[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI556589B - Cdma/o-cdma with code-shifting technique and system thereof - Google Patents

Cdma/o-cdma with code-shifting technique and system thereof Download PDF

Info

Publication number
TWI556589B
TWI556589B TW104101416A TW104101416A TWI556589B TW I556589 B TWI556589 B TW I556589B TW 104101416 A TW104101416 A TW 104101416A TW 104101416 A TW104101416 A TW 104101416A TW I556589 B TWI556589 B TW I556589B
Authority
TW
Taiwan
Prior art keywords
code
displacement
integer
pulse
division multiplexing
Prior art date
Application number
TW104101416A
Other languages
Chinese (zh)
Other versions
TW201628353A (en
Inventor
楊谷章
林彥廷
張呈源
永宗 鄺
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW104101416A priority Critical patent/TWI556589B/en
Publication of TW201628353A publication Critical patent/TW201628353A/en
Application granted granted Critical
Publication of TWI556589B publication Critical patent/TWI556589B/en

Links

Landscapes

  • Optical Communication System (AREA)

Description

使用非整數位移的分碼多工傳輸方法與系統Code division multiplexing transmission method and system using non-integer displacement

本發明是一種分碼多工分派方法,尤其是關於一種分碼多工技術(CDMA/O-CDMA)的碼分派方法及其系統。The invention is a code division multiplexing assignment method, in particular to a code division method and system thereof for a code division multiplexing technology (CDMA/O-CDMA).

分碼多工存取系統(CDMA,Code Division Multiple Access)技術具有保密性良好、抗干擾能力強、系統容量高等特點,廣泛於應用於新一代的行動通訊技術。光纖分碼多工存取系統(O-CDMA,Optical Code Division Multiple Access)原理與傳統無線通訊所應用的技術原理近似,其具資訊有效傳遞、動態頻寬指派、非同步存取、多使用者同時使用相同頻道等多種特點 ,使O-CDMA廣泛應用於高速光纖通訊、紅外線無線通訊等。CDMA (Code Division Multiple Access) technology has the characteristics of good confidentiality, strong anti-interference ability and high system capacity, and is widely used in a new generation of mobile communication technologies. The principle of optical code division multiple access (O-CDMA) is similar to that of traditional wireless communication. It has effective information transmission, dynamic bandwidth assignment, asynchronous access, and multiple users. At the same time, using the same channel and other characteristics, O-CDMA is widely used in high-speed optical fiber communication, infrared wireless communication and so on.

雖然CDMA/O-CDMA經市場驗證及考驗,其效能具有一定品質,但是長期以來該技術之傳輸品質受限於碼長度、碼權重及使用通道數量之間的兩難抉擇考量。O-CDMA之編碼對於系統效能、多重存取干擾(Multiple-access interference, MAI)數量、錯誤率等影響甚鉅。選擇相對較長的碼對於系統設計與硬體選擇上並非簡易,因此,改善目前編碼方式,在有限的硬體條件下提出一種更具有效率的編碼方式對CDMA、O-CDMA之發展才有助益。Although CDMA/O-CDMA has been tested and tested in the market and its performance has certain qualities, the transmission quality of this technology has long been limited by the dilemma between code length, code weight and the number of channels used. O-CDMA coding has a great impact on system performance, multiple-access interference (MAI), error rate, and the like. Choosing a relatively long code is not easy for system design and hardware selection. Therefore, improving the current coding mode and proposing a more efficient coding method under limited hardware conditions can help the development of CDMA and O-CDMA. beneficial.

為了解決既有技術有關碼長度、頻寬、錯誤機率等等技術問題,本發明提出一種將每個碼在傳送前使用不同程度的時間平移或延遲(或不位移)手段,且平移或延遲係屬於非整數,藉以讓每個傳送的碼之間保持獨立性,提昇傳輸品質;如此,本發明所使用的碼可以在有限的長度、權重以及硬體條件下,達到較佳的傳送品質,解決既有技術的問題。In order to solve the technical problems related to code length, bandwidth, error probability and the like in the prior art, the present invention proposes to use different degrees of time translation or delay (or no displacement) means before transmission, and the translation or delay system It is a non-integer, so that each transmitted code maintains independence and improves the transmission quality. Thus, the code used in the present invention can achieve better transmission quality under limited length, weight and hardware conditions. There are technical problems.

本發明提出一種使用非整數時間位移的分碼多工傳輸方法,其步驟包含:The invention provides a code division multiplexing transmission method using non-integer time shift, the steps of which include:

由一編碼模組持續產生碼,每個碼包含複數個時間單位,每個碼包含一個以上的脈衝;The code is continuously generated by an encoding module, each code comprising a plurality of time units, each code comprising more than one pulse;

至少一個碼之至少一個的該脈衝以非整數之該時間單位的移動方式移動;及The pulse of at least one of the at least one code moves in a non-integer manner of movement of the time unit; and

將所有的碼以一通道輸出至一接收端。All codes are output to a receiving end in one channel.

其中,碼為一維碼或二維碼。Wherein, the code is a one-dimensional code or a two-dimensional code.

其中,各碼中的脈衝之位移可為超前或延遲位移或不位移。Wherein, the displacement of the pulses in each code may be lead or delayed displacement or no displacement.

其中,該碼內的各脈衝之位移非同步。Wherein, the displacement of each pulse in the code is asynchronous.

其中,該碼位移係使用循環位移。Among them, the code displacement uses a cyclic displacement.

本發明又提出一種使用非整數位移的分碼多工傳輸系統,其包含一傳送端、一接收端及分別與該傳送端與該接收端訊號傳遞連接之一通道,其中該傳送端持續產生一維或二維的碼,每個碼包含複數個時間單位以及存在於時間單位內的之脈衝,至少一個碼之至少一個該脈衝係以非整數單位位移或延遲,該傳送端將該碼以光波、無線或紅外線無線形式輸出至該接收端。The present invention further provides a code division multiplexing transmission system using a non-integer shift, which comprises a transmitting end, a receiving end and a channel respectively transmitting a connection with the transmitting end and the receiving end signal, wherein the transmitting end continuously generates a channel Dimensional or two-dimensional code, each code comprising a plurality of time units and pulses present in the time unit, at least one of the at least one code being shifted or delayed by a non-integer unit, the transmitting end of the code being lightwave , wireless or infrared wireless form output to the receiving end.

其中,該碼內之各脈衝之延遲或移位為非同步。Wherein, the delay or shift of each pulse in the code is asynchronous.

其中,該碼內之各脈衝之位移或延遲為隨機,且位移或延遲小於一個該時間單位。Wherein, the displacement or delay of each pulse in the code is random, and the displacement or delay is less than one such time unit.

基於前述說明可知,本發明具備下列特點:Based on the foregoing description, the present invention has the following features:

1.不論使用一維或二維的碼,於本發明均能相同適用。1. Regardless of whether a one-dimensional or two-dimensional code is used, the present invention is equally applicable.

2.提出隨機、非整數(或零)位移的方法,可讓系統在有限的硬體條件下達到較低的錯誤機率。2. Propose a random, non-integer (or zero) displacement method that allows the system to achieve a lower probability of error under limited hardware conditions.

3.當選擇相對較大的g(子單位切割數量),則可以顯著降低錯誤機率。3. When choosing a relatively large g (number of sub-unit cuts), the probability of error can be significantly reduced.

本發明使用非整數(包含零)時間位移的分碼多工傳輸方法之系統可包含一傳送端(transmitter) 、一接收端(receiver)及分別與該傳送端與該接收端訊號傳遞連接之一通道。該傳送端依據光纖分碼多工(O-CDMA)之需求,其可包含一編碼模組(encoder)可選擇使用一維(1D)編碼模組或二維(2D)編碼模組產生一維或二維的碼,其中,編碼模組所使用的技術係為既有之技術CDMA相關之編碼技術,於此不再重新贅述。The system of the present invention using a non-integer (including zero) time-shifted code division multiplexing transmission method may include a transmitter, a receiver, and one of a signal transmission connection with the receiver and the receiver, respectively. aisle. The transmitting end is based on the requirements of optical code division multiplexing (O-CDMA), and may include an encoding module (encoder) to generate one-dimensional using a one-dimensional (1D) encoding module or a two-dimensional (2D) encoding module. Or a two-dimensional code, wherein the technology used in the coding module is an existing coding technology related to CDMA technology, and details are not described herein again.

每個碼(codeword)包含複數個時間單位(chips or time slots),每個時間單位可切割成複數個均等的g個子單位(sub-chips or sub-slots),其中g為≥ 1,其代表碼的細緻度(granularity)。在碼內的時間單位的脈衝(pulse)可隨機、獨立地、非整數地移動(或不移動),因為脈衝的移動為隨機,O-CDMA碼之互相關特性(cross-correlation property)因此改變為g的函數關係,經證實,越好的細緻度(g更大)越可對應表示脈衝的可能位置,因此降低碼傳送過程碰撞以及因為使用者劇增所造成的多重存取干擾(MAI)問題。相關分析脈衝於後詳述。Each codeword contains a plurality of time units (chips or time slots), and each time unit can be cut into a plurality of equal sub-chips or sub-slots, where g is ≥ 1, which represents The granularity of the code. The pulse of the time unit within the code can be moved (or not moved) randomly, independently, non-integer, because the movement of the pulse is random, and the cross-correlation property of the O-CDMA code is thus changed. As a function of g, it has been confirmed that the finer the fineness (g is larger), the more likely it is to represent the possible position of the pulse, thus reducing the collision of the code transmission process and the multiple access interference (MAI) caused by the user's proliferation. problem. The correlation analysis pulse is detailed later.

以下以二維碼作為範例說明,本發明之非整數(包含零) 時間位移的分碼多工傳輸方法步驟包含:The following is a description of the two-dimensional code. The non-integer (including zero) time-shifted code division multiplexing transmission method steps of the present invention include:

1. 選擇一二維碼,係為LxN二位元矩陣,包含L組波長、N組時間單位,w個脈衝(權重,weight),以及最大互相關值(λc ),其中,每個碼內之該w個脈衝可表示為w個序列對(ordered pairs):Ci = [(λ0 , tλ 0 ), (λ1 , tλ 1 ), . . . , (λw-1 ,tλ w 1 )],其中每個序列對(ordered pairs)代表波長λj 的脈衝位於tj ∈{0, 1, . . . ,N-1} for j ∈ {0, 1, . . . ,w−1}。對於一維陣列,則表示為λ0 =λ1 = . . .=λw-11. Select a two-dimensional code, which is an LxN two-bit matrix containing L sets of wavelengths, N sets of time units, w pulses (weights, weights), and maximum cross-correlation values (λ c ), where each code The w pulses within can be represented as w ordered pairs: C i = [(λ 0 , t λ 0 ), (λ 1 , t λ 1 ), . . . , (λ w-1 , t λ w 1 )], where each ordered pair represents a pulse of wavelength λ j at t j ∈ {0, 1, . . , N-1} for j ∈ {0, 1, . . ,w−1}. For a one-dimensional array, it is expressed as λ 0 = λ 1 = . . . = λ w-1 .

2.選定子單位g數量,其為大於1之正整數,使每個單時間單位內產生複數個均等的子單位,每個脈衝於其所在的時間單位內隨機、獨立地於各子單位超前或延遲移動或不移動。所謂的隨機移動指每個脈衝於時間單位之移動為隨機延遲或超前移動數個子單位;所謂的獨立移動指不同時間單位之脈衝移動無關。2. Select the number of sub-units g, which is a positive integer greater than 1, such that a plurality of equal sub-units are generated in each single-time unit, and each pulse is randomly and independently advanced in each sub-unit within the time unit in which it is located. Or delay moving or not moving. The so-called random movement means that the movement of each pulse in time units is a random delay or a number of sub-units of advance movement; the so-called independent movement refers to the pulse movement of different time units.

3.增加一隨機子單位位移數值(random sub-slot-shift value)至該原始時間單位對應該脈衝的位置,用於指定移動後新產生之一時間單位外加子單位(time-slot-plus-sub-slot),如此之隨機位移可以視為時間延遲。假設時間單位的寬度是1,如此子單位之寬度為1/g,因此可定義一時間延遲參數(time-delay factor):3. Add a random sub-slot-shift value to the position of the original time unit corresponding to the pulse, used to specify a new time unit plus sub-unit after the move (time-slot-plus- Sub-slot), such a random displacement can be considered as a time delay. Assuming that the width of the time unit is 1, such a subunit has a width of 1/g, so a time-delay factor can be defined:

τg,j,s j ∈ {0, 1/g, 2/g, . . . , (g−1)/g},其代表jth個脈衝延遲數個子單位(一維碼),或代表第jth波長之脈衝之延遲(2維碼),其中j ∈ [0 ,w−1]。Sj係為選於{0, 1, 2, . . . , g − 1}之一隨機整數,其第j個脈衝之起始所對應的子單位。位移後的序列對可表示為:[(λ0 , tλ 0 +τg,0,s 0 ), (λ1 , tλ 1 +τg,1,s 1 ), . . . , (λw-1 ,tλ w 1 +τg, w 1,s w 1 )],其中,τg,0,s 0 、…τg, w 1,s w 1 均為隨機選擇自{ 0,1/g,2/g, . . . ,(g−1)/g},且碼的位移或延遲則可非一致。τ g,j,s j ∈ {0, 1/g, 2/g, . . . , (g−1)/g}, which represents several sub-units of the jth pulse delay (one-dimensional code), or represents the first The delay of the pulse of the jth wavelength (2-dimensional code), where j ∈ [0 , w−1]. Sj is a random integer selected from {0, 1, 2, . . . , g − 1}, the subunit corresponding to the beginning of the jth pulse. The sequence pair after displacement can be expressed as: [(λ 0 , t λ 0g,0,s 0 ), (λ 1 , t λ 1g,1,s 1 ), . . . , (λ w- 1 , t λ w 1g, w 1,sw 1 )], where τ g,0,s 0 ,...τ g, w 1, and sw 1 are randomly selected from { 0,1 /g,2/g, . . . ,(g−1)/g}, and the displacement or delay of the code can be non-uniform.

請參考圖1,其為本實施例所述非整數位移一維碼之示意範例,碼之數據內容為010010000001,g為2(代表每個時間單位包含2個子單位),因為權重w為3,其存在3組隨機的延遲τ2,0,s0 、τ2,1,s1 、τ2,2,s2 係選自於{0, 1/2}之集合,其中 sj ∈ {0, 1},j∈[0,2]。圖1(a)為脈衝沒有位移之範例,圖1(b)為τ2,0,1 =1/2、τ2,1,1 =1/2、τ2,2,0 =0之位移;圖1(c)為τ2,0,0 =0、τ2,1,0 =0、τ2,2,1 =1/2之位移。圖1(c)中最後一個脈衝的一半已經被移動至第一個時間單位之第一個子單位,係因為位移可為使用循環位移(cyclic)技術。Please refer to FIG. 1 , which is a schematic example of a non-integer-shifted one-dimensional code according to the embodiment. The data content of the code is 010010000001, and g is 2 (representing 2 sub-units per time unit), because the weight w is 3. There are three sets of random delays τ 2,0, s0 , τ 2,1, s1 , τ 2,2, s2 are selected from the set of {0, 1/2}, where sj ∈ {0, 1}, J∈[0,2]. Figure 1(a) shows an example of a pulse without displacement. Figure 1(b) shows the displacement of τ 2,0,1 =1/2, τ 2,1,1 =1/2, τ 2,2,0 =0. Figure 1(c) shows the displacement of τ 2,0,0 =0, τ 2,1,0 =0, τ 2,2,1 = 1/2. Half of the last pulse in Figure 1(c) has been moved to the first subunit of the first time unit because the displacement can be a cyclic technique.

為了證明本實施例所提出的非整數位移對於CDMA或O-CDMA具有實質助益,分析位移後碼的效能,可利用硬體限制錯誤機率予以分析,OOK O-CDMA系統的錯誤機率可為下列公式:In order to prove that the non-integer displacement proposed in this embodiment has substantial benefits for CDMA or O-CDMA, the performance of the post-displacement code can be analyzed, and the error probability of the hardware can be analyzed. The error probability of the OOK O-CDMA system can be the following. formula:

其中,1/2來自於二位元的傳送機率,K代表同時使用者的數量,Qλc,j代表O-CDMA系統所使用解碼器得到j次碰撞之機率,其中j ∈ [0 , λc],其中λc>=1 為此碼之最大互相關值, 其中:Among them, 1/2 comes from the transmission rate of two bits, K represents the number of simultaneous users, Qλc, j represents the probability of j collisions of the decoder used by O-CDMA system, where j ∈ [0 , λc], Where λc>=1 is the maximum cross-correlation value for this code, where:

請參考圖2、3,模擬w = L = {3, 5, 7}, N = {9, 25, 49}, λc=1 及g = {2, 3, 4}狀況下的錯誤機率,可得到結果如圖2,顯示同時使用者數量固定下,選擇相對較大的g(具有較多的子單位)則具有較低的錯誤機率表現。圖3更顯著顯示當選擇的g更大,可以顯著降低錯誤機率的發生。Please refer to Figures 2 and 3 to simulate the error probability of w = L = {3, 5, 7}, N = {9, 25, 49}, λc=1 and g = {2, 3, 4}. The result is shown in Fig. 2. It shows that when the number of simultaneous users is fixed, selecting a relatively large g (having more subunits) has a lower probability of false performance. Figure 3 shows more significantly that when the selected g is larger, the probability of error can be significantly reduced.

基於前述說明可知,本發明具備下列特點:Based on the foregoing description, the present invention has the following features:

1.不論使用一維或二維的碼,於本發明均能相同適用。1. Regardless of whether a one-dimensional or two-dimensional code is used, the present invention is equally applicable.

2.提出隨機、非整數位移的方法,可讓系統在有限的硬體條件下達到較低的錯誤機率。2. A random, non-integer displacement method is proposed to allow the system to achieve a lower probability of error under limited hardware conditions.

3.當選擇相對較大的g,則可以顯著降低錯誤機率。3. When choosing a relatively large g, you can significantly reduce the probability of error.

圖1為本發明實施例之非整數碼位移範例。 圖2、3為本發明實施例錯誤機率模擬分析圖。FIG. 1 is an example of a non-integral digital shift according to an embodiment of the present invention. 2 and 3 are diagrams showing an error probability simulation analysis of an embodiment of the present invention.

Claims (8)

一種使用非整數位移的分碼多工傳輸方法,其步驟包含:由一編碼模組持續產生碼,每個碼包含複數個時間單位,每個碼包含複數脈衝;至少一個碼之該複數脈衝以非整數之該時間單位的移動方式移動,其中,該至少一碼的複數脈衝係存在複數種隨機的延遲;及將所有的碼以一通道輸出至一接收端。 A code division multiplexing transmission method using non-integer shifts, the method comprising: continuously generating codes by an encoding module, each code comprising a plurality of time units, each code comprising a plurality of pulses; the complex pulse of at least one code The movement mode of the time unit of the non-integer, wherein the complex pulse of the at least one code has a plurality of random delays; and all the codes are outputted to a receiving end by one channel. 如申請專利範圍第1項使用非整數位移的分碼多工傳輸方法,其中該碼為一維碼或二維碼。 For example, the first aspect of the patent application scope uses a non-integer shifting code division multiplexing transmission method, wherein the code is a one-dimensional code or a two-dimensional code. 如申請專利範圍第1或2項使用非整數位移的分碼多工傳輸方法,各碼中的該脈衝之位移可為超前或延遲位移或不移動。 If the first or second application of the patent application uses a non-integer displacement code division multiplexing transmission method, the displacement of the pulse in each code may be lead or delayed displacement or no movement. 如申請專利範圍第3項使用非整數位移的分碼多工傳輸方法,該碼內的各脈衝之位移為非同步。 For example, in the third application of the patent application, a code division multiplexing transmission method using a non-integer shift is used, and the displacement of each pulse in the code is asynchronous. 如申請專利範圍第4項使用非整數位移的分碼多工傳輸方法,其中該碼之位移係使用循環位移。 For example, the fourth aspect of the patent application uses a non-integer displacement code division multiplexing transmission method, wherein the displacement of the code uses a cyclic displacement. 一種使用非整數位移的分碼多工傳輸系統,其包含一傳送端、一接收端及分別與該傳送端與該接收端訊號傳遞連接之一通道,其中該傳送端持續產生一維或二維的碼,每個碼包含複數個時間單位以及存在於時間單位內的之脈衝,至少一個碼之至少一個該脈衝係以非整數之該時間單位位移或延遲,該傳送端將該碼以光波、無線或紅外線無線形式輸出至該接收端;其中,該至少一碼的複數脈衝係存在複數種隨機的延遲。 A code division multiplexing transmission system using a non-integer shift, comprising a transmitting end, a receiving end and a channel respectively transmitting a connection with the transmitting end and the receiving end signal, wherein the transmitting end continuously generates one-dimensional or two-dimensional a code, each code comprising a plurality of time units and a pulse present in the time unit, at least one of the at least one code being shifted or delayed by the time unit of a non-integer, the transmitting end of the code being light wave, The wireless or infrared wireless form is output to the receiving end; wherein the complex pulse of the at least one code has a plurality of random delays. 如申請專利範圍第6項所述的使用非整數位移的分碼多工傳輸系統,該碼內之各脈衝之延遲或移位為非同步,或為不位移。 As with the code division multiplexing transmission system using non-integer displacement as described in claim 6, the delay or shift of each pulse in the code is asynchronous or non-displacement. 如申請專利範圍第6或7項所述的使用非整數位移的分碼多工傳輸系統,該碼內之各脈衝之位移或延遲為隨機,且該位移或延遲小於一個該時間單位。As with the code division multiplexing transmission system using non-integer displacement as described in claim 6 or 7, the displacement or delay of each pulse in the code is random, and the displacement or delay is less than one such time unit.
TW104101416A 2015-01-16 2015-01-16 Cdma/o-cdma with code-shifting technique and system thereof TWI556589B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104101416A TWI556589B (en) 2015-01-16 2015-01-16 Cdma/o-cdma with code-shifting technique and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104101416A TWI556589B (en) 2015-01-16 2015-01-16 Cdma/o-cdma with code-shifting technique and system thereof

Publications (2)

Publication Number Publication Date
TW201628353A TW201628353A (en) 2016-08-01
TWI556589B true TWI556589B (en) 2016-11-01

Family

ID=57181910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101416A TWI556589B (en) 2015-01-16 2015-01-16 Cdma/o-cdma with code-shifting technique and system thereof

Country Status (1)

Country Link
TW (1) TWI556589B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020108089A1 (en) * 2000-12-15 2002-08-08 Nortel Networks Limited Use of trellis coded modulation to mitigate fading channels in data transmission over air link wireless channels of GPRS/EDGE systems
US20050289408A1 (en) * 2004-02-04 2005-12-29 Jani Nilay D System and method for characterizing a signal path using a sub-chip sampler
US7269235B2 (en) * 2005-02-14 2007-09-11 Viasat, Inc. Non-integer delays in iterative diversity reception
US8036166B2 (en) * 2007-06-18 2011-10-11 Nokia Corporation Signaling of implicit ACK/NACK resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020108089A1 (en) * 2000-12-15 2002-08-08 Nortel Networks Limited Use of trellis coded modulation to mitigate fading channels in data transmission over air link wireless channels of GPRS/EDGE systems
US20050289408A1 (en) * 2004-02-04 2005-12-29 Jani Nilay D System and method for characterizing a signal path using a sub-chip sampler
US7269235B2 (en) * 2005-02-14 2007-09-11 Viasat, Inc. Non-integer delays in iterative diversity reception
US8036166B2 (en) * 2007-06-18 2011-10-11 Nokia Corporation Signaling of implicit ACK/NACK resources

Also Published As

Publication number Publication date
TW201628353A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
CN101714907B (en) Passive optical network communication method, passive optical network communication system, optical network unit and optical line terminal
Kaur et al. A review on spectral amplitude coding optical code division multiple access
Wen et al. Modified prime-hop codes for optical CDMA systems
TWI556589B (en) Cdma/o-cdma with code-shifting technique and system thereof
JP4304335B2 (en) Optical approximate synchronous CDMA system and optical wireless system using the same
US7689124B2 (en) Two-dimensional optical CDMA system, PN coded wavelength/time encoder and decoder therein, and method of encoding/decoding
JP3737092B2 (en) Optical transmitter, optical receiver, and optical transmission system
CN114095055B (en) Low-code rate biorthogonal code coding spreading method and device
JP2003115823A (en) Reconfigurable multi-user optical communication network with low delay time
CN102281116A (en) Method and device for generating GOLD sequence
CN101068136B (en) Optical communication multichannel multiplexing method and system based on chromatic dispersion matching
RU2356167C1 (en) Method for adaptive transfer of data in radio link with pseudo-random tuning of working frequency
JP2002141889A (en) Transmission and reception system for optical code division multiple access system
TWI523443B (en) Diversity code transmitting method for cdma/o-cdma and system thereof
Wang et al. A new family of 2-D codes for fiber-optic CDMA systems with and without the chip-synchronous assumption
CN106330252A (en) Low-correlation code set construction method based on cross-correlation matrix concentration
Karbassian et al. Synchronous optical CDMA networks capacity increase using transposed modified prime codes
Kadhim et al. Review on two dimensional code of noncoherent OCDMA systems
Singh et al. OCDMA & its applications in fiber optics communication networks
RU2452100C1 (en) METHOD AND DEVICE FOR MESSAGE TRANSFER USING FIBONACCI p-CODES
CN106060683B (en) Optical code division multiple access system for electro-optical combined coding and decoding and implementation method thereof
Saghari et al. Increasing the number of users in an optical CDMA system by pulse-position modulation
JP4000372B2 (en) Optical CDMA communication system using optical CSK modulation
KR100601049B1 (en) Method for decoding optical CDMA signal by genereating 2D optical projection code matrix
Saif et al. Parallel FPGA implementation of incoherent OCDMA systems