TWI547382B - Method of making a fluid channel in a printhead structure, and fluid flow structure - Google Patents
Method of making a fluid channel in a printhead structure, and fluid flow structure Download PDFInfo
- Publication number
- TWI547382B TWI547382B TW103121381A TW103121381A TWI547382B TW I547382 B TWI547382 B TW I547382B TW 103121381 A TW103121381 A TW 103121381A TW 103121381 A TW103121381 A TW 103121381A TW I547382 B TWI547382 B TW I547382B
- Authority
- TW
- Taiwan
- Prior art keywords
- fluid
- channel
- die
- printhead
- molded
- Prior art date
Links
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Description
本發明係有關一種具有壓縮模製流體通道的流體結構。 The present invention relates to a fluid structure having a compression molded fluid passage.
在一噴墨筆或列印桿中的一列印頭晶粒包括在一矽基材的一表面上之多個流體射出元件。經由在該基材中於相對的機體表面之間所形成之一流體遞送槽,流體流至該等射出元件。雖然流體遞送槽充分地將流體遞送至流體射出元件,但是這種槽會有一些缺點。例如,從一花費的視角而言,流體遞送槽占用有價值的矽使用空間(silicon real estate)且增加明顯的槽處理成本。此外,較低的列印頭晶粒成本係部分經由縮小該晶粒尺寸來達到。一較小的晶粒尺寸導致該矽基材中槽距及/或槽寬之緊縮。然而,縮小該晶粒和該槽距會增加在組裝期間將小型晶粒整合至噴墨筆中相關聯之噴墨筆的成本。從一結構性的視角而言,從該基材移除材料以形成一墨水遞送槽會使該列印頭晶粒弱化。因此,當一單一列印頭晶粒具有多個槽(例如,來在一多色列印頭晶粒中提供不同顏色,或是來在一單一顏色列 印頭晶粒中增進列印品質和速度)時,該列印頭晶粒隨著額外的各個槽而變得更為脆弱。 A row of printhead dies in an inkjet pen or printbar includes a plurality of fluid ejection elements on a surface of a substrate. Fluid flows to the ejection elements via a fluid delivery channel formed between the opposing body surfaces in the substrate. While the fluid delivery slot adequately delivers fluid to the fluid ejection element, such a groove has some disadvantages. For example, from a cost perspective, the fluid delivery slot takes up valuable silicon real estate and adds significant tank processing costs. In addition, lower printhead die cost is achieved in part by shrinking the die size. A smaller grain size results in a tighter groove pitch and/or groove width in the tantalum substrate. However, shrinking the die and the pitch increases the cost of integrating the small die into the associated inkjet pen in the inkjet pen during assembly. From a structural point of view, removing material from the substrate to form an ink delivery channel can weaken the printhead die. Thus, when a single printhead die has multiple grooves (for example, to provide different colors in a multi-color printhead die, or to come in a single color column) As the print quality and speed are improved in the print head die, the print head die becomes more fragile with additional grooves.
本發明提出一種製造列印頭結構中的流體通道之方法,其包含下列步驟:將一列印頭晶粒置設於一載體上;將該晶粒壓縮模製於一模製列印頭結構中;與壓縮模製該晶粒同時,壓縮模製一流體通道的一第一部段於該模製列印頭結構中;以及材料性地去除該流體通道的一第二部段,以將該通道與該晶粒中的一流體進送孔耦接。 The present invention provides a method of fabricating a fluid channel in a printhead structure comprising the steps of: placing a row of die pads on a carrier; compressing the die into a molded printhead structure Simultaneously compressing a die, compressing a first portion of a fluid passageway in the molded printhead structure; and materially removing a second portion of the fluid passageway to The channel is coupled to a fluid feed aperture in the die.
100‧‧‧列印頭結構、流體流動結構、壓縮模製流動結構 100‧‧‧Print head structure, fluid flow structure, compression molded flow structure
118‧‧‧射出腔室 118‧‧‧ shot chamber
120‧‧‧小孔 120‧‧‧ hole
102‧‧‧微裝置、列印頭晶粒 102‧‧‧Microdevices, print head die
122‧‧‧導體、導體線跡 122‧‧‧Conductor, conductor stitch
104‧‧‧單塊本體、模製本體、模製物 104‧‧‧Single body, molded body, molded object
124‧‧‧電氣端子 124‧‧‧Electrical terminals
126‧‧‧絕緣層 126‧‧‧Insulation
106‧‧‧晶粒基材、矽長薄片基材、矽基材 106‧‧‧Grain substrate, enamel sheet substrate, enamel substrate
128、168‧‧‧流體通道 128, 168‧‧‧ fluid passage
160‧‧‧載體 160‧‧‧ Carrier
108‧‧‧流體進送孔、墨水進送孔 108‧‧‧Fluid feed hole, ink feed hole
162‧‧‧熱性釋放帶 162‧‧‧Thermal release zone
110‧‧‧第一外表面 110‧‧‧First outer surface
163‧‧‧晶粒載體總成 163‧‧‧Grain carrier assembly
112‧‧‧第二外表面 112‧‧‧Second outer surface
164‧‧‧下模 164‧‧‧
114‧‧‧罩件 114‧‧‧ Covers
166‧‧‧上模 166‧‧‧上模
116‧‧‧層體 116‧‧‧ layer
169‧‧‧壓縮模製通道部段、第一 通道部段 169‧‧‧Compression molded channel section, first Channel section
304‧‧‧列印基材 304‧‧‧Printing substrate
170‧‧‧殘留層 170‧‧‧ residual layer
306‧‧‧流動調節器 306‧‧‧Flow Regulator
172‧‧‧保護層 172‧‧‧Protective layer
308‧‧‧基材輸送機構 308‧‧‧Substrate conveying mechanism
174‧‧‧經材料去除之通道部段、第二通道部段 174‧‧‧Channel section and second channel section removed by material
310‧‧‧列印流體供應源 310‧‧‧Printing fluid supply
312‧‧‧控制器 312‧‧‧ Controller
200‧‧‧系統 200‧‧‧ system
400‧‧‧行 400‧‧‧
204‧‧‧流體推進器 204‧‧‧ Fluid propeller
800‧‧‧研磨物質 800‧‧‧Abrasive material
202‧‧‧流體源 202‧‧‧ Fluid source
1102、1104、…、1124‧‧‧步驟 Steps of 1102, 1104, ..., 1124‧‧
300‧‧‧印表機 300‧‧‧Printer
S1、S2‧‧‧側壁 S1, S2‧‧‧ side wall
302‧‧‧列印桿 302‧‧‧Printing rod
現在要藉由範例參照附圖描述本案實施例,其圖式中: The embodiment of the present invention will now be described by way of example with reference to the accompanying drawings in which:
圖1係繪示實現為一列印頭結構之一壓縮模製流體流動結構的一範例之一立視截面視野圖;圖2係繪示實現例如圖1的列印頭結構之一壓縮模製流體流動結構之一範例系統之一方塊圖;圖3係繪示實現一基材寬列印桿中的一流體流動結構的一噴墨印表機之一方塊圖;圖4~6繪示實現一模製流動結構為適合用於一印表機的一列印頭結構的一壓縮範例之一噴墨列印桿;圖7~10繪示用以藉由包括壓縮模製和材料切除兩者之過程來製造具有一流體通道的一壓縮模製列印頭流體流動結構之一範例方法;圖11係用以製造繪示於圖7~10中的一壓縮模製 列印頭流體流動結構的該範例方法之一流程圖。 1 is a perspective view of an example of a compression molding fluid flow structure realized as a print head structure; FIG. 2 is a view showing a compression molding fluid which realizes, for example, the print head structure of FIG. A block diagram of one example system of a flow structure; FIG. 3 is a block diagram showing an ink jet printer that implements a fluid flow structure in a substrate wide print bar; FIGS. 4-6 illustrate an implementation The molded flow structure is an ink jet print bar of a compression example suitable for use in a print head structure of a printer; Figures 7-10 illustrate the process by both compression molding and material removal. An exemplary method for fabricating a compression molding printhead fluid flow structure having a fluid passage; FIG. 11 is for manufacturing a compression molding shown in FIGS. 7-10. A flow chart of one such exemplary method of printing head fluid flow structures.
圖12~14繪示具有變化外型設計之模製頂部的範例,其能夠被用於一壓縮模製過程中,以產生不同形狀的流體通道。 Figures 12-14 illustrate an example of a molded top having a varying profile design that can be used in a compression molding process to create fluid passages of different shapes.
在圖式各處中,相同的參照號碼表示類似但不必然完全相同的元件。 Throughout the drawings, the same reference numerals indicate similar, but not necessarily identical, elements.
降低傳統噴墨列印頭晶粒的成本過去已經透過縮小晶粒尺寸和降低晶圓成本來達成。該晶粒尺寸顯然端視將墨水從該晶粒的一側的一儲存器遞送到該晶粒的另一側的流體射出元件之流體遞送槽的槽距而定。因此,用來縮小晶粒尺寸的以往方法大多涉及透過一矽開槽過程(silicon slotting process)減縮該槽距及尺寸,該過程能夠包括例如雷射加工、非等向性濕式蝕刻、乾式蝕刻、其等之組合,等等。不幸地,該矽槽過程本身會對該列印頭晶粒增加可觀的成本。此外,成功降低槽距會增加遇到遞減的收益,蓋因與整合該縮小晶粒與一噴墨筆相關聯之成本(導因於該較緊縮的槽距)會變得過強。 Reducing the cost of conventional inkjet printhead dies has been achieved by reducing die size and wafer cost. The grain size is apparently dependent on the pitch of the fluid delivery slot that delivers ink from a reservoir on one side of the die to the fluid ejection element on the other side of the die. Therefore, the conventional methods for reducing the grain size mostly involve reducing the groove pitch and size through a silicon slotting process, which can include, for example, laser processing, anisotropic wet etching, dry etching. , combinations of them, etc. Unfortunately, the gutter process itself adds significant cost to the printhead die. In addition, the successful reduction in slot pitch increases the benefit of diminishing returns, and the cost associated with integrating the reduced die with an inkjet pen (caused by the tighter slot pitch) can become excessive.
一壓縮模製流體流動結構能夠使較小的列印頭晶粒、和一形成流體遞送通道/槽的簡化方法之使用成為可能,而該流體遞送通道將墨水從一列印頭晶粒的一側上之一儲存器遞送至該晶粒的另一側上之流體射出元件。該流體流動結構包括一或更多個列印頭晶粒,其係壓縮模製於 塑膠、環氧模造物或其他可模製材料之一單件體中。舉例而言,實作該流體流動結構的一列印桿包括模製於一長形、單一的模製主體內之多個列印頭晶粒。該模製藉由將該等流體遞送通道(即墨水遞送槽)自該晶粒卸載至該結構的模製主體,而能夠使用較小的晶粒。因此,該模製主體使每個晶粒的尺寸成長,其提升產生外部流體連接以及使該等晶粒附接至其他結構之機會。 A compression molded fluid flow structure enables the use of smaller printhead dies and a simplified method of forming a fluid delivery channel/groove that passes ink from one side of a row of die pads One of the upper reservoirs is delivered to the fluid ejection element on the other side of the die. The fluid flow structure includes one or more print head dies that are compression molded A single piece of plastic, epoxy molding or other moldable material. For example, a row of stamps that implement the fluid flow structure includes a plurality of printhead dies that are molded into an elongate, single molded body. The molding enables the use of smaller grains by unloading the fluid delivery channels (i.e., ink delivery channels) from the die to the molded body of the structure. Thus, the molded body grows in size of each die, which enhances the chance of external fluid connections and attachment of the die to other structures.
在該晶圓或面板階層,一流體遞送通道或槽係於晶粒被壓縮於該流體流動結構內之一壓縮模製過程期間,在每個列印頭晶粒的背面於該流體流動結構內形成。利用諸如粉末噴砂之一材料切除過程,隨後完成該流體遞送通道,該材料切除過程移除剩餘的通道材料並且將該通道流體性地耦接至該列印頭。相較於傳統矽槽過程,該壓縮模製過程在形成流體遞送通道時提供一整體降低的成本。首先,在該壓縮模製過程期間所形成的該流體遞送通道之壓縮模製部段,扮演一自動對準遮罩,其係用於隨後材料切除過程,以完成該通道。經由上模之槽件的外型設計的改變,該壓縮模製過程能夠在模製通道/槽的形狀上、其長度和其側壁輪廓增加靈活性。 At the wafer or panel level, a fluid delivery channel or channel is within the fluid flow structure during the compression molding process in which the die is compressed within the fluid flow structure. form. The material delivery channel is then completed using a material ablation process, such as powder blasting, which removes the remaining channel material and fluidly couples the channel to the printhead. This compression molding process provides an overall reduced cost when forming a fluid delivery channel as compared to conventional gutter processes. First, the compression molded section of the fluid delivery passage formed during the compression molding process acts as an automatic alignment mask for subsequent material removal processes to complete the passage. The compression molding process is capable of adding flexibility in the shape of the molding channel/groove, its length, and its sidewall profile through a change in the design of the slot member of the upper die.
經描述的流體流動結構不限於列印桿或用於噴墨列印之其他類型的列印頭結構,且可能以其他裝置實現和為其他流體流動應用實現。因此,在一範例中,模製結構包括嵌設於一模製物中的一微裝置,該模製物具有一通道或其他路徑,以供流體直接流進或流至該裝置。舉例來 說,該微裝置可能為一電子裝置、一機械裝置、或一微機電系統(MEMS)裝置。該流體流例如可為流入或流至該微裝置之一冷卻流體流,或是流入一列印頭晶粒或其他流體分配微裝置之流體流。在圖式中顯示出以及在下文所描述之這些或是其它範例並非限制本發明,本發明係於描述內容之後的申請專利範圍所界定。 The fluid flow structure described is not limited to print bars or other types of print head structures for ink jet printing, and may be implemented in other devices and implemented for other fluid flow applications. Thus, in one example, the molded structure includes a micro-device embedded in a molding having a passage or other path for fluid to flow directly into or into the device. For example The micro device may be an electronic device, a mechanical device, or a microelectromechanical system (MEMS) device. The fluid stream can be, for example, a stream of cooling fluid flowing into or flowing to one of the microdevices, or a stream of fluid flowing into a column of die or other fluid dispensing microdevice. These and other examples are shown in the drawings and are not intended to limit the invention, and the invention is defined by the scope of the claims.
如同本文件中所使用地,一「微裝置」意指具有小於或等於30mm的一或更多種外型尺寸之一裝置;「薄」意指小於或等於650μm之一厚度;一「長薄片(sliver)」意指具有至少為三之長寬比(L/W)的一薄型微裝置;一「列印頭結構」和一「列印頭晶粒」意指一噴墨列印機的部份或是從一或更多開口分配流體之其他噴墨類型分配器。一列印頭結構包括一或更多個列印頭晶粒。「列印頭結構」和「列印頭晶粒」不限於以墨水或其他列印流體來列印,並且也包括分配用於列印以外或附加於列印之其他流體的噴墨類型。 As used in this document, a "microdevice" means a device having one or more dimensions of less than or equal to 30 mm; "thin" means a thickness of less than or equal to 650 μm; a "long sheet" (sliver)" means a thin microdevice having an aspect ratio (L/W) of at least three; a "printing head structure" and a "printing head die" means an ink jet printer Some are other inkjet type dispensers that dispense fluid from one or more openings. A row of printhead structures includes one or more printhead dies. The "print head structure" and "print head die" are not limited to printing with ink or other printing fluids, and also include ink jet types that are dispensed for printing other than printing or other fluids for printing.
圖1係繪示實現為適合用於一噴墨引表機的一列印桿中之一列印頭結構100之一壓縮模製流體流動結構100的一範例之一立視截面視野圖。該列印頭結構100包括一微裝置102,其壓縮模製於塑膠或其他可模製材料之一單塊本體104內。一模製本體104在本文亦可表示為一模製物104。一般而言,一微裝置102能夠例如為一電子裝置、一機械裝置、或一微機電系統(MEMS)裝置。在圖1之本發明的列印 頭結構100中,微裝置102被實作為一列印頭晶粒102。列印頭晶粒102包括一矽晶粒基材106,其包含一薄的長薄片在厚度上大約為100微米。該薄的矽長薄片基材106包括流體進送孔108,其以乾式蝕刻或是其他方式形成於其中,以使流體能夠從一第一外表面110流經該基材106至一第二外表面112。該矽基材106進一步包括鄰接並覆蓋該第一外表面110之一罩件114(即越過該矽基材106之一罩件)。該罩件114在厚度上大約為30微米,並且能夠以矽或其他合適的材料所形成,該材料例如為一聚合物層、一厚金屬層或一厚介電層。在一實作中,例如,一聚合物薄膜能夠層疊於該薄的矽長薄片上,以覆蓋該矽基材106,因此一環氧模製化合物在一壓縮模製期間內將不會進入該等流體進送孔108。 1 is a perspective elevational cross-sectional view of an example of a compression molded fluid flow structure 100 implemented as one of the printhead structures 100 of a row of printheads suitable for use in an ink jet lead machine. The printhead structure 100 includes a microdevice 102 that is compression molded into a monolithic body 104 of plastic or other moldable material. A molded body 104 can also be referred to herein as a molded article 104. In general, a micro device 102 can be, for example, an electronic device, a mechanical device, or a microelectromechanical system (MEMS) device. Printing of the invention in Figure 1 In the head structure 100, the microdevice 102 is implemented as a row of print head dies 102. The printhead die 102 includes a germanium die substrate 106 comprising a thin long die having a thickness of about 100 microns. The thin long sheet substrate 106 includes a fluid feed aperture 108 formed therein by dry etching or other means to enable fluid to flow from a first outer surface 110 through the substrate 106 to a second outer surface. Surface 112. The crucible substrate 106 further includes a cover member 114 that abuts and covers the first outer surface 110 (ie, over one of the cover members 106). The cover member 114 is approximately 30 microns in thickness and can be formed of tantalum or other suitable material, such as a polymer layer, a thick metal layer, or a thick dielectric layer. In one implementation, for example, a polymeric film can be laminated to the thin long sheet to cover the tantalum substrate 106 such that an epoxy molding compound will not enter the compression molding during the compression molding process. The fluid feed hole 108 is equal.
形成在基材106的該第二外表面112上的是一或更多層體116,其界定促使流體液滴從該列印頭結構100射出的一流體性架構。由層體116所界定之該流體性架構通常包括具有對應小孔120之射出腔室118、一歧管(未繪出)、和其他流體性通道和結構。該(等)層體116能夠包括例如形成在該基材106上之一腔室層與在該腔室層上方的一獨立形成的小孔層,或是它們能夠包括將該等腔室和小孔層兩者結合之一單塊層。該(等)層116典型地由一SU8環氧樹脂或某些其他聚醯亞胺(polyimide)材料所形成。 Formed on the second outer surface 112 of the substrate 106 is one or more layers 116 that define a fluidic structure that promotes the ejection of fluid droplets from the printhead structure 100. The fluidic architecture defined by the layer 116 generally includes an ejection chamber 118 having a corresponding aperture 120, a manifold (not shown), and other fluidic channels and structures. The layer 116 can include, for example, a chamber layer formed on the substrate 106 and a separately formed aperture layer above the chamber layer, or they can include the chambers and small The pore layer combines one of the monolithic layers. The (etc.) layer 116 is typically formed from a SU8 epoxy resin or some other polyimide material.
除了由矽基材106上的層116所界定之流體性架構以外,該列印頭晶粒102包括形成在基材106上的積體電路。積體電路係利用薄膜層和未在圖1中特別顯示出的其他 元件而形成。舉例來說,與各個射出腔室118對應的是形成在基材106的第二外表面112上之一熱射出元件或一壓電射出器元件。該等射出元件係被致動來從腔室118經過小孔120射出墨水或其他列印流體之液滴或流。 In addition to the fluidic architecture defined by layer 116 on germanium substrate 106, the printhead die 102 includes an integrated circuit formed on substrate 106. The integrated circuit utilizes a thin film layer and other features not specifically shown in FIG. Formed by components. For example, corresponding to each of the ejection chambers 118 is a thermal ejection element or a piezoelectric emitter element formed on the second outer surface 112 of the substrate 106. The ejection elements are actuated to eject droplets or streams of ink or other printing fluid from the chamber 118 through the apertures 120.
該列印頭結構100也包括信號循跡或其他導體122,其經由在基材106上所形成的電氣端子124連接至列印頭晶粒102。導體122能夠以多種方式形成於結構100上。舉例來說,利用層疊或沉積處理過程,一導體122能夠在如同顯示於圖1中的一絕緣層126中形成。絕緣層126典型地為一聚合物材料,其為導體122提供物理支持和絕緣。在其它實作中,導體122能夠被模製在該模製本體104中,例如如同下文圖6所顯示者。 The printhead structure 100 also includes signal tracking or other conductors 122 that are coupled to the printhead die 102 via electrical terminals 124 formed on the substrate 106. Conductor 122 can be formed on structure 100 in a variety of ways. For example, a conductor 122 can be formed in an insulating layer 126 as shown in FIG. 1 using a lamination or deposition process. The insulating layer 126 is typically a polymeric material that provides physical support and insulation for the conductors 122. In other implementations, the conductor 122 can be molded into the molded body 104, such as shown in Figure 6 below.
一流體通道128係通過該模製本體104形成,並且該薄的罩件114係在該外表面110處與該列印頭晶粒基材106流體性地耦接。在該通道128之一第一部段係在將該列印頭晶粒102模製於該列印頭結構100中的該壓縮模製期間內形成。該通道128的剩餘者係經由一材料切除過程而形成,該材料切除過程利用該第一通道部段作為一自動對準遮罩來移除通道材料。該流體通道128提供經過該模製本體以及該薄的罩件114之一路徑,其使流體能夠在外表面110直接在該矽基材106流動,並且經過該等流體進送孔108流入該矽基材106,以及然後進入腔室118。如在下文會進一步詳細討論者,該流體通道128係利用一壓縮模製過程來部分形成於該模製本體104內,該轉移模製過程能夠形成數種 不同通道形狀,其之輪廓各可反映出不論在模製過程期間所使用的何種模具槽件拓樸型態(mold chase topography)的反轉形狀。 A fluid passageway 128 is formed through the molded body 104, and the thin cover member 114 is fluidly coupled to the printhead die substrate 106 at the outer surface 110. A first section of the channel 128 is formed during the compression molding of molding the die die 102 into the printhead structure 100. The remainder of the passage 128 is formed via a material removal process that utilizes the first passage section as an automatic alignment mask to remove the channel material. The fluid passageway 128 provides a path through the molded body and the thin shroud 114 that enables fluid to flow directly over the helium substrate 106 at the outer surface 110 and into the helium base through the fluid feed holes 108. The material 106, and then enters the chamber 118. As will be discussed in further detail below, the fluid channel 128 is partially formed in the molded body 104 using a compression molding process that can form several types of transfer molding processes. The different channel shapes, each of which may reflect the inverted shape of the mold chase topography, which is used during the molding process.
圖2係繪示實現例如圖1的列印頭結構100之一壓縮模製流體流動結構100之一系統200之一方塊圖。藉由壓縮模製和材料切除過程,系統200包括可操作地連接至一組配來將流體移動至形成於流體流動結構100中的一流體通道128之流體推進器204之一流體源202。一流體源202可能例如包括空氣作為氣體源以冷卻一電子微裝置102、或是用於一列印頭晶粒102之一列印流體供應源。流體推進器204表現為一泵、一風扇、重力或用以從源202將流體移動至流體結構100之其他合適的機構。 2 is a block diagram of a system 200 that implements one of the compression molded fluid flow structures 100 of the printhead structure 100 of FIG. By compression molding and material ablation processes, system 200 includes a fluid source 202 that is operatively coupled to a set of fluid impellers 204 that are configured to move fluid to a fluid passage 128 formed in fluid flow structure 100. A fluid source 202 may, for example, include air as a source of gas to cool an electronic microdevice 102, or a print fluid supply for one of the rows of printhead dies 102. Fluid mover 204 behaves as a pump, a fan, gravity, or other suitable mechanism for moving fluid from source 202 to fluid structure 100.
圖3係繪示實現一基材寬列印桿302中的一流體流動結構100的一噴墨印表機300之一方塊圖。印表機300包括跨越一列印基材304之寬度的列印桿302、與列印桿302相關聯之流動調節器306、一基材輸送機構308、墨水或是其他列印流體供應源310和一印表機控制器312。控制器312表現為該(等)規劃處理器及相關的記憶體,以及控制一印表機300的操作性元件之電子電路和元件。列印桿302包括用以將列印流體分配到一張或連續織物的紙張或其他列印基材304上的列印頭晶粒102之佈置。每個列印頭晶粒102透過一流動路徑接收列印流體,該流動路徑係從供應源310延伸至流動調節器306,經過流動調節器306,且然後經過列印桿302內的壓縮模製流體通道128。 3 is a block diagram of an inkjet printer 300 that implements a fluid flow structure 100 in a substrate wide print bar 302. The printer 300 includes a print bar 302 spanning the width of a column of printed substrates 304, a flow conditioner 306 associated with the print bar 302, a substrate transport mechanism 308, ink or other printing fluid supply source 310, and A printer controller 312. Controller 312 is shown as the (and other) planning processor and associated memory, as well as electronic circuitry and components that control the operational elements of a printer 300. The print bar 302 includes an arrangement of printhead dies 102 for dispensing print fluid onto a sheet of paper or other print substrate 304. Each of the printhead dies 102 receives a print fluid through a flow path that extends from the supply source 310 to the flow conditioner 306, through the flow conditioner 306, and then through compression molding within the print bar 302. Fluid passage 128.
圖4~6繪示實現一壓縮模製流動結構100為適合用於圖3的印表機300的一列印頭結構100的一範例之一噴墨列印桿302。參照圖4的平面圖,列印頭晶粒102係嵌設於一長形、單塊的模製物104,並且大體上端對端的配置成行400。該等列印頭晶粒102係以一錯開組態配置,其中在每一行中的該等晶粒與同一行中的另一列印頭晶粒重疊。在此組態中,列印頭晶粒102的各個行400從一不同的壓縮模製流體通道128(在圖4中以虛線描繪)接收列印流體。雖然顯示出進送四行400錯開的列印頭晶粒102之四個流體通道128(例如用於列印四個不同顏色),但可能有其他合適組態。圖5繪示沿著圖4中的線5-5擷取之該噴墨列印桿302之一俯視截面圖,以及圖6繪示也是沿著圖4中的線5-5擷取之該噴墨列印桿302之一截面圖。圖6的截面圖顯示如同上文所討論有關圖1之一列印頭結構100的各種細節。 4-6 illustrate an example inkjet print bar 302 that implements a compression molded flow structure 100 that is suitable for use with a printhead structure 100 of the printer 300 of FIG. Referring to the plan view of FIG. 4, the printhead die 102 is embedded in an elongate, monolithic molding 104 and is generally end-to-end configured in rows 400. The printhead dies 102 are arranged in a staggered configuration wherein the dies in each row overlap with another of the other dies in the same row. In this configuration, each row 400 of printhead die 102 receives print fluid from a different compression molding fluid channel 128 (depicted in phantom in Figure 4). Although four fluid passages 128 for feeding four rows of 400 staggered print head dies 102 are shown (e.g., for printing four different colors), other suitable configurations are possible. 5 is a top cross-sectional view of the ink jet print bar 302 taken along line 5-5 of FIG. 4, and FIG. 6 is also taken along line 5-5 of FIG. A cross-sectional view of the ink jet print bar 302. The cross-sectional view of Figure 6 shows various details of the printhead structure 100 of one of Figure 1 as discussed above.
圖7~10繪示用以製造具有一流體通道128的一壓縮模製列印頭流體流動結構100的方法,該流體通道128係藉由包括壓縮模製和材料切除兩者的過程而形成。圖11係圖7~10中所繪示的該方法之一流程圖1100。如圖7的「A」部分所示,一列印頭晶粒102係利用一熱性釋放帶162來附接至一載體160(圖11中的步驟1102),形成晶粒載體總成163。該列印頭晶粒102係與小孔120朝下安置於該載體160上。該列印頭晶粒102係處於一預備處理狀態,使得其已包括界定流體性架構(例如射出腔室118、小孔120)的層116、以及電氣端子124、以及形成在薄型長薄片基材106上的射 出元件(未顯示)。流體進送孔108已經被乾式蝕刻或以其他方式形成於該長薄片基材106中。 7-10 illustrate a method for fabricating a compression molded printhead fluid flow structure 100 having a fluid passageway 128 formed by a process including both compression molding and material removal. Figure 11 is a flow chart 1100 of the method illustrated in Figures 7-10. As shown in the "A" portion of FIG. 7, a row of print head dies 102 is attached to a carrier 160 (step 1102 in FIG. 11) using a thermal release tape 162 to form a die carrier assembly 163. The print head die 102 is disposed on the carrier 160 with the apertures 120 facing downward. The printhead die 102 is in a preliminary processing state such that it includes a layer 116 defining a fluidic structure (e.g., exit chamber 118, aperture 120), and electrical terminals 124, and a thin long sheet substrate formed thereon. Shot on 106 Out of component (not shown). The fluid feed aperture 108 has been dry etched or otherwise formed in the long sheet substrate 106.
參照圖7的「B」部分,該列印頭晶粒102係被壓縮模製於一模製本體104中(圖11中的步驟1104)。一般而言,一壓縮模製過程涉及預先加熱諸如塑膠或一環氧模製化合物之一模製材料,以及使具有該晶粒102的該材料就位於一經加熱模製腔穴內,該腔穴例如為下模164內部之區域。上模166被降下以接近該模製物,並且熱和壓力驅使該模製材料進入該腔穴內部的所有區域,使得其形成包封該列印頭晶粒102的一模製物104。除了包封該晶粒102以外,該模製物104採用一形狀,其之輪廓跟隨該上模166的外型。在此範例中,該模製物104形成一部分流體通道168,其組成在基材106的第一外(後側)表面110上之該流體通道128的一第一壓縮模製部段169,如圖7的「C」部分所示。 Referring to portion "B" of Figure 7, the printhead die 102 is compression molded into a molded body 104 (step 1104 in Figure 11). In general, a compression molding process involves preheating a molding material such as a plastic or an epoxy molding compound, and placing the material having the die 102 in a heated molding cavity. For example, it is an area inside the lower mold 164. The upper die 166 is lowered to access the molded article, and heat and pressure drive the molding material into all areas of the interior of the cavity such that it forms a molding 104 encapsulating the printhead die 102. In addition to encapsulating the die 102, the molding 104 takes a shape that follows the contour of the upper die 166. In this example, the molding 104 forms a portion of a fluid passage 168 that constitutes a first compression molded section 169 of the fluid passage 128 on the first outer (rear side) surface 110 of the substrate 106, such as This is shown in the "C" section of Figure 7.
仍參照圖7,「B」和「C」部分,明顯的是,在該壓縮模製過程期間,該罩件114防止模製材料進入該長薄片基材106中的該等流體進送孔108。此外,該壓縮模製過程在該罩件114上方留下模製材料的一殘留層170。因此,如「C」部分所示,該部分流體通道168(第一壓縮模製通道部段169)不會一路延伸至該等墨水進送孔108。於是,該流體通道128係隨後在如下文討論的一材料切除過程內完成。如圖7之「C」部分所示,該晶粒載體總成163係從該等下模和上模(164、166)移除,以及該載體160係自熱性帶體162釋放,且該帶體係自該晶粒移除(圖11中的步驟1106)。 Still referring to Figure 7, "B" and "C" portions, it is apparent that during the compression molding process, the cover member 114 prevents molding material from entering the fluid feed holes 108 in the long sheet substrate 106. . In addition, the compression molding process leaves a residual layer 170 of molding material over the cover member 114. Therefore, as shown in the "C" portion, the portion of the fluid passage 168 (the first compression molded passage section 169) does not extend all the way to the ink feed holes 108. Thus, the fluid passage 128 is then completed in a material removal process as discussed below. As shown in the "C" portion of FIG. 7, the die carrier assembly 163 is removed from the lower and upper dies (164, 166), and the carrier 160 is released from the thermal strip 162, and the strip The system is removed from the die (step 1106 in Figure 11).
如圖7的「D」部分所示,一聚合物絕緣層126係層疊於該列印頭晶粒102的小孔120側上,以及然後被圖案化和硬化(圖11中的步驟1108)。一個SU8發射腔室保護層172係沉積於該(等)流體性架構層體116上方,如圖7在「E」部分所示者(圖11中的步驟1110)。如圖7所示,在「F」部分,一金屬層(Cu/Au)係沉積於該聚合物絕緣層126上且被圖案化為導體線跡122(圖11中的步驟1112)。一個頂部聚合物絕緣層126旋轉塗覆於該等導體線跡122上方,以及然後被圖案化和硬化,如圖7的「G」部分所示(圖11中的步驟1114)。在圖7的「H」部分,該發射腔室保護層172係被去除且執行該聚合物絕緣層126的一最終硬化動作(圖11中的步驟1116)。如同在圖7的「I」部分所示,移除在該基材106中的該等流體進送孔108的區域上方之模製材料的該殘留層170和該罩件114,形成完成的流體通道128(圖11中的步驟1118)。在一範例中,一材料切除過程被用來移除該殘留層170和罩件114。因此,該完成的流體通道128包括一第一壓縮模製通道部段169,以及一第二部段,該第二部段係一經材料去除的通道部段174。 As shown in the portion "D" of Fig. 7, a polymer insulating layer 126 is laminated on the side of the small holes 120 of the head die 102, and then patterned and hardened (step 1108 in Fig. 11). An SU8 firing chamber protective layer 172 is deposited over the fluid network structure layer 116, as shown in the "E" portion of Figure 7 (step 1110 in Figure 11). As shown in FIG. 7, in the "F" portion, a metal layer (Cu/Au) is deposited on the polymer insulating layer 126 and patterned into conductor traces 122 (step 1112 in FIG. 11). A top polymer insulation layer 126 is spin coated over the conductor traces 122 and then patterned and hardened as shown in the "G" portion of Figure 7 (step 1114 in Figure 11). In the "H" portion of FIG. 7, the emitter chamber protective layer 172 is removed and a final hardening action of the polymer insulating layer 126 is performed (step 1116 in FIG. 11). As shown in the "I" portion of FIG. 7, the residual layer 170 of molding material over the area of the fluid feed holes 108 in the substrate 106 and the cover member 114 are removed to form a finished fluid. Channel 128 (step 1118 in Figure 11). In one example, a material ablation process is used to remove the residual layer 170 and the cover member 114. Thus, the completed fluid passageway 128 includes a first compression molded passage section 169 and a second section that is a material removed passage section 174.
圖8~10進一步繪示圖7的「I」部分中所示的該材料移除(切除)程序步驟。有各種能夠被用來從罩件114和餘留在罩件114上方的模製材料的殘留層170移除材料之過程。這些材料切除過程能夠包括例如粉末噴砂、蝕刻、雷射、磨軋、鑽磨、放電加工等等。此等過程通常涉及一遮罩之使用,其防止不應該移除的材料所處之區域之材料移 除。在本案中,首先,在圖7的「B」和「C」部分的該壓縮期間所形成之壓縮模製通道部段169,扮演一自動對準遮罩,其引導蝕刻或其他研磨物質800來在延伸和完成該通道的區域中從該罩件114和殘留層170移除材料。該材料切除過程形成一第二經材料去除的通道部段174,其延伸該第一通道部段169,形成該完成的流體通道128。該完成的流體通道128提供經過該模製本體且經過該薄的罩件114之一路徑,使流體能直接流至該矽基材106於該外表面110上,並且經過該等流體進送孔108流入該矽基材106,以及然後流入腔室118。 Figures 8-10 further illustrate the material removal (cutting) procedure steps shown in the "I" portion of Figure 7. There are various processes that can be used to remove material from the cover member 114 and the residual layer 170 of molding material remaining over the cover member 114. These material ablation processes can include, for example, powder blasting, etching, laser, grinding, drilling, electrical discharge machining, and the like. These processes typically involve the use of a mask that prevents material movement in areas where material that should not be removed is located except. In the present case, first, the compression molded channel section 169 formed during the compression of the "B" and "C" portions of Figure 7 acts as an automatic alignment mask that directs etching or other abrasive material 800. Material is removed from the cover member 114 and the residual layer 170 in the region where the channel is extended and completed. The material ablation process forms a second material removed channel section 174 that extends the first channel section 169 to form the completed fluid channel 128. The completed fluid passage 128 is provided through the molded body and through a path of the thin cover member 114 to allow fluid to flow directly onto the outer surface 110 of the crucible substrate 106 and through the fluid feed holes 108 flows into the crucible substrate 106 and then into the chamber 118.
如圖8中所示,該蝕刻或其他研磨物質800係藉由該第一通道部段169導引,來藉去除法移除在該通道的封閉端之材料。該去除過程以移除模製材料在該罩件114上方所剩餘的該殘留層170來開始(圖11中的步驟1120)。因此,顯示於圖7的「I」部分之該材料去除過程,首先移除該殘留層170,並且使該罩件114暴露於該蝕刻或其他研磨物質800,如圖9所示者。該材料去除程序然後會進行,在該通道延伸至該基材106的該外表面110之通道區域中,從該罩件114移除材料(圖11中之步驟1122)。移除該殘留層170和矽罩件材料會形成完成該流體通道128之一第二(經材料去除的)通道部段174,以及開通該等流體進送孔108到該通道128(圖11中的步驟1124)。因此,該完成的流體通道128包含一第一部段和一第二部段,該第一部段為一壓縮模製通道部段169,而該第二部段為一經材料去除的通道部段174。 As shown in Figure 8, the etch or other abrasive material 800 is guided by the first channel section 169 to remove material at the closed end of the channel by removal. The removal process begins by removing the residual layer 170 of molding material remaining over the cover member 114 (step 1120 in FIG. 11). Thus, the material removal process shown in the "I" portion of FIG. 7 first removes the residual layer 170 and exposes the cover member 114 to the etch or other abrasive material 800, as shown in FIG. The material removal procedure is then performed to remove material from the cover member 114 in the channel region of the channel extending to the outer surface 110 of the substrate 106 (step 1122 in Figure 11). Removing the residual layer 170 and the haptic material will form a second (material-removed) channel section 174 that completes the fluid channel 128 and open the fluid feed holes 108 to the channel 128 (FIG. 11 Step 1124). Thus, the completed fluid passageway 128 includes a first section and a second section, the first section being a compression molded channel section 169 and the second section being a material removed passage section 174.
如同能夠在上文所討論的該等圖式中可見地,該壓縮模製過程能夠在該流體通道128內產生變化的形狀。更特定地說,圖1、5和6繪示彼此平行之大體上直立的側壁之流體通道128,而圖7~10顯示側壁直立但彼此呈錐狀形態或分岔之流體通道128。不同的流體通道形狀能夠藉由使用具有變化的外型設計之上模166來在該壓縮模製過程期間產生。一般而言,該流體通道128的結果形狀反向地跟隨在該壓縮模製期間中所用的該上模166的外型之輪廓。 As can be seen in the figures discussed above, the compression molding process can produce a varying shape within the fluid passageway 128. More specifically, Figures 1, 5 and 6 illustrate fluid passages 128 of generally upright side walls that are parallel to each other, while Figures 7-10 show fluid passages 128 that are erected in a side wall but are tapered or bifurcated from one another. Different fluid passage shapes can be created during the compression molding process by using a mold 166 having a modified outer design. In general, the resulting shape of the fluid passage 128 reversely follows the contour of the upper mold 166 used during the compression molding.
圖12~14繪示具有變化的外型設計上模166之數個額外的範例,該等變化的外型設計能夠被用於一壓縮模製過程中,以產生不同形狀的流體通道128。如同圖12中所示,該上模166具有輪廓,該輪廓導致一流體通道128具有彼此鏡映之模製側壁S1和S2。該等側壁S1和S2各具有兩個大體上直立段,在一段中,該等側壁係彼此平行,而在另一段中,該等側壁係呈錐狀形態。在圖13中,該上模166輪廓導致一流體通道128具有各有大體上直立的兩段之模製側壁S1和S2。該等側壁的兩段都呈錐狀形態,且再一次地,隨著它們彼此錐形遠離而為鏡映影像。如圖14中所示,一上模166也能夠具有彎曲(或其他形狀)的輪廓,其在該流體通道128內產生彎曲的側壁形狀。 Figures 12-14 illustrate several additional examples of a modified outer mold 166 having variations that can be used in a compression molding process to create fluid passages 128 of different shapes. As shown in Figure 12, the upper die 166 has a profile that results in a fluid passage 128 having molded sidewalls S1 and S2 mirrored to each other. The side walls S1 and S2 each have two substantially upright sections, the side walls being parallel to each other in one section, and in the other section, the side walls are in a tapered configuration. In Figure 13, the upper die 166 profile results in a fluid passageway 128 having molded side walls S1 and S2 each having two substantially upright sections. The two sections of the side walls are in the form of a cone and, once again, mirror images as they taper away from one another. As shown in FIG. 14, an upper die 166 can also have a curved (or other shape) profile that creates a curved sidewall shape within the fluid passageway 128.
一般而言,圖式中所示以及上文所討論之該模製流體通道128具有通道側壁S1和S2,其以彼此平行及/或呈錐狀形態及/或鏡映之各種直立及/或彎曲組態形成。在大多數的情況中,使該等通道側壁隨著它們自該列印頭長薄片 基材106後退或遠離而彼此呈分岔或呈錐狀形態,是有益的。此分岔提供有幫助空氣泡泡自該等小孔120、射出腔室118和流體進送孔108遠離之益處,其中它們可能以其他方式阻礙或避免在操作期間內流體的流動。緣此,所討論和顯示於圖式中的該等流體通道128包含隨著它們自該長薄片基材106後退而典型上為分岔但至少部分平行的側壁。然而,所例釋的通道側壁形狀和組態並非意圖為關於能夠利用一壓縮模製過程來形成之流體通道128內之側壁的其他形狀和組態之一限制。反而,本揭露內容考量其他壓縮模製流體通道可能具有以未指明例釋或討論的各種其他組態為形狀之側壁。 In general, the molded fluid channel 128 shown in the drawings and discussed above has channel sidewalls S1 and S2 that are parallel and/or tapered and/or mirrored to each other upright and/or The bending configuration is formed. In most cases, the sidewalls of the channels are made to follow the length of the printhead It may be beneficial for the substrate 106 to recede or move away from each other in a bifurcated or tapered configuration. This bifurcation provides the benefit of assisting air bubbles from the apertures 120, the ejection chamber 118, and the fluid feed apertures 108, where they may otherwise impede or avoid the flow of fluid during operation. Accordingly, the fluid passages 128 discussed and shown in the drawings include side walls that are typically bifurcated but at least partially parallel as they retreat from the long sheet substrate 106. However, the illustrated channel sidewall shape and configuration are not intended to be limiting with respect to one of the other shapes and configurations of the sidewalls within the fluid passage 128 that can be formed using a compression molding process. Rather, the present disclosure contemplates that other compression molded fluid passages may have sidewalls that are shaped in various other configurations not illustrated or discussed.
104‧‧‧模製本體 104‧‧‧Molded ontology
106‧‧‧矽基材 106‧‧‧矽 substrate
108‧‧‧流體進送孔 108‧‧‧Fluid feed hole
110‧‧‧第一外表面 110‧‧‧First outer surface
114‧‧‧罩件 114‧‧‧ Covers
128‧‧‧流體通道 128‧‧‧ fluid passage
169‧‧‧壓縮模製通道部段、第一通道部段 169‧‧‧Compression molded channel section, first channel section
174‧‧‧經材料去除之通道部段、第二通道部段 174‧‧‧Channel section and second channel section removed by material
800‧‧‧研磨物質 800‧‧‧Abrasive material
Claims (17)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2013/052512 WO2014133578A1 (en) | 2013-02-28 | 2013-07-29 | Fluid structure with compression molded fluid channel |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201504070A TW201504070A (en) | 2015-02-01 |
TWI547382B true TWI547382B (en) | 2016-09-01 |
Family
ID=53040005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103121381A TWI547382B (en) | 2013-07-29 | 2014-06-20 | Method of making a fluid channel in a printhead structure, and fluid flow structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI547382B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI683462B (en) * | 2019-03-29 | 2020-01-21 | 研能科技股份有限公司 | Manufacturing method of micro fluid actuator module |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006315321A (en) * | 2005-05-13 | 2006-11-24 | Canon Inc | Method for manufacturing ink-jet recording head |
US20110037808A1 (en) * | 2009-08-11 | 2011-02-17 | Ciminelli Mario J | Metalized printhead substrate overmolded with plastic |
-
2014
- 2014-06-20 TW TW103121381A patent/TWI547382B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006315321A (en) * | 2005-05-13 | 2006-11-24 | Canon Inc | Method for manufacturing ink-jet recording head |
US20110037808A1 (en) * | 2009-08-11 | 2011-02-17 | Ciminelli Mario J | Metalized printhead substrate overmolded with plastic |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI683462B (en) * | 2019-03-29 | 2020-01-21 | 研能科技股份有限公司 | Manufacturing method of micro fluid actuator module |
Also Published As
Publication number | Publication date |
---|---|
TW201504070A (en) | 2015-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10603916B2 (en) | Method of making a fluid structure having compression molded fluid channel | |
US11292257B2 (en) | Molded die slivers with exposed front and back surfaces | |
US9656469B2 (en) | Molded fluid flow structure with saw cut channel | |
US10994539B2 (en) | Fluid flow structure forming method | |
US9731509B2 (en) | Fluid structure with compression molded fluid channel | |
EP3046768B1 (en) | Printbar and method of forming same | |
EP2976221B1 (en) | Molded die slivers with exposed front and back surfaces | |
TW201532846A (en) | Flexible carrier | |
TWI547382B (en) | Method of making a fluid channel in a printhead structure, and fluid flow structure | |
EP3538370B1 (en) | Fluid ejection dies | |
TWI572494B (en) | Fluid flow structure and method of making fluid channel in a fluid structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |