TWI495127B - Solar cell, method of manufacturing the same and module comprising the same - Google Patents
Solar cell, method of manufacturing the same and module comprising the same Download PDFInfo
- Publication number
- TWI495127B TWI495127B TW102122383A TW102122383A TWI495127B TW I495127 B TWI495127 B TW I495127B TW 102122383 A TW102122383 A TW 102122383A TW 102122383 A TW102122383 A TW 102122383A TW I495127 B TWI495127 B TW I495127B
- Authority
- TW
- Taiwan
- Prior art keywords
- grooves
- solar cell
- substrate
- front surface
- metal ion
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明是有關於一種電池、其製造方法及其模組,特別是指一種晶矽太陽能電池、其製造方法及其模組。The invention relates to a battery, a manufacturing method thereof and a module thereof, in particular to a crystal solar cell, a manufacturing method thereof and a module thereof.
一般太陽能電池通常包含:一可將光能轉換成電能的基板、一設置於該基板之一正面上的抗反射層,以及一配置於該基板上且可將該基板的電能向外傳輸的電極單元。所述太陽能電池在製作上,首先對該基板進行粗糙化處理,使該基板的正面產生凹凸不平的粗糙化結構,接著於該正面上設置該抗反射層,最後於該反射層上以及該基板之一背面上設置該電極單元。Generally, a solar cell generally includes: a substrate that converts light energy into electrical energy, an anti-reflection layer disposed on a front surface of the substrate, and an electrode disposed on the substrate and capable of transmitting the electrical energy of the substrate outward. unit. In the fabrication of the solar cell, the substrate is first roughened to have a roughened structure on the front side of the substrate, and then the anti-reflection layer is disposed on the front surface, and finally on the reflective layer and the substrate. The electrode unit is disposed on one of the back sides.
一般而言,使該正面具有粗糙化結構以及於該正面上設置該抗反射層之設計,皆是為了提升由外界射向該基板的光線的入射量,如此可增進光的利用率而增加該太陽能電池的光電轉換效率。除此之外,也有業者是在該基板的正面形成數個彼此間隔的線狀結構,透過前述線狀結構來增加光線由外界射入該基板內的入射量。Generally, the design having the roughened structure on the front surface and the anti-reflection layer on the front surface is for increasing the incident amount of light emitted from the outside to the substrate, thereby increasing the utilization of light and increasing the Photoelectric conversion efficiency of solar cells. In addition, there are also a plurality of linear structures spaced apart from each other on the front surface of the substrate, and the incident amount of light incident from the outside into the substrate is increased by the linear structure.
然而因為該太陽能電池通常是由晶矽基板所製成,其對於短波長光線的吸收性較佳,對於中長波長光線的吸收性較差。因此,當光線由外界經由該正面而射入該基板之後,該基板會吸收短波長光線以轉換成電能。此外,由於中長波長光線由外界射向該正面時,容易產生反射現象,致使只有少部分的中長波長光線能射入該基板內。However, since the solar cell is usually made of a crystal substrate, it has better absorption for short-wavelength light and poor absorption for medium- and long-wavelength light. Therefore, after light is incident on the substrate through the front surface, the substrate absorbs short-wavelength light to be converted into electrical energy. In addition, since the medium-long wavelength light is emitted from the outside to the front surface, the reflection phenomenon is likely to occur, so that only a small portion of the medium-long wavelength light can be incident into the substrate.
因此,若能降低中長波長光線射入該基板時的反射現象,並增加中長波長光線在該基板內的反射、折射路徑與散射效果,藉以增加該基板吸收中長波長光線的機會,則將可提升太陽能電池的光電轉換效率。Therefore, if the reflection phenomenon of medium-long wavelength light entering the substrate is reduced, and the reflection, refraction path and scattering effect of the medium-long wavelength light in the substrate are increased, thereby increasing the chance of the substrate absorbing medium- and long-wavelength light, Will increase the photoelectric conversion efficiency of solar cells.
因此,本發明之目的,即在提供一種可增加光吸收效率並提升光電轉換效率的太陽能電池、其製造方法及其模組。Accordingly, it is an object of the present invention to provide a solar cell, a method of manufacturing the same, and a module thereof that can increase light absorption efficiency and improve photoelectric conversion efficiency.
於是,本發明太陽能電池,包含一基板,以及位於該基板上的一射極層與一電極單元。Thus, the solar cell of the present invention comprises a substrate, and an emitter layer and an electrode unit on the substrate.
該基板包括一受光的正面,以及一相對於該正面的背面。該正面具有數個沿一第一方向延伸且彼此間隔的奈米線,以及分別將該數個奈米線間隔開來的數個第一凹槽與數個第二凹槽,該數個奈米線中的至少一個位於其中一個第一凹槽與其中一個第二凹槽之間。The substrate includes a light-receiving front side and a back side opposite the front side. The front surface has a plurality of nanowires extending along a first direction and spaced apart from each other, and a plurality of first recesses and a plurality of second recesses respectively spacing the plurality of nanowires, the plurality of nanometers At least one of the rice lines is located between one of the first grooves and one of the second grooves.
該數個第一凹槽在該第一方向上的深度大於該數個第二凹槽在該第一方向上的深度,該數個第一凹槽與該數個第二凹槽在該第一方向上的深度差大於700nm,任 兩相鄰的第一凹槽在一垂直該第一方向的第二方向上的距離大於700nm,且該數個第二凹槽中的至少一個位於任兩相鄰的第一凹槽之間。The depth of the plurality of first grooves in the first direction is greater than the depth of the plurality of second grooves in the first direction, and the plurality of first grooves and the plurality of second grooves are at the The depth difference in one direction is greater than 700 nm, The distance between the two adjacent first grooves in a second direction perpendicular to the first direction is greater than 700 nm, and at least one of the plurality of second grooves is located between any two adjacent first grooves.
本發明太陽能電池模組,包含:一第一板材、一第二板材、至少一個如前述且設置於該第一板材與該第二板材間的太陽能電池,及一位於該第一板材與該第二板材間且接觸該太陽能電池的封裝材。The solar cell module of the present invention comprises: a first plate, a second plate, at least one solar cell disposed between the first plate and the second plate, and a first plate and the first plate A package material between the two plates and contacting the solar cell.
本發明太陽能電池的製造方法,包含:提供一基板,該基板包括一受光的正面,以及一相對於該正面的背面;使用一蝕刻溶液蝕刻該正面,該蝕刻溶液包含酸蝕劑、第一金屬離子源與第二金屬離子源,且所述第一金屬離子源與所述第二金屬離子源為不同的金屬離子源,該蝕刻溶液使該正面形成沿一第一方向延伸的數個第一凹槽與數個第二凹槽,並使該正面形成數個沿該第一方向延伸且被該數個第一凹槽與該數個第二凹槽間隔開來的奈米線,該數個奈米線中的至少一個位於其中一個第一凹槽與其中一個第二凹槽之間,而該數個第一凹槽在該第一方向上的深度大於該數個第二凹槽在該第一方向上的深度,該數個第一凹槽與該數個第二凹槽在該第一方向上的深度差大於700nm,任兩相鄰的第一凹槽在一垂直該第一方向的第二方向上的距離大於700nm,且該數個第二凹槽中的至少一個位於任兩相鄰的第一凹槽之間;在該基板上形成一射極層;及 在該基板上形成一電極單元。The method for manufacturing a solar cell of the present invention comprises: providing a substrate comprising a light-receiving front surface and a back surface opposite to the front surface; etching the front surface using an etching solution, the etching solution comprising a etchant, the first metal An ion source and a second metal ion source, wherein the first metal ion source and the second metal ion source are different metal ion sources, the etching solution forming the front surface to form a plurality of first ones extending along a first direction a groove and a plurality of second grooves, and the front surface forms a plurality of nanowires extending in the first direction and spaced apart by the plurality of first grooves and the plurality of second grooves, the number At least one of the plurality of nanowires is located between one of the first grooves and one of the second grooves, and the depth of the plurality of first grooves in the first direction is greater than the plurality of second grooves a depth difference in the first direction, a depth difference between the plurality of first grooves and the plurality of second grooves in the first direction is greater than 700 nm, and any two adjacent first grooves are perpendicular to the first The distance in the second direction of the direction is greater than 700 nm, and the plurality At least one of the second grooves is located between any two adjacent first grooves; forming an emitter layer on the substrate; An electrode unit is formed on the substrate.
本發明之功效在於:本發明將該正面形成具有深度差的該數個第一凹槽與該數個第二凹槽,以及被間隔開來的該數個奈米線,前述創新的結構設計,能增加中長波長光線折射進入該基板內的比例,並且能增加中長波長光線在該基板內的反射路徑與散射效果,因而增進光吸收效率並提升光電轉換效率。The invention has the effect that the front surface forms the plurality of first grooves having the depth difference and the plurality of second grooves, and the plurality of nanowires which are spaced apart, the foregoing innovative structural design The ratio of the medium-long wavelength light refracting into the substrate can be increased, and the reflection path and the scattering effect of the medium-long wavelength light in the substrate can be increased, thereby improving the light absorption efficiency and improving the photoelectric conversion efficiency.
11‧‧‧第一板材11‧‧‧ first plate
12‧‧‧第二板材12‧‧‧Second plate
13‧‧‧太陽能電池13‧‧‧Solar battery
14‧‧‧封裝材14‧‧‧Package
15‧‧‧焊帶導線15‧‧‧welding wire
2、2’‧‧‧基板2, 2'‧‧‧ substrate
21、21’‧‧‧正面21, 21’ ‧ ‧ positive
211、211’‧‧‧奈米線211, 211'‧‧‧ nano line
212、212’‧‧‧第一凹槽212, 212'‧‧‧ first groove
213‧‧‧第二凹槽213‧‧‧second groove
214、214’‧‧‧底端214, 214’‧‧‧ bottom
215、215’‧‧‧假想表面215, 215’ ‧ ‧ imaginary surface
22‧‧‧背面22‧‧‧ Back
23‧‧‧射極層23‧‧ ‧ emitter layer
24‧‧‧抗反射層24‧‧‧Anti-reflective layer
3‧‧‧電極單元3‧‧‧Electrode unit
31‧‧‧正電極31‧‧‧ positive electrode
32‧‧‧背電極32‧‧‧Back electrode
81‧‧‧第一方向81‧‧‧First direction
82‧‧‧第二方向82‧‧‧second direction
91~94‧‧‧步驟91~94‧‧‧Steps
d1、d2‧‧‧深度D1, d2‧‧ depth
d3‧‧‧深度差D3‧‧‧ depth difference
d4‧‧‧距離D4‧‧‧distance
d5‧‧‧長度D5‧‧‧ length
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是本發明太陽能電池模組之一較佳實施例之一局部剖視示意圖;圖2是該較佳實施例之一太陽能電池之一剖視示意圖;圖3是圖2的局部放大圖;圖4是該太陽能電池的製造方法之一較佳實施例的步驟流程方塊圖;圖5是該製造方法之一步驟流程示意圖;圖6是該製造方法之另一實施態樣之前段步驟的步驟流程示意圖;圖7是一比較例使用掃描式電子顯微鏡(SEM)所拍下的照片;圖8是本發明的實施例使用掃描式電子顯微鏡所拍下的照片;及圖9是一光反射率與光波長的關係圖,說明比較例與實 施例對於不同波長的光線之反射率。Other features and advantages of the present invention will be apparent from the embodiments of the present invention, wherein: FIG. 1 is a partial cross-sectional view of a preferred embodiment of the solar cell module of the present invention; 1 is a schematic cross-sectional view of a solar cell; FIG. 3 is a partial enlarged view of FIG. 2; FIG. 4 is a block flow diagram of a preferred embodiment of the solar cell manufacturing method; A schematic flow chart of one step of the method; FIG. 6 is a schematic flow chart of the steps of the previous step of another embodiment of the manufacturing method; FIG. 7 is a photograph taken by a scanning electron microscope (SEM) in a comparative example; The embodiment of the present invention uses a photograph taken by a scanning electron microscope; and FIG. 9 is a relationship between light reflectance and wavelength of light, illustrating a comparative example and a real example. The reflectivity of the light for different wavelengths.
參閱圖1,本發明太陽能電池模組之一較佳實施例包含:上下相對間隔設置的一第一板材11與一第二板材12、數個陣列式地排列於該第一板材11與該第二板材12之間的太陽能電池13,以及一位於該第一板材11與該第二板材12之間並包覆地接觸該數個太陽能電池13的封裝材14。當然在實施上,該太陽能電池模組可以僅包含一太陽能電池13。Referring to FIG. 1 , a preferred embodiment of the solar cell module of the present invention comprises: a first plate 11 and a second plate 12 disposed at an upper and lower interval, and a plurality of arrays arranged on the first plate 11 and the first A solar cell 13 between the two sheets 12, and a package 14 between the first sheet 11 and the second sheet 12 and coveringly contacting the plurality of solar cells 13. Of course, in practice, the solar cell module may include only one solar cell 13.
在本實施例中,該第二板材12又稱為背板(Back Sheet),而該第一板材11位於光線入射的一側,其可由透光材料製成,例如玻璃或塑膠材質等板材,不需特別限制。該數個太陽能電池13彼此之間可透過數個焊帶導線(Ribbon)15電連接。而該封裝材14的材料為乙烯-醋酸乙烯共聚物(EVA)或其他可用於太陽能電池模組封裝之相關材料,並不限於本實施例的舉例。In this embodiment, the second plate 12 is also referred to as a back sheet, and the first plate 11 is located on the side where the light is incident, and may be made of a light transmissive material, such as a sheet of glass or plastic. No special restrictions are required. The plurality of solar cells 13 are electrically connected to each other through a plurality of ribbon wires 15. The material of the package material 14 is ethylene-vinyl acetate copolymer (EVA) or other related materials that can be used for solar cell module packaging, and is not limited to the examples of the embodiment.
由於該太陽能電池模組的結構非本發明改良的重點,不再說明,於圖1中也僅為簡單示意。此外,由於該數個太陽能電池13的結構都相同,以下僅以其中一個為例進行說明。當然,在一模組中的該數個太陽能電池13的結構不以相同為絕對之必要。Since the structure of the solar cell module is not an improvement of the present invention, it will not be described again, and is also simply illustrated in FIG. In addition, since the structures of the several solar cells 13 are the same, only one of them will be described below as an example. Of course, the structure of the plurality of solar cells 13 in a module is not absolutely necessary.
參閱圖2、3,本實施例的太陽能電池13包含一基板2,以及位於該基板2上的一射極層23與一電極單元3。Referring to FIGS. 2 and 3, the solar cell 13 of the present embodiment includes a substrate 2, and an emitter layer 23 and an electrode unit 3 on the substrate 2.
本實施例的基板2可為p型或n型的晶矽基板,並可為單晶矽基板或多晶矽基板。該基板2包括一受光的正面21,以及一相對於該正面21的背面22。The substrate 2 of the present embodiment may be a p-type or n-type crystal germanium substrate, and may be a single crystal germanium substrate or a polycrystalline germanium substrate. The substrate 2 includes a light-receiving front surface 21 and a back surface 22 opposite the front surface 21.
該正面21具有數個沿一第一方向81延伸且彼此間隔的奈米線211,以及分別將該數個奈米線211間隔開來的數個第一凹槽212與數個第二凹槽213。該數個奈米線211中的至少一個位於其中一個第一凹槽212與其中一個第二凹槽213之間,且該數個第二凹槽213中的至少一個位於任兩相鄰的第一凹槽212之間。該數個第一凹槽212在該第一方向81上的深度d1大於該數個第二凹槽213在該第一方向81上的深度d2。每一奈米線211都具有一個鄰近該背面22的底端214,該數個奈米線211的底端214界定出一個呈凹凸起伏的假想表面215。此外,於實施上,本發明所述之第一方向81實質上是垂直該基板2的正面21之方向。The front surface 21 has a plurality of nanowires 211 extending along a first direction 81 and spaced apart from each other, and a plurality of first recesses 212 and a plurality of second recesses respectively spacing the plurality of nanowires 211 213. At least one of the plurality of nanowires 211 is located between one of the first recesses 212 and one of the second recesses 213, and at least one of the plurality of second recesses 213 is located at any two adjacent Between the grooves 212. The depth d1 of the plurality of first grooves 212 in the first direction 81 is greater than the depth d2 of the plurality of second grooves 213 in the first direction 81. Each of the nanowires 211 has a bottom end 214 adjacent the back surface 22, and the bottom ends 214 of the plurality of nanowires 211 define an imaginary surface 215 that is undulating. Moreover, in practice, the first direction 81 of the present invention is substantially perpendicular to the direction of the front side 21 of the substrate 2.
在本實施例中,該數個第一凹槽212的深度d1為800~5500nm,該數個第二凹槽213的深度d2為100~4800nm。該數個第一凹槽212與該數個第二凹槽213在該第一方向81上的深度差d3大於700nm,但小於5400nm。任兩相鄰的第一凹槽212在一垂直該第一方向81的第二方向82上的距離d4大於700nm,但小於5400nm。該數個奈米線211在該第二方向82上的長度d5為20~300nm。關於本實施例的基板21的正面21之創新結構設計所能達成的功效,以及前述數值限定的意義,容後說 明。In this embodiment, the depth d1 of the plurality of first grooves 212 is 800 to 5500 nm, and the depth d2 of the plurality of second grooves 213 is 100 to 4800 nm. The depth difference d3 of the plurality of first grooves 212 and the plurality of second grooves 213 in the first direction 81 is greater than 700 nm, but less than 5400 nm. The distance d4 of any two adjacent first grooves 212 in a second direction 82 perpendicular to the first direction 81 is greater than 700 nm, but less than 5400 nm. The length d5 of the plurality of nanowires 211 in the second direction 82 is 20 to 300 nm. The effect that can be achieved by the innovative structural design of the front side 21 of the substrate 21 of the present embodiment, and the meaning of the aforementioned numerical definition, Bright.
本實施例的射極層23配置於該正面21處之內,並且該基板2與該射極層23的其中一個為n型半導體,另一個為p型半導體,進而形成p-n接面,為光伏特效應的來源。而該射極層23上還可設置一抗反射層24,其材料例如氮化矽(SiNx )等,可用於降低光線反射,以提高光線入射量並降低載子表面複合速率(Surface Recombination Velocity,簡稱SRV)。由於本發明的改良不在於此,因此不再詳述。The emitter layer 23 of the embodiment is disposed in the front surface 21, and one of the substrate 2 and the emitter layer 23 is an n-type semiconductor, and the other is a p-type semiconductor, thereby forming a pn junction, which is a photovoltaic The source of special effects. An anti-reflection layer 24, such as tantalum nitride (SiN x ), may be disposed on the emitter layer 23 to reduce light reflection to increase the amount of light incident and reduce the surface recombination velocity of the carrier (Surface Recombination Velocity) , referred to as SRV). Since the improvement of the present invention is not here, it will not be described in detail.
本實施例的電極單元3位於該基板2上,並包括一個位於該抗反射層24上並穿過該抗反射層24而接觸該射極層23的正電極31,以及一個位於該背面22上的背電極32。該正電極31與該背電極32配合輸出該太陽能電池13所產生的電能,但由於該正電極31與該背電極32非本發明的改良重點,在此不再說明,其具體結構也不限於本實施例之舉例。The electrode unit 3 of the embodiment is located on the substrate 2 and includes a positive electrode 31 on the anti-reflection layer 24 and passing through the anti-reflection layer 24 to contact the emitter layer 23, and one on the back surface 22. Back electrode 32. The positive electrode 31 and the back electrode 32 cooperate to output the electrical energy generated by the solar cell 13. However, since the positive electrode 31 and the back electrode 32 are not the improvement points of the present invention, they are not described herein, and the specific structure is not limited thereto. An example of this embodiment.
需要注意的是,若該太陽能電池13為指叉式背接觸(Interdigitated Back Contact,簡稱IBC)太陽能電池的形式時,該射極層23便會配置於該背面22處之內,而該電極單元3便僅包括位於該背面22上的該背電極32,因此該電極單元3與該射極層23設置的位置,以及該太陽能電池13的細部結構皆不限於本實施例所揭露的形式。It should be noted that if the solar cell 13 is in the form of an Interdigitated Back Contact (IBC) solar cell, the emitter layer 23 is disposed in the back surface 22, and the electrode unit 3 includes only the back electrode 32 on the back surface 22, and thus the position where the electrode unit 3 and the emitter layer 23 are disposed, and the detailed structure of the solar cell 13 are not limited to the form disclosed in the embodiment.
參閱圖3、4、5,本發明太陽能電池13的製造方法之一較佳實施例,包含:Referring to Figures 3, 4 and 5, a preferred embodiment of the method of fabricating the solar cell 13 of the present invention comprises:
(1)步驟91:提供該基板2。(1) Step 91: The substrate 2 is provided.
(2)步驟92:使用一蝕刻溶液(圖未示)蝕刻該基板2的正面21,使該正面21形成該數個第一凹槽212、該數個第二凹槽213,以及該數個奈米線211。(2) Step 92: etching the front surface 21 of the substrate 2 using an etching solution (not shown), such that the front surface 21 forms the plurality of first recesses 212, the plurality of second recesses 213, and the plurality of Nano line 211.
具體來說,本實施例是在室溫的環境下,將該基板2浸置於該蝕刻溶液內10分鐘,其中,該蝕刻溶液包含酸蝕劑、第一金屬離子源與第二金屬離子源,且所述第一金屬離子源與所述第二金屬離子源為不同的金屬離子源,因此兩者催化蝕刻的能力不同。Specifically, in this embodiment, the substrate 2 is immersed in the etching solution for 10 minutes in a room temperature environment, wherein the etching solution comprises an etchant, a first metal ion source and a second metal ion source. And the first metal ion source and the second metal ion source are different metal ion sources, so the ability of the two to catalyze etching is different.
本實施例透過該酸蝕劑的蝕刻作用配合所述第一金屬離子源的催化作用,使該正面21被蝕刻形成該數個第一凹槽212;同樣地透過該酸蝕劑的蝕刻作用配合所述第二金屬離子源的催化作用,使該正面21被蝕刻形成該數個第二凹槽213。於是,該數個第一凹槽212、該數個第二凹槽213分別沿該第一方向81凹陷延伸地形成於該正面21,並共同將該正面21分隔出沿該第一方向81延伸且彼此間隔的該數個奈米線211。In this embodiment, the etching action of the etchant is combined with the catalysis of the first metal ion source, so that the front surface 21 is etched to form the plurality of first recesses 212; similarly, the etching action of the etchant is matched. The catalysis of the second metal ion source causes the front surface 21 to be etched to form the plurality of second recesses 213. Thus, the plurality of first grooves 212 and the plurality of second grooves 213 are respectively formed on the front surface 21 in a recessed manner along the first direction 81, and collectively separate the front surface 21 and extend along the first direction 81. And the plurality of nanowires 211 spaced apart from each other.
在實施上,該酸蝕劑可為氫氟酸(HF)或過氧化氫(H2 O2 ),而本實施例具體是使用氫氟酸。所述第一金屬離子源為金(Au)、銀(Ag)、銅(Cu)、鐵(Fe)、鈦(Ti)、鉑(Pt)、鈀(Pd)、鎳(Ni)、鋅(Zn)、錫(Sn)或鉻(Cr)的化合物,而本實施例具體是使用硝酸銅(Cu(NO3 )2 )。所述第二金屬離子源為金、銀、銅、鐵、鈦、鉑、鈀、鎳、鋅、錫或鉻的化合物,而本實施例具體是使用硝酸銀(AgNO3 )。 此外,本實施例的蝕刻溶液的酸蝕劑、第一金屬離子源與第二金屬離子源的體積莫耳濃度比為23:1:1。In practice, the etchant may be hydrofluoric acid (HF) or hydrogen peroxide (H 2 O 2 ), and in this embodiment, hydrofluoric acid is specifically used. The first metal ion source is gold (Au), silver (Ag), copper (Cu), iron (Fe), titanium (Ti), platinum (Pt), palladium (Pd), nickel (Ni), zinc ( A compound of Zn), tin (Sn) or chromium (Cr), and in this embodiment specifically, copper nitrate (Cu(NO 3 ) 2 ) is used. The second metal ion source is a compound of gold, silver, copper, iron, titanium, platinum, palladium, nickel, zinc, tin or chromium, and in this embodiment, silver nitrate (AgNO 3 ) is specifically used. In addition, the volume ratio of the etchant, the first metal ion source and the second metal ion source of the etching solution of the present embodiment is 23:1:1.
進一步說明的是,在該蝕刻溶液中只要混合兩種以上不同的金屬離子源,就可以在一次的蝕刻過程中使該正面21形成具有不同深度的凹槽,以及被前述不同深度的凹槽所間隔開來的奈米線,因此在步驟92中的蝕刻方式不限於本實施例所揭露的態樣。It is further explained that as long as two or more different metal ion sources are mixed in the etching solution, the front surface 21 can be formed into grooves having different depths in one etching process, and the grooves of different depths mentioned above can be used. The nanowires are spaced apart, so the etching method in step 92 is not limited to the embodiment disclosed in the embodiment.
此外,在實施上,步驟92也可以如圖6所示地分成兩次蝕刻的作業方式進行。亦即,先使用僅含有一種金屬離子源且前述金屬離子源之濃度較高的蝕刻溶液,在該正面21形成數個深度d1較深的第一凹槽212,之後可視需求清洗或不清洗該正面21。接著再使用含有與前述相同的金屬離子源但其濃度較低的蝕刻溶液,在該正面21形成數個深度d2較淺的第二凹槽213,如此同樣可透過該數個第一凹槽212與該數個第二凹槽213共同將該正面21分隔出該數個奈米線211。當然,該數個第一凹槽212與該數個第二凹槽213的形成順序可以對調,亦不限於前述之舉例。Further, in practice, step 92 can also be performed in a two-etching operation as shown in FIG. That is, a first recess 212 having a deep depth d1 is formed on the front surface 21 by using an etching solution containing only one metal ion source and having a relatively high concentration of the foregoing metal ion source, and then the cleaning or cleaning may be performed as needed. Front 21. Then, using the etching solution having the same metal ion source as that described above but having a lower concentration, a plurality of second recesses 213 having a shallower depth d2 are formed on the front surface 21, so that the plurality of first recesses 212 can also be transmitted through the plurality of first recesses 212. Together with the plurality of second grooves 213, the front surface 21 is separated from the plurality of nanowires 211. Certainly, the order in which the plurality of first grooves 212 and the plurality of second grooves 213 are formed may be reversed, and is not limited to the foregoing examples.
需要說明的是,在實施上,形成該數個第一凹槽212與該數個第二凹槽213的過程中,相關參數如涉及蝕刻溶液之濃度與溫度,以及蝕刻時間等,可依所需而為不同之調整,故不需在此特別限制。It should be noted that, in implementation, in the process of forming the plurality of first grooves 212 and the plurality of second grooves 213, related parameters such as concentration and temperature of the etching solution, etching time, etc. may be Different adjustments are needed, so there is no need to limit them here.
請再次參閱圖3、4、5,(3)步驟93:在該基板2上形成該射極層23。Referring again to FIGS. 3, 4, and 5, (3) step 93: forming the emitter layer 23 on the substrate 2.
具體而言,本實施例主要是利用擴散(Diffusion)製程在該基板2的正面21處之內側形成該射極層23,使該射極層23與該基板2形成p-n接面。此外,在實施上還可利用真空鍍膜方式於該正面21上製作該抗反射層24,該真空鍍膜方式例如物理氣相沉積(PVD)、化學氣相沉積(CVD)等方式。Specifically, in the present embodiment, the emitter layer 23 is formed on the inner side of the front surface 21 of the substrate 2 by a diffusion process, so that the emitter layer 23 forms a p-n junction with the substrate 2. Further, in the implementation, the anti-reflection layer 24 may be formed on the front surface 21 by a vacuum coating method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD).
需要說明的是,本實施例的擴散深度大於該數個奈米線211在該第一方向81上的長度,因此該射極層23同時具有形成於該數個奈米線211之內的部分,以及從該數個奈米線211之底端214朝該基板2內部延伸的部分。然而在實施上,前述擴散深度可依需求調整,特別是當擴散深度等於或小於該數個奈米線211的長度時,該射極層23便僅具有形成於該數個奈米線211之內的部分。由此可知,該射極層23的結構不限於本實施例所揭露的形式。It should be noted that the diffusion depth of the embodiment is greater than the length of the plurality of nanowires 211 in the first direction 81. Therefore, the emitter layer 23 has portions formed within the plurality of nanowires 211 at the same time. And a portion extending from the bottom end 214 of the plurality of nanowires 211 toward the inside of the substrate 2. However, in practice, the diffusion depth can be adjusted according to requirements, especially when the diffusion depth is equal to or smaller than the length of the plurality of nanowires 211, the emitter layer 23 has only formed on the plurality of nanowires 211. Inside part. Therefore, the structure of the emitter layer 23 is not limited to the form disclosed in the embodiment.
(4)步驟94:在該基板2上形成該電極單元3。(4) Step 94: The electrode unit 3 is formed on the substrate 2.
具體而言,可以利用網印、噴印或真空鍍膜方式,在該抗反射層24上配置該電極單元3的正電極31,以及在該背面22上配置該電極單元3的背電極32,其中,該正電極31穿過該抗反射層24而接觸該射極層23。由於該電極單元3詳細的製造過程非本發明的重點,不再說明,當然該電極單元3設置的方式,及其設置於該基板2上的位置皆不限於本實施例之舉例。Specifically, the positive electrode 31 of the electrode unit 3 may be disposed on the anti-reflective layer 24 by using a screen printing, a jet printing or a vacuum coating method, and the back electrode 32 of the electrode unit 3 may be disposed on the back surface 22, wherein The positive electrode 31 passes through the anti-reflection layer 24 to contact the emitter layer 23. Since the detailed manufacturing process of the electrode unit 3 is not the focus of the present invention, the description of the manner in which the electrode unit 3 is disposed and the position on the substrate 2 are not limited to the examples of the embodiment.
參閱圖3、7、8、9,接著透過比較例與本發明的實施例來證實本發明的功效。其中,比較例先使用僅含 有一種金屬離子源的蝕刻溶液蝕刻該基板2’的正面21’,接著才進行步驟93、步驟94。而實施例在步驟92中,是使用含有兩種不同的金屬離子源的蝕刻溶液蝕刻該基板2的正面21,接著才進行步驟93、步驟94。Referring to Figures 3, 7, 8, and 9, the efficacy of the present invention is demonstrated by comparative examples and examples of the present invention. Among them, the comparative example first uses only An etching solution of a metal ion source etches the front side 21' of the substrate 2', and then proceeds to step 93, step 94. In the embodiment, in step 92, the front side 21 of the substrate 2 is etched using an etching solution containing two different metal ion sources, and then step 93 and step 94 are performed.
圖7為比較例使用僅含有一種金屬離子源的蝕刻溶液蝕刻該基板2’的正面21’之後,隨即使用掃描式電子顯微鏡(SEM)所拍下的照片。圖8為實施例經過步驟92之後,隨即使用掃描式電子顯微鏡所拍下的照片。而圖9為比較例與實施例的一光反射率與光波長的關係圖,其中,所述光反射率是在該太陽能電池13之正面測量。Fig. 7 is a photograph taken by a scanning electron microscope (SEM) after etching the front surface 21' of the substrate 2' with an etching solution containing only one metal ion source. Figure 8 is a photograph taken immediately after the step 92 of the embodiment using a scanning electron microscope. 9 is a graph showing the relationship between the light reflectance and the wavelength of light in the comparative example and the embodiment, wherein the light reflectance is measured on the front side of the solar cell 13.
由圖7可知,因為比較例使用僅含有一種金屬離子源的蝕刻溶液蝕刻該基板2’的正面21’,進而僅在該正面21’形成該數個第一凹槽212’與該數個奈米線211’,於是該數個奈米線211’之底端214所界定出的假想表面215’較為平整。由圖8可知,實施例在步驟92中,使用含有兩種不同的金屬離子源的蝕刻溶液蝕刻該基板2的正面21,進而在該正面21形成彼此具有深度差d3的該數個第一凹槽212與該數個第二凹槽213,以及被該數個第一凹槽212與該數個第二凹槽213間隔開來的該數個奈米線211,於是該數個奈米線211之底端214所界定出的假想表面215呈凹凸起伏。As can be seen from FIG. 7, since the comparative example etches the front surface 21' of the substrate 2' using an etching solution containing only one metal ion source, the plurality of first recesses 212' and the plurality of nai are formed only on the front surface 21'. The rice line 211', then the imaginary surface 215' defined by the bottom end 214 of the plurality of nanowires 211' is relatively flat. As can be seen from FIG. 8, in step 92, the front surface 21 of the substrate 2 is etched using an etching solution containing two different metal ion sources, and the first front concaves having the depth difference d3 from each other are formed on the front surface 21. The slot 212 and the plurality of second recesses 213, and the plurality of nanowires 211 separated by the plurality of first recesses 212 and the plurality of second recesses 213, and then the plurality of nanowires The imaginary surface 215 defined by the bottom end 214 of the 211 is undulating.
由圖9可知,比較例的反射率平均約為10%,就光波長為400~1000nm的範圍而言,比較例對短波長光線的反射率低,並隨著光波長增加其反射率也隨之增加。 這是因為比較例的基板2’是由晶矽基板所製成,其對於短波長光線的吸收性較佳,對於中長波長光線的吸收性較差所致,因而無法有效利用中長波長光線。As can be seen from Fig. 9, the reflectance of the comparative example is about 10% on average, and in the range of the wavelength of light of 400 to 1000 nm, the reflectance of the comparative example is low for short-wavelength light, and the reflectance thereof also increases with the increase of the wavelength of light. Increase. This is because the substrate 2' of the comparative example is made of a wafer substrate, which is excellent in absorbability for short-wavelength light and poor in absorbability for medium- and long-wavelength light, and thus cannot effectively utilize medium- and long-wavelength light.
另一方面,本發明的實施例的反射率平均約為2%,並且大幅低於比較例的反射率的平均值。就光波長為400~1000nm的範圍而言,不論中長波長光線或短波長光線,本發明的實施例的反射率皆較低,而且本發明的實施例的反射率隨光波長增加而變化的幅度較小。這是因為間隔排列該數個奈米線211所形成的第一種粗糙化結構,能增加光線的散射效果,並增加光線的反射與折射的路徑,從而提升該基板2吸收前述光線的機會。進一步地,呈凹凸起伏的該假想表面215所形成的第二種粗糙化結構,能增加中長波長光線折射進入該基板2內的比例,並且增加中長波長光線在該基板2內的反射路徑與散射效果,因此能更進一步地增進光吸收效率並提升光電轉換效率。On the other hand, the reflectance of the embodiment of the present invention is on average about 2%, and is substantially lower than the average value of the reflectance of the comparative example. In the range of light wavelengths of 400 to 1000 nm, the reflectance of the embodiment of the present invention is low regardless of medium or long wavelength light or short wavelength light, and the reflectance of the embodiment of the present invention varies with the wavelength of light. The magnitude is small. This is because the first roughening structure formed by arranging the plurality of nanowires 211 at intervals can increase the scattering effect of the light and increase the path of reflection and refraction of the light, thereby increasing the chance of the substrate 2 absorbing the light. Further, the second roughening structure formed by the imaginary surface 215 of the undulations can increase the proportion of the medium-long wavelength light refracted into the substrate 2, and increase the reflection path of the medium-long wavelength light in the substrate 2. With the scattering effect, the light absorption efficiency can be further improved and the photoelectric conversion efficiency can be improved.
為了達成前述第一種粗糙化結構的抗反射效果,該數個第一凹槽212的深度d1為800~5500nm,該數個第二凹槽213的深度d2為100~4800nm,該數個奈米線211在該第二方向82上的長度d5為20~300nm。其中,若深度d1與深度d2過淺時,該數個第一凹槽212與該數個第二凹槽213所間隔出的該數個奈米線211在該第一方向81上的長度便會不足,致使前述第一種粗糙化結構的粗糙程度不足而降低抗反射效果。若深度d1與深度d2過深時,該數個奈米線211在該第一方向81上的長度便會太長 而降低結構強度,進而容易倒塌、壞損而無法使用,另言之,上述該數個奈米線211太長時,部分的奈米線211會因表面庫侖力而發生內聚塌倒的現象,致使前述第一種粗糙化結構的抗反射能力下降。此外,若長度d5小於20nm時,該數個奈米線211過細而降低結構強度,同樣容易倒塌、壞損而無法使用。若長度d5大於300nm,又會降低前述第一種粗糙化結構的粗糙程度,因而降低抗反射效果。In order to achieve the anti-reflection effect of the first roughening structure, the depth d1 of the plurality of first grooves 212 is 800-5500 nm, and the depth d2 of the plurality of second grooves 213 is 100-4800 nm. The length d5 of the rice noodle 211 in the second direction 82 is 20 to 300 nm. If the depth d1 and the depth d2 are too shallow, the lengths of the plurality of nanowires 211 spaced apart from the plurality of second grooves 213 in the first direction 81 are Insufficient, resulting in insufficient roughness of the first roughened structure described above to reduce the anti-reflection effect. If the depth d1 and the depth d2 are too deep, the length of the plurality of nanowires 211 in the first direction 81 will be too long. The structural strength is lowered, and it is easy to collapse and damage, and cannot be used. In other words, when the plurality of nanowires 211 are too long, part of the nanowires 211 may collapse due to surface Coulomb force. , causing the anti-reflection ability of the aforementioned first roughened structure to decrease. Further, when the length d5 is less than 20 nm, the plurality of nanowires 211 are too fine to lower the structural strength, and are also easily collapsed and damaged and cannot be used. If the length d5 is greater than 300 nm, the roughness of the first roughened structure described above is lowered, thereby reducing the antireflection effect.
另一方面,為了達成前述第二種粗糙化結構對於中長波長光線之抗反射效果,該數個第一凹槽212與該數個第二凹槽213的深度差d3大於700nm,但小於5400nm。任兩相鄰的第一凹槽212的距離d4大於700nm,但小於5400nm。其中,若深度差d3在700nm以下或距離d4在5400nm以上時,該數個奈米線211之底端214所界定出的假想表面215其凹凸起伏的程度相對不足,致使前述第二種粗糙化結構的粗糙程度不夠而降低抗反射效果。On the other hand, in order to achieve the anti-reflection effect of the second roughening structure on the medium-long wavelength light, the depth difference d3 between the plurality of first grooves 212 and the plurality of second grooves 213 is greater than 700 nm, but less than 5400 nm. . The distance d4 of any two adjacent first grooves 212 is greater than 700 nm, but less than 5400 nm. Wherein, if the depth difference d3 is below 700 nm or the distance d4 is above 5400 nm, the imaginary surface 215 defined by the bottom end 214 of the plurality of nanowires 211 is relatively insufficient in degree of undulations, resulting in the second roughening. The roughness of the structure is insufficient to reduce the anti-reflection effect.
進一步說明的是,前述深度差d3與距離d4可依所欲改良的光波段調整,而本實施例對於深度差d3與距離d4數值限定之範圍可有效降低中長波長光線的反射率,可增進中長波長光線折射進入該基板2內的比例與散射效果,使中長波長光線在該基板2內傳導的路徑增加,進而提升光吸收效率與光電轉換效率。It is further explained that the depth difference d3 and the distance d4 can be adjusted according to the optical band to be improved, and the range of the depth difference d3 and the distance d4 can effectively reduce the reflectance of the medium and long wavelength light, and can be improved. The ratio of the medium-long wavelength light refracting into the substrate 2 and the scattering effect increase the path of the medium-long wavelength light conduction in the substrate 2, thereby improving the light absorption efficiency and the photoelectric conversion efficiency.
需要說明的是,前述第一種粗糙化結構與第二種粗糙化結構主要使用於太陽能電池13之受光面,由於本發明所舉例之太陽能電池13為單面受光的形式,因此前述 第一種粗糙化結構與第二種粗糙化結構便設置於該太陽能電池13的正面21。當然在實施上,該太陽能電池13也可選用雙面受光的形式,此時前述結構則可使用於前述雙面受光型太陽能電池之正面與背面。It should be noted that the first roughening structure and the second roughening structure are mainly used for the light receiving surface of the solar cell 13. Since the solar cell 13 exemplified in the present invention is in the form of single-sided light receiving, the foregoing The first roughening structure and the second roughening structure are disposed on the front surface 21 of the solar cell 13. Of course, in practice, the solar cell 13 can also be in the form of double-sided light receiving. In this case, the foregoing structure can be used for the front and back surfaces of the double-sided light receiving type solar cell.
綜上所述,本發明將該正面21形成彼此具有深度差d3的該數個第一凹槽212與該數個第二凹槽213,以及被間隔開來的該數個奈米線211,前述創新的結構設計,可透過該數個奈米線211所形成的第一種粗糙化結構增加光線反射、折射、散射的路徑,從而增進該基板2吸收前述光線的機會。此外,該數個奈米線211之底端214界定出的該假想表面215所形成的第二種粗糙化結構,對於中長波長光線的抗反射效果明顯,能增加中長波長光線折射進入該基板2內的比例,並增加中長波長光線在該基板2內的反射路徑與散射效果,因而更進一步地增加光吸收效率並提升光電轉換效率。In summary, the present invention forms the plurality of first grooves 212 and the plurality of second grooves 213 having the depth difference d3 from each other, and the plurality of nanowires 211 spaced apart from each other. The foregoing innovative structural design can increase the path of light reflection, refraction, and scattering through the first roughening structure formed by the plurality of nanowires 211, thereby enhancing the chance of the substrate 2 absorbing the light. In addition, the second roughening structure formed by the imaginary surface 215 defined by the bottom end 214 of the plurality of nanowires 211 has obvious anti-reflection effect on medium and long-wavelength light, and can increase the refraction of the medium-long wavelength light into the The ratio in the substrate 2 increases the reflection path and scattering effect of the medium-long wavelength light in the substrate 2, thereby further increasing the light absorption efficiency and improving the photoelectric conversion efficiency.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.
13‧‧‧太陽能電池13‧‧‧Solar battery
2‧‧‧基板2‧‧‧Substrate
21‧‧‧正面21‧‧‧ positive
211‧‧‧奈米線211‧‧‧Nami line
212‧‧‧第一凹槽212‧‧‧First groove
213‧‧‧第二凹槽213‧‧‧second groove
214‧‧‧底端214‧‧‧ bottom
215‧‧‧假想表面215‧‧‧ imaginary surface
23‧‧‧射極層23‧‧ ‧ emitter layer
24‧‧‧抗反射層24‧‧‧Anti-reflective layer
3‧‧‧電極單元3‧‧‧Electrode unit
31‧‧‧正電極31‧‧‧ positive electrode
81‧‧‧第一方向81‧‧‧First direction
82‧‧‧第二方向82‧‧‧second direction
d1、d2‧‧‧深度D1, d2‧‧ depth
d3‧‧‧深度差D3‧‧‧ depth difference
d4‧‧‧距離D4‧‧‧distance
d5‧‧‧長度D5‧‧‧ length
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102122383A TWI495127B (en) | 2013-06-24 | 2013-06-24 | Solar cell, method of manufacturing the same and module comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102122383A TWI495127B (en) | 2013-06-24 | 2013-06-24 | Solar cell, method of manufacturing the same and module comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201501337A TW201501337A (en) | 2015-01-01 |
TWI495127B true TWI495127B (en) | 2015-08-01 |
Family
ID=52718060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102122383A TWI495127B (en) | 2013-06-24 | 2013-06-24 | Solar cell, method of manufacturing the same and module comprising the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI495127B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200729523A (en) * | 2006-01-25 | 2007-08-01 | Neo Solar Power Corp | Photovoltaic device, photovoltaic element and manufacturing method thereof |
TW201109350A (en) * | 2009-07-31 | 2011-03-16 | Du Pont | Cross-linkable encapsulants for photovoltaic cells |
CN102082184A (en) * | 2009-12-01 | 2011-06-01 | Snt能源技术有限公司 | Solar cell and method for manufacturing the same |
CN103145090A (en) * | 2011-12-06 | 2013-06-12 | 林清富 | Technology for manufacturing large-area thin monocrystalline silicon |
-
2013
- 2013-06-24 TW TW102122383A patent/TWI495127B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200729523A (en) * | 2006-01-25 | 2007-08-01 | Neo Solar Power Corp | Photovoltaic device, photovoltaic element and manufacturing method thereof |
TW201109350A (en) * | 2009-07-31 | 2011-03-16 | Du Pont | Cross-linkable encapsulants for photovoltaic cells |
CN102082184A (en) * | 2009-12-01 | 2011-06-01 | Snt能源技术有限公司 | Solar cell and method for manufacturing the same |
CN103145090A (en) * | 2011-12-06 | 2013-06-12 | 林清富 | Technology for manufacturing large-area thin monocrystalline silicon |
Also Published As
Publication number | Publication date |
---|---|
TW201501337A (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5150473B2 (en) | Stacked photoelectric conversion device | |
US10741706B2 (en) | Transparent conductive electrode for three dimensional photovoltaic device | |
JP2008181965A (en) | Laminated optoelectric converter and its fabrication process | |
US20170033242A1 (en) | Solar cell | |
WO2011001735A1 (en) | Thin-film solar battery and method for producing the same | |
JP4454514B2 (en) | Photovoltaic element, photovoltaic module including photovoltaic element, and method for manufacturing photovoltaic element | |
KR101223033B1 (en) | Solar cell | |
KR101164326B1 (en) | Silicon thin film solar cells using periodic or random metal nanoparticle layer and fabrication method thereof | |
TWI453932B (en) | Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer | |
TWI483410B (en) | Solar cell, method of manufacturing the same and module comprising the same | |
WO2012169123A1 (en) | Photoelectric conversion element | |
JP2015185743A (en) | photoelectric conversion element | |
TWI495127B (en) | Solar cell, method of manufacturing the same and module comprising the same | |
WO2011136177A1 (en) | Thin film solar cell and method for manufacturing same, and base with transparent conductive film and method for producing same | |
KR101898996B1 (en) | Silicon Solar Cell having Carrier Selective Contact | |
KR20120055133A (en) | Thin film solar cell | |
US20110259398A1 (en) | Thin film solar cell and method for manufacturing the same | |
TW201445758A (en) | Solar cell, method of manufacturing the same and module comprising the same | |
JP6143520B2 (en) | Crystalline silicon solar cell and manufacturing method thereof | |
JP2012009554A (en) | Photoelectric conversion element | |
KR101575854B1 (en) | Wafer structure for solar cell and method for fabricating the same | |
KR101459650B1 (en) | High Performance Selective Emitter Device and Method of Fabricating the Same | |
JP2013219073A (en) | Photoelectric conversion element | |
JP5667511B2 (en) | Photoelectric conversion element | |
JP2010219089A (en) | Optical power generation element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |