TWI549317B - Light emitting diode - Google Patents
Light emitting diode Download PDFInfo
- Publication number
- TWI549317B TWI549317B TW102103818A TW102103818A TWI549317B TW I549317 B TWI549317 B TW I549317B TW 102103818 A TW102103818 A TW 102103818A TW 102103818 A TW102103818 A TW 102103818A TW I549317 B TWI549317 B TW I549317B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- light
- quantum barrier
- type semiconductor
- emitting diode
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 claims description 282
- 239000004065 semiconductor Substances 0.000 claims description 211
- 239000002019 doping agent Substances 0.000 claims description 45
- 239000000758 substrate Substances 0.000 claims description 36
- 230000007547 defect Effects 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 230000036961 partial effect Effects 0.000 claims description 17
- 229910002601 GaN Inorganic materials 0.000 description 28
- 230000000694 effects Effects 0.000 description 27
- 230000001965 increasing effect Effects 0.000 description 25
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 23
- 238000010586 diagram Methods 0.000 description 23
- 239000002131 composite material Substances 0.000 description 19
- 238000004020 luminiscence type Methods 0.000 description 14
- 238000004088 simulation Methods 0.000 description 14
- 230000005855 radiation Effects 0.000 description 13
- 230000006798 recombination Effects 0.000 description 13
- 238000005215 recombination Methods 0.000 description 13
- 150000004767 nitrides Chemical class 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 238000005253 cladding Methods 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000004508 polar body Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005428 wave function Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine group Chemical group NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 238000013041 optical simulation Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Description
本發明是有關於一種發光二極體,且特別是有關於一種可提高發光效率的發光二極體(light emitting diode,簡稱LED)。 The present invention relates to a light emitting diode, and more particularly to a light emitting diode (LED) which can improve luminous efficiency.
發光二極體是一種半導體元件,主要是由III-V族元素化合物半導體材料所構成。因為這種半導體材料具有將電能轉換為光的特性,所以對這種半導體材料施加電流時,其內部之電子會與電洞結合,並將過剩的能量以光的形式釋出,而達成發光的效果。 The light-emitting diode is a semiconductor element mainly composed of a III-V element compound semiconductor material. Because such a semiconductor material has the property of converting electrical energy into light, when a current is applied to the semiconductor material, the electrons inside it combine with the hole, and the excess energy is released in the form of light to achieve luminescence. effect.
一般而言,由於發光二極體中作為磊晶層材料的氮化鎵的晶格常數與藍寶石基板的晶格常數之間存在不匹配的問題,其晶格常數不匹配的程度約為16%,致使大量的缺陷產生於晶格成長的接面,進而導致發光強度大幅衰減。雖然發光二極體中因氮化鎵的長晶過程中無可避免地具有一定的缺陷。然而,當發光二極體所發出之光波長為450nm時,由於習知晶格應力會釋放在缺陷附近而形成銦自聚區域,當載子在移動到缺陷之前容易進入到銦自聚的區域,形成所謂的局部效應(localized effect)。由於銦自聚的區域存在量子侷限效應而可提升載子的複合效率,因此即使氮化鎵發光二極體因長晶製程的限制而在活性區存在著高缺陷密度,但對於光波長450nm而言仍可維持一定程度的發光效率。 In general, there is a problem of mismatch between the lattice constant of gallium nitride as the material of the epitaxial layer in the light-emitting diode and the lattice constant of the sapphire substrate, and the degree of lattice constant mismatch is about 16%. , causing a large number of defects to occur in the junction of the lattice growth, which in turn leads to a large attenuation of the luminous intensity. Although in the light-emitting diode, in the process of crystal growth of gallium nitride, it inevitably has certain defects. However, when the wavelength of the light emitted by the light-emitting diode is 450 nm, since the conventional lattice stress is released near the defect to form an indium self-polymerization region, the carrier easily enters the region of indium self-polymerization before moving to the defect. The so-called localized effect. Since the self-polymerization region of indium has quantum confinement effect, the recombination efficiency of the carrier can be improved. Therefore, even if the gallium nitride light-emitting diode has a high defect density in the active region due to the limitation of the crystal growth process, the wavelength is 450 nm. It is still possible to maintain a certain degree of luminous efficiency.
但是,當發光二極體的發光波段逐漸由藍光移到紫外光波段時,由於主動層中的銦含量逐漸減少,使得銦自聚的形成區域也相對的變少,致使發光二極體中的載子容易移到缺陷處產生非輻射複合,導致發光二極體在近紫外光之發光效率大幅降低;再者,氮化物半導體本身存在著極化場效應導致主動層的能帶彎曲,電子電洞對不易被侷限在量子井層裡面,因而無法有效地輻射複合。此外,電子更容易溢流(overflow)到P型半導體層導致發光強度下降,再者,由於電洞的遷移率小於電子的遷移率,當電洞從P型半導體層注入到主動層時,大多數的電洞被侷限在最靠近P型半導體層的量子井層裡面,不易均勻分布全部的量子井層裡面,導致發光強度下降,因此業界亟力開發具有高發光強度的發光二極體。 However, when the light-emitting band of the light-emitting diode is gradually shifted from the blue light to the ultraviolet light band, since the indium content in the active layer is gradually reduced, the formation region of the indium self-polymerization is relatively small, resulting in the light-emitting diode. The carrier is easily moved to the defect to produce non-radiative recombination, which causes the luminous efficiency of the LED to be greatly reduced in near-ultraviolet light. Furthermore, the polarization field effect of the nitride semiconductor itself causes the energy band of the active layer to bend, and the electron beam The hole pairs are not easily confined within the quantum well layer and thus cannot effectively radiate recombination. In addition, electrons are more likely to overflow to the P-type semiconductor layer, resulting in a decrease in luminous intensity. Furthermore, since the mobility of the hole is smaller than the mobility of the electron, when the hole is injected from the P-type semiconductor layer to the active layer, Most of the holes are confined to the quantum well layer closest to the P-type semiconductor layer, and it is difficult to uniformly distribute all of the quantum well layers, resulting in a decrease in luminous intensity. Therefore, the industry has been developing a light-emitting diode having high luminous intensity.
本發明提出一種發光二極體,其藉由使量子阻障層中摻有N型摻質的量子阻障層的層數符合特定比例,可提升發光二極體在222 nm~405 nm發光波段的發光效率。 The invention provides a light-emitting diode which can improve the light-emitting diode in the 222 nm to 405 nm light-emitting band by making the number of layers of the quantum barrier layer doped with the N-type dopant in the quantum barrier layer conform to a specific ratio. Luminous efficiency.
本發明提出另一種發光二極體,其藉由使摻雜有N型摻質的量子阻障層中最靠近P型半導體者具有最小的摻雜濃度,可提升發光二極體在222 nm~405 nm發光波段的發光效率。 The invention proposes another light-emitting diode which can improve the light-emitting diode at 222 nm by making the closest doping concentration of the quantum barrier layer doped with the N-type dopant to the P-type semiconductor. Luminous efficiency of the 405 nm luminescence band.
本發明再提出一種發光二極體,其藉由使摻雜有N型摻質之量子阻障層的摻雜濃度滿足特定關係,可提升發光二極體在222 nm~405 nm發光波段的發光效率。 The invention further provides a light-emitting diode which can improve the light emission of the light-emitting diode in the 222 nm to 405 nm light-emitting band by satisfying a specific relationship of the doping concentration of the quantum barrier layer doped with the N-type dopant. effectiveness.
本發明提出一種發光二極體,其包括基板、N型半導體層、主動層、P型半導體層、第一電極以及一第二電極。N型半導體層位於基板上。主動層具有一缺陷密度為DD的活性區,其中DD≧2x107/cm3。位於N型半導體層的部分區域上,主動層發出之光波長λ為222 nm≦λ≦405 nm,主動層包括i層的量子阻障層以及(i-1)層量子井,各量子井於任兩層量子阻障層之間,且i為大於等於2的自然數,其中摻雜N型摻質於量子阻障層中的至少k層,k為大於等於1的自然數,當i為偶數時,k≧i/2,當i為奇數時,k≧(i-1)/2。P型半導體層位於主動層上。第一電極位於N型半導體層的部分區域上,且第二電極位於P半導體層的部分區域上。 The invention provides a light emitting diode comprising a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, a first electrode and a second electrode. The N-type semiconductor layer is on the substrate. The active layer has an active region having a defect density of DD, where DD ≧ 2 x 10 7 /cm 3 . Located on a partial region of the N-type semiconductor layer, the active layer emits a light wavelength λ of 222 nm ≦ λ ≦ 405 nm, and the active layer includes an i-layer quantum barrier layer and an (i-1) layer quantum well, each quantum well Between any two layers of quantum barrier layers, and i is a natural number greater than or equal to 2, wherein the doped N-type dopant is in at least the k layer in the quantum barrier layer, and k is a natural number greater than or equal to 1, when i is When even, k≧i/2, when i is an odd number, k≧(i-1)/2. The P-type semiconductor layer is on the active layer. The first electrode is located on a partial region of the N-type semiconductor layer, and the second electrode is located on a partial region of the P semiconductor layer.
本發明提出另一種發光二極體,其包括基板、N型半導體層、主動層、P型半導體層、第一電極以及第二電極。N型半導體層位於基板上。主動層具有一缺陷密度為DD的活性區,其中DD≧2x107/cm3。主動層位於N型半導體層的部分區域上且發出之光波長λ為222 nm≦λ≦405nm,主動層包括i層的量子阻障層以及(i-1)層量子井,各量子井於任兩層量子阻障層之間,且i為大於等於2的自然數,其中摻雜N型摻質於量子阻障層中的至少k層,k為大於等於1的自然數,當i為偶數時,k≧i/2,當i為奇數時,k≧(i-1)/2。P型半導體層位於主動層上,且k層量子阻障層中最靠近P型半導體的量子阻障層的摻雜濃度小於等於k層量子阻障層中其他量子阻障層的摻雜 濃度。第一電極位於N型半導體層的部分區域上,且第二電極位於P半導體層的部分區域上。 The present invention provides another light emitting diode comprising a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, a first electrode, and a second electrode. The N-type semiconductor layer is on the substrate. The active layer has an active region having a defect density of DD, where DD ≧ 2 x 10 7 /cm 3 . The active layer is located on a portion of the N-type semiconductor layer and emits light having a wavelength λ of 222 nm ≦ λ ≦ 405 nm. The active layer includes an i-layer quantum barrier layer and (i-1) a layer of quantum wells. Between the two quantum barrier layers, and i is a natural number greater than or equal to 2, wherein the doped N-type dopant is in at least the k layer in the quantum barrier layer, k is a natural number greater than or equal to 1, when i is an even number When k≧i/2, when i is an odd number, k≧(i-1)/2. The P-type semiconductor layer is on the active layer, and the doping concentration of the quantum barrier layer closest to the P-type semiconductor in the k-layer quantum barrier layer is less than or equal to the doping concentration of the other quantum barrier layers in the k-layer quantum barrier layer. The first electrode is located on a partial region of the N-type semiconductor layer, and the second electrode is located on a partial region of the P semiconductor layer.
本發明再提出一種發光二極體,其包括基板、N型半導體層、主動層、P型半導體層、第一電極以及第二電極。活性區具有一缺陷密度DD,其中DD≧2x107/cm3。N型半導體層位於基板上。一主動層,位於N型半導體層的部分區域上,主動層發出之光波長λ為222 nm≦λ≦405 nm,主動層包括i層的量子阻障層以及(i-1)層量子井,各量子井於任兩層量子阻障層之間,且i為大於等於2的自然數,其中摻雜N型摻質於量子阻障層中的至少k層,k為大於等於1的自然數,當i為偶數時,k≧i/2,當i為奇數時,k≧(i-1)/2,k層量子阻障層的摻雜濃度為5x1017/cm3至1x1019/cm3。P型半導體層位於主動層上。第一電極以及一第二電極,其中第一電極位於N型半導體層的部分區域上,且第二電極位於P半導體層的部分區域上。 The invention further provides a light emitting diode comprising a substrate, an N-type semiconductor layer, an active layer, a P-type semiconductor layer, a first electrode and a second electrode. The active zone has a defect density DD of DD ≧ 2 x 10 7 /cm 3 . The N-type semiconductor layer is on the substrate. An active layer is located on a portion of the N-type semiconductor layer, the active layer emits a light having a wavelength λ of 222 nm ≦ λ ≦ 405 nm, and the active layer includes an i-layer quantum barrier layer and an (i-1) layer quantum well. Each quantum well is between any two layers of quantum barrier layers, and i is a natural number greater than or equal to 2, wherein the doped N-type dopant is at least k layers in the quantum barrier layer, and k is a natural number greater than or equal to When i is an even number, k≧i/2, when i is an odd number, the doping concentration of the k≧(i-1)/2,k layer quantum barrier layer is 5x10 17 /cm 3 to 1x10 19 /cm 3 . The P-type semiconductor layer is on the active layer. a first electrode and a second electrode, wherein the first electrode is located on a partial region of the N-type semiconductor layer, and the second electrode is located on a partial region of the P semiconductor layer.
基於上述,本發明之發光二極體中,藉由使主動層中摻有N型摻質的量子阻障層的層數符合特定關係、或藉由使主動層之摻雜有N型摻質的量子阻障層中最靠近P型半導體者具有最小的摻雜濃度、或藉由使摻雜有N型摻質之量子阻障層的摻雜濃度滿足特定關係,使得N型摻質可以撫平缺陷對載子的影響,提升發光二極體之載子的複合效率,因此本發明之發光二極體藉由上述任一技術手段即可大幅地提升發光二極體在222 nm~405 nm發光效率。 Based on the above, in the light-emitting diode of the present invention, the number of layers of the quantum barrier layer doped with the N-type dopant in the active layer is made to conform to a specific relationship, or the active layer is doped with an N-type dopant. The closest to the P-type semiconductor in the quantum barrier layer has the smallest doping concentration, or the doping concentration of the quantum barrier layer doped with the N-type dopant satisfies a specific relationship, so that the N-type dopant can be tempered The effect of the flat defect on the carrier enhances the recombination efficiency of the carrier of the light-emitting diode. Therefore, the light-emitting diode of the present invention can greatly enhance the light-emitting diode at 222 nm to 405 nm by any of the above techniques. Luminous efficiency.
本發明提出一種發光二極體,其藉由在最靠近P型半 導體層的三層量子阻障層中,使最靠近P型半導體層的量子阻障層大於其餘兩層量子阻障層的厚度,可使電子電洞對均勻分布在主動層的量子阻障層中,藉此可提升發光二極體在222 nm~405 nm發光波段的發光強度。 The invention provides a light-emitting diode by being closest to the P-type half In the three-layer quantum barrier layer of the conductor layer, the quantum barrier layer closest to the P-type semiconductor layer is larger than the thickness of the remaining two layers of the quantum barrier layer, and the electron hole pair is uniformly distributed in the quantum barrier layer of the active layer. In this way, the luminous intensity of the light-emitting diode in the 222 nm to 405 nm light-emitting band can be improved.
本發明提出另一種發光二極體,其藉由使最靠近P型半導體層的三層量子阻障層的厚度符合特定關係,可使電子電洞對均勻分布在主動層的量子阻障層中,藉此可提升發光二極體在222 nm~405 nm發光波段的發光強度。 The present invention proposes another light-emitting diode which can uniformly distribute the electron hole pair in the quantum barrier layer of the active layer by making the thickness of the three-layer quantum barrier layer closest to the P-type semiconductor layer conform to a specific relationship. In this way, the luminous intensity of the light-emitting diode in the 222 nm to 405 nm light-emitting band can be improved.
本發明提出一種發光二極體,其包括一基板、一N型半導體層與一P型半導體層、一主動層以及一第一電極以及一第二電極。N型半導體層位於基板與P型半導體層之間。主動層位於N型半導體層以及P型半導體層之間,主動層發出之光波長λ為222 nm≦λ≦405 nm,主動層包括i層的量子阻障層以及(i-1)層量子井層,各量子井層於任兩層量子阻障層之間,且i為大於等於2的自然數,i層中各量子阻障層的厚度自P型半導體側起算依序為T1、T2、T3...Ti,其中T1大於T2與T3或T1>T2=T3。第一電極位於N型半導體層的部分區域上,且第二電極位於P半導體層的部分區域上。 The invention provides a light emitting diode comprising a substrate, an N-type semiconductor layer and a P-type semiconductor layer, an active layer, and a first electrode and a second electrode. The N-type semiconductor layer is between the substrate and the P-type semiconductor layer. The active layer is located between the N-type semiconductor layer and the P-type semiconductor layer, and the active layer emits light having a wavelength λ of 222 nm ≦ λ ≦ 405 nm, and the active layer includes an i-layer quantum barrier layer and (i-1) layer quantum well Layer, each quantum well layer is between any two layers of quantum barrier layers, and i is a natural number greater than or equal to 2. The thickness of each quantum barrier layer in the i layer is sequentially T 1 and T from the P-type semiconductor side. 2 , T 3 ... T i , wherein T 1 is greater than T 2 and T 3 or T 1 > T 2 = T 3 . The first electrode is located on a partial region of the N-type semiconductor layer, and the second electrode is located on a partial region of the P semiconductor layer.
本發明提出另一種發光二極體,其包括一基板、一N型半導體層與一P型半導體層、一主動層以及一第一電極以及一第二電極。N型半導體層位於基板與P型半導體層之間。主動層位於N型半導體層以及P型半導體層之間,主動層發出之光波長λ為222 nm≦λ≦405 nm,主動層包 括i層的量子阻障層以及(i-1)層量子井層,各量子井層於任兩層量子阻障層之間,且i為大於等於2的自然數,i層中各量子阻障層的厚度自P型半導體側起算依序為T1、T2、T3...Ti,其中i層量子阻障層中厚度滿足:T1=T2>T3或T1>T2>T3。。第一電極與第二電極分別位於N型半導體層的部分區域上與P半導體層的部分區域上。 The present invention provides another light emitting diode comprising a substrate, an N-type semiconductor layer and a P-type semiconductor layer, an active layer, and a first electrode and a second electrode. The N-type semiconductor layer is between the substrate and the P-type semiconductor layer. The active layer is located between the N-type semiconductor layer and the P-type semiconductor layer, and the active layer emits light having a wavelength λ of 222 nm ≦ λ ≦ 405 nm, and the active layer includes an i-layer quantum barrier layer and (i-1) layer quantum well Layer, each quantum well layer is between any two layers of quantum barrier layers, and i is a natural number greater than or equal to 2. The thickness of each quantum barrier layer in the i layer is sequentially T 1 and T from the P-type semiconductor side. 2 , T 3 ... T i , wherein the thickness of the i-layer quantum barrier layer satisfies: T 1 = T 2 > T 3 or T 1 > T 2 > T 3 . . The first electrode and the second electrode are respectively located on a partial region of the N-type semiconductor layer and a partial region of the P semiconductor layer.
基於上述,本發明之發光二極體中,藉由在最靠近P型半導體層的三量子阻障層中,使最靠近P型半導體層的量子阻障層大於其餘兩層量子阻障層的厚度,或藉由使主動層中量子阻障層的厚度符合特定關係,藉此上述任一技術手段,可增加電子電洞對均勻分布在主動層裡,增加電子電洞對複合機率,因此本發明之發光二極體藉由上述任一技術手段即可大幅地提升發光二極體在222 nm~405 nm發光強度。 Based on the above, in the light-emitting diode of the present invention, the quantum barrier layer closest to the P-type semiconductor layer is larger than the remaining two quantum barrier layers by the third quantum barrier layer closest to the P-type semiconductor layer. Thickness, or by making the thickness of the quantum barrier layer in the active layer conform to a specific relationship, by which any of the above technical means can increase the uniform distribution of the electron hole in the active layer and increase the probability of the electron hole to the composite, thus The light-emitting diode of the invention can greatly improve the luminous intensity of the light-emitting diode at 222 nm to 405 nm by any of the above techniques.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
圖1為本發明之一實施例中一種發光二極體的剖面示意圖。 1 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the present invention.
請參照圖1,發光二極體200包括基板210、N型半導體層220、主動層230、P型半導體層240、以及第一電極250與第二電極260,而基板210例如是藍寶石基板。具體來說,於藍寶石基板210的一表面上依序形成氮化物 半導體披覆層212(例如是未摻雜的氮化鎵)、N型半導體層220、主動層230以及P型半導體層240的疊層,主動層230位於N型半導體層220與P型半導體層240之間,N型半導體層220可包含依序位於氮化物半導體披覆層212上的第一N型摻雜氮化鎵層222以及第二N型摻雜氮化鎵層224的疊層,P型半導體層240可包含依序位於主動層230上的第一P型摻雜氮化鎵層242以及第二P型摻雜氮化鎵層244的疊層,其中第一N型摻雜氮化鎵層222與第二N型摻雜氮化鎵層224之間、或者第一P型摻雜氮化鎵層242與第二P型摻雜氮化鎵層244之間的差異可為厚度不同或是摻雜濃度不同。此外,N型半導體層220與P型半導體層240的材料例如為氮化鋁鎵,在此領域的技術人員可以依實際需求來選擇所成長之氮化物半導體披覆層212、第一N/P型摻雜氮化鎵層222、242、第二N/P型摻雜氮化鎵層224、244的厚度、摻雜濃度和鋁含量,本發明並不以此為限。 Referring to FIG. 1 , the light emitting diode 200 includes a substrate 210 , an N-type semiconductor layer 220 , an active layer 230 , a P-type semiconductor layer 240 , and a first electrode 250 and a second electrode 260 , and the substrate 210 is, for example, a sapphire substrate. Specifically, nitrides are sequentially formed on one surface of the sapphire substrate 210. A stack of a semiconductor cladding layer 212 (for example, undoped gallium nitride), an N-type semiconductor layer 220, an active layer 230, and a P-type semiconductor layer 240, the active layer 230 being located in the N-type semiconductor layer 220 and the P-type semiconductor layer Between 240, the N-type semiconductor layer 220 may include a stack of a first N-type doped gallium nitride layer 222 and a second N-type doped gallium nitride layer 224 sequentially on the nitride semiconductor cap layer 212. The P-type semiconductor layer 240 may include a stack of a first P-type doped gallium nitride layer 242 and a second P-type doped gallium nitride layer 244 sequentially disposed on the active layer 230, wherein the first N-type doped nitrogen The difference between the gallium GaN layer 222 and the second N-type doped gallium nitride layer 224, or between the first P-type doped gallium nitride layer 242 and the second P-type doped gallium nitride layer 244 may be a thickness Different or different doping concentrations. In addition, the material of the N-type semiconductor layer 220 and the P-type semiconductor layer 240 is, for example, aluminum gallium nitride. The person skilled in the art can select the grown nitride semiconductor cladding layer 212 and the first N/P according to actual needs. The thickness, doping concentration and aluminum content of the doped gallium nitride layers 222 and 242 and the second N/P type doped gallium nitride layers 224 and 244 are not limited thereto.
詳言之,如圖1所示,於藍寶石基板210上依序形成氮化物半導體披覆層212(例如是未摻雜(un-doped)之氮化鎵)、第一N型摻雜氮化鎵層222以及第二N型摻雜氮化鎵層224、主動層230、第一P型摻雜氮化鋁鎵層242以及第二P型摻雜氮化鎵層244,並且再分別於第二N型摻雜氮化鎵層224和第二型P型摻雜氮化鎵層244表面的部分區域上形成第一電極250與第二電極260,以使第一電極250電性連接N型半導體層220,並使第二電極260電 性連接P型半導體層240。當然,亦可於藍寶石基板與N型半導體之間增設一一層氮化物緩衝層,本發明並不以此為限。 In detail, as shown in FIG. 1, a nitride semiconductor cladding layer 212 (for example, un-doped gallium nitride) is sequentially formed on the sapphire substrate 210, and the first N-type doping nitride is formed. a gallium layer 222 and a second N-type doped gallium nitride layer 224, an active layer 230, a first P-type doped aluminum gallium nitride layer 242, and a second P-type doped gallium nitride layer 244, respectively A first electrode 250 and a second electrode 260 are formed on a partial region of the surface of the two N-type doped gallium nitride layer 224 and the second P-type doped gallium nitride layer 244, so that the first electrode 250 is electrically connected to the N-type. The semiconductor layer 220 and electrically elects the second electrode 260 The P-type semiconductor layer 240 is connected. Of course, a layer of nitride buffer layer may be added between the sapphire substrate and the N-type semiconductor, and the invention is not limited thereto.
主動層230的構成型態例如為圖2A與圖2B所示,其可為單一量子井主動層230A或是多重量子井主動層230B。圖2A為本發明一實施例之發光二極體中一種單一量子井主動層的剖面示意圖,而圖2B為本發明一實施例之發光二極體中一種多重量子井主動層的剖面示意圖。一般來說,主動層包括i層的量子阻障層以及(i-1)層量子井層,且各量子井層夾於任兩層量子阻障層之間,因此i為大於等於2的自然數。例如,如圖2A所示,單一量子井主動層230A可由兩量子阻障層232以及夾於其間的一量子井層234所構成,而構成量子阻障層232/量子井234/量子阻障層232。以222 nm~405 nm發光波段的發光二極體200為例,量子井234之材料例如是AlmInnGa1-m-nN,其中0m<1,0n0.5,m+n1,且x>m,n≧y,而量子阻障層232之材料例如是AlxInyGa1-x-yN,其中0x1,0y0.3,且x+y1,在所屬領域的技術人員可針對不同發光波段等實際需求來選擇所成長之m、n的含量、或x、y含量,本發明並不以此為限。 The configuration of the active layer 230 is, for example, as shown in FIGS. 2A and 2B, which may be a single quantum well active layer 230A or a multiple quantum well active layer 230B. 2A is a schematic cross-sectional view showing a single quantum well active layer in a light-emitting diode according to an embodiment of the present invention, and FIG. 2B is a cross-sectional view showing a multiple quantum well active layer in the light-emitting diode according to an embodiment of the invention. In general, the active layer includes an i-layer quantum barrier layer and an (i-1) layer quantum well layer, and each quantum well layer is sandwiched between any two quantum barrier layers, so i is a natural ratio of 2 or more. number. For example, as shown in FIG. 2A, a single quantum well active layer 230A may be composed of two quantum barrier layers 232 and a quantum well layer 234 sandwiched therebetween to form a quantum barrier layer 232/quantum well 234/quantum barrier layer. 232. Taking the light-emitting diode 200 of the 222 nm to 405 nm light-emitting band as an example, the material of the quantum well 234 is, for example, Al m In n Ga 1-mn N, where 0 m<1,0 n 0.5, m+n 1, and x>m, n≧y, and the material of the quantum barrier layer 232 is, for example, Al x In y Ga 1-xy N, where 0 x 1,0 y 0.3, and x+y 1. Those skilled in the art can select the content of m, n, or x, y to be grown for actual needs such as different light-emitting bands, and the present invention is not limited thereto.
另外,主動層的構成型態亦可如圖2B所示之多重量子井主動層230B的型態。如圖2B所示,多重量子井主動層230B可由量子阻障層232與量子井234的至少兩對疊層所構成,如圖2B中所繪示之三對量子阻障層232/量子 井234重覆的疊層。 In addition, the configuration of the active layer may also be the type of the multiple quantum well active layer 230B as shown in FIG. 2B. As shown in FIG. 2B, the multiple quantum well active layer 230B may be composed of at least two pairs of quantum barrier layers 232 and quantum wells 234, such as three pairs of quantum barrier layers 232/quantum as depicted in FIG. 2B. Well 234 repeated laminate.
值得注意的是,本發明之發光二極體200藉由主動層230中對量子阻障層232進行N型摻質的摻雜製程,改變量子阻障層232中摻雜量子阻障層232的層數、摻雜濃度、以及不同摻雜量子阻障層232中的摻雜濃度分佈來提升發光二極體200於222 nm~405 nm波段的發光效率。具體來說,雖然氮化鎵之成長技術中因製程的限制而存在著一定的缺陷密度,但即使發光二極體200中的主動層230存在107的等級,藉由調變量子阻障層232中摻雜量子阻障層232的層數、摻雜濃度等,即可藉由有目的地(intentionally)摻雜N型摻質來降低活性區之缺陷密度對載子的影響,有效地提升發光效率。尤其是,特別是對於主動層230所發出之波長範圍為222 nm至405 nm波段的光線更具有顯著的提升效果。 It is to be noted that the LED diode 200 of the present invention changes the doping of the quantum barrier layer 232 in the quantum barrier layer 232 by performing an N-type dopant doping process on the quantum barrier layer 232 in the active layer 230. The number of layers, the doping concentration, and the doping concentration distribution in the different doped quantum barrier layers 232 are used to improve the luminous efficiency of the light-emitting diode 200 in the 222 nm to 405 nm band. Specifically, although the gallium nitride growth techniques due to limitations in the manufacturing process and there is some defect density, but even if the light-emitting diode 200 in the active layer 230 of the present level of 107, the sub-barrier layer by adjusting variable The number of layers, doping concentration, and the like of the doped quantum barrier layer 232 in 232 can reduce the influence of the defect density of the active region on the carrier by intentionally doping the N-type dopant, thereby effectively improving Luminous efficiency. In particular, in particular, the active layer 230 emits light having a wavelength range of 222 nm to 405 nm.
以下將以實驗結果來輔助說明發明者所提出之本發明之發光二極體200的功效。在以下實施例中,是以矽作為N型摻質為實施範圍,但本領域的技術人員亦可使用與矽屬同族之IVA族中的其他元素來代替實施例中的矽,或著可選用V或著VIA族的元素來代替實施例中的矽,例如氧,只要可做為取代IIIA族的鋁、銦、鎵元素,可提供出電子做為N型摻雜,同樣可以實現本發明。 The efficacy of the light-emitting diode 200 of the present invention proposed by the inventors will be explained below with experimental results. In the following examples, the enthalpy is used as the N-type dopant as the implementation range, but those skilled in the art may also use other elements in the IVA family of the same family to replace the hydrazine in the embodiment, or may be optional. Instead of the ruthenium in the embodiment, such as oxygen, V or a group of VIA, as long as it can be substituted for the aluminum, indium or gallium elements of group IIIA, electrons can be provided as N-type doping, and the present invention can also be realized.
圖3為發光二極體之主動層的放大剖面示意圖。如圖3所示,本實施例之主動層230包括六層量子阻障層與五層量子井層,且各量子井層夾於任兩層量子阻障層之間。 量子阻障層自N型半導體側起算依序為232a、232b、232c、232d、232e、232f,而量子井層,其自N型半導體側起算依序為量子井234a、234b、234c、234d、234e。 3 is an enlarged schematic cross-sectional view of an active layer of a light emitting diode. As shown in FIG. 3, the active layer 230 of the present embodiment includes six quantum barrier layers and five quantum well layers, and each quantum well layer is sandwiched between any two quantum barrier layers. The quantum barrier layer is sequentially 232a, 232b, 232c, 232d, 232e, and 232f from the N-type semiconductor side, and the quantum well layer is sequentially quantum wells 234a, 234b, 234c, and 234d from the N-type semiconductor side. 234e.
圖4A表示作為本發明之發光二極體比較例的光學模擬圖,而圖4B表示本發明之發光二極體的光學模擬圖,其中圖4A與圖4B中的缺陷密度設定為1x108/cm3。請先參照圖4A,圖4A為發光二極體中改變量子阻障層232a-232f之摻雜量子阻障層的層數與發光波長為450nm附近波段之發光強度的關係圖,請同時參照圖3與圖4A,橫軸表示發光波長(單位:奈米),縱軸為發光強度(單位:a.u.),而不同的線段A、B、C、D中斜線前後的數字分別代表如圖3所示之量子阻障層232a-232f中有摻雜量子阻障層與未摻雜量子阻障層的層數,並且摻雜的層數是以自N型半導體層220側起算。例如,線段A中的6/0代表六層量子阻障層232a-232f全部摻雜,線段B中的4/2代表靠近N型半導體層220側的四層量子阻障層232a-232d為摻雜量子阻障層,而未摻雜量子阻障層232e-232f的層數為二層,線段C中的2/4代表靠近N型半導體層220側的二層量子阻障層232a-232b為摻雜量子阻障層,且未摻雜量子阻障層232c-232f的層數為四層,而線段D中的0/6代表六層量子阻障層232a-232f全部未摻雜。如圖4A所示,結果顯示增加摻雜量子阻障層的層數反而降低發光二極體在450nm附近波段的發光效率。 4A is an optical simulation diagram of a comparative example of the light-emitting diode of the present invention, and FIG. 4B is an optical simulation diagram of the light-emitting diode of the present invention, wherein the defect density in FIGS. 4A and 4B is set to 1×10 8 /cm. 3 . Please refer to FIG. 4A first. FIG. 4A is a diagram showing the relationship between the number of layers of the doped quantum barrier layer of the quantum barrier layer 232a-232f and the emission intensity of the wavelength band near the wavelength of 450 nm in the light-emitting diode. 3 and FIG. 4A, the horizontal axis represents the illuminating wavelength (unit: nanometer), and the vertical axis represents the illuminating intensity (unit: au), and the numbers before and after the slanting lines in the different line segments A, B, C, and D represent respectively as shown in FIG. The number of layers of the doped quantum barrier layer and the undoped quantum barrier layer is present in the quantum barrier layers 232a-232f, and the number of layers doped is from the side of the N-type semiconductor layer 220. For example, 6/0 in line A represents the total doping of the six-layer quantum barrier layers 232a-232f, and 4/2 in the line segment B represents the four-layer quantum barrier layer 232a-232d adjacent to the side of the N-type semiconductor layer 220. The quantum quantum barrier layer has two layers of undoped quantum barrier layers 232e-232f, and 2/4 of the line segments C represent two layers of quantum barrier layers 232a-232b adjacent to the N-type semiconductor layer 220 side. The quantum barrier layer is doped, and the number of layers of the undoped quantum barrier layer 232c-232f is four layers, and 0/6 of the line segment D represents that the six-layer quantum barrier layers 232a-232f are all undoped. As shown in FIG. 4A, the results show that increasing the number of layers of the doped quantum barrier layer reduces the luminous efficiency of the light-emitting diode in the vicinity of 450 nm.
相對於此,當增加量子阻障層232之摻雜量子阻障層 的層數時,可以有效地提升發光二極體在222 nm~405 nm波段的發光強度。詳細而言,圖4B為發光二極體中改變量子阻障層之摻雜量子阻障層的層數與發光波長為365nm附近波段之發光強度的關係圖,圖4B中有關橫軸、縱軸、以及線段之定義與圖4A類似,惟,圖4B是表示主峰為365nm附近之222 nm~405 nm範圍的發光波段。如圖4B所示,結果顯示增加摻雜量子阻障層232的層數有助於提升發光二極體在222 nm~405 nm波段的發光效率。 In contrast, when the doped quantum barrier layer of the quantum barrier layer 232 is added When the number of layers is increased, the luminous intensity of the light-emitting diode in the 222 nm to 405 nm band can be effectively improved. In detail, FIG. 4B is a relationship diagram showing the relationship between the number of layers of the doped quantum barrier layer of the quantum barrier layer and the emission intensity of the wavelength band near the wavelength of 365 nm in the light-emitting diode, and the horizontal axis and the vertical axis in FIG. 4B. The definition of the line segment is similar to that of FIG. 4A. However, FIG. 4B shows the illuminating band in the range of 222 nm to 405 nm in which the main peak is around 365 nm. As shown in FIG. 4B, the results show that increasing the number of layers of the doped quantum barrier layer 232 helps to improve the luminous efficiency of the light-emitting diode in the 222 nm to 405 nm band.
發明者依據前述圖4A與圖4B之結果推論,當發光二極體所發出之發光波段在450nm附近時,由於量子井存在較強的局部效應(localized effect),使得載子不易受到缺陷密度的影響,因此於量子阻障層中摻雜N型摻質,並無法增強450nm附近的發光強度,過多的摻雜反而會造成載子溢流現象發生因而降低發光強度,如圖4A所示。然而,對於發光波段在365nm附近的發光二極體而言,於量子阻障層中摻雜N型摻質的效應卻與發光波段在450nm附近的發光二極體完全相反。 The inventors infer from the results of the foregoing FIG. 4A and FIG. 4B that when the light-emitting band emitted by the light-emitting diode is around 450 nm, the carrier is less susceptible to the defect density due to the strong localized effect of the quantum well. Therefore, the N-type dopant is doped in the quantum barrier layer, and the luminescence intensity near 450 nm cannot be enhanced. Excessive doping may cause the carrier overflow phenomenon to decrease the luminescence intensity, as shown in FIG. 4A. However, for a light-emitting diode having an emission band around 365 nm, the effect of doping the N-type dopant in the quantum barrier layer is completely opposite to that of the light-emitting diode having an emission band around 450 nm.
詳言之,如圖4B所示,當發光二極體所發出之發光波段在主峰為365 nm附近之222 nm~405 nm的發光波段時,由於量子井的局部效應減弱,使得載子受到缺陷密度的影響增強,而於既定的量子阻障層中摻雜N型摻質(例如矽)有助於補償缺陷密度對載子的影響,換言之,N型摻質也可以提供電子作為輻射複合之用,因此可有效地提升發光二極體在222 nm至405 nm發光波段的發光效率。 此處所謂的N型摻質為從外界有目的的提供可作為取代III族元素的IV族摻質。如圖4B所示,222 nm至405 nm發光波段之發光強度隨著摻雜量子阻障層的層數增加而增加,尤其當摻雜量子阻障層之層數k與量子阻障層的總數i滿足下述關係式時,發光效率提升的效果顯著:當i為偶數時,k≧i/2;當i為奇數時,k≧(i-1)/2。 In detail, as shown in FIG. 4B, when the illuminating band emitted by the illuminating diode is in the 222 nm to 405 nm illuminating band near the main peak at 365 nm, the carrier is subjected to defects due to the weakening of the local effect of the quantum well. The effect of density is enhanced, and the doping of N-type dopants (such as germanium) in a given quantum barrier layer helps to compensate for the effect of defect density on the carrier. In other words, the N-type dopant can also provide electrons as a radiation composite. Therefore, it can effectively improve the luminous efficiency of the light-emitting diode in the 222 nm to 405 nm light-emitting band. The so-called N-type dopant herein is a Group IV dopant which is provided as a substitute for a Group III element from the outside. As shown in FIG. 4B, the luminescence intensity of the 222 nm to 405 nm luminescence band increases as the number of layers of the doped quantum barrier layer increases, especially when the number of layers of the doped quantum barrier layer k and the total number of quantum barrier layers are increased. When i satisfies the following relation, the effect of improving luminous efficiency is remarkable: when i is an even number, k≧i/2; when i is an odd number, k≧(i-1)/2.
為了進一步驗證上述推論,針對222 nm至405 nm發光波段的發光二極體,進一步以圖5A至圖8D來分別表示當改變圖3之摻雜量子阻障層232的層數時,模擬對發光二極體電子濃度、電洞濃度、電子電洞複合機率、以及非輻射複合機率的關係圖,其中圖5至圖8橫軸代表與基板表面之距離(單位:奈米),而圖5至圖8中的A、B、C、D圖分別代表摻雜量子阻障層與未摻雜量子阻障層的層數,其定義與圖4A、4B中線段A-D相同,不再贅述。 In order to further verify the above inference, for the light-emitting diodes of the 222 nm to 405 nm light-emitting band, the simulated pair illumination is further shown when changing the number of layers of the doped quantum barrier layer 232 of FIG. 3, respectively, in FIGS. 5A to 8D. A diagram of the relationship between the electron concentration of the diode, the concentration of the hole, the probability of electron hole cavities, and the probability of non-radiative compounding, wherein the horizontal axis of Figs. 5 to 8 represents the distance from the surface of the substrate (unit: nanometer), and Fig. 5 to The graphs A, B, C, and D in FIG. 8 respectively represent the number of layers of the doped quantum barrier layer and the undoped quantum barrier layer, and the definition thereof is the same as that of the line segment AD in FIGS. 4A and 4B, and will not be described again.
由圖5A至圖5D之電子濃度模擬圖可知,當摻雜量子阻障層的層數越多時,其電子濃度逐漸增加。由圖6A至圖6D之電洞濃度模擬圖可知,當摻雜量子阻障層的層數越多時,其電洞濃度逐漸減少,其中又以全部量子阻障層均不摻雜時的整體電洞濃度最高。由圖7A至圖7D之電子電洞複合機率模擬圖可知,雖然量子阻障層全部摻雜時之整體電洞分佈較均勻,理應圖7D之量子阻障層全部不摻雜的發光二極體具有較高的電子電洞複合機率,然而,由圖7A至圖7D的趨勢可知,圖7A之全部量子阻障層232均摻雜時的電子電洞複合機率最高,反而圖7D之全部量 子阻障層均不摻雜時的電子電洞複合機率最低。因此,圖7A至圖7D亦可驗證N型摻質可以提供電子作為輻射複合之用,因此可有效地提升發光二極體在222 nm至405 nm發光波段的發光效率的推論。再者,由圖8A至圖8D之電子電洞非輻射複合機率模擬圖可知,圖8A之全部量子阻障層均摻雜時之非輻射複合機率最低,而圖8D之全部量子阻障層均不摻雜時的電子電洞非輻射複合機率最高,結合圖7A至圖7D以及圖8A至圖8D之結果可知,於量子阻障層中摻雜N型摻質可以提供電子,使提高電子電洞輻射複合機率,而有效地提升發光效率,同時降低電子電洞以熱等非發光型態的非輻射複合機率,同樣可驗證N型摻質可以提升發光二極體在222 nm至405 nm發光波段的發光強度的推論。 It can be seen from the electron concentration simulation diagrams of FIGS. 5A to 5D that the electron concentration is gradually increased as the number of layers of the doped quantum barrier layer is increased. From the hole concentration simulation diagrams of FIG. 6A to FIG. 6D, when the number of layers of the doped quantum barrier layer is increased, the hole concentration is gradually reduced, and the whole quantum barrier layer is not doped. The hole concentration is the highest. From the electron hole composite probability simulation diagrams of FIG. 7A to FIG. 7D, it can be seen that although the overall hole distribution of the quantum barrier layer is uniformly doped, all of the quantum barrier layers of the quantum barrier layer of FIG. 7D should be undoped. It has a high electron hole composite probability. However, as can be seen from the trend of FIG. 7A to FIG. 7D, all of the quantum barrier layers 232 of FIG. 7A have the highest electron hole composite probability when doped, but the entire amount of FIG. 7D. When the sub-barrier layer is not doped, the electron hole compounding probability is the lowest. Therefore, FIG. 7A to FIG. 7D can also verify that the N-type dopant can provide electrons as a radiation composite, and thus can effectively improve the luminous efficiency of the light-emitting diode in the 222 nm to 405 nm emission band. Furthermore, from the non-radiative composite probability plots of the electron holes of FIG. 8A to FIG. 8D, it can be seen that all of the quantum barrier layers of FIG. 8A have the lowest non-radiative composite probability when doped, and all of the quantum barrier layers of FIG. 8D are The electron tunnel non-radiation composite rate is the highest when undoped. According to the results of FIG. 7A to FIG. 7D and FIG. 8A to FIG. 8D, it can be known that doping N-type dopant in the quantum barrier layer can provide electrons and improve electronic electricity. The hole radiates a composite probability, and effectively improves the luminous efficiency, and at the same time reduces the non-radiative composite probability of the electron hole in a non-emissive type such as heat. It can also be verified that the N-type dopant can enhance the light-emitting diode to emit light at 222 nm to 405 nm. The inference of the luminous intensity of the band.
表1中記載當發光二極體中之主動層的結構如圖3所示時,發光二極體在不同電流下的發光強度表現、以及順向電壓表現隨著摻雜量子阻障層與未摻雜量子阻障層的層數而改變,其中在表1的實驗中,各摻雜量子阻障層的摻雜濃度C1、C2、...Ck例如均為2x1018/cm3,而在本發明發光波長為365nm實施例中,量子井之材料是IncGa1-cN,其中0≦c≦0.05,量子阻障層的材料是AldGa1-dN,d為0至0.25之間,在本實施例中,鋁含量最佳值是0.09~0.20之間,量子阻障層的厚度例如為5nm-15nm,在本實施例中,厚度較佳為6 nm-11nm。並且,將表1之結果繪示於圖9A與圖9B中,其中圖9A繪示發光二極體之量子阻障層中不同摻雜 層數對電流-光輸出功率曲線的關係圖,而圖9B繪示發光二極體之量子阻障層中不同摻雜層數對電流-電壓曲線的關係圖。 Table 1 shows that when the structure of the active layer in the light-emitting diode is as shown in FIG. 3, the luminous intensity of the light-emitting diode at different currents, and the forward voltage performance along with the doped quantum barrier layer and The number of layers of the doped quantum barrier layer is changed, wherein in the experiment of Table 1, the doping concentrations C 1 , C 2 , . . . C k of each doped quantum barrier layer are, for example, 2 ×10 18 /cm 3 . In the embodiment in which the illuminating wavelength of the present invention is 365 nm, the material of the quantum well is In c Ga 1-c N, where 0 ≦ c ≦ 0.05, and the material of the quantum barrier layer is Al d Ga 1-d N, d is Between 0 and 0.25, in the present embodiment, the optimum value of the aluminum content is between 0.09 and 0.20, and the thickness of the quantum barrier layer is, for example, 5 nm to 15 nm. In the present embodiment, the thickness is preferably 6 nm to 11 nm. . The results of Table 1 are shown in FIG. 9A and FIG. 9B , wherein FIG. 9A is a diagram showing the relationship between the number of different doping layers and the current-light output power curve in the quantum barrier layer of the LED. 9B shows the relationship between the number of different doping layers in the quantum barrier layer of the light-emitting diode and the current-voltage curve.
由表1及圖9A的結果可知,發光二極體200A-200E之光輸出功率隨著在既有量子阻障層中摻雜量子阻障層數的增加而提升。詳言之,首先當不摻雜N型摻質時候,其摻雜濃度為0,但其氮化鎵材料會有其本身背景摻雜濃度,濃度會依不同磊晶技術或者不同磊晶品質而有所差異,此實施例中,由於量測不到本身背景摻雜濃度,因此未摻雜之濃度以N.A.來表示,此時當六層量子阻障層中均未摻雜N型摻質(例如矽)時之光輸出功率為9.5 mW(發光二極體200A)。當六層量子阻障層中有兩層摻雜N型摻質時(例如對圖3所示量子阻障層232a-232f中有目的 地摻雜最靠近N型半導體220的兩層量子阻障層232a-232b),發光二極體200B之光輸出功率可由均未摻雜的9.5 mW提升至10.6 mW,更佳的是,當六層量子阻障層232中有四層摻雜量子阻障層232時(如有目的地摻雜圖3中最靠近N型半導體220的四層量子阻障層232a-232d),發光二極體200C之光輸出功率更可大幅度地由未摻雜的9.5 mW提升到17.0mW,提升為原來的兩倍,因此當摻雜量子阻障層232的層數k大於等於量子阻障層232的總層數i的一半時,可有效地提升發光二極體200C的發光效率。此外,當摻雜五層量子阻障層時,發光二極體200D之光輸出功率為24.2 mW,而當全部量子阻障層232都摻雜時(如將圖3中全六層量子阻障層232a-232f均進行有目的的摻雜),發光二極體200E之光輸出功率可提升到31.1 mW,提升為原來的將近三倍之多。 As can be seen from the results of Table 1 and FIG. 9A, the light output power of the light-emitting diodes 200A-200E increases as the number of doped quantum barrier layers in the existing quantum barrier layer increases. In detail, firstly, when the N-type dopant is not doped, the doping concentration is 0, but the gallium nitride material has its own background doping concentration, and the concentration will be different according to different epitaxial techniques or different epitaxial qualities. There is a difference. In this embodiment, since the background doping concentration is not measured, the undoped concentration is represented by NA. At this time, the N-type dopant is not doped in the six-layer quantum barrier layer ( For example, 光) light output power is 9.5 mW (light emitting diode 200A). When there are two layers of doped N-type dopants in the six-layer quantum barrier layer (for example, there is a purpose in the quantum barrier layer 232a-232f shown in FIG. Ground-doped two layers of quantum barrier layers 232a-232b closest to the N-type semiconductor 220, the light output power of the light-emitting diode 200B can be increased from 9.5 mW to 10.6 mW, which is undoped, and more preferably, when When there are four layers of doped quantum barrier layer 232 in the layer quantum barrier layer 232 (such as purposely doping the four-layer quantum barrier layer 232a-232d closest to the N-type semiconductor 220 in FIG. 3), the light-emitting diode The optical output power of the 200C can be greatly increased from the undoped 9.5 mW to 17.0 mW, which is twice as large as the original, so when the number k of the doped quantum barrier layer 232 is greater than or equal to the quantum barrier layer 232 When half of the total number of layers i is obtained, the luminous efficiency of the light-emitting diode 200C can be effectively improved. In addition, when doped with a five-layer quantum barrier layer, the light output power of the light-emitting diode 200D is 24.2 mW, and when all the quantum barrier layers 232 are doped (such as the full six-layer quantum barrier in FIG. 3) The layers 232a-232f are purposely doped), and the light output power of the LED 200E can be increased to 31.1 mW, which is nearly three times as much as the original.
另外,由表1及圖9B的結果可知,於量子阻障層中摻雜N型摻質除可有效增加發光二極體200A的發光效率之外,更可降低量子阻障層之阻值,進而降低發光二極體的順向電壓。例如順向電壓由全部量子阻障層都未摻雜的4.36 V下降到全部量子阻障層都摻雜的4.14 V。上述結果代表提高量子阻障層中的摻雜層數可以補償缺陷密度對發光二極體在222 nm~405 nm波段(主峰在365nm附近)之發光效率的影響。換言之,於量子阻障層中所摻入的N型摻質能有效地提供電子作為輻射複合之用,降低非輻射複合等如熱形式的能量釋放,因此可有效的提升發光效率, 上述實驗結果再次驗證了前述圖5至圖8的模擬結果。 In addition, as can be seen from the results of Table 1 and FIG. 9B, the doping of the N-type dopant in the quantum barrier layer can effectively increase the luminous efficiency of the light-emitting diode 200A, and further reduce the resistance of the quantum barrier layer. Further, the forward voltage of the light-emitting diode is lowered. For example, the forward voltage drops from 4.36 V, which is undoped with all quantum barrier layers, to 4.14 V, which is doped with all quantum barrier layers. The above results represent that increasing the number of doped layers in the quantum barrier layer can compensate for the effect of defect density on the luminous efficiency of the light-emitting diode in the 222 nm to 405 nm band (the main peak is around 365 nm). In other words, the N-type dopant incorporated in the quantum barrier layer can effectively provide electrons for radiation recombination, and reduce energy release such as non-radiation recombination, such as thermal form, thereby effectively improving luminous efficiency. The above experimental results again verified the simulation results of the aforementioned FIGS. 5 to 8.
因此,由上文可知,本發明之發光二極體可使主動層之量子阻障層中摻有N型摻質的量子阻障層的層數符合特定比例,藉此來有效提升發光二極體在222 nm~405 nm波段的發光效率。尤其當摻雜量子阻障層的層數k大於等於量子阻障層的總層數i的一半時,發光效率提升的效果顯著,具體來說,當i為偶數時,k≧i/2;當i為奇數時,k≧(i-1)/2。 Therefore, it can be seen from the above that the light-emitting diode of the present invention can make the number of layers of the quantum barrier layer doped with the N-type dopant in the quantum barrier layer of the active layer conform to a specific ratio, thereby effectively improving the light-emitting diode Luminescence efficiency of the body in the 222 nm to 405 nm band. Especially when the number k of layers of the doped quantum barrier layer is greater than or equal to half of the total number of layers i of the quantum barrier layer, the effect of improving the luminous efficiency is remarkable, specifically, when i is an even number, k≧i/2; When i is an odd number, k≧(i-1)/2.
下文進一步探討摻雜量子阻障層中N型摻質之摻雜濃度對發光二極體在222 nm~405 nm波段之發光效率的影響。 The effect of the doping concentration of the N-type dopant in the doped quantum barrier layer on the luminescence efficiency of the luminescent diode in the 222 nm to 405 nm band is further discussed below.
表2中記載當發光二極體中之主動層的結構如圖3所示時,固定對靠近N型半導體層的四層量子阻障層232a-232d進行摻雜,因此表2各實驗例中的摻雜量子阻障層232為四層,而另外靠近P型半導體層的量子阻障層232e-232f未摻雜。表2中表示發光二極體之摻雜量子阻障層中不同摻雜濃度對發光強度表現以及順向電壓表現的關係。並且,將表2之結果繪示於圖10A與圖10B中,其中圖10A繪示發光二極體中之量子阻障層中不同摻雜濃度對電流-光輸出功率曲線的關係圖,而圖10B繪示發光二極體之量子阻障層中不同摻雜濃度對電流-電壓曲線的關係圖。 Table 2 shows that when the structure of the active layer in the light-emitting diode is as shown in FIG. 3, the four-layer quantum barrier layers 232a-232d adjacent to the N-type semiconductor layer are fixedly doped, so that in each experimental example of Table 2 The doped quantum barrier layer 232 is four layers, and the quantum barrier layers 232e-232f that are otherwise adjacent to the P-type semiconductor layer are undoped. Table 2 shows the relationship between the different doping concentrations in the doped quantum barrier layer of the light-emitting diode and the luminous intensity performance and the forward voltage performance. The results of Table 2 are shown in FIG. 10A and FIG. 10B , wherein FIG. 10A is a diagram showing the relationship between different doping concentrations and current-light output power curves in the quantum barrier layer in the light-emitting diode. FIG. 10B is a graph showing the relationship between different doping concentrations and current-voltage curves in the quantum barrier layer of the light-emitting diode.
由表2及圖10A的結果並參照圖3可知,發光二極體之光輸出功率隨著摻雜濃度的增加而提升,例如,如前述,當不摻雜N型摻質時,由於量測不到本身背景摻雜濃度,因此未摻雜之濃度以N.A.來表示,其光輸出功率為9.5 mW(發光二極體200A);當四層摻雜量子阻障層232a-232d的摻雜濃度為8x1017 cm-3時,發光二極體200F之光輸出功率可由均未摻雜的9.5 mW提升至11.8mW,更佳的是,當摻雜濃度為2x1018 cm-3時,發光二極體200G之光輸出功率更可大幅度地由未摻雜的9.5 mW提升到兩倍的17.0mW,當摻雜濃度為4x1018 cm-3時,發光二極體200H之光輸出功率為19.1 mW,而當摻雜濃度為6x1018 cm-3時,發光二極體200E之光輸出功率可提升到21.5mW。因此,由表2及圖10A可推算出:當發光二極體之量子阻障 層中,摻雜層數超過總層數的一半,且摻雜濃度為5x1017/cm3至1x1019/cm3時,即可有效地提升發光二極體200F-200I的發光效率。 As can be seen from the results of Table 2 and FIG. 10A and with reference to FIG. 3, the light output power of the light-emitting diode increases as the doping concentration increases, for example, as described above, when the N-type dopant is not doped, due to measurement Not the background doping concentration, so the undoped concentration is expressed by NA, and its optical output power is 9.5 mW (light emitting diode 200A); when the doping concentration of the four-layer doped quantum barrier layer 232a-232d When the frequency is 8x10 17 cm -3 , the light output power of the light-emitting diode 200F can be increased from 9.5 mW which is undoped to 11.8 mW, and more preferably, when the doping concentration is 2×10 18 cm -3 , the light emitting diode The optical output power of the body 200G can be greatly improved from the undoped 9.5 mW to twice the 17.0 mW. When the doping concentration is 4× 10 18 cm -3 , the light output power of the LED 200H is 19.1 mW. When the doping concentration is 6x10 18 cm -3 , the light output power of the light emitting diode 200E can be increased to 21.5 mW. Therefore, from Table 2 and FIG. 10A, it can be inferred that in the quantum barrier layer of the light-emitting diode, the number of doped layers exceeds half of the total number of layers, and the doping concentration is 5× 10 17 /cm 3 to 1×10 19 /cm. At 3 o'clock, the luminous efficiency of the light-emitting diode 200F-200I can be effectively improved.
另外,由表2及圖10B的結果可知,於四層摻雜量子阻障層中當摻雜濃度為5x1017/cm3至1x1019/cm3時,N型摻質除可提升發光二極體的發光效率之外,更可降低量子阻障層之阻值,進而降低發光二極體的順向電壓。例如發光二極體的順向電壓由摻雜濃度為0的4.36 V下降到摻雜濃度為6x1018的4.09 V。上述結果代表提高量子阻障層232中N型摻質(例如矽)的摻雜濃度可以有效補償缺陷密度對發光二極體在222 nm~405 nm波段之發光效率的影響。換言之,於量子阻障層中所摻入的N型摻質能有效地提供電子作為輻射複合之用,降低非輻射複合等如熱形式的能量釋放,因此可有效的提升發光效率,上述實驗結果同樣再次驗證了前述圖5至圖8的模擬結果。 In addition, as can be seen from the results of Table 2 and FIG. 10B, when the doping concentration is 5× 10 17 /cm 3 to 1×10 19 /cm 3 in the four-layer doped quantum barrier layer, the N-type dopant can enhance the light-emitting diode. In addition to the luminous efficiency of the body, the resistance of the quantum barrier layer can be lowered, thereby reducing the forward voltage of the light-emitting diode. For example, the forward voltage of the light-emitting diode is reduced from 4.36 V with a doping concentration of 0 to 4.09 V with a doping concentration of 6× 10 18 . The above results represent that increasing the doping concentration of the N-type dopant (for example, germanium) in the quantum barrier layer 232 can effectively compensate the effect of the defect density on the luminous efficiency of the light-emitting diode in the 222 nm to 405 nm band. In other words, the N-type dopant incorporated in the quantum barrier layer can effectively provide electrons as a radiation composite, and reduce the energy release of a non-radiative composite such as a thermal form, thereby effectively improving luminous efficiency, and the above experimental results The simulation results of the aforementioned FIGS. 5 to 8 are also verified again.
值得一提的是,依據上述本發明之發光二極體200B-200I的實施例,亦可以選用IV、V和VIA族中的至少一元素來作為N型摻質,其同樣可以達到提供電子作為輻射複合之用,藉此可有效提升發光效率。此外,摻雜量子阻障層中的摻雜濃度除了可如表1與表2般相等之外,亦可以使摻雜濃度具有梯度變化。舉例來說,以量子阻障層之總層數為6層,而摻雜量子阻障層為6層中的4層為例,4層摻雜量子阻障層之摻雜濃度自靠近N型半導體側起算依序為C1、C2、...Ck,且Ck≦Ck-1,例如4層摻雜量子阻障層 232a-232d之摻雜濃度依序為6x1018 cm-3、5x 1018 cm-3、4x 1018 cm-3、3x 1018 cm-3,換言之,摻雜量子阻障層的摻雜濃度變化是從靠近N型半導體側的第一層量子阻障層232a漸減至最靠近P型半導體側的第四層232d,如此,同樣可以使得所摻入的N型摻質有效地提供電子作為輻射複合之用,藉此可有效的提升發光效率。 It is worth mentioning that, according to the embodiment of the above-mentioned light-emitting diode 200B-200I of the present invention, at least one of the IV, V and VIA groups can also be selected as the N-type dopant, which can also achieve the provision of electrons. Radiation recombination, which can effectively improve luminous efficiency. In addition, the doping concentration in the doped quantum barrier layer may be equal to that of Table 1 and Table 2, and the doping concentration may have a gradient change. For example, the total number of layers of the quantum barrier layer is 6 layers, and the doped quantum barrier layer is 4 layers of 6 layers. The doping concentration of the 4-layer doped quantum barrier layer is close to the N-type. The semiconductor side is sequentially calculated as C 1 , C 2 , . . . C k , and C k ≦C k-1 , for example, the doping concentration of the 4-layer doped quantum barrier layer 232a-232d is 6× 10 18 cm in sequence - 3 , 5x 10 18 cm -3 , 4x 10 18 cm -3 , 3x 10 18 cm -3 , in other words, the doping concentration change of the doped quantum barrier layer is from the first quantum barrier near the N-type semiconductor side The layer 232a is gradually reduced to the fourth layer 232d closest to the P-type semiconductor side, and thus, the incorporated N-type dopant can also effectively provide electrons as a radiation composite, whereby the luminous efficiency can be effectively improved.
再者,摻雜量子阻障層中摻雜濃度C1至Ck的梯度變化亦可以是自靠近N型半導體側起算依序為6x1018 cm-3、7x1018 cm-3、8x1018 cm-3、6x1018 cm-3,換言之,其摻雜濃度變化可為中間層數摻雜濃度大於最靠近N型半導體和最靠近P型半導體之型態。另外,摻雜量子阻障層中摻雜濃度的梯度變化還可以是自靠近N型半導體側起算依序為6x1018 cm-3、5x1018 cm-3、8x1018 cm-3、6x1018 cm-3。總言之,只要最靠近P型半導體層的摻雜量子阻障層的摻雜濃度小於等於該k層摻雜量子阻障層中其他量子阻障層的摻雜濃度,即可使所摻入的N型摻質有效地提供電子作為輻射複合之用,藉此可有效的提升發光效率。 Furthermore, the gradient of the doping concentration C 1 to C k in the doped quantum barrier layer may be 6× 10 18 cm −3 , 7× 10 18 cm −3 , 8× 10 18 cm from the N-type semiconductor side . 3 , 6x10 18 cm -3 , in other words, the doping concentration change may be that the intermediate layer number doping concentration is greater than the closest N-type semiconductor and the closest P-type semiconductor. Further, the quantum barrier layer is doped in the doping concentration gradient may also be a self-starting near the N-type semiconductor side in order, it is 6x10 18 cm -3, 5x10 18 cm -3, 8x10 18 cm -3, 6x10 18 cm - 3 . In summary, as long as the doping concentration of the doped quantum barrier layer closest to the P-type semiconductor layer is less than or equal to the doping concentration of other quantum barrier layers in the k-doped quantum barrier layer, the doping can be performed. The N-type dopant effectively provides electrons as a radiation composite, thereby effectively improving luminous efficiency.
綜上所述,本發明之發光二極體中,藉由使主動層中摻有N型摻質的量子阻障層的層數符合特定關係、或藉由使主動層之摻雜有N型摻質的量子阻障層中最靠近P型半導體者具有最小的摻雜濃度、或藉由使摻雜有N型摻質之量子阻障層的摻雜濃度滿足特定關係,使得N型摻質可以撫平氮化鎵之缺陷對載子的影響,提升發光二極體之載子的複合效率,因此本發明之發光二極體藉由上述任一技術 手段即可大幅地提升發光二極體在222 nm~405 nm波段的發光效率。 In summary, in the light-emitting diode of the present invention, the number of layers of the quantum barrier layer doped with the N-type dopant in the active layer conforms to a specific relationship, or the active layer is doped with an N-type. The closest dopant to the P-type semiconductor in the doped quantum barrier layer has the smallest doping concentration, or the doping concentration of the quantum barrier layer doped with the N-type dopant satisfies a specific relationship, so that the N-type dopant The effect of the defect of the gallium nitride on the carrier can be smoothed, and the recombination efficiency of the carrier of the light-emitting diode can be improved, so that the light-emitting diode of the present invention has any of the above technologies The means can greatly improve the luminous efficiency of the light-emitting diode in the 222 nm to 405 nm band.
此外,本發明之發光二極體的實施型態不限於前述所繪示之型態,亦可以為水平電極配置或垂直電極配置,均可實現本發明,因此不亦此為限。 In addition, the embodiment of the light-emitting diode of the present invention is not limited to the above-described type, and may be a horizontal electrode configuration or a vertical electrode configuration, and the present invention may be implemented, and thus is not limited thereto.
本發明之第二型態的另提出以下幾種發光二極體。 The second type of the invention further proposes the following types of light-emitting diodes.
圖11A至圖11C分別為本發明一實施例中幾種發光二極體的結構圖,橫軸代表發光二極體中堆疊位置關係中各量子阻障層的位置,縱軸代表相對導電帶能階圖,其各量子阻障層的上方標示其厚度變化(厚度單位:奈米)。 11A to FIG. 11C are respectively structural diagrams of several light-emitting diodes according to an embodiment of the present invention, wherein the horizontal axis represents the position of each quantum barrier layer in the stack positional relationship in the light-emitting diode, and the vertical axis represents the relative conductive band energy. In the diagram, the thickness of each quantum barrier layer is indicated above (thickness unit: nanometer).
圖11A的發光二極體200A表示發光二極體中量子阻障層232a-232f的厚度均相同的結構,圖11B的發光二極體200B表示發光二極體中量子阻障層232a-232f的厚度由P型半導體層240往N型半導體層220遞增的結構,圖11C的發光二極體200C為量子阻障層232a-232f的厚度由P型半導體層240往N型半導體層220遞減的結構。 The light-emitting diode 200A of FIG. 11A represents a structure in which the thicknesses of the quantum barrier layers 232a-232f in the light-emitting diode are the same, and the light-emitting diode 200B of FIG. 11B represents the quantum barrier layer 232a-232f in the light-emitting diode. The structure in which the thickness is increased from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, and the light-emitting diode 200C of FIG. 11C is a structure in which the thickness of the quantum barrier layers 232a to 232f is decreased from the P-type semiconductor layer 240 to the N-type semiconductor layer 220. .
圖12進一步繪示圖11A至圖11C中各發光二極體的發光強度模擬圖。如圖12所示,量子阻障層232a-232f的厚度由P型半導體層240往N型半導體層220遞減的發光二極體200C的發光強度高於量子阻障層232a-232f厚度相等的發光二極體200A、亦高於量子阻障層232a-232f的厚度由P型半導體層240往N型半導體層220遞增的發光二極體200B。其中,發光強度又以量子阻障層232a-232f的厚度由P型半導體層240往N型半導體層220遞增的發光 二極體200B最弱。 FIG. 12 further illustrates a simulation diagram of the luminous intensity of each of the light emitting diodes of FIGS. 11A to 11C. As shown in FIG. 12, the light-emitting diodes 200C whose thicknesses of the quantum barrier layers 232a-232f are decreased from the P-type semiconductor layer 240 to the N-type semiconductor layer 220 have higher luminous intensities than the quantum barrier layers 232a-232f. The diode 200A is also higher than the light-emitting diode 200B whose thickness of the quantum barrier layer 232a-232f is increased from the P-type semiconductor layer 240 to the N-type semiconductor layer 220. Wherein, the luminescence intensity is further increased by the thickness of the quantum barrier layers 232a-232f from the P-type semiconductor layer 240 to the N-type semiconductor layer 220. The diode 200B is the weakest.
進一步探究發光二極體200A-200C中量子阻障層厚度變化對發光強度影響的機制。 Further explore the mechanism of the influence of the thickness variation of the quantum barrier layer on the luminous intensity in the light-emitting diode 200A-200C.
圖13A至圖13C分別表示圖11A至圖11C中各發光二極體的電子與電洞濃度模擬圖,橫軸表示膜層堆疊距離基板的位置(單位:奈米),其中位置2060奈米處為靠近P型半導體層240側,而位置2000奈米為靠近N型半導體層220側,粗線與細線則分別表示電子濃度與電洞濃度(單位:cm-3)。 13A to 13C are diagrams showing electron and hole concentration simulations of the respective light-emitting diodes of FIGS. 11A to 11C, respectively, and the horizontal axis represents the position of the film layer stacking distance from the substrate (unit: nanometer), wherein the position is 2060 nm. It is close to the P-type semiconductor layer 240 side, and the position 2000 nm is close to the N-type semiconductor layer 220 side, and the thick line and the thin line are respectively indicating the electron concentration and the hole concentration (unit: cm -3 ).
發明者依據前述圖11A至圖11C、圖12以及圖13A至圖13C之結果,推論量子阻障層的厚度變化對發光二極體發光強度的影響機制如下。 The inventors inferred from the foregoing results of FIGS. 11A to 11C, FIG. 12, and FIG. 13A to FIG. 13C that the influence mechanism of the thickness variation of the quantum barrier layer on the luminous intensity of the light-emitting diode is as follows.
請同時參照圖11B與圖13B所示,對於發光二極體200B的電子遷移而言,當量子阻障層232a-232f厚度從P型半導體層240往N型半導體層220遞增時,由於電子的遷移從N型半導體層220注入並穿越各量子阻障層232a-232f而往P型半導體層240遷移,因此當量子阻障層232a-232f的厚度由N型半導體層220向P型半導體層240逐漸變薄時,將使電子更容易往P型半導體層240移動,使得最靠近P型半導體層240的量子井層234a的電子濃度過高。 Referring to FIG. 11B and FIG. 13B simultaneously, for the electron transfer of the light-emitting diode 200B, when the thickness of the equivalent sub-barrier layer 232a-232f is increased from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, The migration is implanted from the N-type semiconductor layer 220 and traverses the respective quantum barrier layers 232a-232f to migrate toward the P-type semiconductor layer 240, and thus the thickness of the equivalent-sub barrier layers 232a-232f is from the N-type semiconductor layer 220 to the P-type semiconductor layer 240. When it is gradually thinned, electrons are more easily moved toward the P-type semiconductor layer 240, so that the electron concentration of the quantum well layer 234a closest to the P-type semiconductor layer 240 is too high.
另一方面,對於發光二極體200B的電洞遷移而言,如圖13B搭配圖11B所示,雖然靠近P型半導體層240的量子阻障層232a厚度較薄,使得電洞更容易地往N型半 導體層220移動。然而,如前述,由於在最靠近P型半導體層240的量子井層234a中存在著過多的電子,使得電子產生溢流現象,而非在量子井層中複合,導致電子與電洞無法有效地產生輻射複合,使得整體電洞注入的濃度下降而導致發光強度降低。 On the other hand, for the hole migration of the light-emitting diode 200B, as shown in FIG. 13B in conjunction with FIG. 11B, although the quantum barrier layer 232a close to the P-type semiconductor layer 240 is thin, the hole is more easily N-type half The conductor layer 220 moves. However, as described above, since there is excessive electrons in the quantum well layer 234a closest to the P-type semiconductor layer 240, electrons overflow, rather than recombining in the quantum well layer, resulting in ineffective electrons and holes. The radiation recombination is generated, so that the concentration of the overall hole injection is lowered to cause the luminescence intensity to decrease.
另一方面,請同時參照圖11C與圖13C所示,對於發光二極體200C的電子遷移而言,當量子阻障層232a-232f厚度從N型半導體層220往P型半導體層240遞增時,由於電子的遷移從N型半導體層220注入在穿越量子阻障層232a-232f後往P型半導體層240移動,量子阻障層232的厚度逐漸變厚可以稍稍減緩電子往P型半導體層240移動的趨勢,如此一來,可以使得電子濃度均勻地分佈在主動層230的各量子井層234a-234e中。此外,發光二極體200C藉由量子阻障層232a-232f厚度由N型半導體層220至P型半導體層240逐漸變厚的結構,藉此,發光二極體200C的電子可以避免如發光二極體200B般聚集於最後一個量子井層234a中的現象,因此整體電子注入濃度不會受到最後一個量子井層234a中電子過剩而產生溢流效應的影響。 On the other hand, as shown in FIG. 11C and FIG. 13C simultaneously, for the electron transfer of the light-emitting diode 200C, when the thickness of the equivalent sub-barrier layer 232a-232f is increased from the N-type semiconductor layer 220 to the P-type semiconductor layer 240, Since the migration of electrons from the N-type semiconductor layer 220 is moved to the P-type semiconductor layer 240 after passing through the quantum barrier layers 232a-232f, the thickness of the quantum barrier layer 232 is gradually increased to slightly slow down electrons to the P-type semiconductor layer 240. The tendency to move, as such, allows electron concentration to be evenly distributed among the quantum well layers 234a-234e of the active layer 230. In addition, the light-emitting diode 200C is gradually thickened from the N-type semiconductor layer 220 to the P-type semiconductor layer 240 by the thickness of the quantum barrier layer 232a-232f, whereby the electrons of the light-emitting diode 200C can be avoided as the light-emitting diode 2 The phenomenon that the polar body 200B is concentrated in the last quantum well layer 234a, so the overall electron injection concentration is not affected by the overflow effect caused by the excess electrons in the last quantum well layer 234a.
另一方面,對於發光二極體200C的電洞遷移而言,如圖13C搭配圖11C所示,當電洞從P型半導體層240注入到最靠近P型半導體層240的量子井層234(如圖11C中的量子井層234a)時候,由於量子阻障層232a-232f的厚度由P型半導體層240往N型半導體層220變薄,因此 有利於電洞注入到下一個量子井層234a-234e中。如此一來,相較於發光二極體200A與發光二極體200B,發光二極體200C的電洞濃度在量子井層234中的分佈較為均勻,使得發光二極體200C的結構會有最佳的發光強度。 On the other hand, for the hole migration of the light-emitting diode 200C, as shown in FIG. 13C in conjunction with FIG. 11C, when a hole is injected from the P-type semiconductor layer 240 to the quantum well layer 234 closest to the P-type semiconductor layer 240 ( When the quantum well layer 234a) is as shown in FIG. 11C, since the thickness of the quantum barrier layers 232a-232f is thinned from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, It is advantageous to inject holes into the next quantum well layer 234a-234e. As a result, compared with the light-emitting diode 200A and the light-emitting diode 200B, the hole concentration of the light-emitting diode 200C is relatively uniform in the quantum well layer 234, so that the structure of the light-emitting diode 200C has the most Good luminous intensity.
圖14A與圖14B分別為圖11B與圖11C中之發光二極體的能帶模擬圖,其中橫軸的定義與圖13A至圖13C相同。如圖14A搭配圖11B所示,當最靠近P型半導體層240的量子阻障層232a厚度變薄的情況下,其導電帶低於以虛線表示的費米能階,此現象會使得最靠近P型半導體層240的量子井層234a不具侷限的效應,電子將會溢流到P型半導體層240中。 14A and 14B are energy band simulation diagrams of the light-emitting diodes of Figs. 11B and 11C, respectively, in which the definition of the horizontal axis is the same as that of Figs. 13A to 13C. As shown in FIG. 14A in conjunction with FIG. 11B, when the thickness of the quantum barrier layer 232a closest to the P-type semiconductor layer 240 is thin, the conductive band is lower than the Fermi level indicated by a broken line, which causes the closest The quantum well layer 234a of the P-type semiconductor layer 240 has no limiting effect and electrons will overflow into the P-type semiconductor layer 240.
另一方面,如圖14B搭配圖11C所示,發光二極體200C最靠近P型半導體層240的量子阻障層232a厚度較厚,使得導電帶高於以虛線表示的費米能階,可使得最靠近P型半導體層240的量子井層234a發揮適當的侷限效應,避免電子溢流到P型半導體層240中而導致電子電洞非輻射複合降低發光強度的現象。 On the other hand, as shown in FIG. 14B in conjunction with FIG. 11C, the quantum barrier layer 232a of the light-emitting diode 200C closest to the P-type semiconductor layer 240 is thicker, so that the conductive strip is higher than the Fermi level indicated by the broken line. The quantum well layer 234a closest to the P-type semiconductor layer 240 is caused to exert an appropriate limiting effect to prevent electrons from overflowing into the P-type semiconductor layer 240, resulting in a phenomenon that the electron hole non-radiative recombination reduces the luminous intensity.
圖15為圖11A至圖11C中各發光二極體的電子電流密度模擬圖,其中橫軸的定義與圖13A至圖13C相同,而縱軸為電子電流密度(單位:A/cm2)。請參照圖8,發光二極體200 B在P型半導體層240的電子電流密度高於發光二極體200 A與發光二極體200C。這顯示出發光二極體200 B在存在電流溢流的現象。 Fig. 15 is a simulation diagram of electron current density of each of the light-emitting diodes of Figs. 11A to 11C, in which the definition of the horizontal axis is the same as that of Figs. 13A to 13C, and the vertical axis is the electron current density (unit: A/cm 2 ). Referring to FIG. 8, the electron current density of the light-emitting diode 200B in the P-type semiconductor layer 240 is higher than that of the light-emitting diode 200A and the light-emitting diode 200C. This shows a phenomenon in which the light-emitting diode 200 B is in a current overflow.
表3為各量子井層234的波函數重疊機率模擬圖。 Table 3 is a simulation diagram of the probability of overlapping wave functions of each quantum well layer 234.
請同時參照表3與圖15,由於發光二極體200 B的導電帶低於費米能階造成最靠近P型半導體層240的量子井層234a無法侷限載子造成過多的電子溢流到P型半導體層240中,搭配圖11B中亦可以一併地驗證發光二極體200 B在最靠近P型半導體層240的量子井層234a中存在有過多電子濃度的現象。此外,由圖15可知,發光二極體200B的電子溢流現象較嚴重,造成電子電洞對的波函數無法重疊進而複合發光。 Referring to Table 3 and FIG. 15, since the conductive strip of the LED 200B is lower than the Fermi level, the quantum well layer 234a closest to the P-type semiconductor layer 240 cannot confine the carrier to cause excessive electron overflow to the P. In the type semiconductor layer 240, a phenomenon in which the electron concentration of the light-emitting diode 200B in the quantum well layer 234a closest to the P-type semiconductor layer 240 exists in the quantum well layer 234a may be collectively verified in conjunction with FIG. 11B. In addition, as can be seen from FIG. 15, the electron overflow phenomenon of the light-emitting diode 200B is severe, and the wave function of the pair of electron holes cannot overlap and the composite light is emitted.
由上述推論可知,當發光二極體200中量子阻障層232的厚度變化如發光二極體200B般從N型半導體層220往P型半導體層240逐漸變薄的結構將無法有效地提升發光強度。相對地,當發光二極體200中量子阻障層232的厚度變化如發光二極體200 C般由N型半導體層220往P型半導體層240逐漸變厚時,電子和電洞濃度可有效地均勻分布在全部量子井層234中,且此時電子電洞對的波函數重疊機率皆高於量子阻障層232厚度均一化之發光二極體200 A的波函數重疊機率,因此發光二極體200 C在本實施例中有最佳的發光強度。 It can be seen from the above-mentioned inference that the structure in which the thickness of the quantum barrier layer 232 in the light-emitting diode 200 is gradually thinned from the N-type semiconductor layer 220 to the P-type semiconductor layer 240 like the light-emitting diode 200B cannot effectively enhance the light emission. strength. In contrast, when the thickness of the quantum barrier layer 232 in the light-emitting diode 200 is gradually changed from the N-type semiconductor layer 220 to the P-type semiconductor layer 240 as in the light-emitting diode 200 C, the electron and hole concentration can be effectively effective. The ground is evenly distributed in all the quantum well layers 234, and at this time, the wave function overlapping probability of the electron hole pair is higher than the wavelength function overlapping probability of the uniformity of the quantum barrier layer 232, so the light emitting two The polar body 200 C has the best luminous intensity in this embodiment.
值得一提的是,在主動層230之量子阻障層232中,發光二極體200的發光強度又較受到最靠近P型半導體層240的前幾層量子阻障層232厚度變化的影響。下文進一步探討量子阻障層232中厚度變化對發光二極體200在222 nm~405 nm波段之發光強度的影響。 It is worth mentioning that in the quantum barrier layer 232 of the active layer 230, the illuminating intensity of the illuminating diode 200 is more affected by the thickness variation of the first few quantum barrier layers 232 closest to the P-type semiconductor layer 240. The effect of the thickness variation in the quantum barrier layer 232 on the luminescence intensity of the luminescent diode 200 in the 222 nm to 405 nm band is further discussed below.
表4中記載當發光二極體200中之主動層230的結構如圖3所示時,改變不同位置之量子阻障層232a-232f的厚度(單位:奈米)時,在350mA與700mA電流注入下發光強度的表現,其中各量子井層234a-234e的厚度為3奈米。並且,在本實施例中,量子井層234a-232f之材料例如是IncGa1-cN,其中0c0.05,而量子阻障層232a-232f之材料例如是AldGa1-dN,其中0d0.25,且較佳為0.09d0.20。 Table 4 shows that when the structure of the active layer 230 in the light-emitting diode 200 is as shown in FIG. 3, when the thickness of the quantum barrier layers 232a-232f at different positions (unit: nanometer) is changed, the current is 350 mA and 700 mA. The performance of the underlying luminescence intensity is injected, wherein each quantum well layer 234a-234e has a thickness of 3 nm. Moreover, in the present embodiment, the material of the quantum well layers 234a-232f is, for example, In c Ga 1-c N, where 0 c 0.05, and the material of the quantum barrier layers 232a-232f is, for example, Al d Ga 1-d N, where 0 d 0.25, and preferably 0.09 d 0.20.
換言之,在本實施例中,主動層230中共有6層量子阻障層232a-232f,其結構可參考圖3,該6層中自P型半導體側240起算的量子阻障層232a-232f的厚度依序為T1、T2、T3...T6,即T1為最靠近P型半導體側240之量子阻障層232a的厚度,而T6(Ti,本實施例是以i=6為例)為最靠近N型半導體側220之量子阻障層232f的厚度。 In other words, in the present embodiment, the active layer 230 has a total of six quantum barrier layers 232a-232f, the structure of which can be referred to FIG. 3, the quantum barrier layers 232a-232f of the 6 layers from the P-type semiconductor side 240. The thickness is sequentially T 1 , T 2 , T 3 ... T 6 , that is, T 1 is the thickness of the quantum barrier layer 232a closest to the P-type semiconductor side 240, and T 6 (T i , this embodiment is i=6 is an example) the thickness of the quantum barrier layer 232f closest to the N-type semiconductor side 220.
由表4可知,發光二極體I在350mA電流注入下,其發光強度為17.0 mW。由表4的結果並參照圖3可知,在發光二極體200最靠近P型半導體層240的前三層量子阻障層232a-232c中,當靠近P型半導體層240的量子阻障層232a的厚度T1大於較靠近N型半導體層220的量子阻障層232b-232c的厚度T2與T3時,亦即當T1大於T2與T3時,即可有效地提升發光二極體的發光強度。 As can be seen from Table 4, the light-emitting diode I had a luminous intensity of 17.0 mW under a current of 350 mA. From the results of Table 4 and referring to FIG. 3, in the first three layers of quantum barrier layers 232a-232c of the light-emitting diode 200 closest to the P-type semiconductor layer 240, when the quantum barrier layer 232a is adjacent to the P-type semiconductor layer 240. When the thickness T 1 is greater than the thicknesses T 2 and T 3 of the quantum barrier layers 232b-232c closer to the N-type semiconductor layer 220, that is, when T 1 is greater than T 2 and T 3 , the light-emitting diode can be effectively improved. The luminous intensity of the body.
具體而言,相較於發光二極體I,發光二極體II的發光強度大幅地降低至5.9 mW,由於發光二極體II靠近P型半導體層240之量子阻障層232a的厚度T1較薄,而未能有效地將電子侷限於量子井內,使得發光強度大幅下降侷限,這與前述所推論的機制相符。 Specifically, the light-emitting intensity of the light-emitting diode II is greatly reduced to 5.9 mW compared to the light-emitting diode I, since the light-emitting diode II is close to the thickness T 1 of the quantum barrier layer 232a of the P-type semiconductor layer 240. Thinner, but not effective in confining electrons into quantum wells, limits the luminescence intensity to a significant extent, which is consistent with the mechanism inferred above.
另一方面,發光二極體III將發光二極體I中間層的量子阻障層232c、232d厚度T3、T4減薄之後,其發光強度可提升至24.0 mW,這代表著當電洞在此厚度設計下更容 易地往N型半導體層220注入到更多的量子井234a-234e。並且,如發光二極體IV,進一步將量子阻障層232e、232f的厚度減薄後,其光輸出功率更大幅提升到30.3 mW。 On the other hand, after the light-emitting diode III thins the thicknesses T 3 and T 4 of the quantum barrier layers 232c and 232d of the intermediate layer of the light-emitting diode I, the luminous intensity can be increased to 24.0 mW, which represents a hole. It is easier to inject more of the quantum wells 234a-234e into the N-type semiconductor layer 220 under this thickness design. Further, as the light-emitting diode IV further thins the thickness of the quantum barrier layers 232e and 232f, the light output power thereof is further increased to 30.3 mW.
此外,如發光二極體V,進一步將量子阻障層232a-232f的厚度T1由P型半導體層240漸減至N型半導體層220時,如表4中所載,T1漸減至T6,發光強度提升至約兩倍的33.1 mW。換言之,在發光二極體中,當最靠近P型半導體層240的三層量子阻障層232中,其厚度滿足T1大於T2與T3的關係,即可有效地使電洞均勻地分佈於主動層230的量子井中,並抑制電子的溢流現象,藉此可有效地提升發光二極體的發光強度。 Further, as the light-emitting diode V further reduces the thickness T 1 of the quantum barrier layers 232a-232f from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, as shown in Table 4, T 1 is gradually reduced to T 6 The luminous intensity is increased to about 33.1 mW. In other words, in the light-emitting diode, when the thickness of the three-layer quantum barrier layer 232 closest to the P-type semiconductor layer 240 satisfies the relationship that T 1 is greater than T 2 and T 3 , the hole can be effectively made uniform. It is distributed in the quantum well of the active layer 230, and suppresses the overflow phenomenon of electrons, thereby effectively improving the luminous intensity of the light-emitting diode.
圖16為表4之各發光二極體中光輸出曲線對注入電流圖。如表4以及圖16可知,藉由調變主動層230中量子阻障層232a-232f的厚度可以達到提升發光二極體之光輸出效率的效果,尤其是,對於電洞遷移率較具影響的最靠近P型半導體層240的三層量子阻障層232a-232c而言,藉由適當地調變這三層量子阻障層232a-232c的厚度即可達到有效提升發光強度的效果。 Figure 16 is a graph of light output curve versus injection current for each of the light-emitting diodes of Table 4. As shown in Table 4 and FIG. 16, the effect of improving the light output efficiency of the light-emitting diode can be achieved by modulating the thickness of the quantum barrier layers 232a-232f in the active layer 230, especially for the mobility of the hole. For the three-layer quantum barrier layers 232a-232c closest to the P-type semiconductor layer 240, the effect of effectively improving the light-emission intensity can be achieved by appropriately modulating the thickness of the three-layer quantum barrier layers 232a-232c.
具體來說,當主動層230中之i層中的量子阻障層232的厚度滿足T1最厚時,即可達到提升發光二極體之發光強度的效果。 Specifically, when the thickness of the quantum barrier layer 232 in the i layer of the active layer 230 satisfies the thickest T 1 , the effect of improving the luminous intensity of the light emitting diode can be achieved.
依據前述表4的結果可知,中間層之量子阻障層的厚度,例如T3、T4,可比靠近N型半導體層220和靠近P型 半導體層240量子阻障厚度薄,如同發光二極體III所示可有效地提升光輸出效率。另一方面,可將靠近N型半導體層220之量子阻障層232的厚度小於靠近P型半導體層240量子阻障層232a、232b的厚度,而使量子阻障層232c-232f的厚度為一致,如同發光二極體IV所示,更可有效地提升光輸出效率。並且,當量子阻障層232厚度從P型半導體層240往N型半導體層220逐漸變薄,如同發光二極體V所示,發光強度為最佳。 According to the results of the foregoing Table 4, the thickness of the quantum barrier layer of the intermediate layer, for example, T 3 , T 4 , may be thinner than the quantum barrier of the N-type semiconductor layer 220 and the P-type semiconductor layer 240, like a light-emitting diode. As shown in III, the light output efficiency can be effectively improved. On the other hand, the thickness of the quantum barrier layer 232 close to the N-type semiconductor layer 220 can be made smaller than the thickness of the quantum barrier layers 232a, 232b of the P-type semiconductor layer 240, and the thickness of the quantum barrier layers 232c-232f can be made uniform. As shown by the light-emitting diode IV, the light output efficiency can be effectively improved. Further, the thickness of the equivalent sub-barrier layer 232 is gradually thinned from the P-type semiconductor layer 240 to the N-type semiconductor layer 220, and as shown by the light-emitting diode V, the light-emission intensity is optimum.
依據發明者前述的實驗結果以及推論機制可知,可藉由使電子電洞對均勻地分佈在主動層230的量子井中,並提高靠近P型半導體層240之量子阻障層載子的侷限效應來有效地提升發光二極體的發光效率。 According to the foregoing experimental results and the inference mechanism of the inventors, it can be known that the electron hole pairs are uniformly distributed in the quantum well of the active layer 230, and the limitation effect of the quantum barrier layer carriers close to the P-type semiconductor layer 240 is improved. Effectively improve the luminous efficiency of the light-emitting diode.
以前述實驗中六層量子阻障層232為例,最靠近P型半導體層240的第一層量子阻障層232a的厚度T1要最大,而第二層量子阻障層232b的厚度T2要小於或等於第一層量子阻障層232a的厚度T1,藉此可以使得最靠近P型半導體層240的第一層量子井有較佳的侷限效應,避免電子的溢流效應,提升電子電洞的輻射複合效率。 Taking the six-layer quantum barrier layer 232 in the foregoing experiment as an example, the thickness T 1 of the first quantum barrier layer 232a closest to the P-type semiconductor layer 240 is the largest, and the thickness T 2 of the second quantum barrier layer 232b. It is less than or equal to the thickness T 1 of the first quantum barrier layer 232a, thereby making the first quantum well closest to the P-type semiconductor layer 240 have a better limiting effect, avoiding the overflow effect of the electron, and elevating the electron Radiation recombination efficiency of the hole.
由以上實驗及推論可知,藉由使最靠近P型半導體層240的第一層量子阻障層232a的厚度T1為最大,可以有效地避免電子的溢流效應,藉此可提升電子電洞的輻射複合效率。因此在此領域的所屬技術人員可以推知,當第二層量子阻障層232b的厚度T2等於第一層量子阻障層232a的厚度T1時,將可使得最靠近P型半導體層240的第一層 量子井同時發揮較佳的侷限效應,藉此同樣可達到避免電子溢流效應,以提升電子電洞的輻射複合效率的效果。 It can be seen from the above experiments and inference that by maximizing the thickness T 1 of the first quantum barrier layer 232a closest to the P-type semiconductor layer 240, the overflow effect of electrons can be effectively avoided, thereby improving the electron hole. Radiation recombination efficiency. Thus in this area skilled in the art can infer, when the layer thickness of the quantum barrier layer 232b second T 2 is equal to 1 when a first layer of a quantum barrier, will be such that the P-type semiconductor layer 240 closest to the thickness T of layer 232a The first layer of quantum wells simultaneously exerts better confinement effects, thereby also achieving the effect of avoiding the electron overflow effect and improving the radiation recombination efficiency of the electron holes.
更進一步的說,第三層量子阻障層232c的厚度T3要在T1~T3之間是最薄的,如表4之發光二極體III~V,藉此可利於電洞的注入,使電洞更有效地往N型半導體層220側的量子井層234注入,使電洞在主動層230中的分佈更為均勻。此外,如表4之發光二極體I所示,當T1>T2=T3時,相較於發光二極體II,可有效地提升光輸出效率。另外,如表4之發光二極體IV與V所示,當T6最靠近N型半導體側之量子阻障層的厚度Ti(本實施例i=6,因此即為T6)為最薄時,發光二極體IV與V在350mA與700mA電流注入下的發光強度表現優異,亦即藉由在該i層量子阻障層中,使最靠近該N型半導體層的厚度Ti為最薄,可有效地提升光輸出效率。 Furthermore, the thickness T 3 of the third quantum barrier layer 232c is the thinnest between T1 and T3, as shown in the light-emitting diodes III to V of Table 4, thereby facilitating the injection of the holes. The holes are more efficiently injected into the quantum well layer 234 on the side of the N-type semiconductor layer 220, so that the distribution of the holes in the active layer 230 is more uniform. Further, as shown by the light-emitting diode I of Table 4, when T 1 > T 2 = T 3 , the light output efficiency can be effectively improved as compared with the light-emitting diode II. Further, as shown by the light-emitting diodes IV and V of Table 4, the thickness T i of the quantum barrier layer closest to the N-type semiconductor side of T 6 (this embodiment i=6, thus T 6 ) is the most When thin, the illuminating intensity of the LEDs IV and V at 350 mA and 700 mA current injection is excellent, that is, by the thickness T i closest to the N-type semiconductor layer in the i-layer quantum barrier layer The thinnest, can effectively improve the light output efficiency.
以下進一步改變主動層中量子井以及量子阻障層的層數,表5為改變主動層中量子井以及量子阻障層的層數(六層、九層和十一層量子阻障)以及改變不同位置之量子阻障層的厚度(單位:奈米)時,在350mA與700mA電流注入下發光強度的表現,其中各量子井層的厚度均為3奈米。換言之,在表5的結構欄中,各數字代表各層量子阻障層232a-232i的厚度T1-Ti,而在該欄中,由右往左的數字分別代表自P型半導體側起算的量子阻障層232a-232i的厚度依序為T1、T2、T3...Ti
由表4及表5的結果可知,不論主動層230中是使用八層或十層量子井層234(即九層或十一層的量子阻障層232)的結構,當主動層230中之該i層各量子阻障層232的厚度滿足:T1>T2≧T3時,尤以量子阻障層232作一漸變厚度的設計可有效地提升發光二極體的發光效率。舉例來說,比較發光二極體VI與發光二極體VII之八層量子井層234的結構可以發現,在發光二極體VI的八層量子井層234的結構中,將其量子阻障層232厚度T8到T2均設為9 nm,而將T1設為11nm。當將發光二極體VII中調變量子阻障層232的厚度T9到T1依序為2/3/3/5/5/7/7/9/11 nm,藉此可將發光二極體的光輸出效率(發光強度)從原本的16.4 mW有效地提升到24.7 mW。 As can be seen from the results of Tables 4 and 5, whether the active layer 230 is a structure using eight or ten quantum well layers 234 (ie, nine or eleven layers of quantum barrier layers 232), in the active layer 230. When the thickness of each of the i-level quantum barrier layers 232 satisfies: T 1 >T 2 ≧T 3 , the quantum barrier layer 232 is designed to have a gradual thickness to effectively improve the luminous efficiency of the light-emitting diode. For example, comparing the structure of the eight-layer quantum well layer 234 of the light-emitting diode VI and the light-emitting diode VII, it is found that in the structure of the eight-layer quantum well layer 234 of the light-emitting diode VI, the quantum barrier is The layer 232 thickness T 8 to T 2 was set to 9 nm, and T 1 was set to 11 nm. When the thickness T 9 to T 1 of the modulating sub-block layer 232 of the light-emitting diode VII is sequentially 2/3/3/5/5/7/7/9/11 nm, the luminescent light can be The light output efficiency (luminous intensity) of the polar body is effectively increased from the original 16.4 mW to 24.7 mW.
另一方面,比較發光二極體VIII與發光二極體IX之十層量子井層234的結構可以發現,將其量子阻障層232的厚度T11到T2均設為9 nm,並將量子阻障層232的厚度 T1設為11 nm。當調變量子阻障層232的厚度為T11到T1依序厚度依序為2/2/3/3/3/5/5/7/7/9/11 nm時,藉此可將發光二極體的光輸出效率(發光強度)從原本的11.3 mW有效地提升到20.7 mW。 On the other hand, comparing the structures of the ten quantum well layers 234 of the light-emitting diode VIII and the light-emitting diode IX, it can be found that the thicknesses T 11 to T 2 of the quantum barrier layer 232 are both set to 9 nm, and The thickness T 1 of the quantum barrier layer 232 is set to 11 nm. When the thickness of the variable sub-barrier layer 232 is T 11 to T 1 sequentially, the thickness is 2/2/3/3/3/5/5/7/7/9/11 nm, thereby The light output efficiency (luminous intensity) of the light-emitting diode is effectively increased from the original 11.3 mW to 20.7 mW.
值得一提的是,為了進一步增加發光二極體的發光強度,發明者提出可藉由調變量子阻障層232中摻雜量子阻障層232的層數、摻雜濃度等,即可藉由有目的地(intentionally)摻雜N型摻質來降低活性區之缺陷密度對載子的影響,有效地提升發光效率,特別是對於主動層230所發出之波長範圍為222 nm至405 nm波段的光線更具有顯著的提升效果。 It is worth mentioning that, in order to further increase the luminous intensity of the light-emitting diode, the inventors propose that the number of layers of the quantum barrier layer 232, the doping concentration, etc., can be borrowed by the variable sub-block layer 232. The N-type dopant is intentionally doped to reduce the influence of the defect density of the active region on the carrier, and the luminous efficiency is effectively improved, especially for the active layer 230 to emit a wavelength range of 222 nm to 405 nm. The light has a significant boost.
尤其當摻雜量子阻障層232之層數k與量子阻障層232的總數i滿足下述關係式時,發光效率提升的效果顯著:當i為偶數時,k≧i/2;當i為奇數時,k≧(i-1)/2。換言之,當發光二極體之量子阻障層232中,摻雜層數超過總層數的一半,且摻雜濃度為5x1017/cm3至1x1019/cm3時,即可有效地進一步提升發光二極體的發光效率。 Especially when the number of layers k of the doped quantum barrier layer 232 and the total number i of the quantum barrier layers 232 satisfy the following relationship, the effect of improving the luminous efficiency is remarkable: when i is an even number, k≧i/2; When it is odd, k≧(i-1)/2. In other words, when the number of doped layers exceeds half of the total number of layers in the quantum barrier layer 232 of the light-emitting diode, and the doping concentration is 5× 10 17 /cm 3 to 1×10 19 /cm 3 , it can be effectively further improved. Luminous efficiency of the light-emitting diode.
綜上所述,本發明之發光二極體中,藉由使主動層中量子阻障層的厚度設計符合特定關係,使得電洞可以均勻地分佈於量子井層中,藉此提升發光二極體之載子的複合效率,因此本發明之發光二極體藉由上述任一技術手段即可大幅地提升發光二極體在222 nm~405 nm波段的發光強度。 In summary, in the light-emitting diode of the present invention, by designing the thickness of the quantum barrier layer in the active layer to conform to a specific relationship, the holes can be uniformly distributed in the quantum well layer, thereby improving the light-emitting diode. The composite efficiency of the carrier of the body, so that the light-emitting diode of the present invention can greatly improve the luminous intensity of the light-emitting diode in the wavelength range of 222 nm to 405 nm by any of the above techniques.
此外,本發明之發光二極體的實施型態不限於前述所 繪示之型態,亦可以為水平電極配置或垂直電極配置,均可實現本發明,因此不亦此為限。 Further, the embodiment of the light-emitting diode of the present invention is not limited to the foregoing The present invention can be implemented in a horizontal electrode configuration or a vertical electrode configuration, and thus is not limited thereto.
圖17為本發明之發光二極體的一種實施型態。如圖17所示,發光二極體300之膜層由上至下依序包括接觸層310;前述之N型半導體層220、主動層230、電子阻障層270與中間層280、以及P型半導體層240;反射層320;接合層330;以及承載基板340。 Figure 17 is an embodiment of the light-emitting diode of the present invention. As shown in FIG. 17, the film layer of the light-emitting diode 300 includes a contact layer 310 from top to bottom, the N-type semiconductor layer 220, the active layer 230, the electron barrier layer 270 and the intermediate layer 280, and the P-type. a semiconductor layer 240; a reflective layer 320; a bonding layer 330; and a carrier substrate 340.
圖18為本發明之發光二極體的另一種實施型態。如圖18所示,發光二極體400之膜層由上至下依序包括前述之基板210、氮化物半導體披覆層212、N型半導體層220以及承載基板340,並於N型半導體層220與承載基板340夾設兩疊層,如繪示於圖20左方主要由前述主動層230、電子阻障層270與中間層280、P型半導體層240、接觸層310、以及接合層330所構成的第一疊層,以及位於該第一疊層右方並與該第一疊層相隔一段距離的第二疊層,其中該第二疊層主要由接觸層310、以及接合層330所構成。並且,發光二極體400可視元件需求而將一反射層設置於右方第一疊層的接觸層310與接合層330之間,或者設置承載基板340鄰接於左方第二疊層的表面上,本發明並不以此為限。 Fig. 18 is another embodiment of the light-emitting diode of the present invention. As shown in FIG. 18, the film layer of the light-emitting diode 400 includes the substrate 210, the nitride semiconductor cladding layer 212, the N-type semiconductor layer 220, and the carrier substrate 340, and the N-type semiconductor layer, in order from top to bottom. 220 is stacked on the carrier substrate 340. The active layer 230, the electron barrier layer 270 and the intermediate layer 280, the P-type semiconductor layer 240, the contact layer 310, and the bonding layer 330 are mainly disposed on the left side of FIG. a first laminate formed, and a second laminate located to the right of the first laminate and spaced apart from the first laminate, wherein the second laminate is mainly composed of the contact layer 310 and the bonding layer 330 Composition. Moreover, the light-emitting diode 400 can be disposed between the contact layer 310 of the first first laminate on the right side and the bonding layer 330, or the carrier substrate 340 is disposed adjacent to the surface of the second second laminate. The invention is not limited thereto.
圖19為本發明之發光二極體的再一種實施型態。如圖19所示,發光二極體500之膜層結構與圖20類似,惟不同處在於:圖19之發光二極體500相較於圖18之發光二極體400進一步省略了N型半導體層220上方之基板 210與氮化物半導體披覆層212構件,其餘部分所標示的相同標號則與前述圖20中的相同,不再贅述。並且,同樣地,發光二極體500可視元件需求而將一反射層設置於右方第一疊層的接觸層310與接合層330之間,或者設置承載基板340鄰接於左方第二疊層的表面上,本發明並不以此為限。 Fig. 19 is still another embodiment of the light-emitting diode of the present invention. As shown in FIG. 19, the film structure of the light-emitting diode 500 is similar to that of FIG. 20 except that the light-emitting diode 500 of FIG. 19 further omits the N-type semiconductor compared to the light-emitting diode 400 of FIG. Substrate above layer 220 210 and the nitride semiconductor cladding layer 212 are the same as those in the foregoing FIG. 20 and will not be described again. Moreover, the light-emitting diode 500 can be disposed between the contact layer 310 of the first first laminate on the right side and the bonding layer 330, or the carrier substrate 340 is adjacent to the second second stack. On the surface, the invention is not limited thereto.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
200、200A-200I、I-IX‧‧‧發光二極體 200, 200A-200I, I-IX‧‧‧Light Emitting Diodes
210‧‧‧基板 210‧‧‧Substrate
212‧‧‧氮化物半導體披覆層 212‧‧‧ nitride semiconductor coating
220‧‧‧N型半導體層 220‧‧‧N type semiconductor layer
222‧‧‧第一N型摻雜氮化鎵層 222‧‧‧First N-type doped gallium nitride layer
224‧‧‧第二N型摻雜氮化鎵層 224‧‧‧Second N-type doped gallium nitride layer
230‧‧‧主動層 230‧‧‧ active layer
230A‧‧‧單一量子井主動層 230A‧‧‧Single quantum well active layer
230B‧‧‧多重量子井主動層 230B‧‧‧Multiple quantum well active layer
232、232a、232b、232c、232d、232e、232f‧‧‧量子阻障層 232, 232a, 232b, 232c, 232d, 232e, 232f‧‧‧ quantum barrier layer
234、234a、234b、234c、234d、234e‧‧‧量子井 234, 234a, 234b, 234c, 234d, 234e‧‧‧ quantum wells
240‧‧‧P型半導體層 240‧‧‧P type semiconductor layer
242‧‧‧第一P型摻雜氮化鎵層 242‧‧‧First P-type doped GaN layer
244‧‧‧第二P型摻雜氮化鎵層 244‧‧‧Second P-type doped GaN layer
250‧‧‧第一電極 250‧‧‧first electrode
260‧‧‧第二電極 260‧‧‧second electrode
T1、T2、T3...Ti‧‧‧量子阻障層的厚度 T 1 , T 2 , T 3 ... T i ‧ ‧ thickness of the quantum barrier layer
310‧‧‧接觸層 310‧‧‧Contact layer
320‧‧‧反射層 320‧‧‧reflective layer
330‧‧‧接合層 330‧‧‧ joint layer
340‧‧‧承載基板 340‧‧‧bearing substrate
圖1為本發明之一實施例中一種發光二極體的剖面示意圖。 1 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the present invention.
圖2A為本發明一實施例之發光二極體中一種單一量子井主動層的剖面示意圖。 2A is a schematic cross-sectional view showing a single quantum well active layer in a light-emitting diode according to an embodiment of the invention.
圖2B為本發明一實施例之發光二極體中一種多重量子井主動層的剖面示意圖。 2B is a schematic cross-sectional view showing a multiple quantum well active layer in a light-emitting diode according to an embodiment of the invention.
圖3為發光二極體之主動層的放大剖面示意圖。 3 is an enlarged schematic cross-sectional view of an active layer of a light emitting diode.
圖4A表示作為本發明之發光二極體的比較例。 Fig. 4A shows a comparative example of the light-emitting diode of the present invention.
圖4B表示本發明之發光二極體的實施例。 Fig. 4B shows an embodiment of the light-emitting diode of the present invention.
圖5A至圖5D分別表示當改變圖3之摻雜量子阻障層的層數時,模擬對發光二極體之電子濃度的關係圖。 5A to 5D are graphs showing the relationship between the simulated electron concentration of the light-emitting diodes when the number of layers of the doped quantum barrier layer of Fig. 3 is changed, respectively.
圖6A至圖6D分別表示當改變圖3之摻雜量子阻障 層的層數時,模擬對發光二極體之電洞濃度的關係圖。 6A to 6D respectively show changes in the doped quantum barrier of FIG. A graph showing the relationship between the hole concentration of the light-emitting diodes in the number of layers of the layer.
圖7A至圖7D分別表示當改變圖3之摻雜量子阻障層的層數時,模擬對發光二極體之電子電洞複合機率的關係圖。 7A to 7D are diagrams showing the relationship between the simulated electron-electrode composite probability of the light-emitting diode when the number of layers of the doped quantum barrier layer of FIG. 3 is changed, respectively.
圖8A至圖8D分別表示當改變圖3之摻雜量子阻障層的層數時,模擬對發光二極體之非輻射複合機率的關係圖。 8A to 8D are graphs showing the relationship between the simulated non-radiative composite probability of the light-emitting diodes when the number of layers of the doped quantum barrier layer of FIG. 3 is changed, respectively.
圖9A繪示發光二極體之量子阻障層中不同摻雜層數對電流-光輸出功率曲線的關係圖。 FIG. 9A is a graph showing the relationship between the number of different doping layers and the current-light output power curve in the quantum barrier layer of the light-emitting diode.
圖9B繪示發光二極體之量子阻障層中不同摻雜層數對電流-電壓曲線的關係圖。 FIG. 9B is a graph showing the relationship between the number of different doping layers and the current-voltage curve in the quantum barrier layer of the light-emitting diode.
圖10A繪示發光二極體中之量子阻障層中不同摻雜濃度對電流-光輸出功率曲線的關係圖。 FIG. 10A is a graph showing the relationship between different doping concentrations and current-light output power curves in a quantum barrier layer in a light-emitting diode. FIG.
圖10B繪示發光二極體之量子阻障層中不同摻雜濃度對電流-電壓曲線的關係圖。 FIG. 10B is a graph showing the relationship between different doping concentrations and current-voltage curves in the quantum barrier layer of the light-emitting diode.
圖11A至圖11C分別為本發明一實施例中幾種發光二極體的結構設計圖。 11A to 11C are respectively structural diagrams of the structure of several light emitting diodes according to an embodiment of the present invention.
圖12為圖11A至圖11C中各發光二極體的發光強度模擬圖。 Fig. 12 is a simulation diagram of luminous intensity of each of the light-emitting diodes of Figs. 11A to 11C.
圖13A至圖13C分別表示圖11A至圖11C中各發光二極體的電子與電洞濃度模擬圖。 13A to 13C are diagrams showing electron and hole concentration simulations of the respective light-emitting diodes of Figs. 11A to 11C, respectively.
圖14A與圖14B分別為圖11B與圖11C中之發光二極體的能帶模擬圖。 14A and 14B are energy band simulation diagrams of the light-emitting diodes of Figs. 11B and 11C, respectively.
圖15為圖11A至圖11C中各發光二極體的電子電流密度模擬圖。 Fig. 15 is a simulation diagram of electron current density of each of the light-emitting diodes of Figs. 11A to 11C.
圖16為表4之各發光二極體中光輸出曲線對注入電流圖。 Figure 16 is a graph of light output curve versus injection current for each of the light-emitting diodes of Table 4.
圖17為本發明之發光二極體的一種實施型態。 Figure 17 is an embodiment of the light-emitting diode of the present invention.
圖18為本發明之發光二極體的另一種實施型態。 Fig. 18 is another embodiment of the light-emitting diode of the present invention.
圖19為本發明之發光二極體的再一種實施型態。 Fig. 19 is still another embodiment of the light-emitting diode of the present invention.
A、B、C、D‧‧‧線段 Lines A, B, C, D‧‧
Claims (23)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102103818A TWI549317B (en) | 2012-03-01 | 2013-01-31 | Light emitting diode |
CN201310061155.1A CN103296163B (en) | 2012-03-01 | 2013-02-27 | Light emitting diode |
CN201510547355.7A CN105047773B (en) | 2012-03-01 | 2013-02-27 | Light emitting diode |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101106753 | 2012-03-01 | ||
TW101113026 | 2012-04-12 | ||
TW102103818A TWI549317B (en) | 2012-03-01 | 2013-01-31 | Light emitting diode |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201338196A TW201338196A (en) | 2013-09-16 |
TWI549317B true TWI549317B (en) | 2016-09-11 |
Family
ID=49628033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102103818A TWI549317B (en) | 2012-03-01 | 2013-01-31 | Light emitting diode |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105047773B (en) |
TW (1) | TWI549317B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI524551B (en) | 2012-11-19 | 2016-03-01 | 新世紀光電股份有限公司 | Nitride semiconductor structure and semiconductor light-emitting element |
TWI499080B (en) | 2012-11-19 | 2015-09-01 | Genesis Photonics Inc | Nitride semiconductor structure and semiconductor light-emitting element |
TWI535055B (en) | 2012-11-19 | 2016-05-21 | 新世紀光電股份有限公司 | Nitride semiconductor structure and semiconductor light-emitting element |
TWI514620B (en) * | 2014-04-11 | 2015-12-21 | Rigidcrystal Technology Co Ltd | Light-emitting device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020190259A1 (en) * | 2001-05-29 | 2002-12-19 | Werner Goetz | III-Nitride light emitting devices with low driving voltage |
US20040051107A1 (en) * | 2001-03-28 | 2004-03-18 | Shinichi Nagahama | Nitride semiconductor element |
TW200534552A (en) * | 2004-04-06 | 2005-10-16 | Matsushita Electric Ind Co Ltd | Semiconductor light-emitting element and method for manufacturing the same |
US20090152586A1 (en) * | 2007-12-18 | 2009-06-18 | Seoul Opto Device Co., Ltd. | Light emitting diode having active region of multi quantum well structure |
TW201140877A (en) * | 2010-05-14 | 2011-11-16 | Ind Tech Res Inst | Light-emitting diode chip and fabrication method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080035865A (en) * | 2006-10-20 | 2008-04-24 | 삼성전자주식회사 | Semiconductor light emitting device |
-
2013
- 2013-01-31 TW TW102103818A patent/TWI549317B/en active
- 2013-02-27 CN CN201510547355.7A patent/CN105047773B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040051107A1 (en) * | 2001-03-28 | 2004-03-18 | Shinichi Nagahama | Nitride semiconductor element |
US20020190259A1 (en) * | 2001-05-29 | 2002-12-19 | Werner Goetz | III-Nitride light emitting devices with low driving voltage |
TW200534552A (en) * | 2004-04-06 | 2005-10-16 | Matsushita Electric Ind Co Ltd | Semiconductor light-emitting element and method for manufacturing the same |
US20090152586A1 (en) * | 2007-12-18 | 2009-06-18 | Seoul Opto Device Co., Ltd. | Light emitting diode having active region of multi quantum well structure |
TW201140877A (en) * | 2010-05-14 | 2011-11-16 | Ind Tech Res Inst | Light-emitting diode chip and fabrication method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201338196A (en) | 2013-09-16 |
CN105047773A (en) | 2015-11-11 |
CN105047773B (en) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI466314B (en) | Light emitting device of iii-nitride based semiconductor | |
TWI518942B (en) | Light emitting diode | |
TWI535055B (en) | Nitride semiconductor structure and semiconductor light-emitting element | |
US20130228743A1 (en) | Light emitting diode | |
JP5992174B2 (en) | Nitride semiconductor light emitting device and manufacturing method thereof | |
KR20130106690A (en) | White light emitting diode | |
TWI549317B (en) | Light emitting diode | |
JP4960465B2 (en) | Semiconductor light emitting device | |
JP2016219547A (en) | Semiconductor light emitting element | |
WO2016065884A1 (en) | Light-emitting diode | |
KR100818269B1 (en) | Nitride Based Compound Semiconductor Light Emitting Device | |
JP6500239B2 (en) | Group III nitride semiconductor light emitting device | |
JP2011054828A (en) | Photonic-crystal light-emitting diode | |
CN103296162A (en) | Light emitting diode | |
JP5455852B2 (en) | Compound semiconductor light emitting device and method for manufacturing the same | |
US11658265B2 (en) | Method of manufacturing light emitting diodes and light emitting diode | |
KR101715839B1 (en) | High Efficiency DUV LED using Gradual trap barrier | |
CN107482098A (en) | A kind of film LED chip structure | |
US20130270515A1 (en) | Light emitting diode | |
CN102142499A (en) | LED (light emitting diode) wafer with evenly distributed current | |
CN207282519U (en) | A kind of film LED chip structure | |
JP2018510514A (en) | Nitride-based semiconductor light-emitting device and manufacturing method thereof | |
TWI568022B (en) | Semiconductor stack structure | |
TWI787646B (en) | Ultraviolet c light-emitting diode | |
JP2012080139A (en) | Semiconductor light-emitting element |