TWI497736B - A Process Method for Anti - reflective Packaging Film of Solar Cell - Google Patents
A Process Method for Anti - reflective Packaging Film of Solar Cell Download PDFInfo
- Publication number
- TWI497736B TWI497736B TW102147116A TW102147116A TWI497736B TW I497736 B TWI497736 B TW I497736B TW 102147116 A TW102147116 A TW 102147116A TW 102147116 A TW102147116 A TW 102147116A TW I497736 B TWI497736 B TW I497736B
- Authority
- TW
- Taiwan
- Prior art keywords
- solar cell
- reflective
- manufacturing
- encapsulating film
- film according
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係關於一種太陽能電池封裝膜之製程方法,特別是關於一種太陽能電池抗反射封裝膜之製程方法。The invention relates to a method for manufacturing a solar cell encapsulating film, in particular to a method for manufacturing a solar cell anti-reflective encapsulating film.
隨著能源危機的問題日趨嚴重,相關綠能產業正積極地尋求各種替代石油的資源,其中太陽能發電最為常見的替代方案,目前市面上的太陽能電池種類有:矽晶太陽能電池、薄膜太陽能電池(銅化鎵銦硒(CIGS)、碲化鎘(CdTe)、非晶矽(a-Si)等)及III-V族半導體,而為了使太陽能電池能夠吸收更多的光線產生更高的效率,抗反射層(anti-reflection)一直都是效能研究的主要方向之一。With the growing problem of the energy crisis, the relevant green energy industry is actively seeking various alternative oil resources, among which the most common alternatives to solar power generation are the types of solar cells currently on the market: twin solar cells, thin film solar cells ( Gallium indium indium selenide (CIGS), cadmium telluride (CdTe), amorphous germanium (a-Si), etc., and III-V semiconductors, and in order to enable solar cells to absorb more light, resulting in higher efficiency, Anti-reflection has always been one of the main directions of performance research.
習知的抗反射層包含單層及多層結構,單層結構較具經濟上及厚度的優勢,但由於太陽光並非單一波長,所以在寬廣波長範圍的太陽光的照射下預得到太陽能板的低反射率,則必須使用多層抗反射結構,但多層抗反射結構包含較複雜之製備程序,成本較高。The conventional anti-reflection layer comprises a single layer and a multi-layer structure, and the single layer structure has the advantages of economy and thickness, but since the sunlight is not a single wavelength, the solar panel is preliminarily obtained under the illumination of a wide wavelength range of sunlight. For reflectivity, a multilayer anti-reflective structure must be used, but the multilayer anti-reflective structure contains a more complicated preparation procedure and is costly.
有關太陽能電池的壽命上,太陽能電池的阻水氣與阻氧氣的能力,則深切影響太陽能電池的鈍化與壽命,例如,電子紙封裝的水氣穿透率要求在約10-1 g/m2 -day,液晶顯 示器的水氣穿透率要求在約10-2 g/m2 -day,但太陽能電池的水氣穿透率有的要求在約10-6 g/m2 -day,因此,太陽能電池對水氣與氧氣的敏感度相對較大,必須作好水氣與氧氣隔絕的封裝膜。Regarding the life of solar cells, the ability of solar cells to block water vapor and block oxygen affects the passivation and lifetime of solar cells. For example, the water vapor transmission rate of electronic paper packages requires about 10 -1 g/m 2 . -day, the water vapor transmission rate of the liquid crystal display is required to be about 10 -2 g/m 2 -day, but the water vapor transmission rate of the solar cell is required to be about 10 -6 g/m 2 -day, therefore, Solar cells are relatively sensitive to moisture and oxygen, and must be sealed with water and oxygen.
然而,製作良好的抗反射層與封裝膜,複雜之製備程序將提升太陽能電池的成本,但太陽能電池又不能沒有良好的抗反射層與封裝模組,所以目前業界極需發展出一種太陽能電池抗反射封裝膜之製程方法,可以將抗反射層與封裝膜結合在一起,可以簡化製程,又可降低成本,如此一來,方能同時兼具成本與維持光學特性,製備出可減低光的耦合損失(light out-coupling)而提高光捕捉率,提升整體太陽能模組效率之抗反射封裝膜。However, the production of a good anti-reflection layer and encapsulation film, the complex preparation process will increase the cost of the solar cell, but the solar cell can not be without a good anti-reflection layer and package module, so the industry is in great need to develop a solar cell resistance The method for processing the reflective encapsulation film can combine the anti-reflection layer and the encapsulation film, thereby simplifying the process and reducing the cost, so that the cost can be simultaneously maintained and the optical characteristics can be maintained, thereby reducing the coupling of the light. An anti-reflective encapsulation film that increases light capture rate and improves overall solar module efficiency by light out-coupling.
鑒於上述習知技術之缺點,本發明之主要目的在於提供一種太陽能電池抗反射封裝膜之製程方法,整合一低折射率之波導材料、一固化劑、一底部具有一微型結構之模具等,以製備出可應用於減低光的耦合損失(light out-coupling)而提高光捕捉率,提升整體太陽能模組效率之抗反射封裝膜。In view of the above disadvantages of the prior art, the main object of the present invention is to provide a method for manufacturing a solar cell anti-reflective packaging film, integrating a low refractive index waveguide material, a curing agent, a mold having a microstructure at the bottom, etc. An anti-reflective encapsulating film which can be applied to reduce light out-coupling, improve light capturing rate, and improve overall solar module efficiency is prepared.
為了達到上述目的,根據本發明所提出之一方案,提供一種太陽能電池抗反射封裝膜之製程方法,其包括:將含有低折射率之波導材料與固化劑混合以形成一混合液;將該混合液置於一模具中,並進行一固化程序使該混合液固 化以形成一抗反射部,其中該模具底部具有一微型結構;將一太陽能電池置放於抗反射部上;將該混合液再置於該模具中,並進行加熱使該混合液固化並與該抗反射膜形成一抗反射封裝膜,其中該抗反射封裝膜完全包覆該太陽能電池。In order to achieve the above object, according to one aspect of the present invention, a method for fabricating a solar cell anti-reflective encapsulating film, comprising: mixing a waveguide material having a low refractive index with a curing agent to form a mixed solution; The liquid is placed in a mold and a curing process is performed to solidify the mixture Forming an anti-reflection portion, wherein the bottom of the mold has a microstructure; placing a solar cell on the anti-reflection portion; placing the mixture in the mold again, and heating to solidify the mixture and The anti-reflective film forms an anti-reflective encapsulation film, wherein the anti-reflective encapsulation film completely covers the solar cell.
上述太陽能電池抗反射封裝膜之製程方法中,低折射率之波導材料係指相較於太陽能電池具有較低折射率的材料(例如CIGS太陽能電池n>2.3,因此n介於1.4~1.8的材料即是,但不以此為限),及屬較高透明度的導光材,例如低折射率之波導材料可選自壓克力(PMMA)、聚乙烯醇、聚醋酸乙烯酯(PVA)、PVP(Polyvinyl pyrrolidone)、EVA(Ethylene vinyl acetate copolymer)以及聚二甲基矽氧烷(PDMS)其中之一,其中,該聚二甲基矽氧烷(PDMS)與固化劑混合比例可為10:1。In the above method for manufacturing a solar cell anti-reflective encapsulating film, a low refractive index waveguide material refers to a material having a lower refractive index than a solar cell (for example, a CIGS solar cell n>2.3, so a material having n between 1.4 and 1.8) That is, but not limited to, and a light transmissive material having a high transparency, for example, a low refractive index waveguide material may be selected from the group consisting of acrylic (PMMA), polyvinyl alcohol, polyvinyl acetate (PVA), One of PVP (Polyvinyl pyrrolidone), EVA (Ethylene vinyl acetate copolymer), and polydimethyl siloxane (PDMS), wherein the ratio of the polydimethyl siloxane (PDMS) to the curing agent may be 10: 1.
該太陽能電池抗反射封裝膜之製程方法中,該微型結構可由一具有奈米微型結構之模板放至於模具底部所提供,或於模具底部設置有奈米微型結構。In the method for manufacturing the solar cell anti-reflective encapsulating film, the microstructure may be provided by a template having a nano-micro structure placed on the bottom of the mold, or a nano-micro structure may be disposed at the bottom of the mold.
本發明之固化程序依據固化劑之不同,可以使用加熱程序以固化該混合液,或使用光化(光照)程序以固化該混合液,或者混合兩者程序,其技術手段之選擇端看固化劑之性質,其中,熱固化劑係可是酚樹脂、環氧樹脂、聚醯亞胺、氰酸酯其中之一或其混合(但不以此為限),光固化劑可以是UV膠(但不以此為限);所謂加熱程序以固化該混合液指的是 利用加熱使該固化劑發生反應,以產生該混合液由液態轉變成固態;所謂光化程序以固化該混合液指的是利用照光使該固化劑(例如UV膠)發生反應,以產生該混合液由液態轉變成固態;上述不論是須經加熱或光化程序的固化劑,皆可經一真空脫泡製程,將該固化劑放入一真空設備中進行真空脫泡。The curing procedure of the present invention may be performed by using a heating procedure to cure the mixture, or by using an actinic (lighting) procedure to cure the mixture, or by mixing the two processes depending on the curing agent. The nature of the heat curing agent may be one of phenol resin, epoxy resin, polythenimine, cyanate ester or a mixture thereof (but not limited thereto), and the light curing agent may be UV glue (but not Limited to this); the so-called heating procedure to cure the mixture refers to The curing agent is reacted by heating to produce the mixed liquid from a liquid state to a solid state; the so-called photochemical process to cure the mixed liquid means that the curing agent (for example, UV glue) is reacted by illumination to produce the mixture. The liquid is converted from a liquid state to a solid state; the above-mentioned curing agent, whether subjected to heating or an actinic process, can be subjected to a vacuum defoaming process, and the curing agent is placed in a vacuum apparatus for vacuum defoaming.
本發明中抗反射部厚度範圍可為1-5mm,其中,該抗反射部可以是2mm或3mm。In the present invention, the thickness of the anti-reflection portion may range from 1 to 5 mm, wherein the anti-reflection portion may be 2 mm or 3 mm.
以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本創作達到預定目的所採取的方式、手段及功效。而有關本創作的其他目的及優點,將在後續的說明及圖式中加以闡述。The above summary and the following detailed description and drawings are intended to further illustrate the manner, means and effects of the present invention in achieving its intended purpose. Other purposes and advantages of this creation will be explained in the following description and drawings.
11‧‧‧模具11‧‧‧Mold
12‧‧‧微型結構(具有奈米微型結構之模板)12‧‧‧Microstructures (templates with nanostructures)
13‧‧‧混合液13‧‧‧ mixture
14‧‧‧加熱器14‧‧‧heater
15‧‧‧太陽能電池15‧‧‧Solar battery
16‧‧‧抗反射部16‧‧‧Anti-reflection department
17‧‧‧抗反射封裝膜17‧‧‧Anti-reflective encapsulation film
S191-S197‧‧‧步驟S191-S197‧‧‧Steps
第一圖係為本發明一種太陽能電池抗反射封裝膜製程方法之流程圖;第二圖係為本發明一種具有2mm抗反射封裝膜與太陽能電池裸片之I-V比較圖;第三圖係為本發明一種具有3mm抗反射封裝膜與太陽能電池裸片之I-V比較圖。The first figure is a flow chart of a method for manufacturing a solar cell anti-reflective encapsulating film according to the present invention; the second figure is a comparison chart of an IV with an anti-reflective encapsulating film of 2 mm and a bare cell of a solar cell; Inventively compares an IV with a 3 mm anti-reflective encapsulation film and a solar cell die.
以下係藉由特定的具體實例說明本創作之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地 了解本創作之優點及功效。The embodiments of the present invention are described below by way of specific specific examples, and those skilled in the art can easily as disclosed in the present specification. Understand the advantages and effects of this creation.
本發明提出一種以低折射率材料進行封裝之製程方法,藉由與太陽能電池的折射率差異達到抗反射之功能,同時封裝成一太陽能模組,目前有許多透明塑膠材料皆可用於製作波導,例如:PMMA(壓克力)、PVA(聚乙烯醇)、PVP以及PDMS(二甲基矽氧烷)等。The invention provides a process method for encapsulation with a low refractive index material. By integrating the refractive index difference with the solar cell to achieve anti-reflection function and packaging into a solar module, many transparent plastic materials can be used for fabricating waveguides, for example. : PMMA (acrylic), PVA (polyvinyl alcohol), PVP, and PDMS (dimethyloxane).
請參閱第一圖所示,為本發明一種太陽能電池抗反射封裝膜製程方法之流程圖。如圖所示,本發明提供一種太陽能電池抗反射封裝膜製程方法,包括:模具準備(S191),準備一模具(11),其模具(11)底部放置有一具有奈米微型結構之模板(12);將含有低折射率之波導材料與固化劑混合以形成一混合液(13),該混合液(13)可均勻攪拌後靜置一段時間或放置於真空腔體中去除氣泡;將該混合液(13)置於一模具(11)中(S192),並進行一固化程序使該混合液固化以形成一抗反射部(S193),其中第一圖中之該固化程序係以一加熱器(14)加熱該混合液(13),但本發明不以此為限;將一太陽能電池置放於抗反射部(16)上(S194);將該混合液(13)再置於該模具(11)中,並進行該固化程序(S195)使該混合液(13)固化並與該抗反射部(16)形成一抗反射封裝膜(S196);將太陽能電池模組(18)與該抗反射封裝膜(17)從模具取出(S197)。Please refer to the first figure, which is a flow chart of a method for manufacturing a solar cell anti-reflective packaging film according to the present invention. As shown in the figure, the present invention provides a method for manufacturing a solar cell anti-reflective encapsulating film, comprising: preparing a mold (S191), preparing a mold (11), and placing a template having a nano-micro structure at the bottom of the mold (11) (12) a waveguide material containing a low refractive index is mixed with a curing agent to form a mixed liquid (13), which can be uniformly stirred and then allowed to stand for a while or placed in a vacuum chamber to remove air bubbles; The liquid (13) is placed in a mold (11) (S192), and a curing process is performed to cure the mixture to form an anti-reflection portion (S193), wherein the curing process in the first figure is a heater (14) heating the mixed liquid (13), but the invention is not limited thereto; a solar cell is placed on the anti-reflection portion (16) (S194); and the mixed liquid (13) is placed in the mold again. (11), and performing the curing process (S195) to cure the mixed liquid (13) and form an anti-reflection encapsulating film with the anti-reflection portion (16) (S196); and the solar cell module (18) The anti-reflection encapsulating film (17) is taken out from the mold (S197).
實施例Example
在此實施例中我們利用PDMS製作抗反射封裝膜 (anti-reflection encapsulant,AR encapsulant),並以鑄模方式將微型結構翻印至太陽能電池受光面,PDMS折射率(n)約1.42,相較於太陽能電池有較低的折射率,例如:CIGS太陽能電池n>2.3,因此,藉由折射率的差異以及良好的波導特性,PDMS可產生良好的抗反射效果,將光捕捉增加電池的光吸收量,進而達到提升發電效率以及封裝成型的功用,除此之外,PDMS可用軟微影製程技術(soft lithography)製作微光學結構於受光面,進而可減低光的耦合損失(light out-coupling)而提高光捕捉率,提升整體模組效率。本實施例詳細製程如下:In this embodiment we use PDMS to make an anti-reflective encapsulation film. (anti-reflection encapsulant, AR encapsulant), and reprinting the microstructure to the light-receiving surface of the solar cell in a mold mode, the PDMS refractive index (n) is about 1.42, which has a lower refractive index than the solar cell, for example: CIGS solar cell n>2.3, therefore, PDMS can produce good anti-reflection effect by the difference of refractive index and good waveguide characteristics, which can increase the light absorption of the battery by light trapping, thereby improving the power generation efficiency and the function of package molding. In addition, PDMS can use the soft lithography technology to fabricate the micro-optical structure on the light-receiving surface, thereby reducing the light out-coupling and improving the light-trapping rate and improving the overall module efficiency. The detailed process of this embodiment is as follows:
1.對應欲保留的抗反射封裝膜厚度計算需要的PDMS混合液容積,依抗反射部厚度的設計(本實施例厚度為2mm與3mm)吸取適量PDMS並依比例加入固化劑(PDMS:固化劑=10:1),均勻攪拌後靜置一段時間或放置於真空腔體中去除氣泡,其中,PDMS可以是DOW CORNING的SYLGARD 184A,固化劑可以是DOW CORNING的SYLGARD 184B。1. Calculate the required volume of the PDMS mixture for the thickness of the anti-reflective encapsulating film to be retained. According to the design of the thickness of the anti-reflection portion (the thickness of the embodiment is 2 mm and 3 mm), absorb the appropriate amount of PDMS and add the curing agent in proportion (PDMS: curing agent). =10:1), after standing evenly, let stand for a period of time or placed in a vacuum chamber to remove bubbles. The PDMS may be DOW CORNING's SYLGARD 184A, and the curing agent may be DOW CORNING's SYLGARD 184B.
2.氣泡去除完全後,將適當容量的混合液倒入模具中並置於加熱板使PDMS加熱固化(90~120℃,可依倒入劑量及製程時間調整),模具底部可先放置欲翻印微型結構之模板;2. After the bubble is completely removed, pour the appropriate volume of the mixture into the mold and place it on the heating plate to heat the PDMS (90~120 °C, which can be adjusted according to the pouring dose and process time). The bottom of the mold can be placed first. Template of structure;
3.放入太陽能電池,並倒入已去除氣泡的PDMS混合液, 待混合液蓋滿電池後將模具置於加熱板使PDMS加熱固化;3. Place the solar cell and pour the bubbled PDMS mixture. After the mixed liquid is covered with the battery, the mold is placed on the heating plate to heat and cure the PDMS;
4.待PDMS完全固化後,將模具從加熱板上取下,靜置冷卻後將模組從模具中脫離取下。4. After the PDMS is completely cured, the mold is removed from the heating plate, and after standing and cooling, the module is removed from the mold.
請參閱第二圖所示,為本發明一種具有2mm抗反射封裝膜與太陽能電池裸片之I-V比較圖;請參閱第三圖所示,為本發明一種具有3mm抗反射封裝膜與太陽能電池裸片之I-V比較圖。如圖所示,太陽能電池外施加一低折射率之PDMS封裝膜後,光電流有明顯提升,其中具有2mm抗反射封裝膜(2mm AR encapsulant)之太陽能電池與未封裝之太陽能電池裸片比較,其光電流提升了17.1%,而具有3mm抗反射封裝膜(3mm AR encapsulant)之太陽能電池與未封裝之太陽能電池裸片比較,其光電流更是提升了22.5%;另外以軟微影製程將焦距3.9mm(F/3.9)的微光學透鏡結構(微型結構)翻印至具有3mm抗反射封裝膜受光面之太陽能電池(3mm+F/3.9 AR encapsulant),其電流更是從原本的35.77mA提升到了46.48mA,而效率則是從11.99%提高到了15.58%,由此可證搭配微光學結構(微型結構)可有效減少光耦合損失提升能量轉換效率(power conversion efficiency,PCE),相關數據如表一所列。Please refer to the second figure, which is a comparison diagram of an IV with an anti-reflective encapsulation film and a solar cell die according to the present invention; please refer to the third figure, which shows a 3 mm anti-reflective encapsulation film and a bare solar cell of the present invention. The IV comparison chart of the film. As shown in the figure, after a low refractive index PDMS encapsulation film is applied outside the solar cell, the photocurrent is significantly improved, and a solar cell having a 2 mm AR encapsulant film is compared with an unpackaged solar cell die. The photocurrent is increased by 17.1%, and the solar cell with 3mm AR encapsulant has an optical current of 22.5% compared with the unpackaged solar cell die. In addition, the soft lithography process will be used. The micro-optical lens structure (micro-structure) with a focal length of 3.9mm (F/3.9) is rewound to a solar cell (3mm+F/3.9 AR encapsulant) with a 3mm anti-reflective encapsulation film, and its current is increased from the original 35.77mA. At 46.48 mA, the efficiency is increased from 11.99% to 15.58%, which proves that the micro-optical structure (micro-structure) can effectively reduce the optical coupling loss and improve the power conversion efficiency (PCE). One listed.
太陽能電池封裝技術為太陽能電池產品製程中由半成品至成品的關鍵技術,主要作用是將基板與串並聯後的太陽能電池以熱固型(thermal-cured)或光固化(UV-cured)封裝材料(encapsulant)封裝成型,並搭配背材(backsheet)使模組擁有更佳的堅固性、耐候性以及安全性,而本發明將抗反射層與封裝膜結合在一起,不但可以簡化製程,又可降低成本,同時兼具經濟與光學特性,因而可製備出可減低光的耦合損失(light out-coupling)而提高光捕捉率,提升整體太陽能模組效率之抗反射封裝膜。Solar cell packaging technology is a key technology from semi-finished products to finished products in the process of solar cell products. The main function is to thermally or curate the solar cells of the substrate and the series-parallel connection (thermal-cured or UV-cured packaging materials). Encapsulant), with a backsheet to make the module more robust, weather resistant and safe, and the invention combines the anti-reflective layer with the encapsulation film, which not only simplifies the process but also reduces The cost, combined with both economic and optical characteristics, enables the preparation of an anti-reflective encapsulation film that reduces light out-coupling, increases light capture, and improves overall solar module efficiency.
上述之實施例僅為例示性說明本創作之特點及功效,非用以限制本創作之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背創作之精神及範疇下,對上述實 施例進行修飾與變化。因此,本創作之權利保護範圍,應如後述之申請專利範圍所列。The above-described embodiments are merely illustrative of the features and functions of the present invention and are not intended to limit the scope of the technical content of the present invention. Anyone who is familiar with this skill can do so without violating the spirit and scope of creation. The examples are modified and varied. Therefore, the scope of protection of this creation should be as listed in the scope of the patent application described later.
11‧‧‧模具11‧‧‧Mold
12‧‧‧微型結構(具有奈米微型結構之模板)12‧‧‧Microstructures (templates with nanostructures)
13‧‧‧混合液13‧‧‧ mixture
14‧‧‧加熱器14‧‧‧heater
15‧‧‧太陽能電池15‧‧‧Solar battery
16‧‧‧抗反射部16‧‧‧Anti-reflection department
17‧‧‧抗反射封裝膜17‧‧‧Anti-reflective encapsulation film
S191-S197‧‧‧步驟S191-S197‧‧‧Steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102147116A TWI497736B (en) | 2013-12-19 | 2013-12-19 | A Process Method for Anti - reflective Packaging Film of Solar Cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102147116A TWI497736B (en) | 2013-12-19 | 2013-12-19 | A Process Method for Anti - reflective Packaging Film of Solar Cell |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201526267A TW201526267A (en) | 2015-07-01 |
TWI497736B true TWI497736B (en) | 2015-08-21 |
Family
ID=54197795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102147116A TWI497736B (en) | 2013-12-19 | 2013-12-19 | A Process Method for Anti - reflective Packaging Film of Solar Cell |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI497736B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201043641A (en) * | 2009-06-01 | 2010-12-16 | Mitsui Chemicals Inc | Ethylene-based resin composition, solar cell sealing material and solar cell module using the sealing material |
TW201342646A (en) * | 2012-02-15 | 2013-10-16 | Lintec Corp | Protective sheet for solar cell, method for manufacturing same, and solar cell module |
TW201347207A (en) * | 2012-05-15 | 2013-11-16 | Ind Tech Res Inst | Solar optical module, solar optical film and fabrications thereof |
-
2013
- 2013-12-19 TW TW102147116A patent/TWI497736B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201043641A (en) * | 2009-06-01 | 2010-12-16 | Mitsui Chemicals Inc | Ethylene-based resin composition, solar cell sealing material and solar cell module using the sealing material |
TW201342646A (en) * | 2012-02-15 | 2013-10-16 | Lintec Corp | Protective sheet for solar cell, method for manufacturing same, and solar cell module |
TW201347207A (en) * | 2012-05-15 | 2013-11-16 | Ind Tech Res Inst | Solar optical module, solar optical film and fabrications thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201526267A (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI430462B (en) | Encapsulant material, crystalline silicon photovoltaic module and thin film photovoltaic module | |
Chen et al. | Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells | |
WO2017107783A1 (en) | Self-cleaning reflection reduction film and method of preparing same | |
CN104681657B (en) | The manufacture method of solar cell and obtained solar cell | |
Fang et al. | Antireflective paraboloidal microlens film for boosting power conversion efficiency of solar cells | |
JP2008311604A (en) | Solar cell module, and wavelength conversion condensing film for solar cell module | |
JP2012133328A (en) | Film used for solar cell module and module thereof | |
TWI445194B (en) | Package structure of solar photovoltaic module and method of manufacturing the same | |
TWI493744B (en) | Solar cell module and method of forming the same | |
CN107032359B (en) | Preparation method of silica sol and preparation method of photovoltaic glass | |
TWI463675B (en) | Package structure and solar cell with the same | |
CN106856396A (en) | A kind of plane fluorescent concentrator | |
JP2010066518A (en) | Fresnel lens, device for manufacturing fresnel lens and method thereof | |
TWI497736B (en) | A Process Method for Anti - reflective Packaging Film of Solar Cell | |
JP2009267324A (en) | Wavelength conversion type light trapping film solar-battery module using the film | |
US20150333195A1 (en) | Method for manufacturing solar cell with nano-structural film | |
CN102866439A (en) | High-molecular-polymer-based gradient refractive index lens for concentrating photovoltaic (CPV) technology and preparation method thereof | |
CN108802868A (en) | OCM Fresnel Lenses and its moulding process | |
CN106129148B (en) | Photovoltaic module and packaging process thereof | |
Joudrier et al. | Modeling and fabrication of luminescent solar concentrators towards photovoltaic devices | |
TW201622340A (en) | Process for manufacturing a photovoltaic concentrator comprising an optical structure equipped with two optical-lens stages | |
TW201640694A (en) | Photovoltaic system and the manufacturing method thereof | |
Haldar et al. | Inexpensive graded-index antireflective surfaces for silicon-based optoelectronic devices | |
CN202041670U (en) | Hot-forming Fresnel mirror thin film | |
KR101603163B1 (en) | Lightweight photovoltaic modules with improved efficiency |