TWI497066B - Sulphite sensor and method for measuring sulphite concentration in a substance - Google Patents
Sulphite sensor and method for measuring sulphite concentration in a substance Download PDFInfo
- Publication number
- TWI497066B TWI497066B TW101137181A TW101137181A TWI497066B TW I497066 B TWI497066 B TW I497066B TW 101137181 A TW101137181 A TW 101137181A TW 101137181 A TW101137181 A TW 101137181A TW I497066 B TWI497066 B TW I497066B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- sulfite
- substance
- sensor
- voltage
- Prior art date
Links
Landscapes
- Treating Waste Gases (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本發明係關於一種用於在一氣體淨化程序中測量一物質中亞硫酸鹽濃度之方法。The present invention relates to a method for measuring the concentration of sulfite in a substance in a gas purification process.
本發明係進一步關於一種經調適以測量一氣體淨化裝置中之一物質中亞硫酸鹽濃度之亞硫酸鹽感測器。The invention further relates to a sulfite sensor adapted to measure the concentration of sulfite in a substance in a gas cleaning apparatus.
在諸多工業製程中,會產生含有酸性氣體之處理氣體。此等工業程序之一者可為在一燃燒廠(諸如一發電廠)中燃燒一燃料(諸如煤炭、石油、泥炭、廢料等等),藉此產生含有污染物(其包含酸性氣體)之一熱處理氣體或「煙道氣」。需要處理該處理氣體以去除該等酸性氣體之至少一部分。可在諸如EP 0 162 536中所揭示之一濕式洗滌器中提供此處理。所揭示之濕式洗滌器包括一吸收液,其與該處理氣體接觸以吸收該等酸性氣體之至少一部分。例如,該吸收液可透過噴嘴而霧化以與該處理氣體反應。In many industrial processes, process gases containing acid gases are produced. One such industrial process may burn a fuel (such as coal, petroleum, peat, waste, etc.) in a combustion plant, such as a power plant, thereby producing one of the contaminants (which contain acid gases) Heat treatment gas or "flue gas". The process gas needs to be treated to remove at least a portion of the acid gases. This treatment can be provided in a wet scrubber such as disclosed in EP 0 162 536. The disclosed wet scrubber includes an absorbent that is in contact with the process gas to absorb at least a portion of the acid gases. For example, the absorbing liquid can be atomized through the nozzle to react with the processing gas.
可基於與處理程序之狀態有關之資訊之一回饋而控制處理程序。此資訊可包含吸收液體之測量性質。控制一濕式洗滌器之一常見方式為測量吸收液之pH位準且藉此提供可用於控制新鮮吸收劑(諸如石灰石)至吸收液之供應之資訊。The processing program can be controlled based on one of the information related to the status of the processing program. This information may include the measured properties of the absorbing liquid. One common way to control a wet scrubber is to measure the pH level of the absorbent and thereby provide information that can be used to control the supply of fresh absorbent, such as limestone, to the absorbent.
然而,測量一吸收液之pH並不可靠。pH測量為無法提供與該吸收液之性質有關之可靠資訊之一困難過程。此降低處理程序之控制精度及濕式洗滌器之效率。However, measuring the pH of an absorbent is not reliable. pH measurement is a difficult process that does not provide reliable information about the nature of the absorbent. This reduces the control accuracy of the processing program and the efficiency of the wet scrubber.
因此,需要更可靠地測量一氣體淨化裝置中之一吸收液之性質以控制淨化一處理氣體之處理程序。Therefore, there is a need to more reliably measure the nature of one of the liquid purification devices to control the process of purifying a process gas.
本發明之一目的為提供一種相對於先前技術之改良方法,藉由該方法而提供與一氣體淨化程序中一物質之性質有關之可靠資訊。It is an object of the present invention to provide an improved method relative to the prior art by which reliable information relating to the nature of a substance in a gas purification process is provided.
藉由用於在一氣體淨化程序中測量一物質中亞硫酸鹽濃度之一方法而實現此目的,該方法包括以下步驟:藉由一第一電極及一第二電極透過該物質而發送複數個電壓脈衝,該等第一及第二電極與該物質接觸;接收由該複數個電壓脈衝產生之電流回應;及使用多變量資料分析來分析該等電流回應以計算該物質中之亞硫酸鹽濃度。This object is achieved by a method for measuring a concentration of sulfite in a substance in a gas purification process, the method comprising the steps of: transmitting a plurality of signals by passing a first electrode and a second electrode through the substance a voltage pulse, the first and second electrodes are in contact with the substance; receiving a current response generated by the plurality of voltage pulses; and analyzing the current response using multivariate data analysis to calculate a sulfite concentration in the substance .
此方法之一優點在於:可以一更可靠方式測量物質中之亞硫酸鹽含量。此外,可藉由本方法而高精度地測量一低亞硫酸鹽濃度。藉此,可高精度地控制氣體淨化程序。若物質為一濕式洗滌器(例如使用石灰石作為吸收劑之一濕式洗滌器)中之一吸收液,則根據本發明之方法可提供該吸收液中之亞硫酸鹽濃度之一可靠測量,因而提供一輸入以控制該濕式洗滌器中之一處理氣體之處理程序。方法可使用伏安法。在本方法中,可在物質中通過一第一電極及一第二電極而發送電壓脈衝。該第二電極可為一大的金屬件。該第二電極可具有比該第一電極之面積更大至少20倍之一面積。藉由使用多變量資料分析而處理由該等電壓脈衝產生之電流回應,可使用來自具有已知亞硫酸鹽濃度之 樣本之數學模型來建立一預測模型,該預測模型可用於判定一未知物質中之亞硫酸鹽濃度。One of the advantages of this method is that the sulfite content of the material can be measured in a more reliable manner. Further, a low sulfite concentration can be measured with high precision by the present method. Thereby, the gas purifying process can be controlled with high precision. If the substance is one of the wet scrubbers (for example, a wet scrubber using limestone as one of the absorbents), the method according to the invention provides a reliable measure of one of the sulfite concentrations in the absorbent, An input is thus provided to control the processing of one of the processing gases in the wet scrubber. The method can use voltammetry. In the method, a voltage pulse can be transmitted through a first electrode and a second electrode in the substance. The second electrode can be a large piece of metal. The second electrode may have an area that is at least 20 times larger than the area of the first electrode. Processing the current response generated by the voltage pulses by using multivariate data analysis, using from a known sulfite concentration The mathematical model of the sample is used to establish a predictive model that can be used to determine the concentration of sulfite in an unknown substance.
根據一實施例,發送複數個電壓脈衝之步驟可包括發送一系列中之複數個電壓脈衝以逐步增大及/或減小電壓位準。According to an embodiment, the step of transmitting the plurality of voltage pulses may include transmitting a plurality of voltage pulses in the series to gradually increase and/or decrease the voltage level.
藉由逐步增大及/或減小電壓位準,透過第一電極而發送之一系列電壓可呈一階梯形狀。可在電壓位準被增大或減小至一新位準時發生一電壓脈衝產生一電流回應。在亞硫酸鹽濃度之一測量期間,可逐步掃描電壓位準(自一第一電壓位準至一最終電壓位準)。該第一電壓位準可為一負電壓且該最終電壓位準可為一正電壓以導致一陽極掃描。替代地,該第一電壓位準可為正數且該最終電壓位準可為負數以導致一陰極掃描。By gradually increasing and/or decreasing the voltage level, a series of voltages transmitted through the first electrode may be in a stepped shape. A voltage pulse can be generated to generate a current response when the voltage level is increased or decreased to a new level. During one measurement of the sulfite concentration, the voltage level can be scanned stepwise (from a first voltage level to a final voltage level). The first voltage level can be a negative voltage and the final voltage level can be a positive voltage to cause an anode scan. Alternatively, the first voltage level can be a positive number and the final voltage level can be a negative number to result in a cathode scan.
根據一實施例,分析電流回應之步驟包括使用多變量資料分析來分析電流回應之峰值。According to an embodiment, the step of analyzing the current response comprises analyzing the peak of the current response using multivariate data analysis.
此實施例之一優點在於:多變量資料分析為自可用在電流回應中之資訊獲得亞硫酸鹽濃度之一測量值之一有效率方式。An advantage of this embodiment is that multivariate data analysis is an efficient way to obtain one of the sulphite concentrations from the information available in the current response.
根據一實施例,分析電流回應之步驟可包括使用多變量資料分析來分析各電流回應之一峰值及至少另一值。According to an embodiment, the step of analyzing the current response may comprise analyzing the one peak of each current response and at least another value using multivariate data analysis.
當測量一物質中之亞硫酸鹽時,透過第一電極而發送一系列電壓以導致一系列電流回應。各電流回應之峰值形狀可提供與該物質中之亞硫酸鹽相關之資訊。電流回應可包含電流之一峰值位準及一衰減。可在諸多樣本中抽取各電 流回應樣本以提供諸多值。分析各電流回應之該峰值及至少另一值以足以使用多變量資料分析來評估該物質中之亞硫酸鹽濃度。藉此,相較於分析一完整峰值或諸多資料值(即,全部樣本值)而減少分析中所處理資料之數量。可僅使用兩個值來提供亞硫酸鹽濃度之一可靠測量。亞硫酸鹽可具有一氧化還原電位,該氧化還原電位處之一電流回應可大於其他電位處之電流回應。當一系列電壓脈衝接近與亞硫酸鹽之該氧化還原電位對應之一電壓位準時,電流回應可提供一峰形增大電流位準。可在分析各電流回應之峰值時識別此增大電流位準。在一實施例中,除該峰值以外之該至少一值可為四個值。可在電流回應衰減時取得此等值以提供與該物質中之亞硫酸鹽含量相關之進一步資訊。作為一實例,可在50個樣本中抽取各電流回應樣本。若可使用多變量資料分析來分析五個值(其等包含該峰值),則可自第一1/3之樣本取得該等值中之三者(其等包含該峰值)。此外,可自第二1/3之樣本取得一值,且自最後1/3之樣本取得一值。在一實施例中,該峰值可來自各電流回應之第一或第二樣本。When measuring a sulfite in a substance, a series of voltages are transmitted through the first electrode to cause a series of current responses. The peak shape of each current response provides information about the sulfite in the material. The current response can include one of the peak levels of current and an attenuation. Can extract electricity from many samples The stream responds to the sample to provide a number of values. The peak of each current response and at least another value are analyzed to be sufficient to assess the sulfite concentration in the material using multivariate data analysis. Thereby, the amount of data processed in the analysis is reduced compared to analyzing a complete peak or a plurality of data values (ie, all sample values). Only two values can be used to provide a reliable measure of one of the sulfite concentrations. The sulfite may have a redox potential at which one of the current responses may be greater than the current response at other potentials. The current response provides a peak-shaped increase in current level when a series of voltage pulses approaches a voltage level corresponding to the redox potential of the sulfite. This increased current level can be identified when analyzing the peak of each current response. In an embodiment, the at least one value other than the peak may be four values. This value can be obtained when the current is responsive to attenuation to provide further information regarding the sulfite content of the material. As an example, each current response sample can be extracted in 50 samples. If multivariate data analysis can be used to analyze five values (which include the peak), then three of the values (which include the peak) can be taken from the first 1/3 of the sample. In addition, a value can be taken from the second 1/3 of the sample, and a value is obtained from the last 1/3 of the sample. In an embodiment, the peak may be from a first or second sample of each current response.
根據一實施例,方法可進一步包括清潔第一電極之一表面以除去由第一電極與物質之間之接觸導致之一塗層。According to an embodiment, the method may further comprise cleaning a surface of the first electrode to remove a coating caused by contact between the first electrode and the substance.
第一電極可由鉑製成。當測量含有亞硫化合物之一物質時,第一電極會因硫化物黏結至電極之鉑表面而相當快速地變為不可用。此可在該電極表面上形成一塗層且負面影響測量之結果。可藉由清潔電極之該表面而去除該塗層以 確保測量之可靠性。可連續或半連續地清潔電極。可由一清潔單元(諸如一刷子、一研磨機、一刮刀或類似者)執行清潔。The first electrode can be made of platinum. When a substance containing a subsulfide compound is measured, the first electrode becomes relatively unusable due to the adhesion of the sulfide to the platinum surface of the electrode. This can form a coating on the surface of the electrode and negatively affect the results of the measurement. The coating can be removed by cleaning the surface of the electrode Ensure the reliability of the measurement. The electrode can be cleaned continuously or semi-continuously. Cleaning can be performed by a cleaning unit such as a brush, a grinder, a scraper or the like.
根據一實施例,透過物質而發送之各電壓脈衝之數值可比前一相鄰電壓脈衝更高或更低0.02伏特至0.2伏特。According to an embodiment, the value of each voltage pulse transmitted through the substance may be 0.02 volts to 0.2 volts higher or lower than the previous adjacent voltage pulse.
各電壓脈衝可具有一電壓位準增量或減量。對於各電壓脈衝,電壓位準可具有0.02伏特至0.2伏特之間之一增量或減量。較佳地,電壓位準可具有約0.05伏特之一增量或減量。物質中亞硫酸鹽之一完整測量可例如開始於-0.9伏特之一電壓,該電壓以一步進方式被增大至0.8伏特。可根據各電壓脈衝或步進而接收一電流回應。可在一電壓掃描之後接收複數個電流回應。各電流回應呈峰形且可使用多變量資料分析來分析第一及最後電流值。藉由提供一逐步電壓掃描,該複數個電流回應可提供與物質中之亞硫酸鹽濃度相關之可靠資訊。Each voltage pulse can have a voltage level increment or decrement. For each voltage pulse, the voltage level can have an increment or decrement between 0.02 volts and 0.2 volts. Preferably, the voltage level can have an increment or decrement of about 0.05 volts. A complete measurement of one of the sulfites in the material can, for example, begin at a voltage of -0.9 volts, which is increased to 0.8 volts in a stepwise manner. A current response can be received based on each voltage pulse or step. A plurality of current responses can be received after a voltage sweep. Each current response is peak shaped and multivariate data analysis can be used to analyze the first and last current values. By providing a step-by-step voltage sweep, the plurality of current responses provide reliable information about the concentration of sulfite in the material.
根據一實施例,清潔第一電極之一表面之步驟可包括將一清潔單元旋轉成與第一電極接觸。According to an embodiment, the step of cleaning a surface of the first electrode may include rotating a cleaning unit into contact with the first electrode.
可將一清潔單元旋轉成與第一電極接觸以提供電極之一連續清潔。藉此,可連續去除形成於電極之表面上之塗層。清潔電極可為刷洗、研磨、刮擦或以類似方式處理電極。第一電極可呈環形以提供與物質之一延伸接觸。一環形第一電極可進一步提供與該旋轉清潔單元之連續接觸。A cleaning unit can be rotated into contact with the first electrode to provide continuous cleaning of one of the electrodes. Thereby, the coating formed on the surface of the electrode can be continuously removed. The cleaning electrode can be brushed, ground, scratched or otherwise treated in an electrode. The first electrode can be annular to provide extended contact with one of the substances. An annular first electrode can further provide continuous contact with the rotary cleaning unit.
根據一實施例,可以每分鐘2轉至每分鐘40轉(2rmp至40rmp)之一速率將清潔單元旋轉成與第一電極之一表面 接觸。According to an embodiment, the cleaning unit can be rotated to a surface with one of the first electrodes at a rate of 2 revolutions per minute to 40 revolutions per minute (2 rmp to 40 rmp) contact.
可藉由以每分鐘約2轉至每分鐘約40轉之一速率將清潔單元旋轉成與第一電極之一表面接觸而連續去除第一電極之該表面上之塗層,且可一可靠方式執行測量。清潔單元不會干擾電壓脈衝之發送。較佳地,可以每分鐘約15轉之一速率旋轉清潔單元。清潔單元之旋轉速率可隨時間逝去而變動以提供速率間隔給清潔單元。The coating on the surface of the first electrode can be continuously removed by rotating the cleaning unit into contact with one of the first electrodes at a rate of about 2 revolutions per minute to about 40 revolutions per minute, and can be reliably implemented. Perform measurements. The cleaning unit does not interfere with the transmission of voltage pulses. Preferably, the cleaning unit can be rotated at a rate of about 15 revolutions per minute. The rate of rotation of the cleaning unit can be varied over time to provide a rate interval to the cleaning unit.
根據一實施例,物質可為用在一濕式洗滌器淨化程序中之一吸收液。According to an embodiment, the substance may be one of the absorbents used in a wet scrubber purification procedure.
在一氣體淨化程序中(諸如,在經調適以淨化處理氣體之一濕式洗滌器中),可提供與處理氣體中之酸性氣體反應之一吸收液,例如基於石灰石之一吸收液。此等酸性氣體可包括二氧化硫。該反應可導致該吸收液含有亞硫酸鹽。該吸收液中之亞硫酸鹽濃度可提供氣體淨化程序之狀態之資訊,該資訊可用於控制該濕式洗滌器。可藉由提供一可靠亞硫酸鹽測量方法給該吸收液而以一可靠方式控制該濕式洗滌器。In a gas purification process (such as in a wet scrubber adapted to purify the process gas), an absorption liquid that reacts with an acid gas in the process gas, such as one based on limestone, may be provided. These acid gases may include sulfur dioxide. This reaction can result in the absorption liquid containing sulfite. The sulfite concentration in the sorbent provides information on the status of the gas purge process that can be used to control the wet scrubber. The wet scrubber can be controlled in a reliable manner by providing a reliable sulfite measurement method to the absorbent.
根據另一態樣,提供一種用於測量一氣體淨化裝置中之一物質中亞硫酸鹽濃度之亞硫酸鹽感測器,其中該亞硫酸鹽感測器包括:一第一電極及一第二電極,其等經調適以與該物質接觸;一控制單元,其經調適以藉由該第一電極及該第二電極透過該物質而發送電壓脈衝;及一分析單元,其經調適以接收及分析由該等電壓脈衝產生之電流回應,其中該分析單元經調適以執行多變量資料分析。According to another aspect, a sulfite sensor for measuring a sulfite concentration in a substance in a gas purification device, wherein the sulfite sensor comprises: a first electrode and a second An electrode, which is adapted to be in contact with the substance; a control unit adapted to transmit a voltage pulse by the first electrode and the second electrode transmitting the substance; and an analysis unit adapted to receive and A current response generated by the voltage pulses is analyzed, wherein the analysis unit is adapted to perform multivariate data analysis.
此亞硫酸鹽感測器之一優點在於:可執行一物質中亞硫酸鹽濃度之一可靠測量。接著,可使用測量值來控制氣體淨化程序。甚至可在該亞硫酸鹽濃度非常低時可靠地測量該亞硫酸鹽濃度。控制單元可透過第一電極而將電壓脈衝發送至該物質中。可透過一第二電極而接收由該等電壓脈衝產生之電流回應。該第二電極可為一金屬件。藉由在分析單元中使用多變量資料分析,可使用來自具有已知亞硫酸鹽濃度之樣本之數學模型來建立一預測模型,該預測模型可用於判定一未知物質中之亞硫酸鹽濃度。One of the advantages of this sulfite sensor is that it can perform a reliable measurement of one of the sulfite concentrations in a substance. The measured values can then be used to control the gas purification process. This sulfite concentration can be reliably measured even when the sulfite concentration is very low. The control unit can transmit a voltage pulse to the substance through the first electrode. A current response generated by the voltage pulses can be received through a second electrode. The second electrode can be a metal piece. By using multivariate data analysis in the analysis unit, a mathematical model from a sample having a known sulfite concentration can be used to establish a predictive model that can be used to determine the sulfite concentration in an unknown substance.
根據一實施例,控制單元可經調適以發送一系列電壓脈衝,使得可以一步進方式增大及/或減小各電壓脈衝之一電壓位準。According to an embodiment, the control unit can be adapted to transmit a series of voltage pulses such that one of the voltage pulses can be increased and/or decreased in a stepwise manner.
藉由增大及/或減小電壓位準步進,透過第一電極而發送之一系列電壓脈衝可呈一階梯形狀。可在控制單元將電壓位準增大或減小至一新位準時發生電壓脈衝產生電流回應。亞硫酸鹽感測器可經調適以逐步掃描電壓位準(自一第一電壓位準至一最終電壓位準)以測量亞硫酸鹽含量。該第一電壓位準可為一負電壓且該最後電壓位準可為一正電壓以導致一陽極掃描。替代地,該第一電壓位準可為正數且該最後電壓位準可為負數以導致一陰極掃描。A series of voltage pulses transmitted through the first electrode can be in a stepped shape by increasing and/or decreasing the voltage level step. A voltage pulse can generate a current response when the control unit increases or decreases the voltage level to a new level. The sulfite sensor can be adapted to step through the voltage level (from a first voltage level to a final voltage level) to measure the sulfite content. The first voltage level can be a negative voltage and the last voltage level can be a positive voltage to cause an anode scan. Alternatively, the first voltage level can be a positive number and the last voltage level can be a negative number to cause a cathode scan.
根據一實施例,分析單元可經調適以基於電流回應之峰值而執行一多變量資料分析。According to an embodiment, the analysis unit can be adapted to perform a multivariate data analysis based on the peak of the current response.
電流回應之一峰值可提供與物質中之亞硫酸鹽相關之資訊。電流回應可包含一峰值位準及電流趨向於零之一衰 減。若分析單元分析電流回應之該峰值,則可實現亞硫酸鹽濃度之一可靠測量。亞硫酸鹽可具有一氧化還原電位,該氧化還原電位處之一電流回應可大於其他電位處之電流回應。若由控制單元發送之電壓脈衝對應於亞硫酸鹽之該氧化還原電位,則電流回應峰值可提供一增大電流位準。然而,當測量粗糙複雜介質(作為來自一氣體淨化程序之液體)時,無法獲得該氧化還原電位處之清晰峰化電流位準。此係因為測量介質中具干擾性之或多或少氧化還原活性物質導致非常複雜之一電流回應。此使來自一測量之該電流回應非常難以解譯。因此,使用多變量資料分析來解譯來自一電流頻譜之資料。接著,使用具有已知亞硫酸鹽濃度之電流頻譜訓練集來針對具有未知亞硫酸鹽濃度之樣本而產生數學預測函數。圖4c中展示一電流頻譜之一實例。One of the peaks of the current response provides information about the sulfite in the substance. The current response can include a peak level and the current tends to zero Less. A reliable measurement of one of the sulfite concentrations can be achieved if the analysis unit analyzes the peak of the current response. The sulfite may have a redox potential at which one of the current responses may be greater than the current response at other potentials. If the voltage pulse sent by the control unit corresponds to the redox potential of the sulfite, the current response peak provides an increased current level. However, when measuring a rough complex medium (as a liquid from a gas purification process), a clear peaking current level at the redox potential cannot be obtained. This is due to the fact that the measurement of more or less redox active substances in the medium leads to a very complicated one-current response. This makes this current response from a measurement very difficult to interpret. Therefore, multivariate data analysis is used to interpret data from a current spectrum. Next, a current spectral training set with a known sulfite concentration is used to generate a mathematical prediction function for samples having unknown sulfite concentrations. An example of a current spectrum is shown in Figure 4c.
根據一實施例,亞硫酸鹽感測器可進一步包括經調適以清潔第一電極之一清潔單元。According to an embodiment, the sulfite sensor may further comprise a cleaning unit adapted to clean one of the first electrodes.
第一電極可由鉑製成。當使用亞硫酸鹽感測器來測量含有亞硫化合物之一物質時,第一電極會因硫化物黏結至電極之一鉑表面而相當快速地變為不可用。此在該第一電極表面上形成一塗層且負面影響測量之結果。可藉由提供具有一清潔單元之亞硫酸鹽感測器而去除電極之該表面上之塗層以確保感測器之可靠性。該清潔單元可經調適以在亞硫酸鹽之測量期間以一連續或半連續方式清潔第一電極。該清潔單元可為一刷子、一研磨機、一刮刀或類似者。The first electrode can be made of platinum. When a sulfite sensor is used to measure a substance containing a subsulfide compound, the first electrode becomes relatively unusable due to the sulfide bonding to one of the platinum surfaces of the electrode. This forms a coating on the surface of the first electrode and negatively affects the results of the measurement. The coating on the surface of the electrode can be removed by providing a sulfite sensor having a cleaning unit to ensure the reliability of the sensor. The cleaning unit can be adapted to clean the first electrode in a continuous or semi-continuous manner during the measurement of the sulfite. The cleaning unit can be a brush, a grinder, a scraper or the like.
參考圖式而更詳細描述本發明。The invention is described in more detail with reference to the drawings.
下文中參考其中展示本發明之較佳實施例之附圖而更完全描述本發明。然而,本發明可體現為諸多不同形式且不應被解讀為受限於本文中所闡述之該等實施例;相反,提供此等實施例使得本發明透徹完整且將可對熟習技術者完全傳達本發明之範疇。在圖式中,相同元件符號意指相同元件。The invention will be described more fully hereinafter with reference to the accompanying drawings in which <RTIgt; However, the present invention may be embodied in many different forms and should not be construed as being limited to the embodiments described herein; rather, the embodiments are provided so that the present invention is thorough and will be fully conveyed to the skilled artisan. The scope of the invention. In the drawings, the same component symbols mean the same components.
圖1中繪示根據本發明之亞硫酸鹽感測器1之一透視圖,且圖2中繪示亞硫酸鹽感測器1之一示意性側視橫截面圖。亞硫酸鹽感測器1包括:一基座區段4;及一罩殼2,其形成用於亞硫酸鹽偵測之一空間3之側壁。一感測器頭10係位於空間3中。感測器頭10係形成為延伸至空間3中之一管。呈一鉑環形式之一第一電極11係設置於感測器頭10之一軸向端部部分13處。第一電極11之一表面12與感測器頭10之軸向端部部分13平齊。A perspective view of a sulfite sensor 1 in accordance with the present invention is illustrated in FIG. 1, and a schematic side cross-sectional view of the sulfite sensor 1 is illustrated in FIG. The sulfite sensor 1 comprises: a base section 4; and a casing 2 forming a side wall for a space 3 for sulfite detection. A sensor head 10 is located in the space 3. The sensor head 10 is formed to extend into one of the tubes in the space 3. One of the first electrodes 11 in the form of a platinum ring is disposed at one of the axial end portions 13 of the sensor head 10. One surface 12 of the first electrode 11 is flush with the axial end portion 13 of the sensor head 10.
一軸31延伸穿過管狀感測器頭10之內部10a。一電動馬達(圖中未展示)使軸31旋轉。軸31係耦合至一研磨單元30。研磨單元30具有經調適以鄰接第一電極11之表面12之一表面32(如圖2中最佳所展示)。軸31使研磨單元30旋轉,使得研磨單元30之表面32研磨/清潔第一電極11之表面12。研磨單元30以每分鐘2轉至每分鐘40轉之一速率(較佳以每分鐘15轉之一速率)旋轉成與第一電極11之表面12接觸。研磨單元30較佳由以基於例如碳化矽或氮化矽之一陶 瓷材料製成。A shaft 31 extends through the interior 10a of the tubular sensor head 10. An electric motor (not shown) rotates the shaft 31. The shaft 31 is coupled to a grinding unit 30. The grinding unit 30 has a surface 32 that is adapted to abut the surface 12 of the first electrode 11 (as best shown in Figure 2). The shaft 31 rotates the grinding unit 30 such that the surface 32 of the grinding unit 30 grinds/cleans the surface 12 of the first electrode 11. The grinding unit 30 is rotated to contact the surface 12 of the first electrode 11 at a rate of 2 revolutions per minute to 40 revolutions per minute, preferably at a rate of 15 revolutions per minute. The grinding unit 30 is preferably made of one based on, for example, tantalum carbide or tantalum nitride Made of porcelain material.
亞硫酸鹽感測器1進一步包括一第二電極20。第二電極20較佳由一金屬(諸如鋼或類似者)製成。第二電極20係位於與第一電極11相隔一距離之位置處。在所繪示實施例中,第二電極20由金屬罩殼2構成。The sulfite sensor 1 further includes a second electrode 20. The second electrode 20 is preferably made of a metal such as steel or the like. The second electrode 20 is located at a distance from the first electrode 11. In the illustrated embodiment, the second electrode 20 is constructed from a metal casing 2.
一控制單元40係配置於亞硫酸鹽感測器1中或連接至亞硫酸鹽感測器1且經調適以透過佔用第一電極11與第二電極20之間之空間之物質而發送電壓脈衝。當亞硫酸鹽感測器1係浸沒至一物質中時,該等電壓脈衝經由第一電極11而進入該物質。第二電極20經調適以接收由該等電壓脈衝產生之電流回應且將該等電流回應回傳至控制單元40。控制單元40接收及分析(使用一分析單元50)該等電流回應且使用一多變量資料分析來計算該物質中之亞硫酸鹽濃度。藉由在分析單元50中使用多變量資料分析,使用來自具有已知亞硫酸鹽濃度之樣本之數學模型來建立一預測模型,該預測模型可用於判定一未知物質中之亞硫酸鹽濃度。A control unit 40 is disposed in the sulfite sensor 1 or connected to the sulfite sensor 1 and adapted to transmit a voltage pulse through a substance occupying a space between the first electrode 11 and the second electrode 20 . When the sulfite sensor 1 is immersed in a substance, the voltage pulses enter the substance via the first electrode 11. The second electrode 20 is adapted to receive a current response generated by the voltage pulses and to pass back the current responses to the control unit 40. Control unit 40 receives and analyzes (using an analysis unit 50) the current responses and uses a multivariate data analysis to calculate the sulfite concentration in the material. By using multivariate data analysis in analysis unit 50, a mathematical model from a sample having a known sulfite concentration is used to establish a predictive model that can be used to determine the sulfite concentration in an unknown substance.
來自伏安測量之資料通常難以解譯。各測量值由諸多變量組成。多變量資料分析方法(諸如主分量分析(PCA)及潛在結構投射(PLS),例如自以下各者所知:Wold,S.、Esbensen,K.及Geladi,P.之「Principal component analysis:A tutorial.」,Chemometrics and Intelligent Laboratory Systems 2,37-52,1987;及S.Wold、M.Sjöström及L.Eriksson之「PLS-regression:a basic tool of chemometrics」,Chemometrics and Intelligent Laboratory Systems,58(2001) 109-130)已展示具有用性。PCA為一數學工具,其描述實驗資料之方差。計算一向量,其描述實驗資料之最大方差之方向,即,描述觀測資料之間之最大差值之方向。此向量被稱為第一主分量。第二主分量與第一主分量正交且因此與第一主分量無關。可以一類似方式計算另外主分量,直至觀測資料之大部分已被解釋。接著,形成由該等主分量所界定之一新矩陣,且根據不同主分量之重要性而大幅減小資料集,但在諸多情況中僅減少至兩個維度。負載向量描述與原變量相關之主分量之方向,且得分向量描述與觀測資料相關之主分量之方向。因此,可製作一得分圖以展示原樣本之間之關係及其等影響系統之程度。因此,一得分圖展示實驗資料之間之關係,且可將實驗資料之分組用於分類。Information from voltammetric measurements is often difficult to interpret. Each measurement consists of a number of variables. Multivariate data analysis methods (such as principal component analysis (PCA) and latent structure projection (PLS), for example, from the following: Wold, S., Esbensen, K. and Geladi, P. "Principal component analysis: A Tutorial.", Chemometrics and Intelligent Laboratory Systems 2, 37-52, 1987; and "PLS-regression: a basic tool of chemometrics" by S. Wold, M. Sjöström and L. Eriksson, Chemometrics and Intelligent Laboratory Systems, 58 ( 2001) 109-130) has been shown to be useful. PCA is a mathematical tool that describes the variance of experimental data. A vector is calculated which describes the direction of the largest variance of the experimental data, ie, the direction of the largest difference between the observed data. This vector is called the first principal component. The second principal component is orthogonal to the first principal component and thus independent of the first principal component. The other principal components can be calculated in a similar manner until most of the observations have been interpreted. Next, a new matrix defined by the principal components is formed, and the data set is substantially reduced according to the importance of the different principal components, but in many cases only reduced to two dimensions. The load vector describes the direction of the principal component associated with the original variable, and the score vector describes the direction of the principal component associated with the observed data. Therefore, a score map can be made to show the relationship between the original samples and the extent to which they affect the system. Therefore, a score map shows the relationship between experimental data, and the grouping of experimental data can be used for classification.
使用PLS來產生來自資料之校正集之模型。PLS為一線性方法,其中對X資料(伏安圖)與Y資料(濃度)兩者執行PCA。接著,對資料集與Y資料之間之各PC執行一線性回歸以給出一回歸模型。可使用此模型來預測來自伏安圖之值。PLS is used to generate a model of the calibration set from the data. PLS is a linear method in which PCA is performed on both X data (voltammogram) and Y data (density). Next, a linear regression is performed on each PC between the data set and the Y data to give a regression model. This model can be used to predict values from voltammograms.
可在I.T.Jolliffe之「Principle Component Analysis」(Springer-Verlag,New York公司(1986)ISBN 0-387-96269-7)或K.R.Beebe、R.J.Pell及M.B.Seasholtz之「Chemometrics-A practical guide」(John Wiley & Sons公司(1998)ISBN 0-471-12451-6)中找到與多變量資料分析相關之更多資訊。Available in ITJolliffe's "Principle Component Analysis" (Springer-Verlag, New York Company (1986) ISBN 0-387-96269-7) or KRBeebe, RJPell and MB Seasholtz "Chemometrics-A practical guide" (John Wiley) More information on multivariate data analysis can be found in & Sons (1998) ISBN 0-471-12451-6).
在一實施例中,亞硫酸鹽感測器1進一步包括用於測量 物質之溫度之一溫度感測器60。In an embodiment, the sulfite sensor 1 further comprises for measuring One of the temperatures of the temperature sensor 60.
圖3係用於測量一物質中亞硫酸鹽濃度之一方法80之一流程圖。可在一氣體淨化程序中提供該物質。在一步驟82中,透過第一電極11而發送複數個電壓脈衝。第一電極11與該物質接觸。第一電極11及第二電極20透過該物質而自控制單元40發送電壓脈衝作為一逐步增大或減小之電壓位準(如圖4a中所展示)。形成透過第一電極11而發送之電壓位準之一階梯圖案。各步進涉及將電壓位準較佳地增大或減小約0.05伏特。在該方法之一實例中,透過該物質而發送之電壓位準(作為電壓脈衝)以一步進方式自-1.0伏特增大至1.0伏特(步進為0.05伏特)。在圖4a所繪示之另一實例中,電壓位準首先自0.8伏特下降至-0.1伏特(步進為0.05伏特),接著自-0.1伏特上升至0.8伏特(步進為0.05伏特)。Figure 3 is a flow diagram of a method 80 for measuring the concentration of sulfite in a substance. This material can be supplied in a gas purification process. In a step 82, a plurality of voltage pulses are transmitted through the first electrode 11. The first electrode 11 is in contact with the substance. The first electrode 11 and the second electrode 20 transmit a voltage pulse from the control unit 40 as a stepwise increasing or decreasing voltage level (as shown in Figure 4a). A step pattern of a voltage level transmitted through the first electrode 11 is formed. Each step involves increasing or decreasing the voltage level by about 0.05 volts. In one example of the method, the voltage level transmitted as a voltage pulse (as a voltage pulse) is increased from -1.0 volts to 1.0 volts in a stepwise manner (step is 0.05 volts). In another example, depicted in Figure 4a, the voltage level first drops from 0.8 volts to -0.1 volts (steps are 0.05 volts), then rises from -0.1 volts to 0.8 volts (steps are 0.05 volts).
在一步驟84中,接收電流回應,該等電流回應由第一電極11發送至第二電極20之電壓脈衝產生。第二電極20接收該等電流回應。第二電極20亦與物質接觸。使電壓位準增大或減小之各步驟產生第二電極20中之一新電流回應。In a step 84, a current response is received which is generated in response to a voltage pulse transmitted by the first electrode 11 to the second electrode 20. The second electrode 20 receives the current responses. The second electrode 20 is also in contact with the substance. Each step of increasing or decreasing the voltage level produces a new current response in the second electrode 20.
在一最終步驟86中,使用一多變量資料分析來分析電流回應。藉此,可基於電流回應而測量物質中之亞硫酸鹽濃度。根據一實施例,將全部複數個電流回應用於測量物質中之亞硫酸鹽濃度。在一實施例中,在各發送電壓脈衝之後分析電流回應。替代地,在對一系列電流回應執行多變量資料分析之前,發送一系列電壓脈衝以產生該系列之電流回應。In a final step 86, a multivariate data analysis is used to analyze the current response. Thereby, the sulfite concentration in the substance can be measured based on the current response. According to an embodiment, all of the plurality of current responses are used to measure the sulfite concentration in the substance. In an embodiment, the current response is analyzed after each transmit voltage pulse. Alternatively, a series of voltage pulses are sent to generate a series of current responses prior to performing a multivariate data analysis on a series of current responses.
圖4b進一步展示呈一階梯圖案之電壓脈衝之一例示性模擬圖。電壓位準隨時間逝去而自約-0.75伏特變動至約0.8伏特。x軸上之值表示電壓脈衝之數目。圖4c展示作為來自一電子電路之一輸出電壓之對應電流回應。使用來自該等電流回應之資訊來評估物質中之亞硫酸鹽含量(使用多變量資料分析)。如圖4b中所展示,各電壓脈衝對應於圖4c中之五個測量電壓值。因此,在圖4b及圖4c所展示之實例中,各電壓脈衝之回應在各電壓脈衝期間被測量五次。圖4c之x軸上之值表示測量之次數。Figure 4b further shows an exemplary simulation of one of the voltage pulses in a stepped pattern. The voltage level changes from about -0.75 volts to about 0.8 volts over time. The value on the x-axis represents the number of voltage pulses. Figure 4c shows the corresponding current response as an output voltage from one of the electronic circuits. Information from these current responses is used to assess the sulfite content of the material (using multivariate data analysis). As shown in Figure 4b, each voltage pulse corresponds to the five measured voltage values in Figure 4c. Thus, in the example shown in Figures 4b and 4c, the response of each voltage pulse is measured five times during each voltage pulse. The value on the x-axis of Figure 4c represents the number of measurements.
作為根據本發明之亞硫酸鹽感測器1之一例示性應用,圖5a繪示一濕式洗滌器101。濕式洗滌器101可操作以去除呈產生於一鍋爐(圖中未展示)中之一煙道氣F形式之一處理氣體之二氧化硫含量之至少一部分,該鍋爐可操作以燃燒一燃料,諸如煤炭、石油、泥炭、天然氣或廢料。As an exemplary application of the sulfite sensor 1 according to the present invention, FIG. 5a illustrates a wet scrubber 101. The wet scrubber 101 is operable to remove at least a portion of a sulfur dioxide content of a process gas produced in a form of flue gas F produced in a boiler (not shown) operable to combust a fuel, such as coal , oil, peat, natural gas or waste.
濕式洗滌器101包括:一吸收容器,其呈一垂直敞開塔102形式;一入口104,其用於待淨化之煙道氣F;及一出口106,其用於已使二氧化硫含量之至少一部分被去除之煙道氣FC。The wet scrubber 101 comprises: an absorption vessel in the form of a vertically open tower 102; an inlet 104 for the flue gas F to be purified; and an outlet 106 for at least a portion of the sulfur dioxide content The flue gas FC is removed.
呈一吸收液貯槽108形式之一吸收液氧化容器係配置於垂直敞開塔102之底部109處。吸收液貯槽108實現雙重用途:充當吸收液之一再循環貯槽;及充當其中可發生氧化之一容器。由於後一原因,吸收液貯槽108具有氧化配置110。氧化配置110包括:氧氣供應裝置112,其呈一鼓風機112a形式;氧氣分配器114,其包括配置於一分配管118 上之諸多噴嘴116;及一供應管120,其係流體連接至鼓風機112及分配管118以將壓縮含氧氣體(諸如空氣)供應至分配管118及噴嘴116。噴嘴116經配置以將空氣分配至吸收液貯槽108中所含之一石灰石吸收液中且導致該石灰石吸收液中所含之亞硫酸鹽氧化,如下文中更詳細所述。應瞭解,作為一鼓風機112a之替代例,供氧裝置112可為一壓縮機或適合於將一含氧氣體壓迫至吸收液貯槽108之吸收液中之某一其他裝置。此外,由鼓風機112a鼓吹之含氧氣體可例如為空氣、一定純度之氧氣(諸如包括90體積%至99體積%之氧氣之一氣體)或氧氣與空氣之一混合物。An absorbing liquid oxidation vessel in the form of an absorbing liquid reservoir 108 is disposed at the bottom 109 of the vertical open tower 102. The absorbing liquid reservoir 108 achieves dual use: acting as a recirculating sump for one of the absorbing liquids; and acting as one of the containers in which oxidation can occur. For the latter reason, the absorbing liquid reservoir 108 has an oxidizing configuration 110. The oxidation configuration 110 includes an oxygen supply device 112 in the form of a blower 112a, and an oxygen distributor 114 including a distribution tube 118 A plurality of nozzles 116; and a supply tube 120 fluidly coupled to the blower 112 and the distribution tube 118 to supply compressed oxygen-containing gas, such as air, to the dispensing tube 118 and the nozzle 116. The nozzle 116 is configured to distribute air into one of the limestone absorbing liquid contained in the absorbing liquid storage tank 108 and cause oxidation of the sulfite contained in the limestone absorbing liquid, as described in more detail below. It will be appreciated that as an alternative to a blower 112a, the oxygen supply device 112 can be a compressor or some other device suitable for compressing an oxygen-containing gas into the absorbent of the absorbent reservoir 108. Further, the oxygen-containing gas blown by the blower 112a may be, for example, air, a certain purity of oxygen (such as one gas including 90% by volume to 99% by volume of oxygen) or a mixture of oxygen and air.
將呈例如新鮮石灰石(CaCO3 )形式之吸收劑材料自一吸收劑供應系統122供應至吸收液貯槽108。吸收劑供應系統122包括一石灰石儲倉124、一流體連接供應管126及包括一攪拌器130之一混合貯槽128。在混合貯槽128中,經由流體連接供應管126而供應之水與自石灰石儲倉124供應之石灰石粉末混合以形成石灰石漿液。經由一流體連接之石灰石供應管132而將該石灰石漿液自混合貯槽128供應至吸收液貯槽108。應瞭解:作為一替代例,吸收液貯槽108可定位於塔102之外部;及作為一替代例,供應之石灰石可在其他位置處以乾燥粉末、漿液或以上兩者之形式進入系統。石灰石(CaCO3 )可至少部分溶解於水中:CaCO3 (固態)+H2 O<=>Ca2+ (溶液)+CO3 2- (溶液)[反應式1]It will show, for example, fresh limestone (CaCO 3) in the form of an absorbent material from the absorbent supply system 122 is supplied to the absorption liquid storage tank 108. The absorbent supply system 122 includes a limestone storage bin 124, a fluid connection supply conduit 126, and a mixing reservoir 128 including a stirrer 130. In the mixing tank 128, the water supplied via the fluid connection supply pipe 126 is mixed with the limestone powder supplied from the limestone storage tank 124 to form a limestone slurry. The limestone slurry is supplied from the mixing tank 128 to the absorbing liquid storage tank 108 via a fluidly connected limestone supply pipe 132. It should be understood that as an alternative, the sorbent sump 108 can be positioned external to the tower 102; and as an alternative, the supplied limestone can enter the system at other locations in the form of dry powder, slurry, or both. Limestone (CaCO 3 ) can be at least partially dissolved in water: CaCO 3 (solid) + H 2 O <=> Ca 2+ (solution) + CO 3 2- (solution) [Reaction formula 1]
濕式洗滌器101進一步包括一洗滌器循環泵134,其使石灰石吸收液自吸收液貯槽108、經由吸收液循環管136而循 環至定位於敞開塔102內之兩個噴霧級系統138、140。The wet scrubber 101 further includes a scrubber circulation pump 134 that circulates the limestone absorbing liquid from the absorbing liquid sump 108 via the absorbing liquid circulating pipe 136. The two spray level systems 138, 140 positioned within the open tower 102 are looped.
各噴霧級系統138、140包括一管道系統142及諸多流體連接噴霧嘴144,流體連接噴霧嘴144精細地分配由洗滌器循環泵134循環之石灰石吸收液以實現石灰石吸收液與煙道氣F(其通過濕式洗滌器101且在敞開塔102內部實質上垂直向上流動)之間之有效接觸。流體連接噴霧嘴144之全部或部分可例如為購自Spraying Systems公司(Wheaton,Illionis,USA)之4CF-303120型號。在濕式洗滌器101之敞開塔102中,將在由流體連接噴霧嘴144精細分配之石灰石吸收液吸收煙道氣F中所包括之二氧化硫(SO2 )之後發生以下反應:SO2 (氣態)+CO32- (溶液)+Ca2+ (溶液)<=>CaCO3 (溶液)+CC2 (氣態) [反應式2]Each spray level system 138, 140 includes a piping system 142 and a plurality of fluid connection spray nozzles 144 that fluidly distribute the limestone absorbent circulating by the scrubber circulation pump 134 to achieve limestone absorbent and flue gas F ( It is in effective contact between the wet scrubber 101 and substantially vertical upward flow inside the open tower 102. All or a portion of the fluid connection spray nozzle 144 can be, for example, the 4CF-303120 model available from Spraying Systems, Inc. (Wheaton, Illionis, USA). In the open tower 102 of the wet scrubber 101, the following reaction occurs after the limestone absorbing liquid finely distributed by the fluid connection spray nozzle 144 absorbs the sulfur dioxide (SO 2 ) contained in the flue gas F: SO 2 (gaseous state) +CO3 2- (solution) + Ca 2+ (solution) <=> CaCO 3 (solution) + CC 2 (gaseous state) [Reaction formula 2]
一消霧器146係位於噴霧級系統138、140之下游。消霧器146去除由經淨化煙道氣FC挾帶之吸收液滴之至少一部分。An mist eliminator 146 is located downstream of the spray level systems 138,140. The mist eliminator 146 removes at least a portion of the absorbed droplets from the purified flue gas FC.
在濕式洗滌器101中,煙道氣F中之二氧化硫(SO2 )與石灰石(CaCO3 )反應以形成亞硫酸鈣(CaSO3 ),亞硫酸鈣隨後被氧化以形成硫酸鈣(CaSO4 )。藉由使用氧化配置110來使一含氧氣體(諸如空氣)透過石灰石吸收液冒出而執行亞硫酸鈣之氧化。可在吸收液貯槽108中發生以下反應:CaSO3 (溶液)+1/2 O2 (氣態)<=>CaSO4 (固態)+2 H2 O [反應式3]In the wet scrubber 101, sulfur dioxide (SO 2 ) in the flue gas F reacts with limestone (CaCO 3 ) to form calcium sulfite (CaSO 3 ), which is subsequently oxidized to form calcium sulfate (CaSO 4 ). . Oxidation of the calcium sulfite is performed by using an oxidizing arrangement 110 to cause an oxygen-containing gas, such as air, to escape through the limestone absorbing liquid. The following reaction can occur in the absorbing liquid storage tank 108: CaSO 3 (solution) + 1/2 O 2 (gaseous state) <=> CaSO 4 (solid state) + 2 H 2 O [Reaction formula 3]
因此,硫酸鈣(CaSO4 )(其有時被描述為包含兩個水分子,即,CaSO4 ×2H2 O)係形成為最終產品。已在上文中描述:吸收之SO2 產生亞硫酸鈣(CaSO3 )。應瞭解,所吸收 SO2 之至少一部分將根據條件而產生亞硫酸氫鈣(Ca(HSO3 )2 )(溶液),將根據與以上[反應式3]之原理類似之原理氧化亞硫酸氫鈣。Thus, calcium sulphate (CaSO 4 ), which is sometimes described as containing two water molecules, ie, CaSO 4 × 2H 2 O, is formed into the final product. It has been described above that the absorbed SO 2 produces calcium sulfite (CaSO 3 ). It will be appreciated that at least a portion of the absorbed SO 2 will produce calcium hydrogen sulfite (Ca(HSO 3 ) 2 ) (solution) depending on the conditions, and will oxidize calcium hydrogen sulfite according to principles similar to those of [Reaction 3] above. .
因此,石灰石吸收液除包括石灰石以外,亦包括少量之亞硫酸鈣及作為主要成分之硫酸鈣。透過此程序而形成之硫酸鈣自濕式洗滌器101經由一處置管148而去除且被轉送至硫酸鈣脫水單元(圖中示意性指示為一帶式過濾器150)。經脫水之硫酸鈣具有商業價值,例如用於生產牆板。Therefore, the limestone absorbing liquid includes a small amount of calcium sulfite and calcium sulfate as a main component in addition to limestone. The calcium sulphate formed by this procedure is removed from the wet scrubber 101 via a disposal tube 148 and transferred to a calcium sulphate dewatering unit (shown schematically as a belt filter 150). Dehydrated calcium sulphate has commercial value, for example for the production of wallboard.
濕式洗滌器101除去除二氧化硫(SO2 )以外,亦將至少部分去除來自煙道氣之其他污染物。此等其他污染物之實例包含三氧化硫(SO3 )、鹽酸(HCI)、氫氟酸(HF)及其他酸性污染物。此外,濕式洗滌器101亦可至少部分去除來自煙道氣之其他類型污染物,諸如(例如)粉塵粒子及汞。Wet scrubber 101 except removal of sulfur dioxide (SO 2) except that the other will also be at least partially remove contaminants from the flue gas. Examples of such other contaminants include sulfur trioxide (SO 3 ), hydrochloric acid (HCI), hydrofluoric acid (HF), and other acidic contaminants. In addition, the wet scrubber 101 can also at least partially remove other types of contaminants from the flue gas, such as, for example, dust particles and mercury.
一控制單元152控制濕式洗滌器101之操作參數。濕式洗滌器101具有將測量資料供應至控制單元152之一吸收液取樣系統154。取樣系統154包括一直接取樣裝置156及一吸收液貯槽取樣裝置158。A control unit 152 controls the operating parameters of the wet scrubber 101. The wet scrubber 101 has an absorption liquid sampling system 154 that supplies measurement data to one of the control units 152. The sampling system 154 includes a direct sampling device 156 and an absorbent sump sampling device 158.
直接取樣裝置156包括一收集器160,其用於捕獲恰好在貯槽108之吸收液之一表面162上方之吸收液之液滴。由收集器160捕獲之吸收液液滴為以下液滴:其等已被流體連接噴霧嘴144霧化且已在吸收二氧化硫(SO2 )時通過敞開塔102,但尚未被暴露於氧化配置110之氧化。由收集器160捕獲之吸收液之液滴尚未與經由吸收劑供應系統122而供應之吸收劑材料接觸。由收集器160捕獲之吸收液經由一 流體連接管164而轉送至一第一pH分析器166及一第一亞硫酸鹽分析器168。第一亞硫酸鹽分析器168包括亞硫酸鹽感測器1。The direct sampling device 156 includes a collector 160 for capturing droplets of absorbing liquid just above the surface 162 of one of the absorbing fluids of the sump 108. Captured by the absorption liquid droplets of the droplet collector 160 following: and the like which have been fluidly connected atomizing spray nozzle 144 and the absorbing sulfur dioxide (SO 2) through the open tower 102, but has not been exposed to oxidative configuration 110 Oxidation. The droplets of the absorbing liquid captured by the collector 160 have not been in contact with the absorbent material supplied via the absorbent supply system 122. The absorbing liquid captured by the collector 160 is transferred to a first pH analyzer 166 and a first sulfite analyzer 168 via a fluid connection tube 164. The first sulfite analyzer 168 includes a sulfite sensor 1.
吸收液貯槽取樣裝置158包括流體連接至吸收液貯槽108之一管170。自貯槽108經由管170而收集之吸收液經由管170而轉送至一第二pH分析器172及一第二亞硫酸鹽分析器174。氧化配置110導致貯槽108中所含之吸收液被攪拌,因此,貯槽108可被視為其中發生氧化反應之一連續攪拌式貯槽反應器。另一攪拌器可視情況配置於貯槽108中。The absorbent sump sampling device 158 includes a tube 170 fluidly coupled to the absorbing fluid reservoir 108. The absorbing liquid collected from the sump 108 via the tube 170 is transferred via a tube 170 to a second pH analyzer 172 and a second sulfite analyzer 174. The oxidizing arrangement 110 causes the absorbing liquid contained in the sump 108 to be agitated, and therefore, the sump 108 can be regarded as one of the continuous agitated sump reactors in which the oxidation reaction takes place. Another agitator can be disposed in the sump 108 as appropriate.
流體連接管164及管170係流體連接至一循環管176。一循環泵178係配置於循環管176中以將已通過直接取樣裝置156及吸收液貯槽取樣裝置158之吸收液回抽至吸收液貯槽108。分別配置於流體連接管164、管170及循環管176中之關閉閥180、182及184可經由取樣管186及關聯關閉閥188而收集一吸收液樣本以人工分析經由直接取樣裝置156或吸收液貯槽取樣裝置158而收集之吸收液之亞硫酸鹽濃度及/或pH。Fluid connection tube 164 and tube 170 are fluidly coupled to a circulation tube 176. A circulation pump 178 is disposed in the circulation pipe 176 to pump the absorption liquid that has passed through the direct sampling device 156 and the absorption liquid storage tank sampling device 158 to the absorption liquid storage tank 108. Shut-off valves 180, 182, and 184 disposed in fluid connection tube 164, tube 170, and circulation tube 176, respectively, can collect an absorbent sample via sample tube 186 and associated shut-off valve 188 for manual analysis via direct sampling device 156 or absorbent The sulphate concentration and/or pH of the absorbing liquid collected by the sump sampling device 158.
控制單元152自分析器166、168、172及174接收測量信號,且基於此等測量信號而控制以下之至少一者:一控制閥190,其配置於石灰石供應管132中且控制自混合貯槽128供應至吸收液貯槽108之石灰石漿液之數量;洗滌器循環泵134;及氧化配置110之鼓風機112。此外,控制單元152亦可自一第一SO2 分析器192接收測量信號以測量進入濕式洗滌器101之敞開塔102之煙道氣F中之SO2 濃度,且自 一第二SO2 分析器194接收測量信號以測量自濕式洗滌器101之敞開塔102排出之經淨化煙道氣FC中之SO2 濃度。The control unit 152 receives the measurement signals from the analyzers 166, 168, 172, and 174, and controls at least one of: a control valve 190 disposed in the limestone supply tube 132 and controlling the self-mixing sump 128 based on the measurement signals. The amount of limestone slurry supplied to the absorption liquid storage tank 108; the scrubber circulation pump 134; and the blower 112 of the oxidation configuration 110. In addition, control unit 152 may also receive measurement signals from a first SO 2 analyzer 192 to measure SO 2 concentration in flue gas F entering open tower 102 of wet scrubber 101, and from a second SO 2 analysis 194 receives the measurement signal from the measurement of the wet scrubber 101 via the opening 2 concentration of the purified flue gas is discharged FC column 102 of SO.
圖5b繪示根據一替代實施例之一收集器160。收集器160係完全配置於敞開塔102內且包括配置於敞開塔102內部之一漏斗部分196,漏斗部分196位於吸收液貯槽108中所含之吸收液之表面162上方。由圖5a中所繪示之流體連接噴霧嘴144產生且向下滴落至敞開塔102內部之液滴LD被收集於漏斗部分196中。漏斗部分196使其底部197連接至一「S」形排放管199。排放管199將充當一聚水器以確保一定數量之收集液體存在於漏斗部分196中。排放管199之一出口195在表面162上方敞開以避免任何虹吸效應。一第一亞硫酸鹽分析器168延伸至敞開塔102及漏斗部分196之收集吸收液中。第一亞硫酸鹽分析器168可包括上文中參考圖1至圖4而描述之亞硫酸鹽感測器1。漏斗部分196及排放管199確保亞硫酸鹽感測器1測量新近收集吸收液中之亞硫酸鹽濃度。FIG. 5b illustrates a collector 160 in accordance with an alternate embodiment. The collector 160 is fully disposed within the open tower 102 and includes a funnel portion 196 disposed within the open tower 102, the funnel portion 196 being located above the surface 162 of the absorbent contained in the absorbent reservoir 108. Droplets LD produced by the fluid connection spray nozzle 144 depicted in Figure 5a and dripped down into the interior of the open tower 102 are collected in the funnel portion 196. The funnel portion 196 has its bottom 197 connected to an "S" shaped discharge tube 199. The drain 199 will act as a water trap to ensure that a certain amount of collected liquid is present in the funnel portion 196. One of the outlets 195 of the discharge tube 199 is open above the surface 162 to avoid any siphoning effect. A first sulfite analyzer 168 extends into the collection absorbing liquid of the open column 102 and the funnel portion 196. The first sulfite analyzer 168 can include the sulfite sensor 1 described above with reference to Figures 1-4. The funnel portion 196 and the discharge tube 199 ensure that the sulfite sensor 1 measures the concentration of sulfite in the newly collected absorbent.
圖6a中繪示亞硫酸鹽感測器1之另一例示性應用,其展示繪示一發電廠201之一示意性側視橫截面圖。發電廠201包括一鍋爐202,其中在經由供氧管206而供應之氧氣存在時燃燒經由進料管204而供應之一燃料(諸如煤炭、石油、泥炭、天然氣或廢料)。若鍋爐202為一所謂「氧氣燃料」鍋爐,則可例如供應呈空氣形式及/或呈氧氣與再循環氣體之一混合物形式之氧氣。燃料之燃燒產生呈一煙道氣形式之一熱處理氣體。燃料中所含之硫物種在燃燒之後形成 二氧化硫(SO2 )(其將形成煙道氣之部分)。Another illustrative application of sulfite sensor 1 is illustrated in Figure 6a, which shows a schematic side cross-sectional view of one of power plants 201. The power plant 201 includes a boiler 202 in which one of the fuel (such as coal, petroleum, peat, natural gas, or waste) is supplied via the feed pipe 204 in the presence of oxygen supplied via the oxygen supply pipe 206. If the boiler 202 is a so-called "oxygen fuel" boiler, oxygen may be supplied, for example, in the form of air and/or in the form of a mixture of oxygen and recycle gas. Combustion of the fuel produces a heat treatment gas in the form of a flue gas. The sulfur species contained in the fuel form sulfur dioxide (SO 2 ) after combustion (which will form part of the flue gas).
煙道氣可自鍋爐202、經由一流體連接管208而流動至呈一靜電集塵器210形式之一可選除塵裝置。靜電集塵器210(US 4,502,872中描述其之一實例)用來自煙道氣去除粉塵粒子。作為替代例,可使用另一類型之除塵裝置,例如一織物過濾器(US 4,336,035中描述其之一實例)。The flue gas may flow from the boiler 202 through a fluid connection tube 208 to an optional dedusting device in the form of an electrostatic precipitator 210. Electrostatic precipitator 210 (an example of which is described in US 4,502,872) uses dust from flue gas to remove dust particles. As an alternative, another type of dust removal device can be used, such as a fabric filter (an example of which is described in US 4,336,035).
其中已去除大部分粉塵粒子之煙道氣自靜電集塵器210、經由一流體連接管212而流動至一海水洗滌器214。海水洗滌器214包括一濕式洗滌器塔216。一入口218係配置於濕式洗滌器塔216之一下部分220處。管212係流體連接至入口218,使得自靜電集塵器210、經由管212而流動之煙道氣可經由入口218而進入濕式洗滌器塔216之內部222。The flue gas from which most of the dust particles have been removed flows from the electrostatic precipitator 210 to a seawater scrubber 214 via a fluid connection pipe 212. Seawater scrubber 214 includes a wet scrubber tower 216. An inlet 218 is disposed at a lower portion 220 of one of the wet scrubber towers 216. Tube 212 is fluidly coupled to inlet 218 such that flue gas flowing from electrostatic precipitator 210, via tube 212, can enter interior 222 of wet scrubber column 216 via inlet 218.
在進入內部222之後,煙道氣垂直向上地流動通過濕式洗滌器塔216,如箭頭F所指示。濕式洗滌器塔216之中央部分224配備有垂直地配置於彼此上之諸多噴霧配置226。在圖5a之實例中,具有三個此類噴霧配置226,且一濕式洗滌器塔216中通常具有1個至20個此類噴霧配置226。各噴霧配置226包括一供應管228及流體連接至各自供應管228之諸多噴嘴230。經由各自供應管228而供應至噴嘴230之海水藉由噴嘴230而霧化且在濕式洗滌器塔216之內部222中與煙道氣接觸以自煙道氣吸收二氧化硫(SO2 )。After entering the interior 222, the flue gas flows vertically upward through the wet scrubber tower 216 as indicated by arrow F. The central portion 224 of the wet scrubber tower 216 is equipped with a plurality of spray configurations 226 that are vertically disposed on each other. In the example of Figure 5a, there are three such spray configurations 226, and one wet scrubber tower 216 typically has from 1 to 20 such spray configurations 226. Each spray configuration 226 includes a supply tube 228 and a plurality of nozzles 230 fluidly coupled to respective supply tubes 228. Water is supplied to the nozzle 230 by the atomizing nozzle 230 in the interior 222 of the wet scrubber tower 216 is in contact with the flue gas from the flue gas to absorb sulfur dioxide (SO 2) via a respective supply tube 228.
一泵232經配置以自海洋236經由流體連接吸管234而抽吸海水且經由流體連接壓力管238而將該海水轉送至流體連接供應管228。A pump 232 is configured to draw seawater from the ocean 236 via the fluid connection suction tube 234 and transfer the seawater to the fluid connection supply tube 228 via a fluid connection pressure tube 238.
根據一替代實施例,藉由泵232而供應至管228之海水可為前述海水,其在此海水被用作為海水洗滌器214中之洗滌水之前被用作為與鍋爐202關聯之蒸汽渦輪系統中之冷卻水。According to an alternative embodiment, the seawater supplied to the tube 228 by the pump 232 may be the aforementioned seawater, which is used in the steam turbine system associated with the boiler 202 before the seawater is used as the wash water in the seawater scrubber 214. Cooling water.
濕式洗滌器塔216之內部222中之藉由噴嘴230而霧化之海水在濕式洗滌器塔216內向下流動且自在濕式洗滌器塔216之內部222中垂直向上流動之煙道氣F吸收二氧化硫。由於海水吸收二氧化硫,所以海水逐漸變為污染海水,同時在濕式洗滌器塔216之內部222中向下流動。污染海水被收集於濕式洗滌器塔216之下部分220中且自濕式洗滌器塔216、經由流體連接污水管240而轉送至氧化池系統242。The seawater atomized by the nozzle 230 in the interior 222 of the wet scrubber tower 216 flows downwardly within the wet scrubber column 216 and flows vertically from the interior 222 of the wet scrubber column 216. Absorbs sulfur dioxide. As the seawater absorbs the sulphur dioxide, the seawater gradually becomes contaminated seawater while flowing downward in the interior 222 of the wet scrubber tower 216. The contaminated seawater is collected in a portion 220 below the wet scrubber tower 216 and transferred from the wet scrubber column 216 to the oxidation pond system 242 via the fluid connection sewer 240.
根據一替代實施例,海水洗滌器214可包括配置於濕式洗滌器塔216之內部222中之一或多層之填充材料239。可由塑膠、鋼、木材或另一適合材料製成之填充材料239強化氣體-液體接觸。就填充材料239而言,噴嘴230僅將海水分配至填充材料239上,而非霧化海水。填充材料239之實例包含購自Sulzer Chemtech AG,Winterthur,CH之MellapakTM 及購自Raschig GmbH,Ludwigshafen,DE之PallTM 環。According to an alternate embodiment, the seawater scrubber 214 can include one or more layers of packing material 239 disposed in the interior 222 of the wet scrubber column 216. The gas-liquid contact can be enhanced by a filler material 239 made of plastic, steel, wood or another suitable material. In the case of the filler material 239, the nozzle 230 only distributes seawater to the filler material 239, rather than atomizing seawater. Examples of the filler material 239 comprises a commercially available from Sulzer Chemtech AG, Winterthur, CH and the Mellapak TM available from Raschig GmbH, Ludwigshafen, DE Pall TM of the ring.
視需要,可在進一步處理污染海水之前將新鮮海水視情況添加至污染海水。為此,可將一管249流體連接至壓力管238以將一新鮮海水流轉送至將污染海水轉送至氧化池系統242之流體連接污水管240。因此,在流體連接污水管240中發生新鮮海水與污染海水之一混合。作為一替代 例,可將經由管249而轉送之新鮮海水直接轉送至氧化池系統242以在氧化池系統242中與污染海水混合。作為另一選擇,鍋爐202或與其關聯之蒸汽渦輪系統中所產生之殘留水及/或冷凝物可與污染海水混合。Fresh seawater can be added to contaminated seawater as appropriate, before further treatment of contaminated seawater. To this end, a tube 249 can be fluidly coupled to the pressure tube 238 to transfer a stream of fresh seawater to the fluid connection sewer 240 that transfers the contaminated seawater to the oxidation pond system 242. Therefore, fresh seawater is mixed with one of the polluted seawater in the fluid connection sewage pipe 240. As an alternative For example, fresh seawater transferred via line 249 can be directly transferred to oxidation pond system 242 for mixing with contaminated seawater in oxidation pond system 242. Alternatively, residual water and/or condensate produced in boiler 202 or a steam turbine system associated therewith may be mixed with contaminated seawater.
氧化池系統242包括呈一壓氣機或一鼓風機244形式之一鼓風裝置,其經配置以經由流體連接管道系統246而將一含氧氣體(諸如空氣)鼓吹至污染海水中。鼓風機244與管道系統246一起形成用於將氧氣供應至污染海水之一供氧系統247。下文中將參考圖5b而給出氧化池系統242之一更詳細描述。Oxidation cell system 242 includes an air blower in the form of a compressor or a blower 244 that is configured to blow an oxygen-containing gas, such as air, into the contaminated seawater via fluid connection conduit system 246. The blower 244, together with the piping system 246, forms an oxygen supply system 247 for supplying oxygen to one of the contaminated seawater. A more detailed description of one of the oxidation pond systems 242 will be given hereinafter with reference to Figure 5b.
污染海水可自氧化池系統242、經由一流體連接溢流管248而視情況轉送至一鹼化池250。鹼性劑之儲存槽252視情況經配置以經由流體連接管254而將鹼性劑供應至池250。鹼性劑可例如為石灰石或來自海洋之新鮮海水,其用來視需要增大污染海水之pH。The contaminated seawater can be transferred from the oxidation pond system 242 to a basification tank 250 as appropriate via a fluid connection overflow 248. The alkaline storage tank 252 is configured to supply alkaline agent to the basin 250 via the fluid connection tube 254 as appropriate. The alkaline agent can be, for example, limestone or fresh seawater from the ocean, which is used to increase the pH of the contaminated seawater as needed.
最終,污染海水自鹼化池250、經由一流體連接溢流管256而回流至海洋236。Finally, the contaminated seawater is returned to the ocean 236 from the alkalizing tank 250 via a fluid connection overflow 256.
根據一替代實施例,經由溢流管248而轉送之污染海水被直接轉送至海洋236且無需通過任何鹼化池。根據另一替代實施例,污染海水在被排放至海洋236中之前與新鮮海水混合。為此,可將一管251流體連接至壓力管238以將一新鮮海水流轉送至流體連接溢流管248。因此,在管248中發生新鮮海水與污染海水之一混合。According to an alternative embodiment, the contaminated seawater that is transferred via the overflow pipe 248 is directly transferred to the ocean 236 without passing through any alkalizing tank. According to another alternative embodiment, the contaminated seawater is mixed with fresh seawater before being discharged into the ocean 236. To this end, a tube 251 can be fluidly coupled to the pressure tube 238 to transfer a stream of fresh sea water to the fluid connection overflow tube 248. Therefore, fresh seawater is mixed with one of the polluted seawater in the tube 248.
圖6b更詳細繪示氧化池系統242。污染海水經由氧化池 243之一第一端258(其為一「入口端」)處之流體連接污水管240而供應至氧化池系統242之氧化池243。污染海水自第一端258、沿氧化池243之長度LB(如箭頭S所指示)而大體上水平地流動至氧化池243之一第二端260(其為一出口端)。在第二端260處,污染海水溢流至流體連接溢流管248中且自池243排出。Figure 6b shows the oxidation cell system 242 in more detail. Polluted seawater via oxidation pond A fluid at one of the first ends 258 (which is an "inlet end") is connected to the oxidation tube 240 and supplied to the oxidation cell 243 of the oxidation pond system 242. The contaminated seawater flows from the first end 258, along the length LB of the oxidation pond 243 (as indicated by arrow S), to a substantially horizontal flow to one of the second ends 260 of the oxidation pond 243 (which is an outlet end). At the second end 260, the contaminated seawater overflows into the fluid connection overflow tube 248 and exits from the pool 243.
氧化池系統242進一步包含具有管道系統246之供氧系統247。管道系統246包括一中央分配管262,其自鄰近於第一端258之一位置、沿池243而水平延伸至鄰近於第二端260之一位置。管道系統246進一步包括第一、第二、第三、第四、第五及第六連續空氣分配管264、266、268、270、272、274,其等係流體連接至中央分配管262且延伸至水平地流動通過池243之污染海水275中。六個空氣分配管264、266、268、270、272、274沿池243之長度LB連續配置,其中第一空氣分配管264係位於第一端258最靠近處,第二空氣分配管266係位於第一管264之下游等等,且第六空氣分配管274係位於第二端260最靠近處。空氣分配管264、266、268、270、272、274之各者具有呈一控制閥276、278、280、282、284、286形式之一各自控制裝置,其可經控制以控制通過各自空氣分配管264、266、268、270、272、274之含氧氣體(諸如空氣)之流量。鼓風機244將空氣鼓吹至中央分配管262中及進一步至空氣分配管264、266、268、270、272、274中。空氣分配管264、266、268、270、272、274之下端288係敞開的且配置於氧 化池243中之污染海水275之液體表面290下方。由鼓風機244鼓吹之空氣經由中央分配管262及空氣分配管而轉送至敞開下端288。在敞開端288處,空氣被散佈且與污染海水混合。因此而散佈且與污染海水混合之空氣之氧氣含量之至少一部分被溶解於污染海水中且發生反應以根據下文中所述反應而氧化亞硫酸鹽及/或亞硫酸氫鹽離子。Oxidation cell system 242 further includes an oxygen supply system 247 having a piping system 246. Piping system 246 includes a central dispensing tube 262 that extends horizontally from one of the first ends 258, along the pool 243, to a position adjacent one of the second ends 260. The piping system 246 further includes first, second, third, fourth, fifth, and sixth continuous air distribution tubes 264, 266, 268, 270, 272, 274 that are fluidly coupled to the central distribution tube 262 and extend It flows through the contaminated seawater 275 of the pool 243 horizontally. The six air distribution tubes 264, 266, 268, 270, 272, 274 are continuously disposed along the length LB of the pool 243, wherein the first air distribution tube 264 is located closest to the first end 258 and the second air distribution tube 266 is located Downstream of first tube 264, etc., and sixth air distribution tube 274 is located closest to second end 260. Each of the air distribution tubes 264, 266, 268, 270, 272, 274 has a respective control device in the form of a control valve 276, 278, 280, 282, 284, 286 that can be controlled to control the passage of the respective air The flow rate of the oxygen-containing gas (such as air) of the pipes 264, 266, 268, 270, 272, 274. The blower 244 blows air into the central distribution tube 262 and further into the air distribution tubes 264, 266, 268, 270, 272, 274. The lower ends 288 of the air distribution tubes 264, 266, 268, 270, 272, 274 are open and disposed in oxygen Below the liquid surface 290 of the contaminated seawater 275 in the chemistry pool 243. Air blown by the blower 244 is transferred to the open lower end 288 via the central distribution tube 262 and the air distribution tube. At the open end 288, the air is dispersed and mixed with the contaminated seawater. Thus at least a portion of the oxygen content of the air dispersed and mixed with the contaminated seawater is dissolved in the contaminated seawater and reacts to oxidize the sulfite and/or bisulfite ions according to the reactions described below.
根據一替代實施例,供氧系統247可操作以將包括21體積%以上氧氣之一富氧氣體(例如,其包括75體積%至100體積%之氧氣)鼓吹至氧化池243中之污染海水中。According to an alternative embodiment, the oxygen supply system 247 is operable to blow one of the oxygen-rich gas including 21% by volume or more of oxygen (for example, it includes 75 to 100% by volume of oxygen) into the contaminated seawater in the oxidation tank 243. .
氧化池系統242可進一步包括第一、第二、第三、第四及第五連續水質感測器292、294、296、298、300,其等係浸沒於流動通過池243之污染海水275中。五個水質感測器292、294、296、298、300沿池243之長度LB連續配置,其中第一水質感測器292係位於第一端258最靠近處,第二水質感測器294係位於第一感測器292之下游等等,且第五感測器係位於第二端260最靠近處。一第六及最後水質感測器302係配置於溢流管248中。各水質感測器292、294、296、298、300、302可包括一或多個偵測元件。在圖5b所繪示之實施例中,各水質感測器包括亞硫酸鹽偵測元件304、氧氣偵測元件306及pH偵測元件308。亞硫酸鹽偵測元件304包括亞硫酸鹽感測器1。The oxidation pond system 242 can further include first, second, third, fourth, and fifth continuous water quality sensors 292, 294, 296, 298, 300 that are immersed in the contaminated seawater 275 flowing through the pool 243. . The five water quality sensors 292, 294, 296, 298, 300 are continuously disposed along the length LB of the pool 243, wherein the first water quality sensor 292 is located closest to the first end 258, and the second water quality sensor 294 is Located downstream of the first sensor 292, etc., and the fifth sensor is located closest to the second end 260. A sixth and last water quality sensor 302 is disposed in the overflow tube 248. Each water quality sensor 292, 294, 296, 298, 300, 302 can include one or more detection elements. In the embodiment illustrated in FIG. 5b, each water quality sensor includes a sulfite detecting element 304, an oxygen detecting element 306, and a pH detecting element 308. The sulfite detecting element 304 includes a sulfite sensor 1.
各水質感測器292、294、296、298、300、302經配置以偵測污染海水之一或多個參數(如其中配置相關水質感測器之特定位置中所測量)且將一信號發送至一控制單元 310。控制單元310(其可為一處理控制電腦)分析自各自水質感測器292、294、296、298、300、302接收之信號且自動控制各自控制閥276、278、280、282、284、286之設定,使得一適合流量之含氧氣體經由空氣分配管264、266、268、270、272、274之各者而供應至污染海水。控制單元310亦可自動控制鼓風機244之輸出,使得適合數量之空氣被供應至管道系統246及進一步至空氣分配管264、266、268、270、272、274。Each water quality sensor 292, 294, 296, 298, 300, 302 is configured to detect one or more parameters of the contaminated seawater (as measured in a particular location in which the associated water quality sensor is configured) and send a signal To a control unit 310. Control unit 310 (which may be a process control computer) analyzes signals received from respective water quality sensors 292, 294, 296, 298, 300, 302 and automatically controls respective control valves 276, 278, 280, 282, 284, 286 The setting is such that a suitable flow of oxygen-containing gas is supplied to the contaminated seawater via each of the air distribution pipes 264, 266, 268, 270, 272, 274. Control unit 310 can also automatically control the output of blower 244 such that a suitable amount of air is supplied to piping system 246 and further to air distribution tubes 264, 266, 268, 270, 272, 274.
雖然已參考諸多較佳實施例而描述本發明,但熟習技術者應瞭解,可在不背離本發明之範疇之情況下作出各種改變且用等效物取代本發明之元件。此外,可在不背離本發明之本質範疇之情況下作出諸多修改以使一特定情形或材料適應於本發明之教示。因此,意欲:本發明不受限於所揭示之特定實施例,如在實施本發明時最佳模式所考量;且本發明將包含落在隨附申請專利範圍之範疇內之全部實施例。再者,術語第一、第二等等之用法不意謂任何順序或重要性,相反,術語第一、第二等等係用以區分元件。While the invention has been described with respect to the preferred embodiments embodiments illustrated embodiments In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, Moreover, the use of the terms first, second, etc. does not mean any order or importance. Instead, the terms first, second, etc. are used to distinguish the elements.
1‧‧‧亞硫酸鹽感測器1‧‧‧ sulfite sensor
2‧‧‧罩殼2‧‧‧Shell
3‧‧‧空間3‧‧‧ Space
4‧‧‧基座區段4‧‧‧Base section
10‧‧‧感測器頭10‧‧‧Sensor head
10a‧‧‧內部10a‧‧‧Internal
11‧‧‧第一電極11‧‧‧First electrode
12‧‧‧表面12‧‧‧ surface
13‧‧‧軸向端部部分13‧‧‧Axial end section
20‧‧‧第二電極20‧‧‧second electrode
30‧‧‧研磨單元/清潔單元30‧‧‧grinding unit/cleaning unit
31‧‧‧軸31‧‧‧Axis
32‧‧‧表面32‧‧‧ Surface
40‧‧‧控制單元40‧‧‧Control unit
50‧‧‧分析單元50‧‧‧Analysis unit
60‧‧‧溫度感測器60‧‧‧temperature sensor
101‧‧‧濕式洗滌器101‧‧‧ Wet scrubber
102‧‧‧垂直敞開塔102‧‧‧Vertical open tower
104‧‧‧入口104‧‧‧ Entrance
106‧‧‧出口106‧‧‧Export
108‧‧‧吸收液貯槽108‧‧‧absorbing liquid storage tank
109‧‧‧底部109‧‧‧ bottom
110‧‧‧氧化配置110‧‧‧Oxidation configuration
112‧‧‧氧氣供應裝置/鼓風機112‧‧‧Oxygen supply unit / blower
112a‧‧‧鼓風機112a‧‧‧Blowers
114‧‧‧氧氣分配器114‧‧‧Oxygen distributor
116‧‧‧噴嘴116‧‧‧Nozzles
118‧‧‧分配管118‧‧‧Distribution tube
120‧‧‧供應管120‧‧‧Supply tube
122‧‧‧吸收劑供應系統122‧‧‧Absorbent supply system
124‧‧‧石灰石儲倉124‧‧‧ limestone storage silos
126‧‧‧流體連接供應管126‧‧‧Fluid connection supply tube
128‧‧‧混合貯槽128‧‧‧Mixed storage tank
130‧‧‧攪拌器130‧‧‧Agitator
132‧‧‧石灰石供應管132‧‧‧Limestone supply pipe
134‧‧‧洗滌器循環泵134‧‧‧Washer circulation pump
136‧‧‧吸收液循環管136‧‧‧absorbing liquid circulation pipe
138‧‧‧噴霧級系統138‧‧‧ spray level system
140‧‧‧噴霧級系統140‧‧‧Spray level system
142‧‧‧管道系統142‧‧‧Pipe system
144‧‧‧流體連接噴霧嘴144‧‧‧Fluid connection spray nozzle
146‧‧‧消霧器146‧‧ ‧ mist eliminator
148‧‧‧處置管148‧‧‧Disposal tube
150‧‧‧帶式過濾器150‧‧‧Band filter
152‧‧‧控制單元152‧‧‧Control unit
154‧‧‧吸收液取樣系統154‧‧‧absorbent sampling system
156‧‧‧直接取樣裝置156‧‧‧Direct sampling device
158‧‧‧吸收液貯槽取樣裝置158‧‧‧Accumulating liquid storage tank sampling device
160‧‧‧收集器160‧‧‧ Collector
162‧‧‧表面162‧‧‧ surface
164‧‧‧流體連接管164‧‧‧Fluid connection tube
166‧‧‧第一pH分析器166‧‧‧First pH Analyzer
168‧‧‧第一亞硫酸鹽分析器168‧‧‧First Sulfite Analyzer
170‧‧‧管170‧‧‧ tube
172‧‧‧第二pH分析器172‧‧‧Second pH Analyzer
174‧‧‧第二亞硫酸鹽分析器174‧‧‧Second sulfite analyzer
176‧‧‧循環管176‧‧‧Circulation tube
178‧‧‧循環泵178‧‧‧Circulating pump
180‧‧‧關閉閥180‧‧‧Close valve
182‧‧‧關閉閥182‧‧‧Close valve
184‧‧‧關閉閥184‧‧‧Close valve
186‧‧‧取樣管186‧‧‧Sampling tube
188‧‧‧關閉閥188‧‧‧Close valve
190‧‧‧控制閥190‧‧‧Control valve
192‧‧‧第一SO2 分析器192‧‧‧First SO 2 Analyzer
194‧‧‧第二SO2 分析器194‧‧‧Second SO 2 analyzer
195‧‧‧出口195‧‧ Export
196‧‧‧漏斗部分196‧‧‧ funnel section
197‧‧‧底部197‧‧‧ bottom
199‧‧‧排放管199‧‧‧Drainage tube
201‧‧‧發電廠201‧‧‧Power Plant
202‧‧‧鍋爐202‧‧‧Boiler
204‧‧‧進料管204‧‧‧ Feeding tube
206‧‧‧供氧管206‧‧‧Oxygen supply tube
208‧‧‧流體連接管208‧‧‧Fluid connection tube
210‧‧‧靜電集塵器210‧‧‧Electrostatic dust collector
212‧‧‧流體連接管212‧‧‧Fluid connection tube
214‧‧‧海水洗滌器214‧‧‧Seawater scrubber
216‧‧‧濕式洗滌器塔216‧‧‧Wet scrubber tower
218‧‧‧入口218‧‧‧ entrance
220‧‧‧下部分220‧‧‧下下
222‧‧‧內部222‧‧‧ Internal
224‧‧‧中央部分224‧‧‧Central Part
226‧‧‧噴霧配置226‧‧‧ spray configuration
228‧‧‧供應管228‧‧‧Supply tube
230‧‧‧噴嘴230‧‧‧ nozzle
232‧‧‧泵232‧‧‧ pump
234‧‧‧流體連接吸管234‧‧‧ fluid connection straw
236‧‧‧海洋236‧‧‧The ocean
238‧‧‧壓力管238‧‧‧pressure tube
239‧‧‧填充材料239‧‧‧ Filling materials
240‧‧‧流體連接污水管240‧‧‧ fluid connection sewage pipe
242‧‧‧氧化池系統242‧‧‧Oxidation Pool System
243‧‧‧氧化池243‧‧‧Oxidation Pool
244‧‧‧鼓風機244‧‧‧Blowers
246‧‧‧管道系統246‧‧‧Pipe system
247‧‧‧供氧系統247‧‧‧Oxygen supply system
248‧‧‧流體連接溢流管248‧‧‧Fluid connection overflow pipe
249‧‧‧管249‧‧‧ tube
250‧‧‧鹼化池250‧‧‧Basification tank
251‧‧‧管251‧‧‧ tube
252‧‧‧儲存槽252‧‧‧ storage tank
254‧‧‧流體連接管254‧‧‧Fluid connection tube
256‧‧‧流體連接溢流管256‧‧‧Fluid connection overflow pipe
258‧‧‧第一端258‧‧‧ first end
260‧‧‧第二端260‧‧‧ second end
262‧‧‧中央分配管262‧‧‧Central distribution tube
264‧‧‧第一空氣分配管264‧‧‧First air distribution tube
266‧‧‧第二空氣分配管266‧‧‧Second air distribution tube
268‧‧‧第三空氣分配管268‧‧‧ Third air distribution tube
270‧‧‧第四空氣分配管270‧‧‧fourth air distribution tube
272‧‧‧第五空氣分配管272‧‧‧ fifth air distribution tube
274‧‧‧第六空氣分配管274‧‧‧ sixth air distribution tube
275‧‧‧污染海水275‧‧‧Contaminated seawater
276‧‧‧控制閥276‧‧‧Control valve
278‧‧‧控制閥278‧‧‧Control valve
280‧‧‧控制閥280‧‧‧Control valve
282‧‧‧控制閥282‧‧‧Control valve
284‧‧‧控制閥284‧‧‧Control valve
286‧‧‧控制閥286‧‧‧Control valve
288‧‧‧敞開下端288‧‧‧open the lower end
290‧‧‧液體表面290‧‧‧ liquid surface
292‧‧‧第一水質感測器292‧‧‧First water quality sensor
294‧‧‧第二水質感測器294‧‧‧Second water quality sensor
296‧‧‧第三水質感測器296‧‧‧The third water quality sensor
298‧‧‧第四水質感測器298‧‧‧Fourth water quality sensor
300‧‧‧第五水質感測器300‧‧‧ fifth water quality sensor
302‧‧‧第六水質感測器302‧‧‧ sixth water quality sensor
304‧‧‧亞硫酸鹽偵測元件304‧‧‧ sulfite detection component
306‧‧‧氧氣偵測元件306‧‧‧Oxygen detection element
308‧‧‧pH偵測元件308‧‧‧pH detection component
310‧‧‧控制單元310‧‧‧Control unit
圖1係根據一實施例之亞硫酸鹽感測器之一透視圖。1 is a perspective view of a sulphite sensor in accordance with an embodiment.
圖2係亞硫酸鹽感測器之一示意性側視橫截面圖。Figure 2 is a schematic side cross-sectional view of one of the sulfite sensors.
圖3係測量一物質中之亞硫酸鹽之一方法之一流程圖。Figure 3 is a flow chart of one of the methods for measuring sulfite in a substance.
圖4a係根據一實施例之來自一方法之電壓位準隨時間逝去之一曲線圖。4a is a graph of voltage levels from a method over time, in accordance with an embodiment.
圖4b係根據一實施例之來自一方法之電壓位準脈衝之一 模擬圖。Figure 4b is one of the voltage level pulses from a method in accordance with an embodiment Simulation map.
圖4c係與由圖4b中之電壓脈衝產生之一電流回應對應之一電壓之一模擬圖。Figure 4c is a simulation of one of the voltages corresponding to a current response generated by the voltage pulse in Figure 4b.
圖5a係包括亞硫酸鹽感測器之一濕式洗滌器之一示意性側視橫截面圖。Figure 5a is a schematic side cross-sectional view of one of the wet scrubbers including a sulfite sensor.
圖5b係根據一替代實施例之一收集器之一放大示意性側視橫截面圖。Figure 5b is an enlarged schematic side cross-sectional view of one of the collectors according to an alternative embodiment.
圖6a係具有基於海水之一氣體淨化系統之一發電廠之一示意性側視橫截面圖。Figure 6a is a schematic side cross-sectional view of one of the power plants having one of the gas purification systems based on seawater.
圖6b係繪示一氣體淨化系統中之氧化池系統之一示意性側視橫截面圖。Figure 6b is a schematic side cross-sectional view of one of the oxidation cell systems in a gas purification system.
1‧‧‧亞硫酸鹽感測器1‧‧‧ sulfite sensor
2‧‧‧罩殼2‧‧‧Shell
3‧‧‧空間3‧‧‧ Space
4‧‧‧基座區段4‧‧‧Base section
10‧‧‧感測器頭10‧‧‧Sensor head
10a‧‧‧內部10a‧‧‧Internal
11‧‧‧第一電極11‧‧‧First electrode
12‧‧‧表面12‧‧‧ surface
13‧‧‧軸向端部部分13‧‧‧Axial end section
20‧‧‧第二電極20‧‧‧second electrode
30‧‧‧研磨單元/清潔單元30‧‧‧grinding unit/cleaning unit
31‧‧‧軸31‧‧‧Axis
40‧‧‧控制單元40‧‧‧Control unit
50‧‧‧分析單元50‧‧‧Analysis unit
60‧‧‧溫度感測器60‧‧‧temperature sensor
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11018443 | 2011-10-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201326803A TW201326803A (en) | 2013-07-01 |
TWI497066B true TWI497066B (en) | 2015-08-21 |
Family
ID=49032863
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101137207A TW201331273A (en) | 2011-10-07 | 2012-10-08 | A crosslinkable composition cross-linkable by real Michael addition reaction and resins for use in said composition |
TW101137212A TW201331275A (en) | 2011-10-07 | 2012-10-08 | Crosslinkable composition |
TW101137181A TWI497066B (en) | 2011-10-07 | 2012-10-08 | Sulphite sensor and method for measuring sulphite concentration in a substance |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101137207A TW201331273A (en) | 2011-10-07 | 2012-10-08 | A crosslinkable composition cross-linkable by real Michael addition reaction and resins for use in said composition |
TW101137212A TW201331275A (en) | 2011-10-07 | 2012-10-08 | Crosslinkable composition |
Country Status (1)
Country | Link |
---|---|
TW (3) | TW201331273A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4336102A (en) * | 1980-10-06 | 1982-06-22 | Combustion Engineering, Inc. | Method for recovery and reuse of ammonia in ammonia-base sulfite cooking liquors |
US6403256B1 (en) * | 1999-01-25 | 2002-06-11 | Wilson Greatbatch Ltd. | Alkali metal electrochemical cell activated with a nonaqueous electrolyte having a sulfite additive |
TW524717B (en) * | 1999-05-03 | 2003-03-21 | Baker Hughes Inc | Oxidative reactor for conversion of sulfite salts to sulfate salts |
-
2012
- 2012-10-08 TW TW101137207A patent/TW201331273A/en unknown
- 2012-10-08 TW TW101137212A patent/TW201331275A/en unknown
- 2012-10-08 TW TW101137181A patent/TWI497066B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4336102A (en) * | 1980-10-06 | 1982-06-22 | Combustion Engineering, Inc. | Method for recovery and reuse of ammonia in ammonia-base sulfite cooking liquors |
US6403256B1 (en) * | 1999-01-25 | 2002-06-11 | Wilson Greatbatch Ltd. | Alkali metal electrochemical cell activated with a nonaqueous electrolyte having a sulfite additive |
TW524717B (en) * | 1999-05-03 | 2003-03-21 | Baker Hughes Inc | Oxidative reactor for conversion of sulfite salts to sulfate salts |
Also Published As
Publication number | Publication date |
---|---|
TW201331273A (en) | 2013-08-01 |
TW201326803A (en) | 2013-07-01 |
TW201331275A (en) | 2013-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI613443B (en) | Sulphite sensor and method for measuring sulphite concentration in a substance | |
TWI480492B (en) | A method of controlling a wet scrubber useful for removing sulphur dioxide from a process gas | |
TWI525049B (en) | Method and system for controlling treatment of effluent from seawater scrubber | |
Nygaard et al. | Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber | |
US8999275B2 (en) | Method for monitoring a cleaning of a process gas | |
US10416105B2 (en) | Dibasic acid sensor and method for continuously measuring dibasic acid concentration in a substance | |
JP2015116520A (en) | Wet type flue-gas desulfurization apparatus and application method of the wet type flue-gas desulfurization apparatus | |
TWI497066B (en) | Sulphite sensor and method for measuring sulphite concentration in a substance | |
GB2159507A (en) | Method for regulating concentration of carbonate | |
Dzhonova-Atanasova et al. | Current problems and development in flue gas desulfurization |