TWI438891B - Memory devices - Google Patents
Memory devices Download PDFInfo
- Publication number
- TWI438891B TWI438891B TW97125603A TW97125603A TWI438891B TW I438891 B TWI438891 B TW I438891B TW 97125603 A TW97125603 A TW 97125603A TW 97125603 A TW97125603 A TW 97125603A TW I438891 B TWI438891 B TW I438891B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor material
- region
- memory device
- drain
- gate
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
本發明是有關於一種記憶單元,且特別是有關於一種動態隨機存取記憶(dynamic random access,DRAM)單元。The present invention relates to a memory unit, and more particularly to a dynamic random access memory (DRAM) unit.
大容量、高速和低能耗的記憶體元件的需求不斷增長。通常有兩種記憶體元件,即靜態隨機存取記憶體(static random access,SRAM)元件和動態隨機存取記憶體元件。雖然SRAM可在很高速度下運作,但是由於其為六電晶體(6T)單元結構,因此在大型積體電路(large-scale integration,LSI)上可能佔用很大面積。而且,由於單元電晶體之間的匹配問題,要縮小SRAM單元的面積很困難。由一個電晶體和一個電容器(1T/1C)組成的DRAM單元可具有相對較小的單元尺寸和相對高的運作速度。然而,傳統的1T/1C DRAM單元可能面臨一個問題,即由於元件的特徵尺寸減小,可能需要用於堆疊式電容器的新型材料,如高介電常數薄膜,或需要用於與垂直形狀的存取電晶體結合的溝渠式電容的高深寬比溝渠。為了克服這個問題,已經使用了多種方法。方法之一是使用包括堆疊式穿隧電 晶體的增益單元(gain cell)。另一個方法是磁性隨機存取記憶體(magnetic random access)。然而,前者可能需要新的元件結構,而後者則要將新的材料引進到金屬氧化物半導體(metal-oxide-semiconductor,MOS)製程中,這意味著需要花很長時間才能將二者導入大規模記憶體的生產。The demand for high-capacity, high-speed, and low-power memory components continues to grow. There are typically two types of memory components, namely static random access memory (SRAM) components and dynamic random access memory components. Although SRAM can operate at very high speeds, it can occupy a large area on a large-scale integration (LSI) because it is a six-cell (6T) cell structure. Moreover, it is difficult to reduce the area of the SRAM cell due to the matching problem between the cell transistors. A DRAM cell composed of a transistor and a capacitor (1T/1C) can have a relatively small cell size and a relatively high operating speed. However, conventional 1T/1C DRAM cells may face a problem that new materials for stacked capacitors, such as high dielectric constant films, may be required due to the reduced feature size of the components, or may be required for storage with vertical shapes. Take the high aspect ratio trench of the channel-type capacitor combined with the transistor. To overcome this problem, a variety of methods have been used. One of the methods is to use stacked tunneling The gain cell of the crystal. Another method is magnetic random access. However, the former may require a new component structure, while the latter introduces new materials into the metal-oxide-semiconductor (MOS) process, which means it takes a long time to import both. Production of scale memory.
考慮到這種情况,提供了另一種叫做無電容(capacitor-less)1T DRAM或浮置體單元(floating-body cellFBC)的記憶體。這種新記憶體單元使用了部份空乏(partially depleted,PD)的絕緣層上覆矽(silicon-on-insulator,SOI)金屬氧化物半導體場效應電晶體(metal-oxide-semiconductor,MOSFET)的浮置體作為儲存節點。因此,1T DRAM單元可以不需要複雜的儲存電容器,這意味著1T DRAM單元可與邏輯元件具有很好的製程兼容性。In view of this situation, another memory called a capacitor-less 1T DRAM or a floating-body cell (FBC) is provided. This new memory cell uses a partially depleted (PD) silicon-on-insulator (SOI) metal-oxide-semiconductor (MOSFET). The floating body acts as a storage node. Therefore, 1T DRAM cells can eliminate the need for complex storage capacitors, which means that 1T DRAM cells can have good process compatibility with logic components.
圖1A和圖1B顯示了處於不同狀態下的先前技術的1T DRAM單元10的示意圖。1T DRAM單元10包括源極區域11、汲極區域12、閘極區域13、單元體15和埋入氧化(buried oxide,Box)層14,其中源極區域11、汲極區域12和單元體15都包含矽。圖1A以圖式顯示了處於邏輯“1”狀態的1T DRAM單元10,而圖1B以圖式顯示了處於邏輯“0”狀態的1T DRAM單元10。根據先前技術,對於1T DRAM單元 10,邏輯“1”狀態可通過閘極引發汲極漏電流(gate induced drain leakage,GIDL)或撞擊游離(II)的方式寫入。邏輯“0”狀態可通過PN接合的正向偏壓完成,其存在於源極-本體接合和汲極-本體接合。因此,當臨界電壓(threshold voltage,Vth)改變時,1T DRAM單元10可以感應到多數載子(電洞)是否在浮置體內堆積。將源極設定在0伏特,汲極連接到位元線,並將閘極連接到字元線。當多餘的電洞存在於浮置體內並且Vth降低時,可將單元狀態視為“1”。另一方面,當多餘的電洞被本體-汲極接合上的正向偏壓清除出浮置體外且Vth升高時,可將單元狀態視為“0”。可以在線性電流區域感應“1”和“0”狀態之問的汲極電流差異,以免改變II電流形成的電洞的數量。通過在線性電流區域內執行讀取操作,1T DRAM單元可在更新間隔期間完成非破壞性的讀取操作。1A and 1B show schematic diagrams of a prior art 1T DRAM cell 10 in different states. The 1T DRAM cell 10 includes a source region 11, a drain region 12, a gate region 13, a cell body 15, and a buried oxide (Box) layer 14, wherein the source region 11, the drain region 12, and the cell body 15 Both contain 矽. 1A shows a 1T DRAM cell 10 in a logic "1" state, and FIG. 1B shows a 1T DRAM cell 10 in a logic "0" state. According to the prior art, for 1T DRAM cells 10. The logic "1" state can be written by way of gate induced drain leakage (GIDL) or impact free (II). The logic "0" state can be accomplished by forward biasing of the PN junction, which exists in source-body bonding and drain-body bonding. Therefore, when the threshold voltage (Vth) is changed, the 1T DRAM cell 10 can sense whether or not most carriers (holes) are accumulated in the floating body. Set the source to 0 volts, connect the drain to the bit line, and connect the gate to the word line. When excess holes are present in the floating body and Vth is lowered, the cell state can be regarded as "1". On the other hand, when the excess hole is cleared out of the floating body by the forward bias on the body-drain junction and the Vth rises, the cell state can be regarded as "0". The difference in the drain current of the "1" and "0" states can be sensed in the linear current region to avoid changing the number of holes formed by the II current. By performing a read operation within the linear current region, the 1T DRAM cell can perform a non-destructive read operation during the update interval.
1T DRAM單元不需要複雜的儲存電容器,這可以節省單元的尺寸。然而,有必要為1T DRAM單元提供良好的記憶體資料保存和/或足夠的寫入速度。The 1T DRAM cell does not require complex storage capacitors, which saves unit size. However, it is necessary to provide good memory data storage and/or sufficient write speed for 1T DRAM cells.
多數個實施例可包括記憶體元件。在一個實施例中,記憶體元件包括:第一摻質類型的源極區域和汲極區域, 源極區域和汲極區域包括第一半導體材料;第二摻質類型的本體區域,本體區域介於源極區域和汲極區域之間,本體區域包括第二半導體材料;在至少本體區域之上的閘極介電層;和在閘極介電層之上的包含導電材料的閘極。特別地,第一半導體材料和第二半導體材料的其中之一與第一半導體材料和第二半導體材料的其中另一個晶格匹配,並且具有比第一半導體材料和第二半導體材料的其中另一個的能隙小的能隙。Most embodiments may include a memory element. In one embodiment, the memory component includes: a source region and a drain region of a first dopant type, The source region and the drain region comprise a first semiconductor material; the second dopant type body region, the body region being between the source region and the drain region, the body region comprising the second semiconductor material; above the at least the body region a gate dielectric layer; and a gate comprising a conductive material over the gate dielectric layer. In particular, one of the first semiconductor material and the second semiconductor material is lattice matched to the other of the first semiconductor material and the second semiconductor material and has one of the other than the first semiconductor material and the second semiconductor material The energy gap is small.
一個實施例包括操作記憶體元件的方法,記憶體元件可具有設在源極區域和汲極區域之間的本體區域;在本體區域之上的閘極介電層;和在閘極介電層之上的閘極。在一個實施例中,操作記憶體元件的方法可包括施加汲極電壓和第一閘極電壓,以將第一狀態指示信號寫入記憶體元件中;和施加第二閘極電壓並加正向偏壓於本體-汲極接合(junction)或本體-源極接合,以將第二狀態指示信號寫入記憶體元件中。One embodiment includes a method of operating a memory device, the memory device having a body region disposed between a source region and a drain region; a gate dielectric layer over the body region; and a gate dielectric layer The gate above. In one embodiment, a method of operating a memory device can include applying a gate voltage and a first gate voltage to write a first state indicating signal into a memory device; and applying a second gate voltage and adding a positive A bias is applied to the body-drain junction or body-source junction to write a second status indication signal into the memory element.
現在,將詳細參考所附圖式所示的本發明的實例。如有可能,在全部的圖式中將使用相同的參考標記表示相同或相似的部份。雖然已經參考特定的範例性實施例對本發 明的實施例作了描述,但是很顯然,在不脫離本發明更廣泛之精神和範圍的前提下,當可對這些實施例作多種修改與變更。因此,應將說明書和圖式看作是說明性的而非限制性的含義。Now, reference will be made in detail to the examples of the invention shown in the drawings. Wherever possible, the same reference numerals,,,, Although the reference has been made to a specific exemplary embodiment to the present invention The embodiment of the invention has been described in detail, and it is apparent that various modifications and changes can be made to the embodiments without departing from the spirit and scope of the invention. Therefore, the specification and drawings are to be regarded as illustrative rather
圖2A到圖2F是顯示根據本發明的一個實例製造一個電晶體(1T)p型金屬氧化物半導體(PMOS)單元的示意截面圖。參考圖2A,可在基板(未示出)上形成絕緣層,如埋入氧化(Box)層21,並且可在上面依序提供n型矽層22、閘極氧化層23和重摻雜p型(p+)多晶矽層24。可在p+多晶矽層24之上提供可作為硬罩幕層的氧化層25和氮化矽(SiN)層26。在各種實施例中,可提供其它相似的材料來替代氮化矽層26所用的氮化矽。2A through 2F are schematic cross-sectional views showing the fabrication of a transistor (1T) p-type metal oxide semiconductor (PMOS) cell in accordance with one example of the present invention. Referring to FIG. 2A, an insulating layer may be formed on a substrate (not shown), such as a buried oxide layer 21, and an n-type germanium layer 22, a gate oxide layer 23, and a heavily doped p may be sequentially provided thereon. Type (p+) polysilicon layer 24. An oxide layer 25 and a tantalum nitride (SiN) layer 26, which may serve as a hard mask layer, may be provided over the p+ polysilicon layer 24. In various embodiments, other similar materials may be provided in place of the tantalum nitride used in the tantalum nitride layer 26.
參考圖2B,可在SiN層26上形成圖案化的光阻(PR)層27,用於使p+多晶矽層24圖案化。參考圖2C,可使用圖案化的PR層27作為罩幕,通過蝕刻製程或其它合適的製程形成圖案化的SiN層26'和圖案化的氧化層25'。然後,可移除圖案化的PR層27。接下來,可使用圖案化的SiN層26'和圖案化的氧化層25'作為罩幕,通過蝕刻p+多晶矽層24形成圖案化的p+多晶矽層24'。可沿圖案化的p+多晶矽層24'的兩側形成側壁間隙壁28。在一個實例中,側壁間隙28可包括氧化物襯層,而在另一個實例中,可包括氧化物襯層和沿 著氧化物襯層的氮化物間隙壁。接著,參考圖2D,可通過溝渠蝕刻製程或其它合適的製程形成圖案化的閘極氧化層23'和圖案化的n型矽層22'。Referring to FIG. 2B, a patterned photoresist (PR) layer 27 may be formed on the SiN layer 26 for patterning the p+ polysilicon layer 24. Referring to FIG. 2C, a patterned SiN layer 26' and a patterned oxide layer 25' may be formed by an etching process or other suitable process using the patterned PR layer 27 as a mask. The patterned PR layer 27 can then be removed. Next, a patterned p+ polysilicon layer 24' can be formed by etching the p+ polysilicon layer 24 using the patterned SiN layer 26' and the patterned oxide layer 25' as a mask. Sidewall spacers 28 may be formed along both sides of the patterned p+ polysilicon layer 24'. In one example, sidewall spacers 28 may include an oxide liner, while in another example, an oxide liner and along may be included The nitride spacer of the oxide liner. Next, referring to FIG. 2D, a patterned gate oxide layer 23' and a patterned n-type germanium layer 22' may be formed by a trench etching process or other suitable process.
參考圖2E,半導體層29可沈積或磊晶成長然後被平坦化。半導體層29可包括半導體材料,其晶格可與矽晶格匹配,且其能隙可比矽的能隙小。在一個實例中,半導體層29可包括矽鍺(SiGe)或結晶SiGe。參考圖2F,半導體層29可被回蝕,且可執行p+植入製程,以形成一對p+擴散區域29',其用作PMOS單元的源極區域和汲極區域。然後,可移除圖案化的SiN層26'和圖案化的氧化層25'。Referring to FIG. 2E, the semiconductor layer 29 may be deposited or epitaxially grown and then planarized. The semiconductor layer 29 may comprise a semiconductor material whose lattice can be lattice matched to the germanium and whose energy gap can be smaller than the energy gap of the germanium. In one example, the semiconductor layer 29 can comprise germanium (SiGe) or crystalline SiGe. Referring to FIG. 2F, the semiconductor layer 29 can be etched back and a p+ implant process can be performed to form a pair of p+ diffusion regions 29' that serve as the source and drain regions of the PMOS cell. The patterned SiN layer 26' and the patterned oxide layer 25' can then be removed.
與傳統的包括矽單元體和矽汲極/源極區域的PMOS單元相比,本發明的PMOS單元的單元體內的矽和汲極/源極區域內的半導體SiGe的使用為源極/汲極區域內的導電帶(Ec)和價能帶(Ev)之間提供了更小的能隙。因此,由於在p+汲極區域的能隙更小,在相同的偏壓條件下,當通過產生於閘極到汲極重疊p+區域的帶對帶穿隧(band-to-band tunneling)機制(即BTBT)(或閘極引發汲極漏電流(GIDL))寫入邏輯“1”時,其可以比先前技術更有效地將電子注入到當前的PMOS單元的單元體內。而且,由於圖4A所示的本體區域內的導電帶邊緣(Ec)更低,儲存在當前的PMOS單元的單元體內的電子可通過源極/汲極區域和單元體之 間的異質接合受到很好的約束。可防止電子洩漏到源極區域和汲極區域。因此,通過這種或類似的結構可提高資料保存的可靠度。The use of semiconductor SiGe in the germanium and drain/source regions of the cell of the PMOS cell of the present invention is source/drain compared to conventional PMOS cells including germanium and drain/source regions. A smaller energy gap is provided between the conductive strip (Ec) and the valence band (Ev) in the region. Therefore, since the energy gap in the p+ drain region is smaller, under the same bias conditions, the band-to-band tunneling mechanism is generated by the p+ region generated from the gate to the drain ( That is, when BTBT) (or gate induced drain leakage current (GIDL)) is written to logic "1", it can inject electrons into the cell of the current PMOS cell more efficiently than in the prior art. Moreover, since the conductive strip edge (Ec) in the body region shown in FIG. 4A is lower, electrons stored in the cell body of the current PMOS cell can pass through the source/drain region and the unit body. The heterogeneous junction is well constrained. It prevents electrons from leaking into the source and drain regions. Therefore, the reliability of data storage can be improved by this or similar structure.
在其他範例性實施例中,PMOS單元的汲極區域和源極區域內的材料(如SiGe或結晶SiGe)可由其它的半導體材料代替,其晶格與矽的晶格相匹配,其能隙比矽的能隙小,且其導電帶邊緣比矽的導電帶邊緣高。In other exemplary embodiments, the material in the drain region and the source region of the PMOS cell (such as SiGe or crystalline SiGe) may be replaced by other semiconductor materials, the lattice of which matches the lattice of germanium, and the energy gap ratio. The energy gap of the crucible is small, and the edge of the conductive strip is higher than the edge of the conductive strip of the crucible.
圖3是顯示根據本發明的一個實例的1T n型金屬氧化物半導體(NMOS)單元30的示意截面圖。參考圖3,NMOS單元30可包括基板(未示出)上的埋入氧化層31、在埋入氧化層31之上的用作NMOS單元30的單元體的p型SiGe層32、用作NMOS單元30的源極區域和汲極區域的重摻雜n型(n+)矽區域39、在p-SiGe層32之上的閘極氧化層33以及用作NMOS單元30的閘極的n+多晶矽層34。NMOS單元30可用類似於圖2A到圖2F中的方法製造,因此在此不再討論。FIG. 3 is a schematic cross-sectional view showing a 1T n-type metal oxide semiconductor (NMOS) unit 30 according to an example of the present invention. Referring to FIG. 3, the NMOS cell 30 may include a buried oxide layer 31 on a substrate (not shown), a p-type SiGe layer 32 serving as a unit body of the NMOS cell 30 over the buried oxide layer 31, and used as an NMOS. The heavily doped n-type (n+) germanium region 39 of the source region and the drain region of the cell 30, the gate oxide layer 33 over the p-SiGe layer 32, and the n+ polysilicon layer used as the gate of the NMOS cell 30 34. The NMOS cell 30 can be fabricated in a manner similar to that in Figures 2A through 2F and will therefore not be discussed here.
NMOS單元30的汲極/源極區域內的矽和單元體內的SiGe的使用可具有以下好處。當通過通道電流引發的撞擊游離寫入邏輯“1”時,構成強電場的空乏區可存在於汲極區域附近的本體內。由於本體區域內的能隙較小,通過撞擊游離可更有效地產生電子-電洞對。電子流入汲極而電洞 停留在NMOS單元30的單元體32內。而且,由於圖4B所示的本體區域內的價能帶邊緣更高,在邏輯“1”狀態下儲存於NMOS單元30的單元體32內的電洞可由NMOS單元30的汲極/源極區域39和單元體32之間的異質接合約束。因此,可防止電洞洩漏到源極區域和汲極區域。資料保存的可靠度也因此得到提高。The use of germanium in the drain/source region of the NMOS cell 30 and SiGe in the cell body can have the following advantages. When the impact caused by the channel current is freely written to logic "1", the depletion region constituting the strong electric field may exist in the body near the drain region. Since the energy gap in the body region is small, electron-hole pairs can be generated more efficiently by impact free. Electrons flow into the bungee and the hole It stays in the unit body 32 of the NMOS unit 30. Moreover, since the edge of the valence band in the body region shown in FIG. 4B is higher, the hole stored in the unit body 32 of the NMOS unit 30 in the logic "1" state can be the drain/source region of the NMOS unit 30. A heterojunction constraint between 39 and unit body 32. Therefore, leakage of holes into the source region and the drain region can be prevented. The reliability of data preservation is also improved.
如上所示,記憶體元件的製造方法因此可包括:提供基板21;在基板21上形成第一半導體材料和第一摻質類型的本體區域22;形成第二半導體材料的源極區域和汲極區域29',其中,源極區域和汲極區域29'為第二摻質類型,且本體區域22介於源極區域和汲極區域29'之間;在本體區域22之上形成閘極介電層23;並在閘極介電層23之上形成閘極24。在一些實例中,第一半導體材料可包括矽,而第二半導體材料可與矽晶格匹配並可具有比矽的能隙小的能隙。在一個實例中,第二半導體材料可包括矽鍺。或者,也可以是相反的,即第二半導體材料可包括矽,而第一半導體材料可與矽晶格匹配並可具有比矽的能隙小的能隙。在一個實例中,第一半導體材料可包括矽鍺。在一些實例中,基板可包括埋入氧化層,例如具有形成於其上的埋入氧化層的半導體基板。As indicated above, the method of fabricating a memory device may thus include: providing a substrate 21; forming a first semiconductor material and a body region 22 of a first dopant type on the substrate 21; forming a source region and a drain of the second semiconductor material a region 29', wherein the source region and the drain region 29' are of a second dopant type, and the body region 22 is interposed between the source region and the drain region 29'; forming a gate dielectric over the body region 22. The electric layer 23; and a gate 24 is formed over the gate dielectric layer 23. In some examples, the first semiconductor material can include germanium, and the second semiconductor material can be lattice matched to the germanium and can have a smaller energy gap than germanium. In one example, the second semiconductor material can include germanium. Alternatively, it may be reversed that the second semiconductor material may comprise germanium, and the first semiconductor material may be lattice matched to the germanium and may have a smaller energy gap than the energy gap of germanium. In one example, the first semiconductor material can include germanium. In some examples, the substrate can include a buried oxide layer, such as a semiconductor substrate having a buried oxide layer formed thereon.
因此,如圖2F或圖3所示,記憶體元件可包括:第一 摻質類型的源極區域和汲極區域29',且包括或使用第一半導體材料;第二摻質類型的本體區域22,其介於源極區域和汲極區域29'之間,並可包括或使用第二半導體材料;位於至少本體區域22之上的閘極介電層23;和在閘極介電層23之上的包含導電材料的閘極24。特別地,第一半導體材料和第二半導體材料的其中之一與第一半導體材料和第二半導體材料的其中另一個晶格匹配,並且具有比第一半導體材料和第二半導體材料的其中另一個的能隙小的能隙。在一些實例中,具有較小能隙的材料的導電帶邊緣可以比具有較大能隙的材料的導電帶邊緣高。在一些實例中,具有較小能隙的材料的價能帶邊緣可以比具有較大能隙的材料的價能帶邊緣更高。在一些實例中,具有較小能隙的材料的導電帶邊緣可以比具有較大能隙的材料的導電帶邊緣高,且具有較小能隙的材料的價能帶邊緣可以比具有較大能隙的材料的價能帶邊緣高。在一些實例中,具有較小能隙的材料可以是p型摻雜。Therefore, as shown in FIG. 2F or FIG. 3, the memory element may include: first a dopant type source region and a drain region 29', and including or using a first semiconductor material; a second dopant type body region 22 interposed between the source region and the drain region 29', and A second semiconductor material is included or used; a gate dielectric layer 23 over at least the body region 22; and a gate 24 comprising a conductive material over the gate dielectric layer 23. In particular, one of the first semiconductor material and the second semiconductor material is lattice matched to the other of the first semiconductor material and the second semiconductor material and has one of the other than the first semiconductor material and the second semiconductor material The energy gap is small. In some examples, a conductive strip edge of a material having a smaller energy gap may be higher than a conductive strip edge of a material having a larger energy gap. In some examples, a valence band edge of a material having a smaller energy gap may be higher than a valence band edge of a material having a larger energy gap. In some examples, a conductive strip edge of a material having a smaller energy gap may be higher than a conductive strip edge of a material having a larger energy gap, and a valence band edge of a material having a smaller energy gap may have a larger energy The valence of the material of the gap is high. In some examples, the material having a smaller energy gap may be p-type doped.
在一個實例中,第一半導體材料可以是Si,而第二半導體材料可以是矽鍺。另外,第一半導體材料可以是矽鍺,而第二半導體材料可以是矽。第一半導體材料和第二半導體材料可以有多種組合。在一些實例中,具有較小能隙的半導體材料可具有P型摻質,而具有較大能隙的半導體材 料可具有N型摻質。在一些實例中,具有較大能隙的半導體材料的導電帶邊緣可以比具有較小能隙的半導體材料的導電帶邊緣低。在其它一些實例中,具有較大能隙的半導體材料的價能帶邊緣可以比具有較小能隙的半導體材料的價能帶邊緣低。In one example, the first semiconductor material can be Si and the second semiconductor material can be germanium. Additionally, the first semiconductor material can be germanium and the second semiconductor material can be germanium. The first semiconductor material and the second semiconductor material can be in various combinations. In some examples, a semiconductor material having a smaller energy gap may have a P-type dopant and a semiconductor material having a larger energy gap. The material may have an N-type dopant. In some examples, a conductive strip edge of a semiconductor material having a larger energy gap may be lower than a conductive strip edge of a semiconductor material having a smaller energy gap. In other examples, the valence band edge of a semiconductor material having a larger energy gap may be lower than the valence band edge of a semiconductor material having a smaller energy gap.
第一摻質類型可是P型和N型的其中之一,而第二摻質類型可是P型和N型的其中另一個。在一些實例中,P型摻雜區域由SiGe構成。記憶體元件可包括在汲極區域和源極區域29,以及本體區域22之下的埋入氧化層21。在一個實例中,閘極介電層或閘極氧化(GOX)層23可包括氧化矽(SiOx )。The first dopant type may be one of a P type and an N type, and the second dopant type may be one of a P type and an N type. In some examples, the P-type doped region is composed of SiGe. The memory element can include a buried oxide layer 21 under the drain and source regions 29, and below the body region 22. In one example, gate dielectric or gate oxide (GOX) layer 23 may comprise silicon oxide (SiO x).
在操作記憶體元件時,可根據源極區域和汲極區域29'以及本體區域22的材料使用不同的操作方法。通常,記憶體元件可具有以上所示的結構,如具有設於源極區域'和汲極區域29'之間的本體區域22、位於本體區域22之上的閘極介電層23和位於閘極介電層23之上的閘極24。在一個實例中,操作方法可包括施加汲極電壓和第一閘極電壓,將第一狀態指示信號寫入記憶體元件中;和施加第二閘極電壓並加正向偏壓於本體-汲極接合或本體-源極接合,將第二狀態指示信號寫入記憶體元件中。特別地,施加汲極電壓和第一閘極電壓以寫入第一狀態指示信號,在NMOS元件 的情況下可導致通道電流引發的撞擊游離以將電洞注入到本體區域內,或在PMOS元件的情況下可導致帶對帶穿隧以將電子注入到本體區域內。在一些實例中,儲存於本體區域內的第一狀態指示信號受本體-汲極接合和本體-源極接合的異質接合的約束。操作方法可分別適用於具有源極/汲極區域和本體區域的PMOS和NMOS記憶體元件,其使用或包括摻雜的SiGe,如PMOS中的P-SiGe源極/汲極或NMOS中的P-SiGe本體。Different methods of operation may be used depending on the material of the source region and the drain region 29' and the body region 22 when operating the memory device. In general, the memory device can have the structure shown above, such as having a body region 22 disposed between the source region and the drain region 29', a gate dielectric layer 23 over the body region 22, and a gate. Gate 24 above the dielectric layer 23. In one example, the method of operation can include applying a gate voltage and a first gate voltage to write a first state indicating signal into the memory device; and applying a second gate voltage and applying a forward bias to the body-汲A pole bond or body-source bond, the second state indicating signal is written into the memory component. In particular, a gate voltage and a first gate voltage are applied to write a first state indicating signal at the NMOS device The case may cause the channel current induced impact to free to inject holes into the body region or, in the case of a PMOS device, to cause band-to-band tunneling to inject electrons into the body region. In some examples, the first state indication signal stored in the body region is constrained by a heterojunction of the body-drain junction and the body-source junction. The method of operation can be applied to PMOS and NMOS memory elements having source/drain regions and body regions, respectively, using or including doped SiGe, such as P-SiGe source/drain in PMOS or P in NMOS -SiGe body.
在描述本發明的代表實例時,本說明書以特定順序步驟展示了本發明的方法和/或製程。然而,當方法或製程不依賴於本文所提出的步驟的特定順序時,不應將方法或製程限定於所述的步驟的特定順序。習知此項技藝者應當理解,可採用其它順序的步驟。因此,不應將本說明書所提出的特定順序的步驟理解為對申請專利範圍的限制。另外,不應將針對本發明的方法和/或製程的申請專利範圍限定在所述的執行步驟的順序,且習知此項技藝者可輕易理解,在不脫離本發明之精神和範圍的前提下,可以改變順序。In describing a representative example of the invention, the specification shows the method and/or process of the invention in a particular sequence of steps. However, when a method or process does not rely on a particular order of the steps set forth herein, the method or process should not be limited to the specific order of the steps described. It will be understood by those skilled in the art that other sequential steps may be employed. Therefore, the specific sequence of steps set forth in this specification should not be construed as limiting the scope of the claims. In addition, the scope of the application of the method and/or the process of the present invention should not be limited to the order of the described steps, and it will be readily understood by those skilled in the art without departing from the spirit and scope of the invention. Underneath, you can change the order.
10‧‧‧1T DRAM單元10‧‧‧1T DRAM unit
11‧‧‧源極區域11‧‧‧ source area
12‧‧‧汲極區域12‧‧‧Bungee area
13‧‧‧閘極區域13‧‧‧ gate area
14‧‧‧埋入氧化層14‧‧‧ buried oxide layer
15‧‧‧單元體15‧‧‧unit
21‧‧‧埋入氧化層21‧‧‧ buried oxide layer
22‧‧‧n型矽層22‧‧‧n type layer
22'‧‧‧n型矽層22'‧‧‧n type layer
23‧‧‧閘極氧化層23‧‧‧ gate oxide layer
23'‧‧‧閘極氧化層23'‧‧‧ gate oxide layer
24‧‧‧p+多晶矽層24‧‧‧p+ polysilicon layer
24'‧‧‧p+多晶矽層24'‧‧‧p+ polycrystalline layer
25‧‧‧氧化層25‧‧‧Oxide layer
25'‧‧‧氧化層25'‧‧‧Oxide layer
26‧‧‧氮化矽層26‧‧‧矽 nitride layer
26'‧‧‧氮化矽層26'‧‧‧ nitride layer
27‧‧‧光阻層27‧‧‧Photoresist layer
28‧‧‧側壁間隙壁28‧‧‧ sidewall spacer
29‧‧‧半導體層29‧‧‧Semiconductor layer
29'‧‧‧源極區域和汲極區域29'‧‧‧Source and bungee regions
30‧‧‧NMOS單元30‧‧‧ NMOS unit
31‧‧‧埋入氧化層31‧‧‧ buried oxide layer
32‧‧‧p型SiGe層32‧‧‧p-type SiGe layer
33‧‧‧閘極氧化層33‧‧‧ gate oxide layer
34‧‧‧n+多晶矽層34‧‧‧n+ polysilicon layer
39‧‧‧n型(n+)矽區域39‧‧‧n type (n+)矽 area
圖1A和圖1B是顯示處於不同狀態下的先前技術的 1T DRAM單元的示意圖。1A and 1B are diagrams showing prior art in different states Schematic of a 1T DRAM cell.
圖2A到圖2F是顯示根據本發明的一個實施例的製造1T PMOS單元的方法的示意截面圖。2A through 2F are schematic cross-sectional views showing a method of fabricating a 1T PMOS cell in accordance with one embodiment of the present invention.
圖3是顯示根據本發明的一個實施例的1T NMOS單元的示意截面圖。3 is a schematic cross-sectional view showing a 1T NMOS cell in accordance with an embodiment of the present invention.
圖4A是顯示根據本發明的一個實施例的PMOS單元的帶圖的示意圖,其顯示了提升了資料保存的在本體和源極/汲極區域之間的導電帶邊緣能隙差。4A is a diagram showing a diagram of a PMOS cell in accordance with an embodiment of the present invention showing the difference in edge band gap between the body and the source/drain regions of the data retention.
圖4B是顯示根據本發明的一個實施例的NMOS單元的帶圖的示意圖,其顯示了提升了資料保存的在本體和源極/汲極區域之間的價能帶邊緣能隙差。4B is a diagram showing a diagram of a NMOS cell in accordance with an embodiment of the present invention showing the edge band gap energy gap between the body and the source/drain regions that enhances data conservation.
30‧‧‧NMOS單元30‧‧‧ NMOS unit
31‧‧‧埋入氧化層31‧‧‧ buried oxide layer
32‧‧‧p型SiGe層32‧‧‧p-type SiGe layer
33‧‧‧閘極氧化層33‧‧‧ gate oxide layer
34‧‧‧n+多晶矽層34‧‧‧n+ polysilicon layer
39‧‧‧n型(n+)矽區域39‧‧‧n type (n+)矽 area
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97125603A TWI438891B (en) | 2008-07-07 | 2008-07-07 | Memory devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97125603A TWI438891B (en) | 2008-07-07 | 2008-07-07 | Memory devices |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201003901A TW201003901A (en) | 2010-01-16 |
TWI438891B true TWI438891B (en) | 2014-05-21 |
Family
ID=44825718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97125603A TWI438891B (en) | 2008-07-07 | 2008-07-07 | Memory devices |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI438891B (en) |
-
2008
- 2008-07-07 TW TW97125603A patent/TWI438891B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201003901A (en) | 2010-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11785759B2 (en) | Floating body memory cell having gates favoring different conductivity type regions | |
US7986006B2 (en) | Single transistor memory cell with reduced recombination rates | |
US20090224321A1 (en) | Semiconductor device and method of manufacturing semiconductor device | |
US7238555B2 (en) | Single transistor memory cell with reduced programming voltages | |
JPH08316337A (en) | Semiconductor memory | |
US7132751B2 (en) | Memory cell using silicon carbide | |
US8399326B2 (en) | Method of manufacturing memory devices | |
CN110828459B (en) | Novel DRAM integrated circuit structure | |
Lin et al. | Performances of a capacitorless 1T-DRAM using polycrystalline silicon thin-film transistors with trenched body | |
US8525248B2 (en) | Memory cell comprising a floating body, a channel region, and a diode | |
TWI438891B (en) | Memory devices | |
KR101089659B1 (en) | Memory cell having raised body for storage node and fabrication method of the same | |
US7187000B2 (en) | High performance tunneling-biased MOSFET and a process for its manufacture | |
CN102412204A (en) | Single-transistor DRAM (dynamic random access memory) and preparation method thereof |