TWI421219B - Sedimentation or magnetic separation auxiliary agent using ferrite sludge for treating wastewater and manufacturing method thereof - Google Patents
Sedimentation or magnetic separation auxiliary agent using ferrite sludge for treating wastewater and manufacturing method thereof Download PDFInfo
- Publication number
- TWI421219B TWI421219B TW100110914A TW100110914A TWI421219B TW I421219 B TWI421219 B TW I421219B TW 100110914 A TW100110914 A TW 100110914A TW 100110914 A TW100110914 A TW 100110914A TW I421219 B TWI421219 B TW I421219B
- Authority
- TW
- Taiwan
- Prior art keywords
- ferrite magnet
- auxiliary agent
- sludge
- magnetic separation
- magnet sludge
- Prior art date
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims description 129
- 239000010802 sludge Substances 0.000 title claims description 100
- 239000012752 auxiliary agent Substances 0.000 title claims description 40
- 238000007885 magnetic separation Methods 0.000 title claims description 35
- 238000004062 sedimentation Methods 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000002351 wastewater Substances 0.000 title claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 70
- 230000005291 magnetic effect Effects 0.000 claims description 30
- 238000004065 wastewater treatment Methods 0.000 claims description 30
- 229910001385 heavy metal Inorganic materials 0.000 claims description 29
- 229910052742 iron Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 20
- 230000005484 gravity Effects 0.000 claims description 13
- -1 iron ions Chemical class 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 230000005294 ferromagnetic effect Effects 0.000 claims description 5
- 229910001448 ferrous ion Inorganic materials 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000002699 waste material Substances 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 239000002671 adjuvant Substances 0.000 description 16
- 239000011701 zinc Substances 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 241000894007 species Species 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 238000007922 dissolution test Methods 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 210000003746 feather Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052596 spinel Inorganic materials 0.000 description 4
- 239000011029 spinel Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000000701 coagulant Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910001447 ferric ion Inorganic materials 0.000 description 2
- 235000003891 ferrous sulphate Nutrition 0.000 description 2
- 239000011790 ferrous sulphate Substances 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 239000010814 metallic waste Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Sludge (AREA)
Description
本發明係關於一種鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑及其製造方法;特別是關於一種利用鐵氧磁體程序或鐵磁化法[Ferrite Process,FP]產生之污泥衍生作為廢水處理重力沉降之增重輔助劑或磁性分離之磁種輔助劑,及該輔助劑製造方法。The invention relates to a wastewater treatment sedimentation or magnetic separation auxiliary agent for a ferrite magnet sludge and a manufacturing method thereof; in particular to a sludge derivatization using a ferrite magnet program or a ferrite process (FP) as a wastewater A weighting aid for treating gravity sedimentation or a magnetic separation auxiliary agent for magnetic separation, and a method for producing the auxiliary agent.
一般而言,習用鐵氧磁體污泥無害處理技術,例如:中華民國專利公告第I309230號之〝重金屬污泥鐵氧磁體安定化方法〞發明專利,其揭示一種重金屬污泥鐵氧磁體安定化方法及其相關技術。該鐵氧磁體安定化方法主要係利用重金屬污泥所含大量鐵鹽,以鐵氧磁體高溫合成法[Pyrometallurgy]處理重金屬污泥,控制重金屬污泥中Fe/M莫爾比>3.5,再以700-1100℃持溫進行高溫合成處理;如此,可使鐵氧磁體產物確實安定化,且符毒性特性溶出程序[Toxicity Characteristic Leaching Procedure,TCLP]標準,而可供作為無害之資源化材料。In general, a conventional ferrite magnet sludge treatment technology, for example, the Republic of China Patent Publication No. I309230, a heavy metal sludge ferrite magnet stabilization method, an invention patent, discloses a heavy metal sludge ferrite magnet stabilization method And related technologies. The ferrite magnet stabilization method mainly utilizes a large amount of iron salt contained in heavy metal sludge, and treats heavy metal sludge by ferrite magnet high-temperature synthesis method [Pyrometallurgy] to control Fe/M molar ratio of heavy metal sludge>3.5, and then The high temperature synthesis treatment is carried out at a temperature of 700-1100 ° C; thus, the ferrite magnet product can be stabilized and the Toxicity Characteristic Leaching Procedure (TCLP) standard can be used as a harmless resource material.
另一習用鐵氧磁體污泥無害處理技術,例如:中華民國專利公告第I317350號之〝高濃度含銅廢水資材化處理方法〞發明專利,其揭示一種高濃度含銅廢水資材化處理方法及其相關技術。該廢水資材化處理方法係將高濃度含銅廢水置入鹼性浸漬槽中攪拌,並控制三價鐵離子與銅離子之適當莫耳比及維持溶液在高鹼環境下,進行第一階段礦化反應,待反應完成,再調整二價鐵離子與銅離子具適當之莫耳比並仍維持溶液在高鹼環境下,進行第二階段磁化反應,待磁化反應後,可利用磁性分選進行固液分離;如此,不僅濾液中銅離子濃度可以符合放流水排放標準,且固體物中銅離子溶出濃度也符合TCLP溶出試驗。Another conventional method for harmless treatment of ferrite magnet sludge, for example, the Republic of China Patent Publication No. I317350, a high-concentration copper-containing wastewater materialization treatment method, an invention patent, discloses a high-concentration copper-containing wastewater material processing method and Related technology. The wastewater material processing method is to mix high-concentration copper-containing wastewater into an alkaline dipping tank, and control the appropriate molar ratio of ferric ion and copper ion and maintain the solution in a high alkali environment for the first stage ore. The reaction is completed, and the reaction is completed. The erbium ion and the copper ion are adjusted to have a proper molar ratio and the solution is maintained in a high alkali environment for the second-stage magnetization reaction. After the magnetization reaction, magnetic separation can be performed. Solid-liquid separation; thus, not only the copper ion concentration in the filtrate can meet the discharge water discharge standard, but also the copper ion dissolution concentration in the solid is in accordance with the TCLP dissolution test.
另一習用鐵氧磁體污泥無害處理技術,例如:中華民國專利公開第200503964號之〝電鍍廢水之鐵氧磁體無害化處理技術〞發明專利申請案,其揭示一種電鍍廢水之鐵氧磁體無害化處理方法及其相關技術。該鐵氧磁體無害化處理方法係將電鍍廢水先加入二價鐵鹽,控制關鍵參數r值[中和沈澱濃集過程約二價鐵離子Fe2+ 與廢水中所含重金屬離子之莫耳比值]大於3、添加適量的氫氧化鈉[NaOH],調整pH大於8,以及高分子凝集劑[polymer]2~10ppm,經中和沈澱濃集後,於鹼性環境下再利用鐵氧磁體化法,控制關鍵參數r值大於9,pH值介於8~12,溫度介於50~90℃,攪拌速度介於50~300rpm,曝氣速率為反應槽內曝氣0.75~4 L/min/L之操作條件下,形成鐵氧磁體尖晶石結晶體,將有害重金屬離子一併嵌入鐵氧磁體晶格內,成為安定性鐵氧磁體,不易受外界環境影響而導致有害重金屬成份再溶出,不僅使處理後之電鍍廢水達到放流水排放標準,且所產生之鐵氧磁體產物,透過關鍵參數r值之操作技術,符合毒性溶出試驗標準。Another conventional ferrite magnet sludge treatment technology, for example, the Republic of China Patent Publication No. 200503964, the ferrite magnetization treatment technology of the electroplating wastewater, the invention patent application, which discloses that the ferrite magnet of the electroplating wastewater is harmless. Processing methods and related technologies. The ferrite magnet decontamination treatment method firstly adds electroplating wastewater to the divalent iron salt to control the key parameter r value [the concentration ratio of the divalent iron ion Fe 2+ and the heavy metal ion contained in the wastewater in the neutralization precipitation concentration process) ] more than 3, adding an appropriate amount of sodium hydroxide [NaOH], adjusting the pH to more than 8, and polymer agglutinating agent [polymer] 2 ~ 10ppm, after concentration and concentration, and then using ferrite magnetization in an alkaline environment Method, the control key parameter r value is greater than 9, the pH value is between 8 and 12, the temperature is between 50 and 90 ° C, the stirring speed is between 50 and 300 rpm, and the aeration rate is 0.75 to 4 L/min/gas in the reaction tank. Under the operating conditions of L, a ferrite magnet spinel crystal is formed, and the harmful heavy metal ions are embedded in the ferrite magnet lattice together to become a stable ferrite magnet, which is not easily affected by the external environment and causes harmful heavy metal components to be dissolved again. The treated electroplating wastewater is brought to the discharge water discharge standard, and the ferrite magnet product produced, through the operation technology of the key parameter r value, meets the toxicity dissolution test standard.
另一習用鐵氧磁體污泥無害處理技術,例如:中華民國專利公開第200523218號之〝含鉻污泥之鐵氧磁體無害化處理方法與設備〞發明專利申請案,其揭示一種含鉻污泥之鐵氧磁體無害化處理方法及其相關技術。該鐵氧磁體無害化處理方法係利用濕式冶金技術,將含三價鉻離子之污泥在鹼性環境下將有害重金屬離子嵌入鐵氧磁體晶格內,控制關鍵參數r值[二價鐵離子Fe2+ 與含鉻污泥的重金屬離子之莫耳比值]大於6、起始pH值大於10、溫度介於50~90℃、攪拌速率介於50~300rpm與曝氣速率為反應槽內曝氣0.75~4 L/min/L之操作條件下形成鐵氧磁體尖晶石結晶體,將含鉻污泥中有害重金屬離子嵌入晶格內成為安定性高之鐵氧磁體,所產生鐵氧磁體產物,透過關鍵參數r值之操控技術,符合環保署公告毒性溶出試驗標準,達無害化處理目的;其所產生鐵氧磁體產物符合毒性溶出試驗標準為一般事業廢棄物。Another conventional ferrite magnet sludge treatment technology, for example, the Republic of China Patent Publication No. 200523218, the chrome-containing sludge ferrite magnetization treatment method and equipment 〞 invention patent application, which discloses a chromium-containing sludge The ferromagnetic magnet harmless treatment method and related technologies. The ferrite magnetization treatment method utilizes wet metallurgy technology to embed harmful trimetal ions into the ferrite frame in an alkaline environment under controlled conditions, and control key parameters r value [divalent iron] The molar ratio of ionic Fe 2+ to heavy metal ions of chromium-containing sludge is greater than 6, the initial pH is greater than 10, the temperature is between 50 and 90 ° C, the stirring rate is between 50 and 300 rpm, and the aeration rate is within the reaction tank. The ferrite magnet spinel crystal is formed under the operating conditions of aeration of 0.75~4 L/min/L, and the harmful heavy metal ions in the chromium-containing sludge are embedded in the crystal lattice to become a ferrite magnet with high stability, and the ferrite magnet is produced. The product, through the control technology of the key parameter r value, meets the environmental protection agency's announcement of the toxic dissolution test standard, and achieves the purpose of harmless treatment; the ferrite magnet product produced by the product meets the toxic dissolution test standard as general business waste.
雖然前述中華民國專利公告第I309230號專利、公告第I317350號專利、公開第200503964號專利申請案及公開第200523218號專利申請案已揭示各種相關鐵氧磁體污泥無害處理技術,但前述鐵氧磁體污泥無害處理技術並未採用鐵氧磁體污泥資源化做為廢水處理沉降輔助劑。Although the aforementioned patents of the Republic of China Patent No. I309230, the publication No. I317350, the Patent No. 200503964, and the Patent Application No. 200523218 disclose various related technologies for the treatment of ferrite magnet sludge, the aforementioned ferrite magnets are disclosed. The sludge harmless treatment technology does not use ferrite magnet sludge resource as a wastewater treatment subsidence aid.
因此,習用鐵氧磁體污泥無害處理技術必然存在進一步改採用鐵氧磁體污泥資源化做為廢水處理沉降輔助劑的需求。前述中華民國專利公告第I309230號專利、公告第I317350號專利、公開第200503964號專利申請案及公開第200523218號專利申請案僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。Therefore, the conventional harmless treatment technology of ferrite magnet sludge is inevitably required to further change the utilization of ferrite magnet sludge as a wastewater treatment subsidence aid. The foregoing patents of the Republic of China Patent Publication No. I309230, the Patent No. I317350, the Patent Application No. 200503964, and the Patent Application No. 200523218 are merely references to the technical background of the present invention and the state of the art development is not used. To limit the scope of the invention.
事實上,就習用磁性分離技術而言,一般採用Fe3 O4 做為磁種以磁性分離方式處理廢水,但是無論以物理法或化學法生產磁種,其具有生產磁種成本過高的缺點。另外,就習用以增重膠羽促進沉降之輔助劑而言,一般採用黏土或高嶺土;然而,該黏土或高嶺土的比重約為2.6,其因比重偏低而具有沉降處理時間過長的技術問題。In fact, in the case of magnetic separation technology, Fe 3 O 4 is generally used as a magnetic species to treat wastewater by magnetic separation, but whether it is produced by physical or chemical methods, it has the disadvantage of excessively high cost of producing magnetic species. . In addition, in the case of adjuvants used to increase the weight of rubber feathers to promote settlement, clay or kaolin is generally used; however, the specific gravity of the clay or kaolin is about 2.6, and the technical problem of excessive settlement time is too long due to the low specific gravity. .
有鑑於此,為了滿足上述需求,本發明提供一種鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑及其製造方法,以達成鐵氧磁體污泥資源化之目的。In view of the above, in order to meet the above needs, the present invention provides a wastewater treatment sedimentation or magnetic separation auxiliary agent for ferrite magnet sludge and a method for manufacturing the same, to achieve the purpose of recycling ferrite magnet sludge.
本發明之主要目的係提供一種鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑及其製造方法,其將一鐵氧磁體污泥之重金屬與鐵適當調整至一預定比例,以製成一輔助劑,以達成鐵氧磁體污泥資源化之目的。The main object of the present invention is to provide a wastewater treatment sedimentation or magnetic separation auxiliary agent for a ferrite magnet sludge, and a method for manufacturing the same, which suitably adjusts a heavy metal of a ferrite magnet sludge and iron to a predetermined ratio to form a Auxiliary agent to achieve the purpose of recycling ferrite magnet sludge.
為了達成上述目的,本發明之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑包含:鐵氧磁體污泥,其由廢水鐵氧磁體程序反應產生;重金屬,其為重金屬離子,且該重金屬離子含於該鐵氧磁體污泥內;及鐵,其為鐵離子或亞鐵離子,且該鐵離子或亞鐵離子含於該鐵氧磁體污泥內;其中將該鐵氧磁體污泥之重金屬與鐵調整至一預定比例,以製成一輔助劑成品。In order to achieve the above object, the wastewater treatment sedimentation or magnetic separation aid of the ferrite magnet sludge of the present invention comprises: ferrite magnet sludge which is produced by a reaction of a waste ferromagnetic magnet program; heavy metal which is a heavy metal ion, and the heavy metal An ion is contained in the ferrite magnet sludge; and iron is an iron ion or a ferrous ion, and the iron ion or ferrous ion is contained in the ferrite magnet sludge; wherein the ferrite magnet sludge is The heavy metal and iron are adjusted to a predetermined ratio to form a finished auxiliary product.
本發明較佳實施例之該輔助劑為一重力型輔助劑或一磁力型輔助劑。In the preferred embodiment of the invention, the auxiliary agent is a gravity type auxiliary agent or a magnetic type auxiliary agent.
本發明較佳實施例之該輔助劑為一泥漿型輔助劑或一乾粉型輔助劑。In the preferred embodiment of the invention, the adjuvant is a slurry type adjuvant or a dry powder type adjuvant.
本發明較佳實施例之該輔助劑為一壓密磁種或一分離磁種。In the preferred embodiment of the invention, the auxiliary agent is a compact magnetic species or a separate magnetic species.
另外,本發明之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑製造方法包含:由廢水鐵氧磁體程序反應產生鐵氧磁體污泥,且該鐵氧磁體污泥含有鐵氧磁體顆粒;淘洗該鐵氧磁體污泥;濃縮該鐵氧磁體污泥;磁選該鐵氧磁體污泥;乾燥該鐵氧磁體污泥。In addition, the method for manufacturing a wastewater treatment sedimentation or magnetic separation auxiliary agent for a ferrite magnet sludge of the present invention comprises: generating a ferrite magnet sludge by a waste ferromagnetic magnet program reaction, and the ferrite magnet sludge contains ferrite magnet particles; The ferrite magnet sludge is panned; the ferrite magnet sludge is concentrated; the ferrite magnet sludge is magnetically selected; and the ferrite magnet sludge is dried.
本發明較佳實施例利用控制鐵離子或亞鐵離子的添加量,將該鐵氧磁體污泥之重金屬與鐵調整至一預定比例。In a preferred embodiment of the invention, the heavy metal and iron of the ferrite magnet sludge are adjusted to a predetermined ratio by controlling the addition amount of iron ions or ferrous ions.
本發明較佳實施例在淘洗該鐵氧磁體污泥時,以水或酸清洗該鐵氧磁體顆粒。In a preferred embodiment of the invention, the ferrite magnet particles are washed with water or acid during the elution of the ferrite magnet sludge.
本發明較佳實施例在濃縮該鐵氧磁體污泥時,以重力或磁力作用於該鐵氧磁體污泥。In a preferred embodiment of the present invention, the ferrite magnet sludge is applied by gravity or magnetic force when the ferrite magnet sludge is concentrated.
本發明較佳實施例在磁選該鐵氧磁體污泥時,以磁力區別分選該鐵氧磁體顆粒之不同磁性質。In the preferred embodiment of the present invention, when the ferrite magnet sludge is magnetically selected, different magnetic properties of the ferrite magnet particles are distinguished by magnetic force.
為了充分瞭解本發明,於下文將例舉較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。In order to fully understand the present invention, the preferred embodiments of the present invention are described in detail below and are not intended to limit the invention.
本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑及其製造方法適用於各種廢水處理方法,例如:沉降法或磁性分離法,但其並非用以限定本發明之範圍。另外,本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑及其製造方法可應用於化學材料製造業、化學製品製造業、皮革、毛皮及其製品製造業、紙漿、紙及紙製品製造業、基本金屬製造業、金屬製品製造業、印刷電路板製造業及晶圓製造業,但其並非用以限定本發明之範圍。The wastewater treatment sedimentation or magnetic separation auxiliary agent of the ferrite magnet sludge of the preferred embodiment of the present invention and the manufacturing method thereof are applicable to various wastewater treatment methods, such as sedimentation method or magnetic separation method, but it is not intended to limit the present invention. range. In addition, the wastewater treatment sedimentation or magnetic separation auxiliary agent of the ferrite magnet sludge of the preferred embodiment of the present invention and the manufacturing method thereof can be applied to chemical material manufacturing, chemical product manufacturing, leather, fur and its products manufacturing, pulp , paper and paper products manufacturing, basic metal manufacturing, metal products manufacturing, printed circuit board manufacturing and wafer manufacturing, but are not intended to limit the scope of the invention.
第1圖揭示本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑製造方法之流程圖。請參照第1圖所示,本發明較佳實施例之第一步驟S1:由含重金屬廢水或廢液進行鐵氧磁體程序反應後,產生鐵氧磁體污泥,且該鐵氧磁體污泥含有鐵氧磁體顆粒[Ferrite particles]。舉例而言,該鐵氧磁體污泥含重金屬[例如:鋅]及鐵[或亞鐵],且將該鐵氧磁體污泥之重金屬與鐵[M/Fe]調整至一預定比例[例如:Zn/Fe莫耳比]。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart showing a method for producing a wastewater treatment sedimentation or magnetic separation aid for ferrite magnet sludge in accordance with a preferred embodiment of the present invention. Referring to FIG. 1 , a first step S1 of a preferred embodiment of the present invention: after a ferrite magnet process is carried out by containing a heavy metal waste water or a waste liquid, a ferrite magnet sludge is produced, and the ferrite magnet sludge is contained. Ferrite particles [Ferrite particles]. For example, the ferrite magnet sludge contains heavy metals [eg, zinc] and iron [or ferrous], and the heavy metal of the ferrite magnet sludge and iron [M/Fe] are adjusted to a predetermined ratio [eg: Zn/Fe molar ratio].
舉例而言,在鐵氧磁體程序反應中,控制硫酸亞鐵[FeSO4 ]或鐵離子[例如:二價鐵離子或三價鐵離子]的添加量,以提供鐵氧磁體形成所需的足夠鐵離子,以便控制鐵氧磁體污泥之重金屬含量。此外,本發明較佳實施例之該輔助劑為一泥漿型[slurry]輔助劑或一乾粉型[dry]輔助劑。For example, in a ferrite magnet program reaction, the addition amount of ferrous sulfate [FeSO 4 ] or iron ions [eg, divalent iron ions or ferric ions] is controlled to provide sufficient ferrite magnet formation. Iron ions to control the heavy metal content of the ferrite magnet sludge. Further, the adjuvant of the preferred embodiment of the present invention is a slurry type adjuvant or a dry powder adjuvant.
本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑具有相對大比重[例如:約5.2]、適當顆粒直徑[例如:約40至150 nm]、堅固晶體結構[例如:尖晶石晶體[spinel crystal]]、抗酸能力強[約<pH 2.5]的特點。本發明較佳實施例之該輔助劑為一重力型輔助劑或一磁力型輔助劑。The wastewater treatment sedimentation or magnetic separation aid of the ferrite magnet sludge of the preferred embodiment of the present invention has a relatively large specific gravity [e.g., about 5.2], a suitable particle diameter [e.g., about 40 to 150 nm], a solid crystal structure [e.g. : Spinel crystal [spinel crystal]], strong acid resistance [about <pH 2.5]. In the preferred embodiment of the invention, the auxiliary agent is a gravity type auxiliary agent or a magnetic type auxiliary agent.
舉例而言,以鐵氧磁體程序處理鍍鉻廢水,可產製一重力型輔助劑或一磁力型輔助劑。在產製重力型輔助劑時,重金屬與鐵之比例[M/Fe]為1:5,其pH值為8,其反應溫度為80℃。相對的,在產製磁力型輔助劑時,重金屬與鐵之比例[M/Fe]為1:10,其pH值為8,其反應溫度為80℃。此時,鍍鉻廢水處理後,不但該廢水已符合放流水標準,且其鐵氧磁體污泥亦可通過毒性特性溶出程序[TCLP]管制限值。For example, a chrome-plated wastewater can be produced by a ferrite magnet process to produce a gravity-type adjuvant or a magnetic-type adjuvant. In the production of gravity-type adjuvants, the ratio of heavy metal to iron [M/Fe] is 1:5, the pH is 8, and the reaction temperature is 80 °C. In contrast, in the production of a magnetic auxiliary, the ratio of heavy metal to iron [M/Fe] is 1:10, the pH is 8, and the reaction temperature is 80 °C. At this time, after the chrome-plated wastewater treatment, not only the wastewater has met the discharge water standard, but also the ferrite magnet sludge can pass the toxic characteristic dissolution program [TCLP] regulatory limit.
請再參照第1圖所示,本發明較佳實施例之第二步驟S2:淘洗該鐵氧磁體污泥,其較佳以水或酸[例如:以pH 3至5之酸液浸漬]清洗該鐵氧磁體顆粒,以便洗除吸附在鐵氧磁體顆粒表面上不利於該鐵氧磁體品質之物質。本發明較佳實施例可進行攪拌30分鐘[例如:以攪拌速率200 rpm]。本發明另一較佳實施例可在省略第二步驟S2下仍可製得該輔助劑。Referring to FIG. 1 again, a second step S2 of the preferred embodiment of the present invention: panning the ferrite magnet sludge, which is preferably water or acid [eg, impregnated with an acid solution having a pH of 3 to 5] The ferrite magnet particles are washed to wash away substances adsorbed on the surface of the ferrite magnet particles which are detrimental to the quality of the ferrite magnet. The preferred embodiment of the invention can be stirred for 30 minutes [e.g., at a stirring rate of 200 rpm]. Another preferred embodiment of the present invention can still produce the adjuvant under the second step S2.
請再參照第1圖所示,本發明較佳實施例之第三步驟S3:濃縮該鐵氧磁體污泥,其較佳以重力或磁力作用於該鐵氧磁體污泥。就磁力型輔助劑而言,其為具有高磁化率的磁種,因此其適用於快速壓密其污泥體積,以改善污泥膨鬆的問題。一般而言,該鐵氧磁體污泥含鐵之比例越高則飽和磁化率越高。因此,本發明較佳實施例之該輔助劑為一壓密磁種或一分離磁種。本發明另一較佳實施例可在省略第三步驟S3下仍可製得該輔助劑。Referring to FIG. 1 again, a third step S3 of the preferred embodiment of the present invention: concentrating the ferrite magnet sludge, which preferably acts on the ferrite magnet sludge by gravity or magnetic force. In the case of a magnetic type adjuvant, it is a magnetic species having a high magnetic susceptibility, so it is suitable for rapidly compacting its sludge volume to improve the problem of sludge bulkiness. In general, the higher the proportion of iron in the ferrite magnet sludge, the higher the saturation magnetic susceptibility. Therefore, in the preferred embodiment of the present invention, the auxiliary agent is a compact magnetic species or a separate magnetic species. Another preferred embodiment of the present invention can still produce the adjuvant while omitting the third step S3.
請再參照第1圖所示,本發明較佳實施例之第四步驟S4:磁選該鐵氧磁體污泥,其較佳以磁力區別分選該鐵氧磁體顆粒之不同磁性質。本發明另一較佳實施例可在省略第四步驟S4下仍可製得該輔助劑。Referring to FIG. 1 again, a fourth step S4 of the preferred embodiment of the present invention: magnetically selecting the ferrite magnet sludge, which preferably separates the different magnetic properties of the ferrite magnet particles by magnetic force. Another preferred embodiment of the present invention can still produce the adjuvant while omitting the fourth step S4.
請再參照第1圖所示,本發明較佳實施例之第五步驟S5:乾燥該鐵氧磁體污泥,其較佳去除該鐵氧磁體污泥之水分,以製得乾粉型輔助劑。本發明另一較佳實施例可在省略第五步驟S5下仍可製得該輔助劑。Referring to FIG. 1 again, a fifth step S5 of the preferred embodiment of the present invention: drying the ferrite magnet sludge, preferably removing the moisture of the ferrite magnet sludge to obtain a dry powder type adjuvant. Another preferred embodiment of the present invention can still produce the adjuvant while omitting the fifth step S5.
本發明較佳實施例添加該輔助劑之外,再利用混凝劑中和電位並吸附架橋,使污染物質與鐵氧磁體微粒形成高比重之膠羽,因而達成加速沉降、減少污泥體積、增加可排放比例的目的。或者,再利用混凝劑中和電位並吸附架橋,使污染物質與鐵氧磁體微粒形成具有磁性之膠羽,並利用電磁鐵或永久磁鐵加以吸引,因而達成加速沉降、減少污泥體積、增加可排放比例的目的。或者,再利用混凝劑中和電位並吸附架橋,使污染物質與鐵氧磁體微粒形成具有磁性之膠羽,並利用高梯度磁力分離器進行固液分離,而達成快速分離的目的。該混凝劑可選自高分子凝集劑、聚氯化鋁[PAC]、硫酸鋁[明礬]、硫酸亞鐵、氯化亞鐵、硫酸鐵、氯化鐵等。In addition to the auxiliary agent, the coagulating agent neutralizes the potential and adsorbs the bridge, so that the pollutants and the ferrite magnet particles form a high specific gravity rubber feather, thereby achieving accelerated settlement and reducing sludge volume. Increase the rate of discharge. Or, the coagulant neutralizes the potential and adsorbs the bridge, so that the pollutants and the ferrite magnet particles form a magnetic rubber feather, and are attracted by an electromagnet or a permanent magnet, thereby achieving accelerated sedimentation, reducing sludge volume, and increasing The purpose of the discharge ratio. Alternatively, the coagulation agent is used to neutralize the potential and adsorb the bridge, so that the pollutants and the ferrite magnet particles form a magnetic rubber feather, and the high-gradient magnetic separator is used for solid-liquid separation to achieve rapid separation. The coagulant may be selected from the group consisting of a polymer aggregating agent, polyaluminum chloride [PAC], aluminum sulfate [alum], ferrous sulfate, ferrous chloride, iron sulfate, ferric chloride, and the like.
舉例而言,第2圖揭示本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑以不同Zn/Fe比例生成Znx Fe3-x O4 之X射線繞射[XRD]曲線圖。請參照第2圖所示,本發明較佳實施例以XRD分析不同Zn/Fe莫耳比[Zn/Fe=1/2.5、1/5及1/10]之鐵氧磁體污泥進行晶體結構鑑定結果,如第2圖所示。For example, FIG. 2 discloses X-ray diffraction of Zn x Fe 3-x O 4 generated by a wastewater treatment sedimentation or magnetic separation aid of a ferrite magnet sludge according to a preferred embodiment of the present invention at different Zn/Fe ratios [ XRD] graph. Referring to FIG. 2, the preferred embodiment of the present invention analyzes the crystal structure of ferrite magnets with different Zn/Fe molar ratios [Zn/Fe=1/2.5, 1/5, and 1/10] by XRD. The results of the identification are shown in Figure 2.
舉例而言,第3圖揭示本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑以不同Zn/Fe比例生成Znx Fe3-x O4 之飽和磁化率曲線圖。請參照第3圖所示,本發明較佳實施例利用超導量子干涉儀〔SQUID〕儀器量測不同Zn/Fe莫耳比〔Zn/Fe=1/2.5、1/5及1/10〕之鐵氧磁體污泥之飽和磁化率,可藉由飽和磁化率挑選磁種,如第3圖所示。For example, FIG. 3 is a graph showing the saturation magnetic susceptibility of Zn x Fe 3-x O 4 produced by different processes of Zn/Fe in wastewater treatment sedimentation or magnetic separation aid of ferrite magnet sludge according to a preferred embodiment of the present invention. . Referring to FIG. 3, a preferred embodiment of the present invention uses a superconducting quantum interferometer (SQUID) instrument to measure different Zn/Fe molar ratios [Zn/Fe=1/2.5, 1/5, and 1/10]. The saturation magnetic susceptibility of the ferrite magnet sludge can be selected by the saturation susceptibility, as shown in Fig. 3.
舉例而言,第4圖揭示本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑以Zn/Fe=1/10比例生成Znx Fe3-x O4 之掃描式電子顯微鏡〔SEM〕照片。請參照第4圖所示,本發明較佳實施例之鐵氧磁體污泥以掃描式電子顯微鏡〔SEM〕分析顯示其粒徑分佈在約在40nm至150nm之間。For example, FIG. 4 discloses a scanning type of Zn x Fe 3-x O 4 generated by a wastewater treatment sedimentation or magnetic separation aid of a ferrite magnet sludge according to a preferred embodiment of the present invention in a ratio of Zn/Fe=1/10. Electron microscopy (SEM) photograph. Referring to Fig. 4, the ferrite magnet sludge of the preferred embodiment of the present invention has a particle size distribution of about 40 nm to 150 nm as analyzed by scanning electron microscopy (SEM).
前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。The foregoing preferred embodiments are merely illustrative of the invention and the technical features thereof, and the techniques of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives; therefore, the scope of the invention is subject to the appended claims. The scope defined by the scope shall prevail.
S1‧‧‧第一步驟S1‧‧‧ first step
S2‧‧‧第二步驟S2‧‧‧ second step
S3‧‧‧第三步驟S3‧‧‧ third step
S4‧‧‧第四步驟S4‧‧‧ fourth step
S5‧‧‧第五步驟S5‧‧‧ fifth step
第1圖:本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑製造方法之流程圖。Fig. 1 is a flow chart showing a method for producing a wastewater treatment sedimentation or magnetic separation auxiliary agent for a ferrite magnet sludge according to a preferred embodiment of the present invention.
第2圖:本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑以不同Zn/Fe比例生成Znx Fe3-x O4 之X射線繞射曲線圖。Fig. 2 is a graph showing the X-ray diffraction of Zn x Fe 3-x O 4 produced by a wastewater treatment sedimentation or magnetic separation aid of a ferrite magnet sludge according to a preferred embodiment of the present invention.
第3圖:本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑以不同Zn/Fe比例生成Znx Fe3-x O4 之飽和磁化率曲線圖。Fig. 3 is a graph showing the saturation magnetic susceptibility of Zn x Fe 3-x O 4 produced by a wastewater treatment sedimentation or magnetic separation aid of a ferrite magnet sludge according to a preferred embodiment of the present invention.
第4圖:本發明較佳實施例之鐵氧磁體污泥之廢水處理沉降或磁性分離輔助劑以Zn/Fe=1/10比例生成Znx Fe3-x O4 之掃描式電子顯微鏡照片。Fig. 4 is a scanning electron micrograph of Zn x Fe 3-x O 4 produced by a wastewater treatment sedimentation or magnetic separation aid of a ferrite magnet sludge according to a preferred embodiment of the present invention in a ratio of Zn/Fe = 1/10.
S1...第一步驟S1. . . First step
S2...第二步驟S2. . . Second step
S3...第三步驟S3. . . Third step
S4...第四步驟S4. . . Fourth step
S5...第五步驟S5. . . Fifth step
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100110914A TWI421219B (en) | 2011-03-30 | 2011-03-30 | Sedimentation or magnetic separation auxiliary agent using ferrite sludge for treating wastewater and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100110914A TWI421219B (en) | 2011-03-30 | 2011-03-30 | Sedimentation or magnetic separation auxiliary agent using ferrite sludge for treating wastewater and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201238913A TW201238913A (en) | 2012-10-01 |
TWI421219B true TWI421219B (en) | 2014-01-01 |
Family
ID=47599386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100110914A TWI421219B (en) | 2011-03-30 | 2011-03-30 | Sedimentation or magnetic separation auxiliary agent using ferrite sludge for treating wastewater and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI421219B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW258755B (en) * | 1995-03-30 | 1995-10-01 | Ind Tech Res Inst | Process of fume stabilization for stainless steel converter |
TW200626502A (en) * | 2005-01-20 | 2006-08-01 | Univ Nat Cheng Kung | Absorbent for treating hydrogen sulfide in gasified gas |
-
2011
- 2011-03-30 TW TW100110914A patent/TWI421219B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW258755B (en) * | 1995-03-30 | 1995-10-01 | Ind Tech Res Inst | Process of fume stabilization for stainless steel converter |
TW200626502A (en) * | 2005-01-20 | 2006-08-01 | Univ Nat Cheng Kung | Absorbent for treating hydrogen sulfide in gasified gas |
Non-Patent Citations (1)
Title |
---|
陳文濬," 重金屬污泥之鐵氧磁體化處理回收有價金屬及製備廢水吸附劑之基礎研究",國立東華大學,材料科學與工程研究所,碩士論文,2009年7月 * |
Also Published As
Publication number | Publication date |
---|---|
TW201238913A (en) | 2012-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghasemi et al. | Superparamagnetic Fe3O4@ EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from water and soil environmental samples | |
CN102989420B (en) | Sulfonylation graphene oxide magnetic adsorbent, and preparation method and application thereof | |
CN102001734B (en) | Heavy metal settling agent for treating mercury-containing wastewater | |
Liu et al. | Synthesis and Characterization of Nanostructured Fe3O4 Micron‐Spheres and Their Application in Removing Toxic Cr Ions from Polluted Water | |
Li et al. | Phosphate removal from industrial wastewater through in-situ Fe2+ oxidation induced homogenous precipitation: Different oxidation approaches at wide-ranged pH | |
CN103506065B (en) | A kind of Magnetic heavy metal adsorbent with casing-core structure and preparation method thereof | |
CN111001396B (en) | Magnetic citric acid modified chitosan microsphere and preparation method and application thereof | |
CN105536703A (en) | Preparation method for magnetic biological carbon by one-step synthesis | |
Guan et al. | Remediation of chromium (III)-contaminated tannery effluents by using gallic acid-conjugated magnetite nanoparticles | |
JP5674952B2 (en) | Magnetite-bernite mixture, synthesis method thereof and water treatment method | |
Guan et al. | A magnetically-separable Fe 3 O 4 nanoparticle surface grafted with polyacrylic acid for chromium (III) removal from tannery effluents | |
JPWO2008023853A1 (en) | Magnetic chemical absorbent, production method thereof, regeneration method thereof, and waste liquid treatment method | |
Wang et al. | Highly efficient As (V)/Sb (V) removal by magnetic sludge composite: synthesis, characterization, equilibrium, and mechanism studies | |
Yue et al. | Cr (III) and Fe (II) recovery from the polymetallic leach solution of electroplating sludge by Cr (III)-Fe (III) coprecipitation on maghemite | |
Yang et al. | Recovery of iron from iron-rich pickling sludge for preparing P-doped polyferric chloride coagulant | |
CN110252254A (en) | A modified hydrotalcite-like substance with strong adsorption to cadmium ions and its application | |
JP4861718B2 (en) | Treatment of processing object containing heavy metal component and method for recovering heavy metal component from the processing object | |
Ahmed et al. | Characterization and application of synthesized calcium alginate-graphene oxide for the removal of Cr3+, Cu2+ and Cd2+ ions from tannery effluents | |
CN104438288B (en) | A method for stabilizing and separating arsenic in arsenic-containing waste | |
CN103332773B (en) | A method for removing mercury in waste water | |
Zhao et al. | Weak magnetic field enhances the activation of peroxymonosulfate by ZnO@ Fe 3 O 4 | |
Ma et al. | Effect of iron oxide nanocluster on enhanced removal of molybdate from surface water and pilot scale test | |
CN106345422A (en) | Preparation method of magnetic nanoparticle modified activated sludge adsorbing agent | |
TWI421219B (en) | Sedimentation or magnetic separation auxiliary agent using ferrite sludge for treating wastewater and manufacturing method thereof | |
TWI534099B (en) | Sedimentation or magnetic separation auxiliary agent using ferrite sludge for treating wastewater, use and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |