TWI416071B - System and method for controlling a biped robot through a mobile phone - Google Patents
System and method for controlling a biped robot through a mobile phone Download PDFInfo
- Publication number
- TWI416071B TWI416071B TW97121159A TW97121159A TWI416071B TW I416071 B TWI416071 B TW I416071B TW 97121159 A TW97121159 A TW 97121159A TW 97121159 A TW97121159 A TW 97121159A TW I416071 B TWI416071 B TW I416071B
- Authority
- TW
- Taiwan
- Prior art keywords
- foot
- biped robot
- map
- robot
- mobile phone
- Prior art date
Links
Landscapes
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
本發明涉及一種利用手機控制兩足式機器人的系統及方法。 The present invention relates to a system and method for controlling a biped robot using a mobile phone.
機器人是指能自動執行任務的人造機器裝置。機器人可接受人類指揮,執行預先編排的程式,也可以根據人工智慧技術制定的原則綱領行動。機器人執行的是取代或協助人類工作,例如製造業、建築業,或是危險的工作。 A robot is an artificial machine that can perform tasks automatically. The robot can accept human command, execute pre-programmed programs, or act on principles outlined by artificial intelligence techniques. Robots perform actions that replace or assist humans, such as manufacturing, construction, or dangerous work.
對於機器人來說,其行走路徑規劃是機器人領域的技術人員首要關心的問題。特別是,準確地沿一個預定路徑行走,以及平穩和可靠地實現直線和曲線路徑之間的過渡是機器人必須具有的能力。目前,人類已經開發出了兩種類型的行走機器人,即用輪子滾動行走的輪式機器人和用足行走的兩足式機器人。對於輪式機器人,其行走裝置比較簡單、經濟且較易控制。因此,目前廣泛使用的仍然是輪式機器人。對於兩足式機器人,目前的行走方式只能在平地上行走,對於崎嶇不平的地面,很容易使兩足式機器人摔跤。而且對於目前的機器人,由於控制信號的限制,只能在近距離進行控制。 For robots, their path planning is a primary concern for technicians in the robotics field. In particular, accurately walking along a predetermined path and smoothly and reliably achieving a transition between straight and curved paths is a capability that the robot must have. At present, humans have developed two types of walking robots, namely a wheeled robot that uses wheels to walk and a two-legged robot that walks with feet. For wheeled robots, the walking device is relatively simple, economical and easy to control. Therefore, wheeled robots are still widely used at present. For the two-legged robot, the current walking mode can only walk on the flat ground. For the rugged ground, it is easy for the two-legged robot to wrestle. Moreover, for current robots, control can only be performed at close range due to the limitation of the control signal.
鑒於以上內容,有必要提供一種利用手機控制兩足式機器人的系統及方法,其可穩定的控制兩足式機器人行走,並可進行遠距離控制。 In view of the above, it is necessary to provide a system and method for controlling a two-legged robot using a mobile phone, which can stably control the walking of a two-legged robot and can perform remote control.
一種利用手機控制兩足式機器人的系統,該手機包括全球定位系統,該系統包括:獲取模組,用於獲取兩足式機器人行走路線的全程地圖,以及透過全球定位系統獲取兩足式機器人在所述之全程地圖上的當前位置;設置模組,用於在所述之全程地圖上設置兩足式機器人行走的目的地位置;計算模組,用於根據所述之全程地圖計算從當前位置行走至目的地位置的最佳行走路徑,以及根據該最佳行走路徑計算兩足式機器人應踩下的所有腳掌位置;及控制模組,用於控制兩足式機器人走向尚未踏下的腳掌位置,直至走至目的地位置為止。 A system for controlling a biped robot using a mobile phone, the mobile phone comprising a global positioning system, the system comprising: an acquisition module for acquiring a full map of a biped robot walking route, and acquiring a biped robot through a global positioning system a current location on the map of the whole process; a setting module, configured to set a destination location of the biped robot walking on the whole map, and a calculation module, configured to calculate a current location from the entire map according to the map The best walking path to the destination location, and calculate the position of all the feet that the biped robot should step on according to the optimal walking path; and the control module for controlling the position of the biped robot to the foot that has not yet been stepped down Until you reach the destination.
一種利用手機控制兩足式機器人的方法,該方法包括如下步驟:獲取兩足式機器人行走路線的全程地圖:透過手機內的全球定位系統獲取兩足式機器人在所述之全程地圖上的當前位置;在所述之全程地圖上設置兩足式機器人行走的目的地位置;根據所述之全程地圖計算從當前位置行走至目的地位置的最佳行走路徑;根據該最佳行走路徑計算兩足式機器人應踩下的所有腳掌位置;及控制兩足式機器人走向尚未踏下的腳掌位置,直至走至目的地位置為止。 A method for controlling a biped robot by using a mobile phone, the method comprising the steps of: obtaining a full map of a biped robot walking route: obtaining a current position of the biped robot on the entire map through a global positioning system in the mobile phone Setting a destination position of the biped robot walking on the whole map; calculating an optimal walking path from the current position to the destination position according to the whole map; calculating a biped according to the optimal walking path All the foot positions that the robot should step on; and control the biped robot to the position of the foot that has not been stepped down until it reaches the destination position.
相較於習知技術,所述之利用手機控制兩足式機器人的系統及方法利用手機內建的全球定位系統來穩定的控制兩足式機器人行走,並可在遠端工作站利用手機無線通訊網絡控制該兩足式機器人 。 Compared with the prior art, the system and method for controlling a biped robot by using a mobile phone utilizes a built-in global positioning system of the mobile phone to stably control the walking of the biped robot, and can utilize the mobile wireless communication network at the remote workstation. Control the biped robot .
1‧‧‧兩足式機器人 1‧‧‧Two-legged robot
2‧‧‧網路 2‧‧‧Network
3‧‧‧遠端工作站 3‧‧‧ Remote workstation
11‧‧‧手持 11‧‧‧Handheld
120‧‧‧全球定位系統 120‧‧‧Global Positioning System
130‧‧‧拍照設備 130‧‧‧Photographing equipment
111‧‧‧獲取模組 111‧‧‧Getting module
112‧‧‧處理模組 112‧‧‧Processing module
113‧‧‧設置模組 113‧‧‧Setup module
114‧‧‧計算模組 114‧‧‧Computation Module
115‧‧‧拍攝模組 115‧‧‧ Shooting module
116‧‧‧控制模組 116‧‧‧Control Module
117‧‧‧判斷模組 117‧‧‧Judgement module
118‧‧‧求救模組 118‧‧‧Help Module
S11‧‧‧獲取兩足式機器人行走路線的全程地圖 S11‧‧‧Get the full map of the biped robot walking route
S12‧‧‧對所獲取的全程地圖進行影像數位處理 S12‧‧‧Image digital processing of the acquired map
S13‧‧‧獲取兩足式機器人的當前位置 S13‧‧‧Get the current position of the biped robot
S14‧‧‧設置兩足式機器人行走的目的地位置 S14‧‧‧Set the destination location for the biped robot to walk
S15‧‧‧計算從當前位置行走至目的地位置的最佳行走路徑 S15‧‧‧ Calculate the best walking path from the current position to the destination location
S16‧‧‧計算兩足式機器人應踩下的所有腳掌位置 S16‧‧‧ Calculate all foot positions that the biped robot should step on
S17‧‧‧拍攝兩足式機器人尚未踏下的下一步腳掌位置的地形圖 S17‧‧‧Topographical map of the next foot position where the biped robot has not yet stepped down
S18‧‧‧對該下一步腳掌位置的地形圖進行影像數位處理 S18‧‧‧Image digital processing of the topographic map of the next foot position
S19‧‧‧計算出兩足式機器人下一步腳掌應踩下的角度 S19‧‧‧ Calculate the angle at which the foot of the biped robot should be stepped on
S20‧‧‧控制兩足式機器人走至下一步腳掌位置 S20‧‧‧Control the two-legged robot to the next foot position
S21‧‧‧是否成功走至下一步腳掌位置 S21‧‧‧Is it successful to go to the next foot position?
S22‧‧‧是否走至目的地位置 S22‧‧‧Whether to go to the destination
S23‧‧‧發出求救信號至遠端工作站求救 S23‧‧‧ sent a distress signal to the remote workstation for help
圖1係本發明利用手機控制兩足式機器人的系統的較佳實施例的系統架構圖。 1 is a system architecture diagram of a preferred embodiment of a system for controlling a biped robot using a handset.
圖2係圖1中手機的功能模組圖。 Figure 2 is a functional block diagram of the mobile phone of Figure 1.
圖3係本發明利用手機控制兩足式機器人的方法較佳實施例的流程圖。 3 is a flow chart of a preferred embodiment of a method for controlling a biped robot using a mobile phone according to the present invention.
圖4係經過處理後的全程地圖的示意圖。 Figure 4 is a schematic diagram of the processed full map.
圖5係全程地圖中當前位置與目的地位置的示意圖。 Figure 5 is a schematic diagram of the current location and destination location in the full map.
圖6係最佳行走路徑的示意圖。 Figure 6 is a schematic illustration of the optimal walking path.
如圖1所示,係本發明利用手機控制兩足式機器人的系統的較佳實施例的系統架構圖。該系統架構包括有兩足式機器人1,網路2及遠端工作站3。所述之兩足式機器人1身上裝置有手機11。該手機11透過網路2與遠端工作站3進行互聯。使用者可以在遠端工作站3上透過網路2控制手機11,進而控制兩足式機器人1的行走,並透過該手機11獲取兩足式機器人1所探測到的資訊,比如現場影像、照片或聲音等。 1 is a system architecture diagram of a preferred embodiment of a system for controlling a biped robot using a handset. The system architecture includes a two-legged robot 1, a network 2 and a remote workstation 3. The two-legged robot 1 is equipped with a mobile phone 11 on its body. The handset 11 is interconnected with the remote workstation 3 via the network 2. The user can control the mobile phone 11 through the network 2 on the remote workstation 3, thereby controlling the walking of the biped robot 1, and acquiring information detected by the biped robot 1 through the mobile phone 11, such as live images, photos or Sound, etc.
所述之網路2是一種手機無線通訊網絡,比如全球移動通信系統(global system for mobile communication,GSM)網路或碼分多址(code division multiple access,CDMA)網路。 The network 2 is a mobile phone wireless communication network, such as a global system for mobile communication (GSM) network or a code division multiple access (CDMA) network.
所述之遠端工作站3可以是任何能與手機11進行無線通訊的設備,包括手機、電腦、個人數位助理(personal digital assistant,PDA)等。 The remote workstation 3 can be any device capable of wirelessly communicating with the mobile phone 11, including a mobile phone, a computer, a personal digital assistant (PDA), and the like.
如圖2所示,係圖1中手機的功能模組圖。所述之手機11包括有全球定位系統(global position system,GPS)120和拍照設備130。所述之GPS系統120用於對兩足式機器人1進行定位,獲取兩足式機器人1的當前位置。所述之拍照設備130用於拍攝兩足式機器人1的行走路徑的地形。在本較佳實施例中,所述之拍照設備130也可以是兩足式機器人1自帶的拍照設備。 As shown in FIG. 2, it is a functional module diagram of the mobile phone in FIG. The mobile phone 11 includes a global position system (GPS) 120 and a photographing device 130. The GPS system 120 is used to locate the biped robot 1 to obtain the current position of the biped robot 1. The photographing device 130 is used to photograph the terrain of the walking path of the bipedal robot 1. In the preferred embodiment, the photographing device 130 can also be a photographing device that is provided by the two-legged robot 1 .
所述之手機11還包括獲取模組111、處理模組112、設置模組113、計算模組114、拍攝模組115、控制模組116、判斷模組117及求救模組118。 The mobile phone 11 further includes an acquisition module 111, a processing module 112, a setting module 113, a computing module 114, a shooting module 115, a control module 116, a determining module 117, and a help module 118.
所述之獲取模組111,用於獲取兩足式機器人1行走路線的全程地圖。所述之全程地圖可以事先儲存於所述之手機11的記憶體中,相應的獲取模組111直接從其記憶體11中獲取該全程地圖。所述之獲取模組111還可以透過網路2從網際網路中獲取所需的全程地圖的示意圖。 The obtaining module 111 is configured to acquire a full map of the walking path of the biped robot 1 . The entire map can be stored in the memory of the mobile phone 11 in advance, and the corresponding acquisition module 111 directly obtains the full map from its memory 11. The acquisition module 111 can also obtain a schematic diagram of the required full map from the Internet through the network 2.
所述之處理模組112,用於對所獲取的全程地圖進行影像數位處理。所述之對所獲取的全程地圖進行影像數位處理包括:將所獲取的全程地圖轉換成黑白色;根據該全程地圖的解析度將其按照行與列分割成網格形式;取每個網格內色階平均值作為該網格的色階值。如圖4所示,為經過處理模組112處理後的全程地圖。 The processing module 112 is configured to perform image digit processing on the acquired global map. Performing image digital processing on the acquired global map includes: converting the acquired full map into black and white; dividing the map into columns according to the resolution of the whole map; taking each grid The inner level average is used as the level value of the grid. As shown in FIG. 4, it is a full map processed by the processing module 112.
所述之獲取模組111還用於透過GPS系統120獲取兩足式機器人1在所述之全程地圖上的當前位置。如圖5所示,為全程地圖中當前位置與目的地位置的示意圖。其中,A點為兩足式機器人1在全程地圖上的當前位置,B點為兩足式機器人1在全程地圖上行走的目的地位置。 The acquisition module 111 is further configured to acquire the current position of the bipedal robot 1 on the whole map through the GPS system 120. As shown in FIG. 5, it is a schematic diagram of the current location and the destination location in the entire map. Among them, point A is the current position of the bipedal robot 1 on the whole map, and point B is the destination position of the bipedal robot 1 walking on the whole map.
所述之設置模組113,用於在所述之全程地圖上設置兩足式機器人1行走的目的地位置。 The setting module 113 is configured to set a destination position of the bipedal robot 1 to travel on the whole map.
所述之計算模組114,用於根據所述之全程地圖計算從當前位置行走至目的地位置的最佳行走路徑,以及根據該最佳行走路徑計算兩足式機器人1應踩下的所有腳掌位置。在本較佳實施例中,所述之最佳行走路徑是根據全程地圖上各網格的色階值計算的。如圖6所示,為計算模組114計算的最佳行走路徑的示意圖。該最佳行走路徑為A、B兩點之間的最短距離,且包含該最佳行走路徑的各網格中,相鄰兩網格之間的色階值應當是最相近的。在本較佳實施例中,所述之所有腳掌位置是根據所述之最佳行走路徑以及兩足式機器人1的腳掌大小進行計算的,所計算的各腳掌位置均應當位於最佳行走路徑的兩邊一定範圍內,分別為左腳腳掌位置和右腳腳掌位置,而且相鄰的左腳腳掌位置與右腳腳掌位置之間的距離應當小於兩足式機器人1兩腳所能跨越的最大範圍。 The calculation module 114 is configured to calculate an optimal walking path from the current position to the destination position according to the whole map, and calculate all the feet that the bipedal robot 1 should step on according to the optimal walking path. position. In the preferred embodiment, the optimal walking path is calculated based on the gradation values of the grids on the entire map. As shown in FIG. 6, a schematic diagram of the optimal walking path calculated by the computing module 114. The optimal walking path is the shortest distance between the two points A and B, and among the grids including the optimal walking path, the gradation values between the adjacent two grids should be the closest. In the preferred embodiment, all of the foot positions are calculated according to the optimal walking path and the size of the foot of the bipedal robot 1, and the calculated position of each foot should be located in the optimal walking path. Within a certain range of the two sides, the left foot position and the right foot position, respectively, and the distance between the adjacent left foot position and the right foot position should be smaller than the maximum range that the two-legged robot 1 can span.
所述之拍攝模組115,用於透過拍照設備130拍攝兩足式機器人1尚未踏下的下一步腳掌位置的地形圖。 The shooting module 115 is configured to capture, by the photographing device 130, a topographic map of the position of the next foot that the bipedal robot 1 has not stepped on.
所述之處理模組112還用於對該下一步腳掌位置的地形圖進行影 像數位處理。對下一步腳掌位置的地形圖進行的影像數位處理包括:將下一步腳掌位置的地形圖轉換成黑白色;根據該下一步腳掌位置的地形圖的解析度將其按照行與列分割成網格形式;取每個網格內色階平均值作為該網格的色階值。 The processing module 112 is further configured to shadow the topographic map of the position of the next foot. Like digital processing. The image digital processing of the topographic map of the next foot position includes: converting the topographic map of the next foot position into black and white; dividing the topographic map of the foot position into a grid according to the resolution of the top position of the foot position. Form; takes the average of the gradations in each grid as the gradation value of the grid.
所述之計算模組114還用於根據該下一步腳掌位置的地形圖計算出兩足式機器人1下一步腳掌應踩下的角度。所述之下一步腳掌應踩下的角度是根據下一步腳掌位置的地形圖中各網格的色階值進行計算的。例如,所述之計算模組114首先計算下一步腳掌位置的地形圖中的前半部分各網格的色階平均值與下一步腳掌位置的地形圖中的後半部分各網格的色階平均值,然後根據所計算的前半部分各網格的色階平均值與後半部分各網格的色階平均值之間的差異程度計算腳掌位置地形的傾斜角度,再根據該傾斜角度計算下一步腳掌應踩下的角度。 The calculation module 114 is further configured to calculate an angle at which the foot of the bipedal robot 1 should be stepped according to the topographic map of the position of the next foot. The angle at which the next step of the foot should be depressed is calculated according to the gradation value of each mesh in the topographic map of the position of the foot at the next step. For example, the calculation module 114 first calculates the average value of the gradation of each grid in the top half of the topographic map of the next foot position and the gradation average of the grids in the second half of the topographic map of the next foot position. Then, according to the calculated difference between the average value of the gradation of each grid in the first half and the gradation average of the grids in the second half, the inclination angle of the terrain of the foot is calculated, and then the next step is calculated according to the inclination angle. The angle of the step.
所述之控制模組116,用於控制兩足式機器人1按照下一步腳掌應踩下的角度走至下一步腳掌位置。在本較佳實施例中,所述之下一步腳掌位置包括左腳腳掌位置及右腳腳掌位置。當下一步腳掌位置為左腳腳掌位置時,則控制模組116控制兩足式機器人1邁出左腳走至下一步腳掌位位置;當下一步腳掌位置為右腳腳掌位置時,則控制模組116控制兩足式機器人1邁出右腳走至下一步腳掌位位置。在控制模組116控制兩足式機器人1走至下一步腳掌位置後,遠端工作站3可根據需要讓兩足式機器人1透過手機11傳回現場資訊,比如現場影像、照片或聲音等。 The control module 116 is configured to control the biped robot 1 to go to the next foot position according to the angle at which the foot should be depressed. In the preferred embodiment, the next foot position includes a left foot position and a right foot position. When the next foot position is the left foot position, the control module 116 controls the biped robot 1 to take the left foot to the next foot position; when the next foot position is the right foot position, the control module 116 Control the biped robot 1 to take the right foot and go to the next position of the foot. After the control module 116 controls the bipedal robot 1 to go to the next foot position, the remote workstation 3 can transmit the bipedal robot 1 through the mobile phone 11 to return on-site information, such as live images, photos or sounds, as needed.
所述之判斷模組117,用於判斷兩足式機器人1是否成功走至下一 步腳掌位置,以及用於判斷兩足式機器人1是否走至目的地位置。 The determining module 117 is configured to determine whether the biped robot 1 successfully goes to the next The step foot position and the judgment of whether the biped robot 1 goes to the destination position.
所述之求救模組118,用於當兩足式機器人1沒有成功走至下一步腳掌位置時,發出求救信號至遠端工作站3求救。例如,當該兩足式機器人1被設置用來掃雷時,若該兩足式機器人1踩到地雷,該兩足式機器人1可以透過手機11將重要的現場資訊傳回給遠端工作站3,並透過求救模組118向遠端工作站3發出求救信號。 The help module 118 is configured to issue a distress signal to the remote workstation 3 for help when the biped robot 1 does not successfully go to the next foot position. For example, when the bipedal robot 1 is set for mine clearance, if the bipedal robot 1 steps on a mine, the bipedal robot 1 can transmit important on-site information back to the remote workstation 3 via the mobile phone 11. And a distress signal is sent to the remote workstation 3 through the help module 118.
如圖3所示,係本發明利用手機控制兩足式兩足式機器人1的方法較佳實施例的流程圖。首先,步驟S11,獲取模組111獲取兩足式機器人1行走路線的全程地圖。 As shown in FIG. 3, it is a flow chart of a preferred embodiment of the method for controlling a biped biped robot 1 using a mobile phone. First, in step S11, the acquisition module 111 acquires a full map of the walking path of the bipedal robot 1.
步驟S12,處理模組112對所獲取的全程地圖進行影像數位處理。在本較佳實施例中,對所獲取的全程地圖進行影像數位處理包括如下步驟:將所獲取的全程地圖轉換成黑白色;根據該全程地圖的解析度將其按照行與列分割成網格形式;取每個網格內色階平均值作為該網格的色階值。 In step S12, the processing module 112 performs image digit processing on the acquired global map. In the preferred embodiment, performing image digital processing on the acquired global map includes the following steps: converting the acquired full map into black and white; and dividing the map into columns according to the resolution of the global map. Form; takes the average of the gradations in each grid as the gradation value of the grid.
步驟S13,獲取模組111透過GPS系統120獲取兩足式機器人1在所述之全程地圖上的當前位置。 In step S13, the acquisition module 111 acquires the current position of the bipedal robot 1 on the entire map through the GPS system 120.
步驟S14,設置模組113在所述之全程地圖上設置兩足式機器人1行走的目的地位置。 In step S14, the setting module 113 sets the destination position of the biped robot 1 on the whole map.
步驟S15,計算模組114根據所述之全程地圖計算從當前位置行走至目的地位置的最佳行走路徑。在本較佳實施例中,所述之最佳行走路徑是根據全程地圖上各網格的色階值計算的。 In step S15, the calculation module 114 calculates an optimal walking path from the current position to the destination position according to the whole map. In the preferred embodiment, the optimal walking path is calculated based on the gradation values of the grids on the entire map.
步驟S16,計算模組114根據該最佳行走路徑計算兩足式機器人1應踩下的所有腳掌位置。在本較佳實施例中,所述之所有腳掌位置是根據所述之最佳行走路徑以及兩足式機器人1的腳掌大小進行計算的,所計算的各腳掌位置均應當位於最佳行走路徑的兩邊一定範圍內,分別為左腳腳掌位置和右腳腳掌位置,而且相鄰的左腳腳掌位置與右腳腳掌位置之間的距離應當小於兩足式機器人1兩腳所能跨越的最大範圍。 In step S16, the calculation module 114 calculates all the foot positions that the bipedal robot 1 should step on according to the optimal walking path. In the preferred embodiment, all of the foot positions are calculated according to the optimal walking path and the size of the foot of the bipedal robot 1, and the calculated position of each foot should be located in the optimal walking path. Within a certain range of the two sides, the left foot position and the right foot position, respectively, and the distance between the adjacent left foot position and the right foot position should be smaller than the maximum range that the two-legged robot 1 can span.
步驟S17,拍攝模組115透過拍攝設備130拍攝兩足式機器人1尚未踏下的下一步腳掌位置的地形圖。 In step S17, the photographing module 115 photographs, through the photographing device 130, a topographic map of the position of the next foot that the bipedal robot 1 has not stepped on.
步驟S18,處理模組112對該下一步腳掌位置的地形圖進行影像數位處理。在本較佳實施例中,對下一步腳掌位置的地形圖進行的影像數位處理包括如下步驟:將下一步腳掌位置的地形圖轉換成黑白色;根據該下一步腳掌位置的地形圖的解析度將其按照行與列分割成網格形式;取每個網格內色階平均值作為該網格的色階值。 In step S18, the processing module 112 performs image digital processing on the topographic map of the position of the next foot. In the preferred embodiment, the image digital processing of the topographic map of the next foot position includes the following steps: converting the topographic map of the next foot position into black and white; according to the resolution of the topographic map of the next foot position Divide it into a grid form by row and column; take the average of the gradation in each grid as the gradation value of the grid.
步驟S19,計算模組114根據該下一步腳掌位置的地形圖計算出兩足式機器人1下一步腳掌應踩下的角度。在本較佳實施例中,計算下一步腳掌應踩下的角度包括如下步驟:計算下一步腳掌位置的地形圖中的前半部分各網格的色階平均值與後半部分各網格的色階平均值;根據所計算的前半部分各網格的色階平均值與後半部分各網格的色階平均值之間的差異程度計算腳掌位置地形的傾斜角度;根據該傾斜角度計算下一步腳掌應踩下的角度。 In step S19, the calculation module 114 calculates the angle at which the foot of the biped robot 1 should be stepped according to the topographic map of the position of the next foot. In the preferred embodiment, calculating the angle at which the sole foot should be depressed includes the following steps: calculating the average value of the gradation of each of the grids in the top half of the topographic map of the next step of the foot and the gradation of each grid in the latter half Average value; calculate the inclination angle of the terrain of the sole of the foot according to the calculated difference between the average value of the gradation of each grid in the first half and the gradation average of the grids in the second half; calculate the next step according to the inclination angle The angle of the step.
步驟S20,控制模組116控制兩足式機器人1按照下一步腳掌應踩下的角度走至下一步腳掌位置。 In step S20, the control module 116 controls the biped robot 1 to go to the next foot position according to the angle at which the foot should be depressed.
步驟S21,判斷模組117判斷兩足式機器人1是否成功走至下一步腳掌位置。 In step S21, the determination module 117 determines whether the bipedal robot 1 has successfully reached the next position of the foot.
步驟S22,當兩足式機器人1成功走至下一步腳掌位置時,判斷模組117判斷兩足式機器人1是否走至目的地位置。 In step S22, when the biped robot 1 successfully walks to the next foot position, the judging module 117 judges whether the biped robot 1 has reached the destination position.
步驟S23,當兩足式機器人1沒有成功走至下一步腳掌位置時,求救模組118發出求救信號至遠端工作站3求救,並結束流程。 In step S23, when the bipedal robot 1 does not successfully go to the next foot position, the help module 118 sends a distress signal to the remote workstation 3 for help, and ends the process.
在步驟S22中,當兩足式機器人1沒有走至目的地位置時,則返回至步驟S17重新拍攝兩足式機器人1尚未踏下的下一步腳掌位置的地形圖;當兩足式機器人1走至目的地位置時,則結束本流程。 In step S22, when the bipedal robot 1 does not go to the destination position, it returns to step S17 to retake the topographic map of the next foot position that the bipedal robot 1 has not stepped on; when the bipedal robot 1 goes When the location is reached, the process ends.
以上實施例僅用以說明本發明的技術方案而非限制,儘管參照以上較佳實施例對本發明進行了詳細說明,本領域的普通技術人員應當理解,可以對本發明的技術方案進行修改或等同替換都不應脫離本發明技術方案的精神和範圍。 The above embodiments are only used to illustrate the technical solutions of the present invention and are not intended to be limiting, and the present invention will be described in detail with reference to the preferred embodiments thereof, and those skilled in the art should understand that the technical solutions of the present invention may be modified or substituted. Neither should the spirit and scope of the technical solutions of the present invention be deviated.
S11‧‧‧獲取兩足式機器人行走路線的全程地圖 S11‧‧‧Get the full map of the biped robot walking route
S12‧‧‧.對所獲取的全程地圖進行影像數位處理 S12‧‧‧. Image digital processing of the acquired map
S13‧‧‧獲取兩足式機器人的當前位置 S13‧‧‧Get the current position of the biped robot
S14‧‧‧設置兩足式機器人行走的目的地位置 S14‧‧‧Set the destination location for the biped robot to walk
S15‧‧‧計算從當前位置行走至目的地位置的最佳行走路徑 S15‧‧‧ Calculate the best walking path from the current position to the destination location
S16‧‧‧計算兩足式機器人應踩下的所有腳掌位置 S16‧‧‧ Calculate all foot positions that the biped robot should step on
S17‧‧‧拍攝兩足式機器人尚未踏下的下一步腳掌位置的地形圖 S17‧‧‧Topographical map of the next foot position where the biped robot has not yet stepped down
S18‧‧‧對該下一步腳掌位置的地形圖進行影像數位處理 S18‧‧‧Image digital processing of the topographic map of the next foot position
S19‧‧‧計算出兩足式機器人下一步腳掌應踩下的角度 S19‧‧‧ Calculate the angle at which the foot of the biped robot should be stepped on
S20‧‧‧控制兩足式機器人走至下一步腳掌位置 S20‧‧‧Control the two-legged robot to the next foot position
S21‧‧‧是否成功走至下一步腳掌位置 S21‧‧‧Is it successful to go to the next foot position?
S22‧‧‧是否走至目的地位置 S22‧‧‧Whether to go to the destination
S23‧‧‧發出求救信號至遠端工作站求救 S23‧‧‧ sent a distress signal to the remote workstation for help
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97121159A TWI416071B (en) | 2008-06-06 | 2008-06-06 | System and method for controlling a biped robot through a mobile phone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97121159A TWI416071B (en) | 2008-06-06 | 2008-06-06 | System and method for controlling a biped robot through a mobile phone |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200951404A TW200951404A (en) | 2009-12-16 |
TWI416071B true TWI416071B (en) | 2013-11-21 |
Family
ID=44871731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97121159A TWI416071B (en) | 2008-06-06 | 2008-06-06 | System and method for controlling a biped robot through a mobile phone |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI416071B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200303256A (en) * | 2002-02-18 | 2003-09-01 | Japan Science & Tech Corp | Two-leg walking humanoid robot |
US20060095160A1 (en) * | 2004-11-02 | 2006-05-04 | Honda Motor Co., Ltd. | Robot controller |
CN100352623C (en) * | 2005-04-11 | 2007-12-05 | 中国科学院自动化研究所 | Control device and method for intelligent mobile robot capable of picking up article automatically |
-
2008
- 2008-06-06 TW TW97121159A patent/TWI416071B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200303256A (en) * | 2002-02-18 | 2003-09-01 | Japan Science & Tech Corp | Two-leg walking humanoid robot |
US20060095160A1 (en) * | 2004-11-02 | 2006-05-04 | Honda Motor Co., Ltd. | Robot controller |
CN100352623C (en) * | 2005-04-11 | 2007-12-05 | 中国科学院自动化研究所 | Control device and method for intelligent mobile robot capable of picking up article automatically |
Also Published As
Publication number | Publication date |
---|---|
TW200951404A (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101581936B (en) | System and method for controlling two-legged type robot by using mobile phone | |
KR102172954B1 (en) | A walk-assistive robot and a method for controlling the walk-assistive robot | |
TWI603294B (en) | Systems and methods for analyzing a motion based on images | |
KR101913332B1 (en) | Mobile apparatus and localization method of mobile apparatus | |
CN109813319B (en) | Open loop optimization method and system based on SLAM (Simultaneous localization and mapping) mapping | |
KR101121763B1 (en) | Apparatus and method for recognizing environment | |
US7742840B2 (en) | Autonomous mobile robot | |
US9218003B2 (en) | Adaptive mapping with spatial summaries of sensor data | |
JP6724439B2 (en) | Autonomous mobile device, autonomous mobile system, autonomous mobile method and program | |
US20040230340A1 (en) | Behavior controlling apparatus, behavior control method, behavior control program and mobile robot apparatus | |
CN107053166B (en) | Autonomous moving apparatus, autonomous moving method, and storage medium | |
CN110493710B (en) | Trajectory reconstruction method and apparatus, computer device and storage medium | |
TW201718197A (en) | Method for estimating posture of robotic walking aid | |
WO2014157310A1 (en) | Portable terminal device, recording medium, and correction method | |
JP2012216051A (en) | Walking robot device and control program thereof | |
JP2017519184A (en) | Location of portable devices based on coded light | |
JP2019125116A (en) | Information processing device, information processing method, and program | |
WO2019075948A1 (en) | Pose estimation method for mobile robot | |
TWI416071B (en) | System and method for controlling a biped robot through a mobile phone | |
US20110317154A1 (en) | Systems and methods for determining coordinate locations of sensor nodes of a sensor network | |
TW201525419A (en) | Method for providing an obstacle-free path using image identification and mobile assistive device | |
CN109297495A (en) | A kind of pedestrian navigation localization method and pedestrian navigation positioning system | |
JP2018156538A (en) | Autonomous mobile device, image processing method and program | |
JP5286429B2 (en) | Learning walking robot apparatus and control program thereof | |
JP4933636B2 (en) | Learning walking robot apparatus and control program thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |