TWI414147B - For high input voltage, high output current zero voltage switching converter - Google Patents
For high input voltage, high output current zero voltage switching converter Download PDFInfo
- Publication number
- TWI414147B TWI414147B TW099113829A TW99113829A TWI414147B TW I414147 B TWI414147 B TW I414147B TW 099113829 A TW099113829 A TW 099113829A TW 99113829 A TW99113829 A TW 99113829A TW I414147 B TWI414147 B TW I414147B
- Authority
- TW
- Taiwan
- Prior art keywords
- output
- electrically connected
- switch
- inductor
- input
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明係有關於零電壓柔性切換技術之切換式轉換器,特別是有關於適用高輸入電壓、高輸出電流、高功率及高效率之應用。The present invention relates to switched converters for zero voltage flexible switching techniques, and more particularly to applications suitable for high input voltage, high output current, high power, and high efficiency.
近年來半導體技術蓬勃發展,在航空、通信和電腦等系統的電源轉換器,均有大電流供電的規格要求,並且因應電子產品體積小型化,使得電源轉換器必需有較高的功率密度。另外,大電流輸出的需求,將造成磁性元件與半導體元件之功率損失及熱應力的問題,以及輸出電壓漣波增大,導致濾波器的需求必須增加,因此電源轉換器單元,必須具有能夠操作在高輸出電流且低輸出電壓漣波的性能。In recent years, semiconductor technology has flourished, and power converters for systems such as aerospace, communications, and computers all have high-current power supply specifications, and in response to the miniaturization of electronic products, power converters must have higher power densities. In addition, the demand for high current output will cause power loss and thermal stress of the magnetic component and the semiconductor component, and the output voltage ripple will increase, so that the filter demand must be increased, so the power converter unit must have operation. Performance at high output current and low output voltage chopping.
由於油源日趨減少,使得節能意識高漲,美國環保署制定的能源之星,並且將80 PLUS規範列入標準,對提供給個人電腦內部的AC-DC切換式電源供應器,無論在低負載(負載20%)、中負載(負載50%),或是高負載(負載100%)狀態下,AC-DC的電源轉換效率都必須達到80%。能源之星也與電腦節能拯救氣候行動合作,加快節能技術和規範的採用。由於80 PLUS符合節能與環保的思潮,因此目前新推出的切換式轉換器幾乎都以支援80 PLUS規範為主要賣點,用節能省電的特色,以獲得歐美消費市場認同,因此設計高效率之電源轉換器,滿足日趨嚴苛的電源規範已是時勢所趨。As the oil source is declining, the awareness of energy conservation is high, the US Environmental Protection Agency has developed the Energy Star, and the 80 PLUS specification is included in the standard, for the AC-DC switching power supply provided to the PC, regardless of the low load ( AC-DC power conversion efficiency must reach 80% under load (20%), medium load (50% load), or high load (100% load). ENERGY STAR is also working with the Computer Energy Conservation Climate Campaign to accelerate the adoption of energy-saving technologies and regulations. Since the 80 PLUS meets the trend of energy saving and environmental protection, the newly introduced switching converters almost all support 80. The PLUS specification is the main selling point, with the characteristics of energy saving and power saving, to obtain the recognition of the European and American consumer market. Therefore, designing high-efficiency power converters to meet the increasingly stringent power supply specifications is the trend of the times.
現有技術之相關學術文獻參考如下:The relevant academic literature of the prior art is as follows:
[1] B. R. Lin and H. K. Chiang, “Analysis and Implementation of a Soft Switching Interleaved Forward Converter with Current Double Rectifier,” IET Electr. Power Appl., Vol. 1, No. 5, pp. 697-704, 2007.[1] B. R. Lin and H. K. Chiang, “Analysis and Implementation of a Soft Switching Interleaved Forward Converter with Current Double Rectifier,” IET Electr. Power Appl., Vol. 1, No. 5, pp. 697-704, 2007.
[2] B. R. Lin, C.-L. Huang, “Analysis and Implementation of A Novel Soft-Switching Pulse-Width Modulation Converter,” IET Power Electronics, 2009, Vol. 2, No. 1, pp. 90-101[2] B. R. Lin, C.-L. Huang, “Analysis and Implementation of A Novel Soft-Switching Pulse-Width Modulation Converter,” IET Power Electronics, 2009, Vol. 2, No. 1, pp. 90-101
[3] T. Qian and B. Lehman, “Dual Interleaved Active-Clamp Forward With Automatic Charge Balance Regulation for High Input Voltage Application,” IEEE Trans. Power Electronics, Vol. 23, No. 1, pp. 38-44, 2008.[3] T. Qian and B. Lehman, “Dual Interleaved Active-Clamp Forward With Automatic Charge Balance Regulation for High Input Voltage Application,” IEEE Trans. Power Electronics, Vol. 23, No. 1, pp. 38-44, 2008.
[4] T. Jin, K. Zhang, K. Zhang; K. Smedley, “A New Interleaved Series Input Parallel Output (ISIPO) Forward Converter With Inherent Demagnetizing Features,” IEEE Trans. Power Electronics, Vol. 23, No. 2, pp. 888-895, 2008.[4] T. Jin, K. Zhang, K. Zhang; K. Smedley, “A New Interleaved Series Input Parallel Output (ISIPO) Forward Converter With Inherent Demagnetizing Features,” IEEE Trans. Power Electronics, Vol. 23, No. 2, pp. 888-895, 2008.
現有技術之相關學術文獻作法與缺點如下:The relevant academic documents and disadvantages of the prior art are as follows:
[1]參閱第五圖提出具有倍流整流及柔性切換之並聯架構交錯式順向式轉換器,兩組主動箝位順向式轉換器含四個開關,利用箝位電路及變壓器一次側共振電路達成零電壓切換(ZVS)功能,提升效率,其開關應力是Vin/1-D,其中D為功率開關導通比(duty ratio),當D=0.5,開關應力為2Vin,不適合高輸入電壓應用。[1] Refer to the fifth figure to propose a parallel architecture interleaved forward converter with double current rectification and flexible switching. Two sets of active clamp forward converters have four switches, using clamp circuit and transformer primary side resonance. The circuit achieves zero voltage switching (ZVS) function to improve efficiency. The switching stress is Vin/1-D, where D is the power switch's duty ratio. When D=0.5, the switching stress is 2Vin, which is not suitable for high input voltage applications. .
[2]參閱第六圖提出變壓器之一次側具有三電壓準位而達成開關應力為Vin或Vin/2的交錯式柔切PWM轉換器,但是電路包含六個功率開關是其缺點。[2] Referring to the sixth figure, an interleaved flexible-cut PWM converter with a three-voltage level on the primary side of the transformer and a switching stress of Vin or Vin/2 is proposed, but the circuit contains six power switches.
[3]參閱第七圖提出雙重交錯式主動箝位順向式轉換器,它具有自動充電平衡調整的功能,適合於高輸入電壓應用,它必須使用兩組額外繞組,因此變壓器製作較為複雜。在一次側的四個開關中,需兩個高電壓應力的開關,兩個較低電壓應力的開關。由於此轉換器欠缺共振電感的設計,因此無法保證零電壓切換(ZVS)。文中提到變壓器的漏電感將造成開關上的電壓突波,導致開關的高電壓應力,必須額外加上緩震器(snubber)電路是其缺點。[3] Referring to Figure 7, a double-interleaved active clamp forward converter with automatic charge balance adjustment is suitable for high input voltage applications. It must use two sets of additional windings, so the transformer fabrication is complicated. In the four switches on the primary side, two high voltage stress switches are required, and two lower voltage stress switches. Since this converter lacks the design of the resonant inductor, zero voltage switching (ZVS) cannot be guaranteed. It is mentioned in the article that the leakage inductance of the transformer will cause voltage surge on the switch, resulting in high voltage stress of the switch. It is a disadvantage to additionally add a snubber circuit.
[4]參閱第八圖結合交錯式之雙開關順向式轉換器及半橋轉換器的特性與優點,提出交錯式串聯輸入並聯輸出順向式轉換器,它具有天生磁通重置的優點,適合於高 輸入電壓、高輸出電流及高功率的應用。開關最大電壓應力Vin,然而此轉換器的開關是硬性切換,不具柔性切換性能,因此切換損失較大是其缺點。[4] Referring to the eighth figure, combined with the characteristics and advantages of the interleaved two-switch forward converter and half-bridge converter, an interleaved series input parallel output forward converter is proposed, which has the advantages of natural flux reset. Suitable for high Input voltage, high output current, and high power applications. The maximum voltage stress of the switch is Vin. However, the switch of this converter is hard switching and does not have flexible switching performance, so the large switching loss is a disadvantage.
是以,基於以上研究的背景與動機,本發明將設計適用高輸入電壓、功率開關元件低電壓應力、高輸出電流、輸出低電壓漣波、並且高效率的轉換器。Therefore, based on the background and motivation of the above research, the present invention will design a converter suitable for high input voltage, low voltage stress of power switching elements, high output current, output low voltage chopping, and high efficiency.
爰此,有鑑於目前現有轉換器技術尚有缺點,本發明之目的在於提供一種適用高輸入電壓、高輸出電流、高功率及高效率之轉換器,其電路架構是由第一轉換器模組、第二轉換器模組,透過輸入端串聯及輸出端並聯的連接方式並且合用一共振元件所構成之轉換器、利用功率開關之寄生電容及共振電感,使得所有主開關及輔助開關均能達到零電壓切換的柔切性能,減少切換損失,提升電力轉換效率,搭配倍流整流技術,產生具有輸出電感電流漣波相消的作用,可以降低輸出電壓的漣波。Therefore, in view of the shortcomings of the existing converter technology, the present invention aims to provide a converter suitable for high input voltage, high output current, high power and high efficiency, and the circuit structure is composed of the first converter module. The second converter module can be realized by connecting the input terminal in series and the output terminal in parallel, and using a converter composed of a resonant component, using the parasitic capacitance of the power switch and the resonant inductor, so that all the main switch and the auxiliary switch can reach The soft-cutting performance of zero-voltage switching reduces switching losses and improves power conversion efficiency. With the double-current rectification technology, it produces the effect of chopping cancellation of the output inductor current, which can reduce the chopping of the output voltage.
為了實現上述目的,本發明提供一種適用高輸入電壓、高輸出電流的零電壓切換轉換器,係包括:一輸入端;一第一轉換器模組,包含有一第一輸入電容Ci1 、一第一 主開關Sm1 、一第一輔助開關Sa1 、一第一開關本體二極體Dm1 和一第二開關本體二極體Da1 、一第一開關寄生電容Cm1 和一第二開關寄生電容Ca1 、一第一直流阻隔電容CB1 、一第一變壓器T1 、一第一磁化電感Lm1 、一第一漏電感L l 1 、、一第一輸出側整流二極體D11 和一第二輸出側整流二極體D12 、一第一輸出電感L11 和一第二輸出電感L12 及一共振電感Lr ,其中,該第一主開關Sm1 與第一開關本體二極體Dm1 、第一開關寄生電容Cm1 相並聯,該第一輔助開關Sa1 與第二開關本體二極體Da1 、第二開關寄生電容Ca1 相並聯,所述第一輸入電容Ci1 一端電性連接該共振電感Lr 一端,所述第一輸入電容Ci1 另一端電性連接該第一主開關Sm1 一端及所述輸入端一端,所述第一主開關Sm1 另一端電性連接該第一輔助開關Sa1 一端及該第一直流阻隔電容CB1 一端,所述第一直流阻隔電容CB1 另一端電性連接該第一磁化電感Lm1 一端,所述第一磁化電感Lm1 另一端電性連接該第一漏電感L l 1 一端,所述第一漏電感L l 1 另一端電性連接該共振電感Lr 另一端,所述第一變壓器T1 係與所述第一磁化電感Lm1 並聯,所述第一輸出側整流二極體D11 之陰極端係電性連接該第一變壓器T1 之輸出側一端及第一輸出電感L11 一端,所述第二輸出電感L12 之陰極端係電性連接該第一變壓器T1 之輸出側另一端及第二 輸出電感L12 一端,所述第一輸出電感L11 另一端電性連接所述第二輸出電感L12 另一端,所述第一輸出側整流二極體D11 之陽極端係電性連接所述第二輸出側整流二極體D12 之陽極端;一第二轉換器模組,包含有一第二輸入電容Ci2 、一第二主開關Sm2 、一第二輔助開關Sa2 、一第三開關本體二極體Dm2 和一第四開關本體二極體Da2 、一第三開關寄生電容Cm2 和一第四開關寄生電容Ca2 、一第二直流阻隔電容CB2 、一第二變壓器T2 、一第二磁化電感Lm2 、一第二漏電感L l 2 、一第三輸出側整流二極體D21 和一第四輸出側整流二極體D22 、一第三輸出電感L21 和一第四輸出電感L22 及所述共振電感Lr ,其中,該第二主開關Sm2 與第三開關本體二極體Dm2 、第三開關寄生電容Cm2 相並聯,該第二輔助開關Sa2 與第四開關本體二極體Da2 、第四開關寄生電容Ca2 相並聯,所述第二輸入電容Ci2 一端電性連接該共振電感Lr 一端與所述第一輸入電容Ci1 一端,所述第二輸入電容Ci2 另一端電性連接該第二主開關Sm2 一端及所述輸入端另一端,所述第二主開關Sm2 另一端電性連接該第二輔助開關Sa2 一端及該第二直流阻隔電容CB2 一端,所述第二直流阻隔電容CB2 另一端電性連接該第二磁化電感Lm2 一端,所述第二磁化電感Lm2 另一端電性連接該第二漏電感L l 2 一端,所述第二漏電感L l 2 另一端 電性連接該共振電感Lr 另一端並與所述第一漏電感L l 1 一端相電性連接,所述第二變壓器T2 係與所述第二磁化電感Lm2 並聯,所述第三輸出側整流二極體D21 之陰極端係電性連接該第二變壓器T2 之輸出側一端及第三輸出電感L21 一端,所述第四輸出側整流二極體D22 之陰極端係電性連接該第二變壓器T2 之輸出側另一端及第四輸出電感L22 一端,所述第三輸出側整流二極體D21 之陽極端係電性連接所述第四輸出側整流二極體D22 之陽極端並連接有一輸出負載R一端,所述第三輸出電感L21 另一端分別電性連接該第四輸出電感L22 另一端、第一輸出電感L11 另一端、一輸出電容Co 一端及輸出負載R另一端,所述輸出電容Co 另一端電性連接該第一輸出側整流二極體D11 之陽極端及第二輸出側整流二極體D12 之陽極端。In order to achieve the above object, the present invention provides a zero-voltage switching converter suitable for a high input voltage and a high output current, comprising: an input terminal; a first converter module including a first input capacitor C i1 , a first a main switch S m1 , a first auxiliary switch S a1 , a first switch body diode D m1 and a second switch body diode D a1 , a first switch parasitic capacitance C m1 and a second switch parasitic a capacitor C a1 , a first DC blocking capacitor C B1 , a first transformer T 1 , a first magnetizing inductance L m1 , a first leakage inductance L l 1 , and a first output side rectifying diode D 11 And a second output side rectifying diode D 12 , a first output inductor L 11 and a second output inductor L 12 and a resonant inductor L r , wherein the first main switch S m1 and the first switch body 2 The pole body D m1 and the first switch parasitic capacitance C m1 are connected in parallel, and the first auxiliary switch S a1 is connected in parallel with the second switch body diode D a1 and the second switch parasitic capacitance C a1 , the first input capacitor C i1 end electrically connected to one end of the resonant inductor L r, said first input capacitor C i1 One end is electrically connected to the first end of the main switch S m1 and said input end of said first main switch S m1 is electrically connected to the other end of the first auxiliary switch S a1 and the first end of DC blocking capacitor C B1 one end of said first DC blocking capacitor C B1 and the other end is electrically connected to the first end of the magnetizing inductance L m1, L m1 and the other end of the first magnetizing inductance electrically connected to the first end of a leakage inductance L l, the The other end of the first leakage inductance L l 1 is electrically connected to the other end of the resonant inductor L r , and the first transformer T 1 is connected in parallel with the first magnetizing inductance L m1 , the first output side rectifying diode D 11 of the female terminal based electrically connected to the first transformer T 1 and the first end of the output side of the output end of the inductor L 11, L the cathode terminal 12 of the second output lines electrically connected to the inductance of the first transformer T 1 the other end of the output side of the inductor L 12 and a second output end, the output of the first inductor L 11 and the other end is electrically connected to the other end 12 of the second output inductance L, the output side of the first rectifying diode D 11 of The anode end is electrically connected to the anode end of the second output side rectifying diode D 12 ; The converter module includes a second input capacitor C i2 , a second main switch S m2 , a second auxiliary switch S a2 , a third switch body diode D m2 and a fourth switch body diode D A2 , a third switch parasitic capacitance C m2 and a fourth switch parasitic capacitance C a2 , a second DC blocking capacitor C B2 , a second transformer T 2 , a second magnetizing inductance L m2 , a second leakage inductance L l 2, a third output-side rectifier diode D 21 and a fourth output side of the rectifying diode D 22, a third output inductor L 21 and a fourth output inductor L 22 and the resonant inductor L r, The second main switch S m2 is connected in parallel with the third switch body diode D m2 and the third switch parasitic capacitance C m2 , the second auxiliary switch S a2 and the fourth switch body diode D a2 , and the fourth The switching parasitic capacitance C a2 is connected in parallel. One end of the second input capacitor C i2 is electrically connected to one end of the resonant inductor L r and one end of the first input capacitor C i1 , and the other end of the second input capacitor C i2 is electrically connected. the other end of the second main switch S m2 and said input end of said second main switch and the other end is electrically S m2 Connected to the end of the second auxiliary switch S a2 and the second end of DC blocking capacitor C B2, the second DC blocking capacitor C B2 and the other end electrically connected to the second end of the magnetizing inductance L M2, the second magnetizing inductance L the other end is electrically connected to the second m2 leakage inductance L l 2 at one end, said second leakage inductance L l 2 and the other end is electrically connected to the other end of the resonant inductor L r and the leakage inductance L l of said first end phase 1 Electrically connected, the second transformer T 2 is connected in parallel with the second magnetizing inductance L m2 , and the cathode end of the third output side rectifying diode D 21 is electrically connected to the output of the second transformer T 2 . a side end and a third output inductor L 21 end, the cathode end of the fourth output side rectifying diode D 22 is electrically connected to the other end of the output side of the second transformer T 2 and the fourth output inductor L 22 end, The anode end of the third output side rectifying diode D 21 is electrically connected to the anode end of the fourth output side rectifying diode D 22 and connected to one end of the output load R, and the third output inductor L 21 The other end is electrically connected to the other end of the fourth output inductor L 22 and the first output inductor L The other end 11, an output capacitor C o one end and the other end of the output load R, the output capacitor C o is electrically connected to the other end 11 of the male terminal D and the output side of the second output side of the first rectifier diode rectifying diodes D anode end of the body 12.
上述之第一轉換器模組與第二轉換器模組合用一共振電感Lr 。The first converter module and the second converter module described above are combined with a resonant inductor L r .
上述之該第一輸入電容Ci1 、第二輸入電容Ci2 係為分壓電容,使該輸入端所輸入的輸入電壓為Vin /2。The first input capacitor C i1 and the second input capacitor C i2 are voltage dividing capacitors, and the input voltage input to the input terminal is V in /2.
上述之該第三開關寄生電容Cm2 和第四開關寄生電容Ca2 係作為共振電容。The third switching parasitic capacitance C m2 and the fourth switching parasitic capacitance C a2 described above are used as resonant capacitors.
上述之該第一開關寄生電容Cm1 和第二開關寄生電容 Ca1 係作為共振電容。The first switching parasitic capacitance C m1 and the second switching parasitic capacitance C a1 described above are used as resonant capacitors.
藉由以上所述,本發明之電路架構與使用實施說明可知,與現有技術之電路架構相較後具有下列之優點:From the above, the circuit architecture and the implementation description of the present invention show that the following advantages are obtained compared with the prior art circuit architecture:
1.本發明之轉換器具有零電壓切換性能(ZVS)的特點,減少切換損失,提升電力轉換效率。1. The converter of the present invention has the characteristics of zero voltage switching performance (ZVS), reduces switching loss, and improves power conversion efficiency.
2.本發明之電路串聯輸入架構具有電壓分擔作用,當高輸入電壓時,開關有較低電壓應力。2. The circuit series input architecture of the present invention has a voltage sharing function, and when the input voltage is high, the switch has a lower voltage stress.
3.本發明之電路並聯輸出架構具有電流分擔作用,適合高輸出電流應用。3. The circuit parallel output architecture of the present invention has a current sharing function and is suitable for high output current applications.
4.本發明利用交錯式(PWM)操作及倍流整流器特性具有電流漣波相消作用,可以降低輸出電壓的漣波。4. The present invention utilizes interleaved (PWM) operation and current doubler rectifier characteristics to have current chopping cancellation, which can reduce the chopping of the output voltage.
因此,本發明之創新電路拓樸,與現有技術之電路架構相較之後確實具有新穎性與進步性。Therefore, the innovative circuit topology of the present invention is indeed novel and progressive compared to the circuit architecture of the prior art.
首先,請參閱第一圖所示,本發明係為一種適用高輸入電壓、高輸出電流的零電壓切換轉換器,係包括:一輸入端;一第一轉換器模組(11),包含有一第一輸入電容Ci1 、一第一主開關Sm1 、一第一輔助開關Sa1 、一第一開關本體二極體Dm1 和一第二開關本體二極體Da1 、一第一開關寄生電容Cm1 和一第二開關寄生電容Ca1 、一第一直流阻隔電容CB1 、一第一變壓器T1 、一第 一磁化電感Lm1 、一第一漏電感L l 1 、一第一輸出側整流二極體D11 和一第二輸出側整流二極體D12 、一第一輸出電感L11 和一第二輸出電感L12 及一共振電感Lr ,其中,該第一主開關Sm1 與第一開關本體二極體Dm1 、第一開關寄生電容Cm1 相並聯,該第一輔助開關Sa1 與第二開關本體二極體Da1 、第二開關寄生電容Ca1 相並聯,所述第一輸入電容Ci1 一端電性連接該共振電感Lr 一端,所述第一輸入電容Ci1 另一端電性連接該第一主開關Sm1 一端及所述輸入端一端,所述第一主開關Sm1 另一端電性連接該第一輔助開關Sa1 一端及該第一直流阻隔電容CB1 一端,所述第一直流阻隔電容CB1 另一端電性連接該第一磁化電感Lm1 一端,所述第一磁化電感Lm1 另一端電性連接該第一漏電感L l 1 一端,所述第一漏電感L l 1 另一端電性連接該共振電感Lr 另一端,所述第一變壓器T1 係與所述第一磁化電感Lm1 並聯,所述第一輸出側整流二極體D11 之陰極端係電性連接該第一變壓器T1 之輸出側一端及第一輸出電感L11 一端,所述第二輸出電感L12 之陰極端係電性連接該第一變壓器T1 之輸出側另一端及第二輸出電感L12 一端,所述第一輸出電感L11 另一端電性連接所述第二輸出電感L12 另一端,所述第一輸出側整流二極體D11 之陽極端係電性連接所述第二輸出側整流二極體D12 之陽極端;一第二轉換器模組 (12),包含有一第二輸入電容Ci2 、一第二主開關Sm2 、一第二輔助開關Sa2 、一第三開關本體二極體Dm2 和一第四開關本體二極體Da2 、一第三開關寄生電容Cm2 和一第四開關寄生電容Ca2 、、一第二直流阻隔電容CB2 、一第二變壓器T2 、一第二磁化電感Lm2 、一第二漏電感L l 2 、一第三輸出側整流二極體D21 和一第四輸出側整流二極體D22、 一第三輸出電感L21 和一第四輸出電感L22 及所述共振電感Lr ,其中,該第二主開關Sm2 與第三開關本體二極體Dm2 、第三開關寄生電容Cm2 相並聯,該第二輔助開關Sa2 與第四開關本體二極體Da2 、第四開關寄生電容Ca2 相並聯,所述第二輸入電容Ci2 一端電性連接該共振電感Lr 一端與所述第一輸入電容Ci1 一端,所述第二輸入電容Ci2 另一端電性連接該第二主開關Sm2 一端及所述輸入端另一端,所述第二主開關Sm2 另一端電性連接該第二輔助開關Sa2 一端及該第二直流阻隔電容CB2 一端,所述第二直流阻隔電容CB2 另一端電性連接該第二磁化電感Lm2 一端,所述第二磁化電感Lm2 另一端電性連接該第二漏電感L l 2 一端,所述第二漏電感L l 2 另一端電性連接該共振電感Lr 另一端並與所述第一漏電感L l 1 一端相電性連接,所述第二變壓器T2 係與所述第二磁化電感Lm2 並聯,所述第三輸出側整流二極體D21 之陰極端係電性連接該第二變壓器T2 之輸出側一 端及第三輸出電感L21 一端,所述第四輸出側整流二極體D22 之陰極端係電性連接該第二變壓器T2 之輸出側另一端及第四輸出電感L22 一端,所述第三輸出側整流二極體D21 之陽極端係電性連接所述第四輸出側整流二極體D22 之陽極端並連接有一輸出負載R一端,所述第三輸出電感L21 另一端分別電性連接該第四輸出電感L22 另一端、第一輸出電感L11 另一端、一輸出電容Co 一端及輸出負載R另一端,所述輸出電容Co 另一端電性連接該第一輸出側整流二極體D11 之陽極端及第二輸出側整流二極體D12 之陽極端First, referring to the first figure, the present invention is a zero-voltage switching converter suitable for high input voltage and high output current, comprising: an input terminal; a first converter module (11), including The first input capacitor C i1 , a first main switch S m1 , a first auxiliary switch S a1 , a first switch body diode D m1 and a second switch body diode D a1 , a first switch parasitic a capacitor C m1 and a second switching parasitic capacitance C a1 , a first DC blocking capacitor C B1 , a first transformer T 1 , a first magnetizing inductance L m1 , a first leakage inductance L l 1 , a first An output side rectifying diode D 11 and a second output side rectifying diode D 12 , a first output inductor L 11 and a second output inductor L 12 and a resonant inductor L r , wherein the first main switch S m1 is connected in parallel with the first switch body diode D m1 and the first switch parasitic capacitance C m1 , and the first auxiliary switch S a1 is connected in parallel with the second switch body diode D a1 and the second switch parasitic capacitance C a1 the first input end of capacitor C i1 is electrically connected to the one end of the resonant inductor L r, said first input The other end is electrically connected to the first capacitance C i1 main switch S m1 said input end and one end and the other end of said first main switch electrically connected to the S m1 S a1 one end of the first auxiliary switch and the first DC blocking capacitor C B1 end, the other end of the first DC blocking capacitor C B1 is electrically connected to the first end of the magnetizing inductance L m1, L m1 and the other end of the first magnetizing inductance electrically connected to the first leakage inductance L l The first end of the first leakage inductance L l 1 is electrically connected to the other end of the resonant inductor L r , and the first transformer T 1 is connected in parallel with the first magnetizing inductance L m1 , the first output side The cathode end of the rectifier diode D 11 is electrically connected to one end of the output side of the first transformer T 1 and one end of the first output inductor L 11 , and the cathode end of the second output inductor L 12 is electrically connected to the first end The other end of the output side of the transformer T 1 and the second output inductor L 12 , the other end of the first output inductor L 11 is electrically connected to the other end of the second output inductor L 12 , the first output side rectifying diode D electrically connected to the male member 11 of the second output-side terminal based rectifier diode D the anode terminal 12 A second converter module (12), includes a second input capacitance C i2, a second main switch S m2, a second auxiliary switch S a2, a body diode of the third switch and a fourth D m2 The switch body diode D a2 , a third switch parasitic capacitance C m2 and a fourth switch parasitic capacitance C a2 , a second DC blocking capacitor C B2 , a second transformer T 2 , and a second magnetizing inductance L m2 a second leakage inductance L l 2 , a third output side rectifying diode D 21 and a fourth output side rectifying diode D 22 , a third output inductor L 21 and a fourth output inductor L 22 and the resonant inductor L r, wherein the second main switch and the third switch S m2 body diode D m2, a third switch connected in parallel with the parasitic capacitance C m2, the second auxiliary switch S a2 and two fourth switch body diode D a2, a fourth switch connected in parallel with the parasitic capacitance C a2, the second end of input capacitor C i2 is electrically connected to one end of the resonant inductor L r and the first end of input capacitor C i1, the second input capacitor The other end of the C i2 is electrically connected to one end of the second main switch S m2 and the other end of the input end, and the second main switch S The other end of the m2 is electrically connected to one end of the second auxiliary switch S a2 and one end of the second DC blocking capacitor C B2 , and the other end of the second DC blocking capacitor C B2 is electrically connected to one end of the second magnetizing inductance L m2 , L m2 and the other end electrically connected to the second magnetizing inductance leakage inductance L l 2 of the second end, the second leakage inductance L l 2 and the other end is electrically connected to the other end of the resonant inductor L r and the first leakage inductance One end of the L l 1 is electrically connected, the second transformer T 2 is connected in parallel with the second magnetizing inductance L m2 , and the cathode end of the third output side rectifying diode D 21 is electrically connected to the second One end of the output side of the transformer T 2 and one end of the third output inductor L 21 , and the cathode end of the fourth output side rectifying diode D 22 is electrically connected to the other end of the output side of the second transformer T 2 and the fourth output The anode end of the third output side rectifying diode D 21 is electrically connected to the anode end of the fourth output side rectifying diode D 22 and is connected to one end of the output load R, the first end of the inductor L 22 L 21 and the other end three output inductor 22 are electrically connected to the other end of the fourth output inductor L, the first L 11 and the other end of the output inductor, an output capacitor C o one end and the other end of the output load R, the other end of the output capacitor C o is electrically connected to the anode terminal D 11 and a second output of the first output-side rectifier diode side Anode end of rectifier diode D 12
而本發明具有下列之優點:The present invention has the following advantages:
(1).輸入串聯:當高輸入電壓的情況下,在元件的耐壓限制與成本考量,降低開關耐壓的需求是轉換器電路拓樸設計的重點。由於轉換器的輸入端使用兩個輸入電容[第一輸入電容Ci1、第二輸入電容Ci2],並採用兩組串聯方式連接,其具有分擔輸入端之輸入電壓Vin的作用,使每一組轉換器[第一轉換器模組(11)、第二轉換器模組(12)]的電壓源分別為Vin/2,可以降低開關耐壓需求。經過分析,本轉換器開關電壓應力只有Vin/2,因此可選擇額定電壓較低之金氧半場效電晶體(MOSEFT),其具有較小的導通電阻RDS (ON),可減少導通損失,提升效率。(1). Input series: In the case of high input voltage, the voltage withstand voltage and cost consideration of the component, and the need to reduce the withstand voltage of the switch are the key points of the converter circuit topology design. Since the input end of the converter uses two input capacitors [first input capacitor Ci1, second input capacitor Ci2] and is connected in two series, it has the function of sharing the input voltage Vin of the input terminal, so that each group of conversions The voltage sources of the [first converter module (11) and the second converter module (12)] are respectively Vin/2, which can reduce the switching withstand voltage requirement. After analysis, the converter's switching voltage stress is only Vin/2, so the metal oxide half field effect transistor (MOSEFT) with lower rated voltage can be selected, which has a smaller on-resistance R DS (ON), which can reduce the conduction loss. Improve efficiency.
(2).輸出並聯:在大電流輸出應用時,單一轉換器常常造成磁性元件與半導體元件之功率損失及熱應力的問題。轉換器的輸出端採用兩組並聯方式連接,具有分擔輸出電流的作用,可以分散磁性元件變壓器、輸出電感以及半導體元件的功率損失及熱應力,應用在高輸出電流的場合。(2). Output Parallel: In high current output applications, a single converter often causes power loss and thermal stress problems of the magnetic and semiconductor components. The output of the converter is connected in two parallel modes, which share the output current and can disperse the power loss and thermal stress of the magnetic component transformer, the output inductor and the semiconductor component, and is applied to high output current.
(3).交錯式操作:當大電流輸出下,容易造成的輸出電壓漣波增大,轉換器採用兩組交錯式操作,加上倍流整流器特性,使得輸出電感電流漣波反相,能夠減少輸出電容電流漣波,大幅降低輸出濾波電容的體積,同時降低輸出電壓漣波。(3). Interleaved operation: When the high current output, the output voltage ripple is easy to increase, the converter uses two sets of interleaved operation, plus the characteristics of the double current rectifier, so that the output inductor current is chopped in reverse. Reduce the output capacitor current chopping, greatly reduce the volume of the output filter capacitor, and reduce the output voltage ripple.
(4).零電壓切換:利用轉換器的開關寄生電容與共振電感(包含變壓器漏電感),產生共振作用,使得轉換器具有零電壓切換(ZVS)的功能,降低切換損失;另外,配設直流阻隔電容也能回收漏電感能量,避免漏電感所造成的電壓突波,保護開關元件避免遭受高電壓應力。(4). Zero voltage switching: using the switching parasitic capacitance of the converter and the resonant inductor (including the transformer leakage inductance) to generate resonance, so that the converter has zero voltage switching (ZVS) function, reducing switching loss; DC blocking capacitors can also recover leakage inductance energy, avoid voltage surge caused by leakage inductance, and protect switching components from high voltage stress.
經由上述說明可知:本發明之轉換器,適用於高輸入電壓、高輸出電流、高功率與高效率之應用。It can be seen from the above description that the converter of the present invention is suitable for applications with high input voltage, high output current, high power and high efficiency.
本發明之最佳實施例說明:以一組規格為:輸入電壓400V、輸出電壓12V、輸出功率240W、切換頻率100kHz的轉換器以驗證理論分析的正確性及轉換器的 優異特性,並且設計穩壓控制器,降低輸入電壓及負載變動對輸出電壓的影響,達成穩態要求與快速的暫態響應。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A set of specifications is: a converter with an input voltage of 400V, an output voltage of 12V, an output power of 240W, and a switching frequency of 100 kHz to verify the correctness of the theoretical analysis and the converter. Excellent characteristics, and design of the voltage regulator controller, reduce the influence of input voltage and load variation on the output voltage, achieve steady state requirements and fast transient response.
請參閱第二A圖波形為負載240W時,第一主開關Sm1與第二輔助開關Sa2的驅動信號與跨壓,可看出在第一主開關Sm1和第二輔助開關Sa2 turn on之前,開關的跨壓已降至零,達到零電壓切換性能(ZVS)操作。Please refer to the driving signal and the crossover voltage of the first main switch Sm1 and the second auxiliary switch Sa2 when the waveform of the second A waveform is 240 W, and it can be seen that before the first main switch Sm1 and the second auxiliary switch Sa2 turn on, the switch The crossover voltage has dropped to zero to achieve zero voltage switching performance (ZVS) operation.
請參閱第二B圖波形為第二主開關Sm2與第一輔助開關Sa1的驅動信號與跨壓,達到零電壓切換性能(ZVS)操作。Please refer to the waveform of the second B diagram for the driving signal and the voltage across the second main switch Sm2 and the first auxiliary switch Sa1 to achieve zero voltage switching performance (ZVS) operation.
請參閱第二A圖、第二B圖可看出:當輸入電壓Vin=400V,開關的電壓應力只有Vin/2=200V(輸入電壓一半),其開關的電壓應力為Vin/1-D或Vin,因此本發明轉換器確實具有低電壓應力的優點。Please refer to the second A picture and the second B picture. It can be seen that when the input voltage Vin=400V, the voltage stress of the switch is only Vin/2=200V (half of the input voltage), and the voltage stress of the switch is Vin/1-D or Vin, therefore the converter of the invention does have the advantage of low voltage stress.
請參閱第三圖波形說明在負載240 W時,倍流整流器之電感電流iL11 和iL12 [即分別流經第一輸出電感L11 與第二輸出電感L12 之電感電流]漣波反相,因此輸出電流io1 =iL11 +iL12 能電流漣波相消,降低漣波大小。Please refer to the waveform in the third figure. The inductor currents iL 11 and iL 12 of the double current rectifier at the load of 240 W [ie, the inductor current flowing through the first output inductor L 11 and the second output inductor L 12 respectively ] are inverted. Therefore, the output current i o1 =iL 11 +iL 12 can cancel the current ripple and reduce the chop size.
請參閱第四圖波形說明主開關之交錯式操作,使得總輸出電流io=io1 +io2 能對io1 和io2 的漣波再作一次相消,更降低輸出電容的電流漣波,而且兩組轉換器確實 分別分擔總輸出電流的一半(10A)。Please refer to the waveform of the fourth figure to illustrate the interleaved operation of the main switch, so that the total output current io=io 1 + io 2 can cancel the oscillating of io 1 and io 2 again, and reduce the current chopping of the output capacitor. And the two sets of converters do share half of the total output current (10A).
惟,以上所述僅為本發明其中之一最佳實施例,當不能以此限定本創作之申請專利保護範圍,舉凡依本發明之申請專利範圍及說明書內容所作之簡單的等效變化與替換,皆應仍屬於本發明申請專利範圍所涵蓋保護之範圍內。However, the above description is only one of the preferred embodiments of the present invention, and the scope of the patent application and the content of the specification according to the present invention are simply equivalently changed and replaced. All should still fall within the scope of protection covered by the scope of the patent application of the present invention.
(1)‧‧‧轉換器(1)‧‧‧ converter
(11)‧‧‧第一轉換器模組(11)‧‧‧First converter module
(12)‧‧‧第二轉換器模組(12)‧‧‧Second converter module
第一圖係為本發明之電路架構圖。The first figure is a circuit architecture diagram of the present invention.
第二A圖係為本發明之第一主開關Sm1、第二輔助開關Sa2之零電壓切換(ZVS)波形圖。The second A diagram is a zero voltage switching (ZVS) waveform diagram of the first main switch Sm1 and the second auxiliary switch Sa2 of the present invention.
第二B圖係為本發明之第二主開關Sm2、第一輔助開關Sa1之零電壓切換(ZVS)波形圖。The second B diagram is a zero voltage switching (ZVS) waveform diagram of the second main switch Sm2 and the first auxiliary switch Sa1 of the present invention.
第三圖係為本發明之倍流整流器電感電流之漣波相消性能圖。The third figure is a chopping cancellation performance diagram of the inductor current of the current doubler rectifier of the present invention.
第四圖係為本發明之交錯式操作電流漣波相消性能圖。The fourth figure is the interlaced operational current chopping cancellation performance diagram of the present invention.
第五圖係為現有技術之相關學術文獻之電路架構圖。The fifth figure is a circuit diagram of the related academic literature of the prior art.
第六圖係為現有技術之相關學術文獻之電路架構圖。The sixth drawing is a circuit diagram of the related academic literature of the prior art.
第七圖係為現有技術之相關學術文獻之電路架構圖。The seventh figure is a circuit diagram of the related academic literature of the prior art.
第八圖係為現有技術之相關學術文獻之電路架構圖。The eighth figure is a circuit diagram of the related academic literature of the prior art.
(1)‧‧‧轉換器(1)‧‧‧ converter
(11)‧‧‧第一轉換器模組(11)‧‧‧First converter module
(12)‧‧‧第二轉換器模組(12)‧‧‧Second converter module
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099113829A TWI414147B (en) | 2010-04-30 | 2010-04-30 | For high input voltage, high output current zero voltage switching converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099113829A TWI414147B (en) | 2010-04-30 | 2010-04-30 | For high input voltage, high output current zero voltage switching converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201138304A TW201138304A (en) | 2011-11-01 |
TWI414147B true TWI414147B (en) | 2013-11-01 |
Family
ID=46759820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099113829A TWI414147B (en) | 2010-04-30 | 2010-04-30 | For high input voltage, high output current zero voltage switching converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI414147B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI462430B (en) * | 2012-02-02 | 2014-11-21 | Wistron Corp | Power management system |
CN103078509B (en) * | 2013-01-28 | 2015-04-22 | 上海电力学院 | Soft switching interleaved DC converter with serial input and parallel output |
TWI501531B (en) * | 2014-03-18 | 2015-09-21 | Univ Kun Shan | Interleaved zero voltage switching converter |
TWI658684B (en) * | 2017-09-14 | 2019-05-01 | 崑山科技大學 | High buck converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353547B1 (en) * | 2000-08-31 | 2002-03-05 | Delta Electronics, Inc. | Three-level soft-switched converters |
TW556402B (en) * | 2001-02-05 | 2003-10-01 | Delta Electronics Inc | Soft-switched full-bridge converters |
US20090231887A1 (en) * | 2008-03-14 | 2009-09-17 | Delta Electronics, Inc. | Parallel-connected resonant converter circuit and controlling method thereof |
TWM372997U (en) * | 2009-08-24 | 2010-01-21 | Univ Kun Shan | Interlace series input and parallel output zero voltage switching forward converter |
-
2010
- 2010-04-30 TW TW099113829A patent/TWI414147B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353547B1 (en) * | 2000-08-31 | 2002-03-05 | Delta Electronics, Inc. | Three-level soft-switched converters |
TW556402B (en) * | 2001-02-05 | 2003-10-01 | Delta Electronics Inc | Soft-switched full-bridge converters |
US20090231887A1 (en) * | 2008-03-14 | 2009-09-17 | Delta Electronics, Inc. | Parallel-connected resonant converter circuit and controlling method thereof |
TWM372997U (en) * | 2009-08-24 | 2010-01-21 | Univ Kun Shan | Interlace series input and parallel output zero voltage switching forward converter |
Also Published As
Publication number | Publication date |
---|---|
TW201138304A (en) | 2011-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Interleaved high step-up converter integrating coupled inductor and switched capacitor for distributed generation systems | |
Kim et al. | A fully soft-switched single switch isolated DC–DC converter | |
US9520792B2 (en) | Staggered parallel three-level DC/DC converter and AC/DC converter | |
Hu et al. | A high gain input-parallel output-series DC/DC converter with dual coupled inductors | |
Hsieh et al. | High-conversion-ratio bidirectional DC–DC converter with coupled inductor | |
Lee et al. | Topologies and design considerations for distributed power system applications | |
Hu et al. | A three-state switching boost converter mixed with magnetic coupling and voltage multiplier techniques for high gain conversion | |
US20110292703A1 (en) | Single-stage AC-to-DC converter with isolation and power factor correction | |
US20180269795A1 (en) | Bidirectional resonant conversion circuit and converter | |
CN109742965A (en) | A kind of high-frequency isolation type AC-DC converter of single-phase crisscross parallel three level resonance formula | |
Wu et al. | Implementation of an active-clamped current-fed push–pull converter employing parallel-inductor to extend ZVS range for fuel cell application | |
Savakhande et al. | Voltage-lift DC-DC converters for photovoltaic application-a review | |
Moraes et al. | Active-clamped zero-current switching current-fed half-bridge converter | |
Tseng et al. | Integrated buck and modified push− pull DC− DC converter with high step-down ratio | |
Lin et al. | New ZVS DC--DC converter with series-connected transformers to balance the output currents | |
KR20140091191A (en) | Single Stage AC/DC converter | |
Lin | DC–DC converter implementation with wide output voltage operation | |
TWI414147B (en) | For high input voltage, high output current zero voltage switching converter | |
TWI501531B (en) | Interleaved zero voltage switching converter | |
TWI320989B (en) | ||
Ikeda et al. | Isolated and wide imput ranged boost full bridge DC-DC converter for improved resilience of renewable energy systems | |
TW201735519A (en) | Interleaved three-winding high boost DC-DC converter | |
Lin et al. | Interleaved LLC series converter with output voltage doubler | |
Neto et al. | A high-power-factor half-bridge doubler boost converter without commutation losses | |
Zhang et al. | A nonisolated ZVS self-driven current tripler topology for low-voltage and high-current applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |