081302A1/es unknown
- 2011-06-24 BR BR112012033037A patent/BR112012033037A2/pt not_active IP Right Cessation
- 2011-06-24 MX MX2012015291A patent/MX343272B/es active IP Right Grant
- 2011-06-24 ES ES11798970.7T patent/ES2645239T3/es active Active
- 2011-06-24 US US13/168,320 patent/US9340776B2/en not_active Expired - Fee Related
- 2011-06-24 AU AU2011270751A patent/AU2011270751B2/en active Active
- 2011-06-24 EP EP11798970.7A patent/EP2585599B1/en not_active Not-in-force
- 2011-06-24 NZ NZ603968A patent/NZ603968A/en not_active IP Right Cessation
- 2011-06-24 KR KR1020137001833A patent/KR20130026487A/ko active IP Right Grant
- 2011-06-24 MX MX2016010612A patent/MX355329B/es unknown
- 2011-06-24 CN CN201180031133.XA patent/CN103429741B/zh not_active Expired - Fee Related
- 2011-06-24 PL PL11798970T patent/PL2585599T3/pl unknown
- 2011-06-24 CA CA2803599A patent/CA2803599C/en active Active
- 2011-06-24 UA UAA201300815A patent/UA113834C2/uk unknown
- 2011-06-24 JP JP2013516790A patent/JP6068336B2/ja not_active Expired - Fee Related
- 2011-06-24 EA EA201291242A patent/EA022985B1/ru not_active IP Right Cessation
- 2011-06-24 HU HUE11798970A patent/HUE037067T2/hu unknown
- 2011-06-24 WO PCT/US2011/041759 patent/WO2011163557A2/en active Application Filing
-
2012
- 2012-11-30 ZA ZA2012/09082A patent/ZA201209082B/en unknown
- 2012-12-04 IL IL223440A patent/IL223440A/en active IP Right Grant
- 2012-12-21 CL CL2012003663A patent/CL2012003663A1/es unknown
-
2016
- 2016-04-15 US US15/130,788 patent/US9976155B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050005325A1 (en) * | 1999-01-19 | 2005-01-06 | John Shanklin | Mutant fatty acid desaturase and methods for directed mutagenesis |
Non-Patent Citations (1)
Title |
---|
COVELLO, Patrick Smithers; REED, Darwin Wilfred. Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae. Plant Physiology, 1996, 111.1: 223-226. * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6301381B2 (ja) | 植物種子の飽和脂肪酸含量の低減 | |
WO2016099568A1 (en) | Generation of transgenic canola with low or no saturated fatty acids | |
US9976155B2 (en) | Accumulation of omega-7 fatty acids in plant seeds | |
US10370674B2 (en) | Generation of transgenic canola with low or no saturated fatty acids | |
US20170145433A1 (en) | Lowering saturated fatty acid content of plant seeds | |
AU2017202568A1 (en) | Lowering saturated fatty acid content of plant seeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |