TWI494124B - 免疫原組合物 - Google Patents
免疫原組合物 Download PDFInfo
- Publication number
- TWI494124B TWI494124B TW096110815A TW96110815A TWI494124B TW I494124 B TWI494124 B TW I494124B TW 096110815 A TW096110815 A TW 096110815A TW 96110815 A TW96110815 A TW 96110815A TW I494124 B TWI494124 B TW I494124B
- Authority
- TW
- Taiwan
- Prior art keywords
- protein
- type
- binding protein
- polysaccharide
- staphylococcus
- Prior art date
Links
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
Description
本發明係關於葡萄球菌免疫原組合物及疫苗、其製造及該等組合物在醫學中之用途的領域。更特定言之,其係關於包含PNAG多醣或寡醣共軛物及來自金黃色葡萄球菌(S.aureus
)之5型及/或8型多醣或寡醣的疫苗組合物。亦提供使用該等疫苗來治療或預防葡萄球菌感染之方法。
近幾年來,隨著血管內裝置之使用增多,社區獲得性感染及院內獲得性感染之數目均有所增加。院內獲得性(醫院)感染為發病及死亡之主要原因,更特定言之在美國,其每年侵襲兩百萬以上之患者。根據多方研究,約6%之美國患者在醫院逗留期間將受到感染。1992年在美國該經濟負擔據估算達45億美元以上(Emori及Gaynes,1993,Clin.Microbiol.Rev.6;428)。最常見之感染為泌尿道感染(UTI-33%之感染),接著為肺炎(15.5%)、外科手術部位感染(14.8%)及原發性血流感染(13%)(Emori及Gaynes,1993,Clin.Microbiol.Rev.6;428)。
金黃色葡萄球菌、凝固酶陰性葡萄球菌(主要為表皮葡萄球菌(Staphylococcus epidermidis
))、腸球菌屬(enterococcus
spp)、大腸桿菌(Esherichia coli
)及綠膿桿菌(Pseudomonas aeruginosa
)為主要醫院病原體。儘管彼等病原體幾乎引起相同數目之感染,但結合其可產生之病症的嚴重程度與抗生素抗性分離株之頻率進行權衡,金黃色葡萄球菌及表皮葡萄球菌被列為最顯著之醫院病原體之類。
金黃色葡萄球菌為具有可觀發病率及死亡率之醫院感染的最常見原因(Romero-Vivas等人1995,Infect.Dis.21;1417)。其為骨髓炎、心內膜炎、膿毒性關節炎、肺炎、膿腫及毒性休克徵候群之某些病例的原因。
表皮葡萄球菌為正常皮膚共生菌,其亦為導致植入醫療裝置感染及外科手術部位感染之重要伺機性病原體。為表皮葡萄球菌所感染之醫療裝置包括心臟節律器、腦脊髓液分流管、持續性非臥床腹膜透析導管、矯形外科裝置及人工心臟瓣膜。
使用抗生素來治療金黃色葡萄球菌及表皮葡萄球菌感染,其中選擇盤尼西林(penicillin)作為藥物,而將萬古黴素(vancomycin)用於二甲氧苯青黴素(methicillin)抗性分離株。自20世紀80年代以來,展現對於抗生素之廣譜抗性的葡萄球菌菌株百分比已日漸上升(Panlilo等人1992,Infect.Control.Hosp.Epidemiol.13;582),其對於有效抗菌治療造成了威脅。另外,近來萬古黴素抗性金黃色葡萄球菌菌株之出現已引起以下擔憂:二甲氧苯青黴素抗性金黃色葡萄球菌菌株亦將出現且傳播,為此不能獲得有效治療。
已對一種在被動免疫療法中使用抗葡萄球菌抗原之抗體的替代性方法進行了研究。包含多株抗血清投藥之療法(WO 00/15238、WO 00/12132)以及使用抗脂磷壁酸之單株抗體的治療(WO 98/57994)正處於開發中。
一種替代性方法將利用主動接種疫苗以產生對於葡萄球菌之免疫反應。已鑑別出若干種作為疫苗成分所包含之候選物。該等者包括纖連蛋白(Fibronectin)結合蛋白(US5840 846);MHC II類似物(US5648240);纖維蛋白原結合蛋白(US6008341);GehD(US 2002/0169288);膠原蛋白結合蛋白(US6288214);SdrF、SdrG及SdrH(WO 00/12689);突變SEA及SEB外毒素(WO 00/02523);及52 kDa玻璃連結蛋白(vitronectin)結合蛋白(WO 01/60852)。
已將金黃色葡萄球菌基因體定序,且該等編碼序列中有許多已被鑑別(EP786519、WO02/094868)。對於表皮葡萄球菌亦如此(WO 01/34809)。作為該方法之改進,其他人已鑑別出為來自經受葡萄球菌感染之患者之超免疫血清所識別的蛋白(WO01/98499、WO 02/059148)。
靶向金黃色葡萄球菌或靶向其所產生之外蛋白(exoprotein)之第一代疫苗已取得了有限之成功(Lee 1996 Trends Microbiol.4;162)。仍然需要開發抗葡萄球菌感染之有效疫苗。
本發明揭示一種免疫原組合物,其包含N-乙醯化率低於40%、35%、30%、25%、20%、15%、10%或5%之葡萄球菌PNAG及來自金黃色葡萄球菌之5型及/或8型莢膜多醣或寡醣,其中該PNAG藉由與PNAG上之胺基結合之連接體(linker)而共軛至載體蛋白,以形成PNAG共軛物。
該抗原組合能夠引起對於一系列葡萄球菌感染之免疫反應。PNAG在革蘭氏陽性細菌之中高度保守且提供針對廣泛範圍之細菌的保護,而5型及8型多醣為有效免疫原,其可引起對於多數金黃色葡萄球菌(其為醫院感染之最常見原因)菌株之免疫反應。
本發明之免疫原組合物包含脫N-乙醯化率為至少60%之PNAG及來自金黃色葡萄球菌之5型及8型多醣或寡醣,其中該PNAG藉由與PNAG上之胺基結合之連接體而共軛至載體蛋白,以形成PNAG共軛物。
PNAG為多醣細胞間黏附素,且係由視情況經N-乙醯基及O-琥珀醯基組份取代之β-(1→6)-連接葡糖胺聚合物組成。該多醣存在於金黃色葡萄球菌及表皮葡萄球菌中,且可使其自任一來源中分離(Joyce等人2003,Carbohydrate Research 338;903;Maira-Litran等人2002,Infect.Imun.70;4433)。舉例而言,可使PNAG自金黃色葡萄球菌菌株MN8m中分離(WO 04/43407)。
最近顯示:先前被稱為聚-N-琥珀醯基-β-(1→6)-葡糖胺(PNSG)之多醣不具有預期之結構,此係因為對N-琥珀醯化之鑑定不正確所致(Maira-Litran等人2002,Infect.Imun.70;4433)。因此,形式上稱為PNSG而現發現為PNAG之多醣亦包括於術語"PNAG"中。
PNAG可具有自400 kDa以上至介於75與400 kDa之間至介於10與75 kDa之間至寡醣不等之不同大小,其由多達30個重複單元(經N-乙醯基及O-琥珀醯基組份取代之β-(1→6)-連接葡糖胺)組成。任何大小之PNAG多醣或寡醣均可用於本發明之免疫原組合物中,例如40 kDa以上之大小。定大小可藉由此項技術中已知之任何方法達成,例如藉由微流化、超音波照射或藉由化學分解(WO 03/53462、EP497524、EP497525)。
PNAG大小範圍之實例為40至400 kDa、50至350 kDa、40至300 kDa、60至300 kDa、50至250 kDa及60至200 kDa。
術語"PNAG"同時包含dPNAG及PNAG。該PNAG之N-乙醯化率低於40%、35%、30%、25%、20%、15%、10%、5%、2%或1%,為此其主要呈脫乙醯化形式。PNAG之脫乙醯化抗原決定基可引起能夠介導調理殺滅革蘭氏陽性細菌(例如金黃色葡萄球菌及/或表皮葡萄球菌)之抗體。在一實施例中,PNAG未經O-琥珀醯化或在少於25%、20%、15%、10%、5%、2%、1%或0.1%之殘基上經O-琥珀醯化。
在一實施例中,PNAG具有介於40 kDa與300 kDa之間(或介於75 kDa與150 kDa之間)的大小,且經脫乙醯化以使少於40%、35%、30%、25%、20%、15%或10%之胺基經乙醯化。
在一實施例中,PNAG未經O-琥珀醯化或在少於25%、20%、15%、10%、5%、2%、1%或0.1%之殘基上經O-琥珀醯化。
術語"脫乙醯化PNAG(dPNAG)""係指其中少於60%、50%、40%、30%、20%、10%或5%之胺基經乙醯化的PNAG多醣或寡醣。
如本文中所用之術語"PNAG"同時包含該醣之乙醯化形式及脫乙醯化形式。
在一實施例中,藉由對天然多醣進行化學處理將PNAG脫乙醯化以形成dPNAG。舉例而言,用鹼性溶液處理天然PNAG以使pH值升至10以上。例如用0.1至5 M、0.2至4 M、0.3至3 M、0.5至2 M、0.75至1.5 M或1 M之NaOH、KOH或NH4
OH處理PNAG。在20至100℃、25至80℃、30至60℃或30至50℃或35至45℃之溫度下處理至少10或30分鐘,或1、2、3、4、5、10、15或20小時。dPNAG可如WO 04/43405中所述製備。
在一實施例中,本發明之免疫原組合物中所包括之多醣係經共軛至如下文中所述之載體蛋白。
在人類中導致感染之多數金黃色葡萄球菌菌株含有5型或8型多醣中之任一者。約60%之人類菌株為8型,而約30%為5型。在Moreau等人之Carbohydrate Res.201;285(1990)及Fournier等人之Infect.I mMun.45;87(1984)中描述5型及8型莢膜多醣抗原之結構。該兩種類型在其重複單元內均具有FucNAcp以及ManNAcA,其可用於引入巰基。
最近(Jones Carbohydrate Research 340,1097-1106(2005))NMR光譜術將莢膜多醣之結構修正為:5型→4)-β-D-ManNAcA-(1→4)-α-L-FucNAc(3OAc)-(1→3)-β-D-FucNAc-(1→ 8型→3)-β-D-ManNAcA(4OAc)-(1→3)-α-L-FucNAc(1→3)-α-D-FucNAc(1→
可使用熟習此項技術者熟知之方法自合適之金黃色葡萄球菌菌株提取多醣,舉例而言如US6294177中所述。例如,ATCC 12902為5型金黃色葡萄球菌菌株,而ATCC 12605為8型金黃色葡萄球菌菌株。可如Infection and Immunity(1990)58(7);2367中所述自金黃色葡萄球菌提取5型及8型多醣。
多醣具有天然大小,或可(例如)藉由微流化、超音波照射或藉由化學處理而定大小。本發明亦涵蓋由來自金黃色葡萄球菌之5型及8型多醣衍生之寡醣。
本發明之免疫原組合物中所包括之5型及8型莢膜多醣或寡醣係經O-乙醯化的。在一實施例中,5型莢膜多醣或寡醣之O-乙醯化程度為10至100%、20至100%、30至100%、40至100%、50至100%、60至100%、70至100%、80至100%、90至100%、50至90%、60至90%、70至90%或80至90%。在一實施例中,8型莢膜多醣或寡醣之O-乙醯化程度為10至100%、20至100%、30至100%、40至100%、50至100%、60至100%、70至100%、80至100%、90至100%、50至90%、60至90%、70至90%或80至90%。在一實施例中,5型及8型莢膜多醣或寡醣之O-乙醯化程度為10至100%、20至100%、30至100%、40至100%、50至100%、60至100%、70至100%、80至100%、90至100%、50至90%、60至90%、70至90%或80至90%。
本發明之免疫原組合物中所包括之5型及8型多醣視情況共軛至如下文中所述之載體蛋白,或為非共軛的。
本發明之免疫原組合物視情況含有5型或8型多醣中之任一者或同時含有該兩者。
在一實施例中,本發明之免疫原組合物包含如US6294177中所述之金黃色葡萄球菌336抗原。
該336抗原包含β-連接己醣胺,不含O-乙醯基且特異性地結合至以ATCC 55804寄存之金黃色葡萄球菌336型的抗體。
在一實施例中,該336抗原為具有天然大小或可(例如)藉由微流化、超音波照射或藉由化學處理而定大小之多醣。本發明亦涵蓋自336抗原衍生之寡醣。
本發明之免疫原組合物中所包括之336抗原視情況共軛至如下文中所述之載體蛋白,或為非共軛的。
表皮葡萄球菌之菌株ATCC-31432、SE-360及SE-10之特性為分別具有三種不同莢膜類型:I型、II型及III型(Ichiman及Yoshida 1981,J.Appl.Bacteriol.51;229)。自表皮葡萄球菌之各血清型提取之莢膜多醣構成I型、II型及III型多醣。多醣可藉由若干種方法提取,其包括如US4197290中所述或如Ichiman等人1991,J.Appl.Bacteriol.71;176中所述之方法。
在本發明之一實施例中,免疫原組合物包含來自表皮葡萄球菌之I型及/或II型及/或III型多醣或寡醣。
多醣具有天然大小,或可(例如)藉由微流化、超音波照射或化學分解而定大小。本發明亦涵蓋自表皮葡萄球菌菌株提取之寡醣。
該等多醣為非共軛的或視情況為共軛的,此如下文中所述。
在與疫苗接種中使用多醣相關之問題中,多醣本身為不佳免疫原為事實。經設計用以克服該免疫原性缺乏之對策包括使多醣連接至大蛋白載體,其提供旁鄰T細胞輔助。較佳使本發明中所用之多醣連接至蛋白載體,其提供旁鄰T細胞輔助。當前用於偶合至多醣或寡醣免疫原之該等載體的實例包括白喉類毒素及破傷風類毒素(DT、DT CRM197及TT)、匙孔螺(Keyhole Limpet)血藍蛋白(KLH)、綠膿桿菌外蛋白A(rEPA)及經純化之結核菌素蛋白衍生物(PPD)、來自流感嗜血桿菌(Haemophilus influenzae
)之蛋白D、肺炎球菌溶血素或以上任一者之片段。適用之片段包括包含T輔助細胞抗原決定基之片段。特定言之,蛋白D片段將較佳含有靠近該蛋白之N-末端的1/3。蛋白D為IgD-來自流感嗜血桿菌之結合蛋白(EP 0 594 610 B1)。
本發明之免疫原組合物包含脫N-乙醯化率為至少60%、70%、75%、80%、85%、90%或95%(或在不超過40%、30%、25%、20%、15%、10%或5%之殘基上經N-乙醯化)之葡萄球菌PNAG及來自金黃色葡萄球菌之5型及/或8型莢膜多醣或寡醣,其中該PNAG藉由與PNAG上之胺基結合之連接體而共軛至載體蛋白,以形成PNAG共軛物。
術語"連接體"係指在最終共軛物中共價地連接PNAG與載體蛋白之分子。該連接體可來源於共軛反應中所用兩個分子之共價結合。或者,該連接體可來源於共軛反應中所用之單分子或來源於共軛反應中所用之三個分子。在一實施例中,該連接體可為單肽鍵,其中NH源自於PNAG之胺基且CO源自於載體蛋白上之羧酸基團。
PNAG上之胺基為葡糖胺環上之一級胺,而在結合至連接體後變為二級胺。
在一實施例中,連接體結合至載體蛋白上之胺基。舉例而言,載體蛋白上之胺基為離胺酸或精胺酸殘基或載體蛋白之胺基末端。
或者,連接體結合至載體蛋白上之羧酸基團。例如麩胺酸或天冬胺酸殘基或載體蛋白之羧基末端。
在一實施例中,連接體在其共價地結合至PNAG及載體蛋白中之任一者或兩者的位置上含有肽鍵。在一實施例中,該連接體含有兩個肽鍵,第一個位於該連接體共價地結合至PNAG之位置上,而第二個位於該連接體共價地結合至載體蛋白之位置上。
在一實施例中,連接體長度為介於1至40埃之間、介於5至30埃之間、介於5至20埃之間、介於10至20埃之間、介於12至18埃之間、介於14至16埃之間或介於1至5埃之間。
在一實施例中,連接體含有順丁烯二醯亞胺基團。該順丁烯二醯亞胺基團視情況連接(亦即共價結合)至硫原子。
在一實施例中,PNAG共軛物具有式(I):
其中R1及R2係獨立地選自視情況經取代之芳族或脂族鏈,或一鍵。舉例而言,R1為C1
-C6
烷基、C2
-C5
烷基、C3
-C4
烷基、C2
烷基、C3
烷基、C4
烷基或C5
烷基。舉例而言,R2為C1
-C6
烷基、C2
-C5
烷基、C3
-C4
烷基、C2
烷基、C3
烷基、C4
烷基或C5
烷基。
在一實施例中,PNAG共軛物具有式II之結構:
在一實施例中,PNAG共軛物具有式III之結構:
在一實施例中,PNAG共軛物具有式IV之結構:
其中R為視情況經取代之芳族或脂族鏈,或一鍵。舉例而言,R為C1
-C12
烷基、C3
-C10
烷基、C4
-C8
烷基或C6
烷基。
在一實施例中,PNAG共軛物具有式V之結構:
其中R為視情況經取代之芳族或脂族鏈,或一鍵。舉例而言,R為C1
-C12
烷基、C3
-C10
烷基、C4
-C8
烷基或C6
烷基。
在一實施例中,PNAG共軛物具有式(VI):
其中R1及R2係獨立地選自視情況經取代之芳族或脂族鏈,或一鍵。舉例而言,R1為C1
-C6
烷基、C2
-C5
烷基、C3
-C4
烷基、C2
烷基、C3
烷基、C4
烷基或C5
烷基。舉例而言,R2為C1
-C6
烷基、C2
-C5
烷基、C3
-C4
烷基、C2
烷基、C3
烷基、C4
烷基或C5
烷基。舉例而言,R1及R2分別為C2
及C2
;C2
及C3
;C2
及C4
;C2
及C5
;C3
及C2
;C3
及C3
;C3
及C4
;C3
及C5
;C4
及C2
;C4
及C3
;C4
及C5
;C5
及C2
;C5
及C4
;C5
及C3
;C5
及C4
;或C5
及C5
。
在一實施例中,PNAG共軛物具有式(VII):
在一實施例中,載體蛋白係選自由下列各者組成之群:破傷風類毒素、白喉類毒素、CRM197、流感嗜血桿菌蛋白D、綠膿桿菌外蛋白A、肺炎球菌溶血素及α類毒素。
在一實施例中,載體蛋白包含選自由下列各者組成之群的葡萄球菌蛋白或其片段:昆布胺酸(laminin)受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、免疫優勢ABC轉運體(transporter)、IsdA、IsdB、Mg2+轉運體、SitC及Ni ABC轉運體、α毒素(Hla)、α毒素H35R突變體及RNA III活化蛋白(RAP)。
一種用於本發明之免疫原組合物中的替代性載體蛋白為單葡萄球菌蛋白或其片段,或包含至少或恰恰1、2、3或4種或4種以上下文部分中所列出之葡萄球菌蛋白之融合蛋白或其片段。
將特別有利於在葡萄球菌疫苗之情況下使用之新型載體蛋白為葡萄球菌α類毒素。其天然形式可共軛至多醣,此係因為該共軛過程可降低毒性。較佳將經遺傳性解毒之α毒素(諸如His35Leu或His 35 Arg變體)用作載體,因為其殘餘毒性較低。或藉由用交聯試劑、甲醛或戊二醛進行處理將α毒素化學性解毒。視情況較佳藉由用交聯試劑、甲醛或戊二醛進行處理將經遺傳性解毒之α毒素化學性解毒,以進一步降低毒性。其他葡萄球菌蛋白或其片段(尤其彼等上文中所列出者)可用作上文中所列出之多醣之載體蛋白。該載體蛋白可為包含至少或恰恰1、2、3、4或5種上文中所列出之葡萄球菌蛋白之融合蛋白。
PNAG或多醣可藉由已知方法(例如,藉由Marburg之美國專利第4830852號、藉由Likhite之美國專利第4,372,945號、藉由Armor等人之美國專利第4,474,757號、Jennings等人之美國專利第4,356,170號或Kossaczka及Szu Glycoconjugates Journal 17,425-433.2000)連接至載體蛋白。或者,執行CDAP共軛化學反應(參看WO95/08348)。
在CDAP中,較佳將氰化試劑四氟硼酸1-氰基-二甲基胺基吡錠(CDAP)用於合成多醣-蛋白共軛物。該氰化反應可在相對溫和之條件下進行,以避免鹼敏性多醣水解。該合成使得直接偶合至載體蛋白成為可能。
可將多醣溶解於水中或生理食鹽水溶液中。可將CDAP溶解於乙腈中且立即添加至多醣溶液中。CDAP與多醣之羥基反應以形成氰酸酯。在活化步驟後,添加載體蛋白。離胺酸之胺基與活化多醣反應以形成異脲共價鍵。在偶合反應之後,接著添加大量過量的甘胺酸以抑制殘餘活化官能基反應。接著使產物通過凝膠滲透柱以移除未反應之載體蛋白及殘餘試劑。
在一實施例中,藉由包含使PNAG上之胺基與載體蛋白上之羧基共軛的方法使PNAG共軛,例如使用碳化二醯亞胺化學物質,例如使用EDAC(Kossaczka及Szu Glycoconjugates Jouranl 17;425-433,2000)。在一實施例中,PNAG經由間隔基(例如雙官能間隔基)共軛至載體蛋白。該間隔基視情況為異雙官能型或同雙官能型,其具有(例如)一個反應性胺基及一個反應性羧酸基,兩個反應性胺基或兩個反應性羧酸基。該間隔基具有(例如)介於4個與20個、4個與12個、5個與10個之間的碳原子數。可能之間隔基為ADH。其他間隔基包括B-丙醯胺基(WO 00/10599)、硝基苯基-乙胺基(Gever等人(1979)Med.Microbiol.Immunol.165;171-288)、鹵代烷基鹵化物基團(US4057685)、醣苷鍵(US4673574、US4808700)及6-胺基己酸基團(US4459286)。
在本發明之另一實施例中,提供一種用於製造包含細菌醣(例如金黃色葡萄球菌5型或8型多醣或寡醣)及載體蛋白之共軛物的方法,該方法包含下列步驟:a)用氰化試劑使細菌醣(例如金黃色葡萄球菌5型或8型多醣或寡醣)活化,以形成活化細菌(例如金黃色葡萄球菌5型或8型)多醣或寡醣;及b)使該活化細菌(例如金黃色葡萄球菌5型或8型)多醣或寡醣共價地連接至載體蛋白,以形成細菌(例如金黃色葡萄球菌)5型或8型多醣或寡醣共軛物。
本發明之氰化試劑共軛方法可用於將含有糖類之部分共軛至蛋白。例如視情況選自下列者之細菌莢膜醣:來自血清群A、B、C、W或Y之奈瑟菌(Neisserial)莢膜醣類;來自血清群1、2、3、4、5、6A、6B、7F、8、9N、9V、10A、11A、12F、14、15B、17F、18C、19A、19F、20、22F、23F及33F之肺炎球菌醣類;來自5型或8型菌株之葡萄球菌莢膜醣類;表皮葡萄球菌、GBS、GAS或流感嗜血桿菌PRP。
金黃色葡萄球菌或表皮葡萄球菌醣類可具有上述之任何屬性。
舉例而言,金黃色葡萄球菌5型或8型醣具有天然大小或(例如)藉由微流化、超音波照射或化學處理而定大小。5型或8型醣視情況具有如藉由MALLS(?)量測之介於100 kDa與1000 kDa、介於100與300 kDa、介於300與1000 kDa、介於30與300 kDa、介於10與100 kDa或介於5與50 kDa之間的分子量。5型或8型醣視情況經定大小以得到1至3、2.0至3.0、2.5至2.9或2.6至2.8 cp之黏度。
5型或8型多醣或寡醣視情況具有10至100%、20至100%、30至100%、40至100%、50至100%、60至100%、70至100%或80至100%之O-乙醯化程度。
在本發明方法中所用之載體蛋白可如上文中所述。在一實施例中,該載體蛋白係選自由下列各者組成之群:白喉類毒素、Crm197、破傷風類毒素、匙孔螺血藍蛋白、綠膿桿菌外蛋白A、流感嗜血桿菌蛋白D、肺炎球菌溶血素及葡萄球菌蛋白或其片段。葡萄球菌蛋白或其片段視情況係選自由下列各者組成之群:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、蛋白A、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、免疫優勢ABC轉運體、IsdA、IsdB、HarA、MRPII、Mg2+轉運體、蛋白A、Aaa、Ant、SdrD、SdrE、SitC及Ni ABC轉運體、α毒素(Hla)、α毒素H35R突變體及RNA III活化蛋白(RAP)。
在一實施例中,氰化試劑為四硼酸1-氰基-二甲基胺基吡錠(CDAP)。
在一實施例中,(例如)經由異脲共價鍵使5型或8型多醣或寡醣直接連接至載體蛋白。
在一實施例中,經由間隔基使5型或8型多醣或寡醣連接至載體蛋白。為經由間隔基使金黃色葡萄球菌多醣共軛至載體蛋白,使用下列方法。藉由偶合化學反應使多醣與間隔基(例如ADH)共價結合,藉此在受控條件下以氰化試劑四氟硼酸1-氰基-二甲基胺基吡錠(CDAP)使多醣活化。間隔基與經氰化多醣經由其肼基反應,以在間隔基與多醣之間形成穩定異脲鍵。
在一實施例中,間隔基為雙官能型且/或含有C4-12
烷基且/或含有兩個胺基且/或含有兩個羧酸基。在一實施例中,該間隔基為ADH。
在一實施例中,步驟a)中氰化試劑與多醣或寡醣之比率為介於0.25/1與1/1(w/w??)之間或介於0.3/1與0.7/1(w/w??)之間,為0.5-0.75,或為約0.5/1或約0.75/1。
在一實施例中,步驟a)係於5.0至7.0之pH值、5.5至6.5之pH值或約6.0之pH值下進行。
在一實施例中,使步驟a)進行介於30秒與10分鐘之間、介於1分鐘與5分鐘之間或2至5分鐘的時間。
在一實施例中,步驟a)係藉由將pH值提高至介於8.0與10.0之間的值或提高至約pH 9.0而中止。
在一實施例中,步驟b)中載體蛋白與5型或8型多醣或寡醣之比率為介於1/1與10/1之間、介於1.1/1與5/1之間或介於1.2/1與2.5/1之間(w/w)。
在一實施例中,步驟b)係於8.0至10.0之pH值或約9.0之pH值下進行。
在一實施例中,使步驟b)進行介於10分鐘與12小時之間、介於25分鐘與4小時之間、介於30分鐘與2小時之間或約1小時的時間。
在一實施例中,該方法包含另一步驟:將5型或8型多醣或寡醣共軛物與至少一種額外葡萄球菌抗原組合。例如,上文中所述之任何葡萄球菌抗原(包括醣類及蛋白)。
在一實施例中,本發明之方法包含另一步驟:將5型或8型多醣或寡醣共軛物與醫藥學上可接受之賦形劑或稀釋劑組合以形成疫苗。在一實施例中,將該共軛物與佐劑組合。下文所述之任何賦形劑或佐劑均可與該共軛物組合。
本發明之另一態樣為一種包含藉由包含異脲共價鍵之連接體而結合的金黃色葡萄球菌5型或8型多醣或寡醣及載體蛋白的共軛物。
在一實施例中,該金黃色葡萄球菌5型或8型多醣具有上文所述之任何屬性。例如,其視情況具有天然大小或係如上文所述經定大小。
本發明之另一態樣為一種可藉由本發明之方法獲得的共軛物。
本發明之另一態樣為一種包含本發明之共軛物及醫藥學上可接受之賦形劑或稀釋劑(視情況包含佐劑)的疫苗。該等賦形劑及佐劑視情況係如下文所述。
本發明之另一態樣為一種製造疫苗之方法,其包含以下步驟:將本發明之共軛物混合及添加醫藥學上可接受之賦形劑。
本發明之另一態樣為一種預防或治療葡萄球菌感染之方法,其包含以下步驟:將本發明之疫苗投與有需要之患者。在一實施例中,該方法係如下文所述。
本發明之另一態樣為一種本發明之共軛物在製造用於治療或預防葡萄球菌感染之疫苗中的用途。
在一實施例中,本發明之免疫原組合物進一步包含一或多種以下所提及之蛋白或其免疫原性片段。該等蛋白中多數屬於細胞外成分結合蛋白、轉運蛋白或毒素及毒性調節劑之類別。本發明之免疫原組合物視情況進一步包含葡萄球菌細胞外成分結合蛋白或葡萄球菌轉運蛋白或葡萄球菌毒素或毒性調節劑。本發明之免疫原組合物視情況包含至少或恰恰1、2、3、4、5或6種葡萄球菌蛋白。
細胞外成分結合蛋白為結合至宿主細胞外成分之蛋白。該術語包括(但不限於)黏附素。
細胞外成分結合蛋白之實例包括昆布胺酸受體(Naidu等人J.Med.Microbiol.1992,36;177)、SitC/MntC/唾液結合蛋白(US5801234,Wiltshire及Foster Infec.Immun.2001,69;5198)、EbhA(Williams等人Infect.Immun.2002,70;6805)、EbhB、彈性蛋白結合蛋白(EbpS)(Park等人1999,J.Biol.Chem.274;2845)、EFB(FIB)(Wastfelt及Flock 1995,J.Clin.Microbiol.33;2347)、SBI(Zhang等人FEMS Immun.Med.Microbiol.2000,28;211)、自溶素(Rupp等人2001,J.Infect.Dis.183;1038)、ClfA(US6008341,McDevitt等人Mol.Microbiol.1994,11;237)、SdrC、SdrG(McCrea等人Microbiology 2000,146;1535)、SdrH(McCrea等人Microbiology 2000,146;1535)、脂肪酶GehD(US2002/0169288)、SasA、FnbA(Flock等人Mol Microbiol.1994,12;599,US6054572)、FnbB(WO 97/14799,Booth等人2001 Infec.Immun.69;345)、膠原蛋白結合蛋白Cna(Visai等人2000,J.Biol.Chem.275;39837)、ClfB(WO 99/27109)、FbpA(Phonimdaeng等人1988 J.Gen Microbiol.134;75)、核苷磷酸化酶(Npase)(Flock 2001 J.Bacteriol.183;3999)、IsaA/PisA(Lonenz等人FEMS Immuno.Med.Microbiol.2000,29;145)、SsaA(Lang等人FEMS Immunol.Med.Microbiol.2000,29;2l3)、EPB(Hussain及Hermann symposium on Staph Denmark 14-17th
2000)、SSP-1(Veenstra等人1996,J.Bacteriol.178;537)、SSP-2(Veenstra等人1996,J.Bacteriol.178;537)、17 kDa肝素結合蛋白HBP(Fallgren 等人2001,J.Med.Microbiol.50;547)、玻璃連結蛋白結合蛋白(Li等人2001,Curr.Microbiol.42;361)、纖維蛋白原結合蛋白、凝固酶、Fig(WO 97/48727)及MAP(US5648240)。
此為ABC轉運蛋白,其為肺炎鏈球菌(S.pneumoniae
)中黏附素PsaA之同系物。其為高度免疫原性32 kDa脂蛋白,其分佈於細菌細胞壁(Cockayne等人Infect.Immun.1998 66;3767)。其作為32 kDa脂蛋白表現於金黃色葡萄球菌及表皮葡萄球菌中,且40 kDa同系物係存在於人葡萄球菌(S.hominis
)中。在表皮葡萄球菌中,其為鐵調節操縱子之成分。其對於包括副血鏈球菌(Streptococcus parasanguis)之FimA的黏附素及具有經證實或推定之金屬鐵轉運功能之ABC轉運體家族的脂蛋白均展示出相當高之同源性。因此將SitC作為細胞外結合蛋白及金屬離子轉運體包括於其中。
在US5,801,234中揭示之唾液結合蛋白亦為SitC之一種形式,且可包括在本發明之免疫原組合物中。
該兩種蛋白均具有纖維蛋白原結合活性,且可在血漿存在下引發金黃色葡萄球菌形成凝塊。其含有為細胞壁關聯蛋白所共有之LPXTG基元。
ClfA在US6008341中有描述,且ClfB在WO 99/27109中有描述。
此為纖維蛋白原結合蛋白,其可在血漿存在下引發金黃色葡萄球菌形成凝塊。其在關於凝固酶之文獻中有所描述:Phonimdaeng等人(J.Gen.Microbio.1988,134:75-83)、Phonimdaeng等人(Mol Microbiol 1990;4:393-404)、Cheung等人(Infect Immun 1995;63:1914-1920)及Shopsin等人(J.CLin.Microbiol.2000;38:3453-3456)。
包含在本發明之免疫原組合物中之較佳片段包括其中信號肽已被移除(第27位胺基酸至C末端)之成熟蛋白。
凝固酶具有三個不同結構域。作為捲曲螺旋區之第59至297位胺基酸,作為脯胺酸及甘胺酸富集區之第326至505位胺基酸,及具有β折片構形(beta sheet conformation)之自第506位胺基酸至第645位胺基酸之C末端結構域。該等結構域之各者均為可併入本發明之免疫原組合物中之片段。
該蛋白在WO 00/12689中有描述。SdrG係在凝固酶陰性葡萄球菌中發現,且為含有LPXTG序列之細胞壁關聯蛋白。
SdrG含有信號肽(第1至51位胺基酸)、含有纖維蛋白原結合位點及膠原蛋白結合位點之區(第51至825位胺基酸)、兩個CnaB結構域(第627至698位及第738至809位胺基酸)、SD重複區(第825至1000位胺基酸)及錨定結構域(第1009至1056位胺基酸)。
SdrG之較佳片段包括其中信號肽及/或SD重複及錨定結構域已被移除之多肽。該等多肽包括包含下列胺基酸或由下列胺基酸組成之多肽:第50至825位胺基酸、第50至633位胺基酸、第50-597位胺基酸(WO 03/76470之SEQ ID NO 2)、第273至597位胺基酸(WO 03/76470之SEQ ID NO 4)、第273至577位胺基酸(WO 03/76470之SEQ ID NO 6)、第1至549位胺基酸、第219至549位胺基酸、第225至549位胺基酸、第219至528位胺基酸、第225至528位胺基酸(SEQ ID NO:70或20或21)。
較佳將所具有之序列與SEQ ID NO:70、20或21之序列之同源性為至少80%、85%、90%、92%、95%、97%、98%、99%或100%的SdrG多肽併入本發明之免疫原組合物中。
本發明之組合物視情況包含上述SdrG多肽之片段。
在一實施例中,片段中之信號肽及/或SD重複結構域及/或錨定結構域被刪除。例如對應於SEQ ID 70之第1至713位、第1至549位、第225至549位、第225至529位、第24至717位、第1至707位、第1至690位、第1至680位、第1至670位、第1至660位、第1至650位、第1至640位、第1至630位、第1至620位、第1至610位、第1至600位、第34至707位、第44至697位、第36至689位胺基酸的序列,或與SEQ ID 70或20或21具有85%、90%、92%、95%、97%、98%、99%或100%一致性之序列。
在一實施例中,信號肽被刪除之片段在片段之N末端上具有甲硫胺酸殘基,以確保正確轉譯。
在一實施例中,片段具有下列序列:MEENSVQDVKDSNTDDELSDSNDQSSDEEKNDVINNNQSINTDDNNQIIKKEETNNYDGIEKRSEDRTESTTNVDENEATFLQKTPQDNTHLTEEEVKESSSVESSNSSIDTAQQPSHTTINREESVQTSDNVEDSHVSDFANSKIKESNTESGKEENTIEQPNKVKEDSTTSQPSGYTNIDEKISNQDELLNLPINEYENKARPLSTTSAQPSIKRVTVNQLAAEQGSNVNHLIKVTDQSITEGYDDSEGVIKAHDAENLIYDVTFEVDDKVKSGDTMTVDIDKNTVPSDLTDSFTIPKIKDNSGEIIATGTYDNKNKQITYTFTDYVDKYENIKAHLKLTSYIDKSKVPNNNTKLDVEYKTALSSVNKTITVEYQRPNENRTANLQSMFTNIDTKNHTVEQTIYINPLRYSAKETNVNISGNGDEGST IIDDSTIIKVYKVGDNQNLPDSNRIYDYSEYEDVTNDDYAQLGNNNDVNINFGNIDSPYIIKVISKYDPNKDDYTTIQQTVTMQTTINEYTGEFRTASYDNTIAFSTSSGQGQGDLPPEKTYKIGDYVWEDVDKDGIQNTNDNEKPLSNVLVTLTYPDGTSKSVRTDEDGKYQFDGLKNGLTYKITFETPEGYTPTLKHSGTNPALDSEGNSVWVTINGQDDMTIDSGFYQTPKYSLGNY VWYDTNKDGIQGDDEKGISGVKVTLKDENGNIISTTTTDENGKYQFDNLNSGNYIVHFDKPSGMTQTTTDSGDDDEQDADGEEVHVTITDHDDFSIDNGYYDDE
EbhA及EbhB為在金黃色葡萄球菌及表皮葡萄球菌中均有表現(Clarke及Foster Infect.Immun.2002,70;6680,Williams等人Infect.Immun.2002,20;6805)且與纖連蛋白(fibronectin)結合之蛋白。由於纖連蛋白為細胞外基質之重要成分,因此EbhA及EbhB具有使葡萄球菌黏附至宿主細胞外基質之重要功能。
Ebh蛋白為具有1.1兆道爾頓分子量之大分子。由於易於製造及調配,有利地使用Ebh蛋白之片段而非完整序列。該蛋白之中央區含有不完全重複(其含有纖連蛋白結合位點)。含有一或多個下文所述之重複結構域之片段為併入本發明之免疫原組合物中的較佳片段。
Ebh蛋白含有127個胺基酸長之不完全重複單元,其特徵在於含有一致序列:L.G.{10}A.{13}Q.{26}L...M..L.{33}A或.{19}L.G.{10}A.{13}Q.{26}L...M..L.{33}A.{12}或.....I/V..A...I/V..AK.ALN/DG..NL..AK..A.{6}L..LN.AQK..L..QI/V..A..V..V.{6}A..LN/D.AM..L...I/V.D/E...TK.S.NY/F.N/DAD..K..AY/F..AV..A..I/V.N/D.......其中"."意謂任何胺基酸,".{10}"意謂任何10個胺基酸,I/V表示胺基酸之替代性選擇。
參看Kuroda等人(2001)Lancet 357;1225-1240及表2中所揭示之序列,可輕易推導出Ebh蛋白內之重複序列。
在一個實施例中,欲包括於本發明之免疫原組合物中的片段包括含有1個、2個、3個、4個、5個、6個、7個、8個、9個、10個或10個以上127個胺基酸重複單元之蛋白。該等片段可由1個、2個、3個、4個、5個、6個、7個、8個、9個、10個或10個以上127個胺基酸重複區之重複組成,或可由1個、2個、3個、4個、5個、6個、7個、8個、9個、10個或10個以上之重複與存在於片段之任一端或兩端之其他胺基酸殘基組成。該片段視情況為約44 kDa之H2多肽跨越三個重複(第3202至3595位胺基酸),如Clarke等人Infection及Immunity 70,6680-6687,2002中所述。該等片段較佳可結合纖連蛋白及/或引出對於整個Ebh蛋白具有反應性之抗體。
Ebh蛋白能夠與纖連蛋白結合。該等多肽序列之較佳片段保留與纖連蛋白結合之能力。與纖連蛋白之結合可藉由ELISA分析,如由Clarke等人(Infection及Immunity 70;6680-6687 2002)所述。
在一實施例中,片段為包含B細胞或T輔助細胞抗原決定基之片段,例如彼等表3及表4中所述之片段/肽。
表4 Ebh中之T輔助細胞抗原決定基預測:
在TrEMBL資料庫中揭示該全長序列,序列參考Q8NWQ6。在該等重複序列中選擇一個為全長序列之第3204至3331位胺基酸所編碼之序列來進行抗原決定基預測:MDVNTVNQKAASVKSTKDALDGQQNLQRAKTEATNAITHASDLNQAQKNALTQQVNSAQNVHAVNDIKQTTQSLNTAMTGLKRGVANHNQVVQSDNYVNADTNKKNDYNNAYNHANDIINGNAQHPVI
-"位置重複"行提供預測T細胞抗原決定基在重複序列中之位置-"位置序列"行提供預測T細胞抗原決定基在Ebh全長序列中之位置
本發明之蛋白的片段可藉由肽合成而用於製造相應全長多肽;因此,該等片段可用作製造本發明之全長蛋白的中間體。
在一實施例中,使用變體,其中若干個、5至10個、1至5個、1至3個、1至2個或1個胺基酸經取代、刪除或以任何組合添加。
EbpS為具有83 kDa分子量之含有486個胺基酸的蛋白。其與金黃色葡萄球菌之細胞質膜締合,且具有三個使蛋白保持於膜中之疏水性區(Downer等人2002,J.Biol.Chem.277;243;Park等人1996,J.Biol.Chem.271;15803)。
介於第1至205位胺基酸與第343至486位胺基酸之間的兩個區域在細胞質膜之外表面上表面暴露。EbpS之配位體結合域位於N末端上第14至34位殘基之間(Park等人1999,J.Biol.Chem.274;2845)。
在一實施例中,待併入本發明之免疫原組合物中的片段為含有彈性蛋白結合區(第1至205位胺基酸)之表面暴露片段。該等片段視情況不含有完整暴露環(exposed loop),但應含有彈性蛋白結合區(第14至34位胺基酸)。可用之替代性片段由形成第二表面暴露環之胺基酸(第343至486位胺基酸)組成。於一端或兩端上含有至多1、2、5、10、20、50個胺基酸之替代性片段亦為可能。
金黃色葡萄球菌之昆布胺酸受體在致病性中起重要作用。感染之一特有特徵為血流侵入,其使得廣泛分佈之轉移性膿腫形成。血流侵入需要經由血管基底膜滲出之能力。此係藉由經由昆布胺酸受體與昆布胺酸結合而達成(Lopes等人Science 1985,229;275)。
昆布胺酸受體經表面暴露且存在於包括金黃色葡萄球菌及表皮葡萄球菌之葡萄球菌的許多菌株中。
Sbi為除蛋白A以外之第二IgG結合蛋白,且其表現於金黃色葡萄球菌之大多數菌株中(Zhang等人1998,Microbiology 144;985)。
Sbi序列之N末端具有在第29位胺基酸之後帶分解位點之典型信號序列。因此,可用於本發明之免疫原組合物中之Sbi片段起始於第30、31、32或33位胺基酸殘基且延續至Sbi之C末端,例如SEQ ID NO:26之C末端。
Sbi之IgG結合域已被鑑別為朝向該蛋白之N末端的區域(第41至92位胺基酸)。該域與蛋白A之IgG結合域同源。
Sbi之最小IgG結合域含有下列序列: *
-表示介於IgG結合域之間類似之胺基酸
在一實施例中,待包括於本發明之免疫原組合物中的Sbi片段含有IgG結合域。該片段含有如上文序列中所示以*
表示之IgG結合域之一致序列。該片段視情況含有如上文所示之完整序列或由如上文所示之完整序列組成。該片段視情況含有下列胺基酸或由下列胺基酸組成:Sbi(例如SEQ ID NO:26)之第30至92位、第33至92位、第30至94位、第33至94位、第30至146位、第33至146位、第30至150位、第33至150位、第30至160位、第33至160位、第33至170位、第33至180位、第33至190位、第33至200位、第33至205位或第33至210位胺基酸。
片段可含有來自所示序列之1、2、3、4、5、6、7、8、9、10個胺基酸取代。
片段可含有IgG結合域之多重重複(2、3、4、5、6、7、8、9或10個)。
Fib為19 kDa之纖維蛋白原結合蛋白,其藉由金黃色葡萄球菌分泌至細胞外介質中。其係由所測試之所有金黃色葡萄球菌分離株所產生(Wastfelt及Flock 1995,J.Clin.Microbiol.33;2347)。
金黃色葡萄球菌在纖維蛋白原存在下聚集成塊,且與經纖維蛋白原塗佈之表面結合。該能力有助於導管及內皮細胞之葡萄球菌定殖(colonisation)。
Fib在該蛋白之N末端上含有信號序列,其於約第30位胺基酸處具有推定分解位點。在一實施例中,本發明之免疫原組合物包含成熟蛋白之序列(自約第30位胺基酸至該蛋白之C末端)或由該序列組成。
Fbe為纖維蛋白原結合蛋白,其係在表皮葡萄球菌之許多分離株中發現,且具有119 kDa之推導分子量(Nilsson等人1998.Infect.Immun.66;2666)。其序列與來自金黃色葡萄球菌之凝集因子(ClfA)有關。抗Fbe抗體可阻斷表皮葡萄球菌與經纖維蛋白原塗佈之板及導管之結合(Pei及Flock 2001,J.Infect.Dis.184;52)。
Fbe具有在第51位胺基酸與第52位胺基酸之間具有分解位點之推定信號序列。因此,Fbe之較佳片段含有自第52位胺基酸延伸至C末端(第1092位胺基酸)之Fbe的成熟形式。
自第52位胺基酸至第825位胺基酸之Fbe之結構域負責纖維蛋白原結合。在一實施例中,Fbe片段係由第52至825位胺基酸組成或含有第52至825位胺基酸。
Fbe之介於第373位胺基酸與第516位胺基酸之間的區域展示Fbe與ClfA之間的最大保守度。在一實施例中,片段含有Fbe之第373至516位胺基酸。
Fbe之第825至1041位胺基酸含有由串聯重複天冬胺酸及絲胺酸殘基組成之高度重複性區域。
IsaA為29 kDa蛋白(亦稱為PisA),其已在住院患者中於敗血症期間被顯示為免疫優勢葡萄球菌蛋白(Lorenz等人2000,FEMS Immunol.Med.Microb.29;145)。
IsaA序列之前29個胺基酸被認為係信號序列。在一實施例中,待包括於本發明之免疫原組合物中之IsaA片段含有編碼序列末端前方30個胺基酸殘基。
纖連蛋白結合蛋白A含有若干涉及與纖連蛋白結合之結構域(WO 94/18327)。該等區域被稱為D1、D2、D3及D4。在一實施例中,纖連蛋白結合蛋白A或B之片段包含下列結構域或由下列結構域組成:D1、D2、D3、D4、D1至D2、D2至D3、D3至D4、D1至D3、D2至D4或D1至D4。
纖連蛋白結合蛋白含有具有36個胺基酸之信號序列。例如:VKNNLRYGIRKHKLGAASVFLGTMIVVGMGQDKEAA
缺失該信號序列之成熟蛋白視情況包括於本發明之免疫原組合物中。
革蘭氏陽性細菌之細胞壁充當防止代謝物自由擴散至細菌內之障壁。一種蛋白家族協調必需營養物質進入細菌內,且因此對於細菌生存力而言係必不可少的。術語"轉運蛋白"涵蓋涉及與諸如鐵之代謝物結合之初始步驟的蛋白,以及彼等涉及實際上將代謝物轉運至細菌內之蛋白。
分子鐵為細菌生長之必需的輔因子。結合游離鐵之鐵載體(Siderophore)被分泌,且接著為細菌表面受體所捕獲,該等受體透過細胞質膜傳遞鐵以進行轉運。鐵獲取對於人類感染之建立至關重要,以致針對該種蛋白之免疫反應的產生將導致葡萄球菌生存力喪失。
轉運蛋白之實例包括免疫優勢ABC轉運體(Burnie等人2000 Infect.Imun.68;3200)、IsdA(Mazmanian等人2002 PNAS 99;2293)、IsdB(Mazmanian等人2002 PNAS 99;2293)、Mg2+轉運體、SitC(Wiltshire及Foster 2001 Infect.Immun.69;5198)及Ni ABC轉運體。
免疫優勢ABC轉運體為相當保守之蛋白,其可能夠產生針對不同葡萄球菌菌株具有交叉保護性之免疫反應(Mei等人1997,Mol.Microbiol.26;399)。已在敗血症患者中發現對抗該蛋白之抗體(Burnie等人2000,Infect.Immun.68;3200)。
免疫優勢ABC轉運體之視情況之片段將包括肽DRHFLN、GNYD、RRYPF、KTTLLK、GVTTSLS、VDWLR、RGFL,更佳為KIKVYVGNYDFWYQS、TVIVVSHDRHFLYNNV及/或TETFLRGFLGRMLFS,此係因為該等序列含有為人類免疫系統所識別之抗原決定基。
金黃色葡萄球菌之isd基因(鐵調節表面決定子)編碼負責血紅素結合及血紅素鐵至細胞質之傳遞(其中血紅素鐵充當必需營養物質)的蛋白。IsdA及IsdB位於葡萄球菌之細胞壁中。IsdA顯現於細菌表面上被暴露,此係因為其易受蛋白酶K消化。IsdB被部分消化,暗示其於細菌表面上被部分暴露(Mazmanian等人2003 Science 299;906)。
IsdA及IsdB均為結合血紅素之29 kDa蛋白。其表現係經由Fur阻遏物(represso)阻遏鐵之可用性而進行調節。在宿主感染期間其表現將較高,其中鐵濃度將較低。
其亦被稱為FrpA及FrpB(Morrissey等人2002,Infect.Immun.70;2399)。FrpA及FrpB為具有高電荷之主要表面蛋白。已顯示其為黏附至塑性體(plastic)提供主要貢獻。
在一實施例中,本發明之免疫原組合物包含WO 01/98499或WO 03/11899中所述之IsdA及/或IsdB之片段。
該蛋白家族之成員包括毒素,諸如α毒素、溶血素、腸毒素B及TSST-1;以及調節毒素產生之蛋白,諸如RAP。
α毒素為由金黃色葡萄球菌之大多數菌株產生之重要毒性決定子。其為具有溶血活性之成孔毒素。在動物模型中已顯示抗α毒素抗體可中和α毒素之有害及致命效應(Adlam 等人1977 Infect.Immun.17;250)。人類血小板、內皮細胞及單核細胞易受α毒素之效應影響。
α毒素之高毒性要求在將其用作免疫原之前應先加以解毒。其可藉由化學處理達成,例如藉由使用甲醛、戊二醛或其他交聯試劑進行處理,或藉由如下文所述使其化學性地共軛至細菌多醣。
另一種移除毒性之方法為引入點突變,其可在移除毒性之同時保留毒素之抗原性。在α毒素之第35位胺基酸處引入點突變(其中組胺酸殘基經白胺酸殘基置換)導致在移除毒性之同時保留免疫原性(Menzies及Kernodle 1996;Infect.Immun.64;1839)。第35位組胺酸對於成孔所需之恰當寡聚顯得至關重要,且該殘基之突變導致毒性喪失。
當併入本發明之免疫原組合物中時,視情況藉由His 35之突變(例如藉由以Leu或Arg置換His 35)將α毒素解毒。在一替代性實施例中,藉由與該免疫原組合物之其他成分(例如莢膜多醣或PNAG,最佳為金黃色葡萄球菌5型多醣及/或金黃色葡萄球菌8型多醣及/或PNAG)共軛將α毒素解毒。
RAP自身並非毒素,而為毒性因子之表現的調節劑。RAP係由葡萄球菌所產生且分泌。其活化其他葡萄球菌之agr調節系統且活化毒性因子(諸如溶血素、腸毒素B及TSST-1)之表現及後續釋放。
Aap為140 kDa之蛋白,其為表皮葡萄球菌菌株在表面上聚集所必需(Hussain等人Infect.Immun.1997,65;519)。表現該蛋白之菌株產生相當大量的生物膜且Aap顯現與生物膜形成有關。抗Aap抗體能夠抑制生物膜形成且抑制表皮葡萄球菌聚集。
SsaA為在金黃色葡萄球菌及表皮葡萄球菌中均可發現之30 kDa強免疫原性蛋白(Lang等人2000 FEMS Immunol.Med.Microbiol.29;213)。其在心內膜炎期間之表現暗示對於感染性疾病之發病機理具有特異性毒性作用。
SsaA含有N末端前導序列及信號肽酶分解位點。前導肽之後為自第30位殘基至第130位殘基之具有約100個胺基酸的親水性區域。
待併入本發明之免疫原組合物中的視情況之SsaA片段係由成熟蛋白(第27位胺基酸至C末端或第30位胺基酸至C末端)構成。
另一視情況之片段含有自第30位胺基酸至第130位胺基酸之SsaA的親水性區域。
葡萄球菌感染經由若干不同階段進行。舉例而言,葡萄球菌生命週期包含共生定殖、藉由接近鄰近組織或血流引發感染、在血液中厭氧增殖、金黃色葡萄球菌毒性決定子與宿主防護機制之間的相互作用,及併發症(包括心內膜炎、轉移性膿腫形成及敗血症綜合症)之誘發。細菌表面上之不同分子將涉及感染週期之不同步驟。藉由使免疫反應靶向葡萄球菌感染不同過程中所涉及之特定抗原之組合,從而影響葡萄球菌功能之多個態樣,且此可導致良好疫苗功效。
特定言之,不同種類之特定抗原的組合(其中有些涉及與宿主細胞之黏附,其中有些涉及鐵獲取或其他轉運體功能,其中有些為毒素或毒性調節劑及免疫優勢抗原)可引起提供保護作用以免受感染之多個階段影響的免疫反應。
某些抗原組合特別有效於誘發免疫反應。此可在如實例中所述之動物模型檢定中進行量測且/或使用如實例中所述之調理吞噬(opsonophagocytic)檢定進行量測。不希望為理論所束縛,吾人認為該等有效抗原組合可藉由對於抗原組合之免疫反應的若干特徵來實現。該等抗原自身通常於葡萄球菌細胞表面上被暴露,其傾向於為保存性的,但亦傾向於不以足夠數量存在於表面細胞上,以便利用對於單抗原引出之抗體使得最佳殺菌反應發生。將本發明之抗原進行組合可導致得出有利抗體組合之調配,其中該等抗體在臨界臨限值以上與葡萄球菌細胞相互作用。在該臨界水準上,足夠品質之足夠抗體與細菌表面結合,以允許藉由補體之有效殺滅或細菌中和。此可在如實例中所述之動物激發模型或調理檢定中進行量測。
本發明之較佳免疫原組合物包含複數種選自至少兩類在葡萄球菌內具有不同功能之不同蛋白類別的蛋白。該等蛋白類別之實例為細胞外結合蛋白、轉運蛋白(諸如Fe獲取蛋白)、毒素或毒性調節劑及其他免疫優勢蛋白。
在一較佳實施例中,本發明之免疫原組合物進一步包含若干等於或大於2、3、4、5或6種選自2、3或4個不同群之蛋白,該等群選自於下列者:.群a)細胞外成分結合蛋白;.群b)轉運蛋白;.群c)毒素或毒性調節劑;.群d)結構蛋白。
在一較佳實施例中,本發明之免疫原組合物進一步包含若干等於或大於2、3、4、5或6種選自下列群中2、3或4個群之蛋白:.群a)至少一種葡萄球菌細胞外成分結合蛋白或其片段,其係選自由下列各者組成之群:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig及MAP;.群b)至少一種葡萄球菌轉運蛋白或其片段,其係選自由下列各者組成之群:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、HarA、SitC及Ni ABC轉運體;.群c)至少一種葡萄球菌毒性調節劑、毒素或其片段,其係選自由下列各者組成之群:α毒素(Hla)、α毒素H35R突變體、RNA III活化蛋白(RAP);.群d)至少一種葡萄球菌結構蛋白或其免疫原性片段,其係選自由MRPII及自溶素組成之群。
在一較佳實施例中,本發明之免疫原組合物包含若干等於或大於2、3、4、5或6種選自下列群中2或3個群之蛋白:.群a)至少一種葡萄球菌細胞外成分結合蛋白或其免疫原性片段,其係選自由下列各者組成之群:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig及MAP;.群b)至少一種葡萄球菌轉運蛋白或其免疫原性片段,其係選自由下列各者組成之群:免疫優勢ABC轉運體、IsdA、IsdB、HarA、Mg2+轉運體、SitC及Ni ABC轉運體;.群c)至少一種葡萄球菌毒性調節劑、毒素或其免疫原性片段,其係選自由下列各者組成之群:α毒素(Hla)、α毒素H35R突變體、RNA III活化蛋白(RAP)。
在一較佳實施例中,本發明之免疫原組合物含有至少一種選自群a)之蛋白及選自群b)及/或群c)之額外蛋白。
在另一實施例中,本發明之免疫原組合物含有至少一種選自群b)之抗原及選自群c)及/或群a)之額外蛋白。
在另一實施例中,本發明之免疫原組合物含有至少一種選自群c)之抗原及選自群a)及/或群b)之額外蛋白。
本發明之免疫原組合物中視情況之蛋白組合包含昆布胺酸受體及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SitC及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含EbhA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含EbhB及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含EbpS及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含EFB(FIB)及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SBI及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含自溶素及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含ClfA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SdrC及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SdrG及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體及RAP。
本發明之免疫原組合物中另一蛋白組合包含SdrH及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含脂肪酶GehD及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SasA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含FnbA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含FnbB及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含Cna及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含ClfB及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含FbpA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含Npase及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含IsaA/PisA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SsaA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含EPB及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SSP-1及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SSP-2及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含HPB及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含玻璃連結蛋白結合蛋白及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含纖維蛋白原蛋白結合蛋白及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含凝固酶及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含Fig及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含MAP及1、2、3、4或5種選自由下列各者組成之群的其他抗原:免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含免疫優勢ABC轉運體及1、2、3、4或5種選自由下列各者組成之群的其他抗原:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含IsdA及1、2、3、4或5種選自由下列各者組成之群的其他抗原:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含IsdB及1、2、3、4或5種選自由下列各者組成之群的其他抗原:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含SitC及1、2、3、4或5種選自由下列各者組成之群的其他抗原:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、α毒素、α毒素H35L或H35R突變體、RAP、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含α毒素及1、2、3、4或5種選自由下列各者組成之群的其他抗原:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含α毒素H35L或H35R突變體及1、2、3、4或5種選自由下列各者組成之群的其他抗原:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、Aap及SsaA。
本發明之免疫原組合物中另一蛋白組合包含RAP及1、2、3、4或5種選自由下列各者組成之群的其他抗原:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、MAP、免疫優勢ABC轉運體、IsdA、IsdB、Mg2+轉運體、SitC、Ni ABC轉運體、Aap及SsaA。
在上文及下文之組合中,指定蛋白可視情況作為如上文所述之片段或融合蛋白存在於本發明之免疫原組合物中。
在一實施例中,本發明之免疫原組合物進一步包含三種蛋白成分之組合:α毒素、細胞外成分結合蛋白(較佳為黏附素)及轉運蛋白(較佳為鐵結合蛋白)。
在該組合中,α毒素可經化學性解毒或藉由引入點突變(較佳為His35Leu點突變)而經遺傳性解毒。該α毒素係作為游離蛋白之形式存在或經共軛至免疫原組合物之多醣或PNAG成分。
組合之實例包括:包含α毒素、IsdA及細胞外成分結合蛋白之免疫原組合物,該等細胞外成分結合蛋白係選自由下列各者組成之群:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig及MAP;包含α毒素、IsdB及細胞外成分結合蛋白之免疫原組合物,該等細胞外成分結合蛋白係選自由下列各者組成之群:昆布胺酸受體、SitC/MntC/唾液結合蛋白、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、SBI、自溶素、ClfA、SdrC、SdrG、SdrH、脂肪酶GehD、SasA、FnbA、FnbB、Cna、ClfB、FbpA、Npase、IsaA/PisA、SsaA、EPB、SSP-1、SSP-2、HBP、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig及MAP;包含α毒素、IsdA及黏附素之免疫原組合物,該等黏附素係選自由下列各者組成之群:昆布胺酸受體、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、ClfA、SdrC、SdrG、SdrH、自溶素、FnbA、FnbB、Cna、ClfB、FbpA、Npase、SSP-1、SSP-2、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig及MAP;包含α毒素、IsdB及黏附素之免疫原組合物,該等黏附素係選自由下列各者組成之群:昆布胺酸受體、EbhA、EbhB、彈性蛋白結合蛋白(EbpS)、EFB(FIB)、自溶素、ClfA、SdrC、SdrG、SdrH、FnbA、FnbB、Cna、ClfB、FbpA、Npase、SSP-1、SSP-2、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig及MAP;包含α毒素、IsdA及昆布胺酸受體之免疫原組合物;包含α毒素、IsdA及EbhA之免疫原組合物;包含α毒素、IsdA及EbhB之免疫原組合物;包含α毒素、IsdA及EbpS之免疫原組合物;包含α毒素、IsdA及EFB(FIB)之免疫原組合物;包含α毒素、IsdA及SdrG之免疫原組合物;包含α毒素、IsdA及ClfA之免疫原組合物;包含α毒素、IsdA及ClfB之免疫原組合物;包含α毒素、IsdA及FnbA之免疫原組合物;包含α毒素、IsdA及凝固酶之免疫原組合物;包含α毒素、IsdA及Fig之免疫原組合物;包含α毒素、IsdA及SdrH之免疫原組合物;包含α毒素、IsdA及SdrC之免疫原組合物;包含α毒素、IsdA及MAP之免疫原組合物;包含IsaA及Sbi之免疫原組合物;包含IsaA及IsdB之免疫原組合物;包含IsaA及IsdA之免疫原組合物;包含IsaA及SdrC之免疫原組合物;包含IsaA及Ebh或如上文所述之其片段之免疫原組合物;包含Sbi及SdrC之免疫原組合物;包含Sbi及Ebh或如上文所述之其片段之免疫原組合物;包含IsaA、Sbi或SdrC之本發明之免疫原組合物。
與金黃色葡萄球菌之種群結構相聯繫對毒性因子之出現的分析顯示在金黃色葡萄球菌之自然種群中毒性基因之可變存在。
在金黃色葡萄球菌之臨床分離株中,經顯示至少有五種無性系極為普遍(Booth等人,2001 Infect Immun.69(1):345-52)。據顯示,α溶血素(hla
)、纖連蛋白結合蛋白A(fnbA
)及聚集因子A(clfA
)存在於大多數分離株中(與譜系一致性無關),此暗示該等蛋白在金黃色葡萄球菌之存活中起重要作用(Booth等人,2001 Infect Immun.69(1):345-52)。此外,根據Peacock等人2002,fnbA
、clfA
、凝固酶、spa
、map
、pvl
(龐敦-瓦倫丁殺白細胞素,Panton-Valentine leukocidin)、hlg
(γ毒素)、α毒素及ica
之分佈顯現與潛在無性系結構無關,此暗示該等基因之大量橫向轉移。
與之相反,其他毒性基因(諸如纖連蛋白結合蛋白B(fnbB
)、β溶血素(hlb
)、膠原蛋白結合蛋白(cna
)、TSST-1(tst
)及二甲氧苯青黴素抗性基因(mecA
))與特定譜系緊密相關(Booth等人2001 Infect Immun.69(1):345-52)。類似地,Peacock等人2002(Infect Immun.70(9):4987-96)顯示種群內之腸毒素、tst
、剝脫素(exfolatin)(eta
及etb
)、β毒素及δ毒素、sdr
基因(sdr
D、sdr
E及bbp
)、cna
、ebp
S及efb
之分佈均與MLST衍生之無性系複合體極度相關。
MLST資料並未表明導致醫院疾病之菌株代表來自引起社區獲得性疾病之菌株或自無症狀帶原者回收之菌株的獨特亞種群(Feil等人,2003 J Bacteriol.185(11):3307-16)。
在一實施例中,本發明之免疫原組合物針對於來自不同無性系之葡萄球菌係有效的。
在一實施例中,該免疫原組合物包含1、2、3、4種或至少一種表現於葡萄球菌之大多數分離株中之蛋白。該等蛋白之實例包括α溶血素(hla
)、纖連蛋白結合蛋白A(fnbA
)及聚集因子A(clfA
)、凝固酶、spa
、map
、pvl
(龐敦-瓦倫丁殺白細胞素,Panton-Valentine leukocidin)、hlg
(γ毒素)、ica、免疫優勢ABC轉運體、RAP、自溶素(Rupp等人2001,J.Infect.Dis.183;1038)、昆布胺酸受體、SitC、IsaA/PisA、SPOIIIE()、SsaA、EbpS、SasF(Roche等人2003,Microbiology 149;643)、EFB(FIB)、SBI、ClfB、IsdA、IsdB、FnbB、Npase、EBP、骨唾液蛋白結合蛋白II、IsaB/PisB(Lorenz等人FEMS Immuno.Med.Microb.2000,29;145)、SasH(Roche等人2003,Microbiology 149;643)、MRPI、SasD(Roche等人2003,Microbiology 149;643)、SasH(Roche等人2003,Microbiology 149;643)、金屬蛋白酶前驅體(AUR)/Seppl及新穎自溶素。
在一替代性實施例中,將兩種或兩種以上表現於不同無性系菌株組中之蛋白包括於本發明之免疫原組合物中。抗原之組合視情況將允許產生對於多種無性系菌株或所有無性系菌株皆為有效之免疫反應。舉例而言,組合包括FnbB及β溶血素、FnbB及Cna、FnbB及TSST-1、FnbB及mecA、FnbB及SdrD、FnbB及SdrF、FnbB及EbpS、FnbB及Efb、β溶血素及Cna、β溶血素及TSST-1、β溶血素及mecA、β溶血素及SdrD、β溶血素及SdrF、β溶血素及EbpS、β溶血素及Efb、Cna及TSST-1、Cna及mecA、Cna及SdrD、Cna及SdrF、Cna及EbpS、Cna及Efb、TSST-1及mecA、TSST-1及SdrD、TSST-1及SdrF、TSST-1及EbpS、TssT-1及Efb、MecA及SdrD、MecA及SdrF、MecA及EbpS、MecA及Efb、SdrD及SdrF、SdrD及EbpS、SdeD及Efb、SdrF及EbpS、SdrF及Efb以及EbpS及Efb。
上述組合可與上述額外成分組合。
對抗金黃色葡萄球菌及表皮葡萄球菌之保護作用
在本發明之一實施例中,免疫原組合物提供針對多種葡萄球菌菌株(例如針對來自金黃色葡萄球菌及表皮葡萄球菌之菌株)之有效免疫反應。例如,產生針對金黃色葡萄球菌之5型及8型血清型的保護性免疫反應。
本發明之免疫原組合物之一用途為藉由在住院治療之前接種疫苗來預防醫院感染(例如對於非急需外科手術患者)。在該階段時,難以準確地預測患者將暴露於何種葡萄球菌菌株。因此,使用能夠針對各種葡萄球菌菌株產生有效免疫反應之疫苗進行接種係有利的。
將有效免疫反應定義為在如實例中所述之小鼠激發模型或調理吞噬檢定中提供顯著保護作用之免疫反應。將例如實例5之小鼠激發模型中的顯著保護作用定義為相較於載體接種小鼠而言LD50有至少10%、20%、50%、100%或200%之增加。將例如實例8之棉鼠激發模型中的顯著保護作用定義為觀測之平均LogCFU/鼻子有至少10%、20%、50%、70%或90%之減少。吾人已知調理抗體之存在與保護作用相關,因此,在例如實例7之調理吞噬檢定中藉由細菌計數有至少10%、20%、50%、70%或90%的減少來表明存在顯著保護作用。
若干蛋白(包括免疫優勢ABC轉運體、RNA III活化蛋白、昆布胺酸受體、SitC、IsaA/PisA、SsaA、EbhA/EbhB、EbpS及Aap)於金黃色葡萄球菌與表皮葡萄球菌之間相當保守,實例8顯示IsaA、ClfA、IsdB、SdrG、HarA、FnbpA及Sbi可產生交叉反應性免疫反應(例如至少一種金黃色葡萄球菌菌株與至少一種表皮葡萄球菌菌株之間的交叉反應性)。PIA於金黃色葡萄球菌與表皮葡萄球菌之間亦相當保守。
因此在一個實施例中,本發明之免疫原組合物包含PNAG及5型及8型多醣及一、二、三或四種上述蛋白。
在一個實施例中,將本發明之免疫原組合物與醫藥學上可接受之賦形劑混合,且視情況與佐劑混合,以形成疫苗。
合適佐劑包括鋁鹽,諸如氫氧化鋁凝膠(礬)或磷酸鋁;但亦可為鈣鹽、鎂鹽、鐵鹽或鋅鹽;或可為醯化酪胺酸、或醯化糖、陽離子衍化或陰離子衍化之多醣、或聚磷氮烯(polyphosphazenes)之不溶性懸浮液。
在一個實施例中,佐劑為TH1型或TH2型反應之較佳誘發劑。高含量之Th1型細胞激素(cytokines)傾向於促進誘發對於特定抗原之細胞介導免疫反應,而高含量之Th2型細胞激素傾向於促進誘發對於該抗原之體液性免疫反應。
重要的是須謹記,Th1型與Th2型免疫反應之區別並非絕對。事實上,個人將支持描述為主要為Th1型或主要為Th2型之免疫反應。然而,通常合宜考慮細胞激素家族,根據Mosmann及Coffman在鼠科CD4+ve T細胞純系中所述(Mosmann、T.R.及Coffman,R.L.(1989)TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties.Annual Review of Immunology,7,第145至173頁)。傳統上,Th1型反應係與T淋巴細胞產生之INF-γ及IL-2細胞激素相關。通常與Th1型免疫反應之誘發發直接相關的其他細胞激素並非由T細胞產生,諸如IL-12。與之對比,Th2型反應係與I1-4、IL-5、IL-6、IL-10之分泌相關。促進主要Th1反應之合適佐劑系統包括:單磷醯基脂質A或其衍生物,尤其為3-脫O-醯化單磷醯基脂質A(3D-MPL)(關於其製備,參看GB 2220211 A);及單磷醯基脂質A(較佳為3-脫O-醯化單磷醯基脂質A)與鋁鹽(例如磷酸鋁或氫氧化鋁)或水包油型乳液之組合。在該等組合中,抗原及3D-MPL包含於相同微粒結構中,此允許更有效之抗原信號及免疫刺激信號之傳遞。研究已顯示3D-MPL能夠進一步增強礬吸收抗原之免疫原性[Thoelen等人Vaccine(1998)16:708-14;EP 689454-B1]。
增強系統包含單磷醯基脂質A與皂素衍生物之組合,尤其為如WO 94/00153中所揭示之QS21與3D-MPL之組合,或如WO 96/33739中所揭示之反應原性較低之組合物(其中QS21經膽固醇抑制)。在WO 95/17210中描述了一種在水包油型乳液中包含QS21、3D-MPL及生育酚之可能佐劑調配物。疫苗視情況另外包含皂素,例如QS21。該調配物亦可包含水包油型乳液及生育酚(WO 95/17210)。本發明亦提供一種用於製造疫苗調配物之方法,該方法包含將本發明之免疫原組合物與醫藥學上可接受之賦形劑(諸如3D-MPL)混合在一起。含有寡聚核苷酸之未甲基化CpG(WO 96/02555)亦為TH1反應之較佳誘發劑,且適用於本發明。
在一實施例中,本發明之免疫原組合物為彼等形成脂質體或ISCOM結構之組合物。
QS21:固醇之比率通常將約為1:100至1:1(重量比)。較佳存在過量固醇,QS21:固醇之比率為至少1:2 w/w。對於人類投藥而言,QS21及固醇通常將以每劑約1 μg至約100 μg、較佳約10 μg至約50 μg之範圍內的量存在於疫苗中。
脂質體通常含有在室溫下較佳為非結晶體之中性脂質,例如磷脂醯膽鹼,例如蛋黃磷脂醯膽鹼、二油醯基磷脂醯膽鹼或二月桂基磷脂醯膽鹼。該等脂質體亦可含有帶電脂質,其提高由飽和脂質組成之脂質體之微脂囊-QS21結構的穩定性。在該等情況下,帶電脂質之量較佳為1-20% w/w,最佳為5-10%。固醇與磷脂之比率為1-50%(mol/mol),通常為20-25%。
本發明之組合物視情況含有MPL(3-脫醯化單磷醯基脂質A,亦稱為3D-MPL)。3D-MPL自GB 2 220 211(Ribi)中得知,其為3種類型之脫O-醯化單磷醯基脂質A與4、5或6個醯化鏈之混合物,且由Ribi Immunochem,Montana製造。在國際專利申請案第92/116556號中揭示一種可能形式。
本發明之合適組合物為彼等其中在無MPL之情況下初始製備脂質體且接著添加較佳為100 nm顆粒之MPL的組合物。因此,在微脂粒膜內不含MPL(稱為MPL在外)。其中在微脂粒膜內含有MPL(稱為MPL在內)之組合物亦形成本發明之一態樣。抗原可包含於微脂粒膜之內或包含於微脂粒膜之外。可溶抗原視情況位於微脂粒膜之外,而疏水性抗原或脂質化抗原可包含於微脂粒膜之內或包含於微脂粒膜之外。
本發明之疫苗製劑藉由經由全身途徑或黏膜途徑投與該疫苗,可用於保護或治療易受感染之哺乳動物。該等投藥可包括經由肌肉內、腹膜內、真皮內或皮下途徑進行注射;或經由黏膜投藥至口腔/食道、呼吸道、泌尿道。用於治療肺炎或中耳炎之疫苗鼻內投藥為較佳(因為可更有效地預防鼻咽部肺炎雙球菌,由此在其最早期階段減弱感染)。儘管本發明之疫苗可作為單次劑量投與,但其成分亦可在同一時間或在不同時間時一起共投與(例如肺炎球菌多醣可獨立地在該疫苗之任何細菌蛋白成分投藥之同時投與或在後者投藥之後1至2週投與,以達到關於彼此之免疫反應之最佳配合)。對於共投藥而言,視情況之Th1佐劑可存在於任意或所有之不同投藥中,例如其可與疫苗之細菌蛋白成分相組合而存在。除單一投藥途徑外,可使用2種不同投藥途徑。例如,多醣可肌肉內(或皮內)投與,且細菌蛋白可鼻內(或皮內)投與。此外,本發明之疫苗對於引發劑量(priming dose)可肌肉內投與,且對於加強劑量(booster dose)可鼻內投與。
將各疫苗劑量中共軛抗原之量選擇為在典型疫苗中可誘發免疫保護性反應而不產生顯著不利副作用之量。該量將根據所採用之特異性免疫原及其存在方式而變化。一般而言,吾人預期各劑量將包含0.1至100 μg之多醣,通常為0.1至50 μg、0.1至10 μg、1至10 μg或1至5 μg多醣共軛物。
疫苗中蛋白抗原之含量通常將處於1至100 μg、5至50 μg或5至25 μg之範圍內。在初始接種後,受檢者可接受一或若干次相隔足夠時間之加強免疫。
在Vaccine Design("The subunit and adjuvant approach"(eds Powell M.F.& Newman M.J.)(1995)Plenum Press New York)中對疫苗製劑進行了大體描述。脂質體內之封裝係由Fullerton之美國專利第4,235,877號所描述。
本發明之疫苗可儲存於溶液中或經冷凍乾燥。視情況在糖(諸如蔗糖、海藻糖或乳糖)存在下將該溶液冷凍乾燥。通常將該等疫苗冷凍乾燥且在使用前臨時復水配製。冷凍乾燥可獲得更穩定之組合物(疫苗)。
本發明亦包含製造本發明之免疫原組合物及疫苗的方法。
在一實施例中,本發明之方法為一種製造疫苗之方法,該方法包含以下步驟:將抗原混合以製造本發明之免疫原組合物及添加醫藥學上可接受之賦形劑。
本發明亦包含葡萄球菌感染(尤其為院內獲得性醫院感染)之治療方法。
本發明之該免疫原組合物或疫苗尤其有利於用於非急需外科手術之情況。該等患者將預先得知手術日期,且可經預先接種。由於不知道患者是否會暴露於金黃色葡萄球菌或表皮葡萄球菌感染,因此較佳使用本發明之疫苗進行接種,以保護患者免受上述兩種感染。通常使用本發明之免疫原組合物及疫苗對等待非急需外科手術之16歲以上成人進行治療。或者,使用本發明之免疫原組合物及疫苗對等待非急需外科手術之3至16歲兒童進行治療。
亦有可能使用本發明之疫苗對衛生保健工作者進行接種。
本發明之疫苗製劑藉由經由全身途徑或黏膜途徑投與該疫苗,可用於保護或治療易受感染之哺乳動物。該等投藥可包括經由肌肉內、腹膜內、真皮內或皮下途徑進行注射;或經由黏膜投藥至口腔/食道、呼吸道、泌尿道。
將各疫苗劑量中抗原之量選擇為在典型疫苗中可誘發免疫保護性反應而不產生顯著不利副作用之量。該量將根據所採用之特異性免疫原及其存在方式而變化。疫苗之蛋白含量通常將處於1至100 μg、5至50 μg之範圍內,通常處於10至25 μg之範圍內。藉由包含對受檢者中合適免疫反應之觀察的標準研究,可確定特定疫苗之最佳量。在初始接種後,受檢者可接受一或若干次相隔足夠時間之加強免疫。
儘管本發明之疫苗可藉由任意途徑投與,但將所述疫苗投與至皮膚內(皮內)形成本發明之一實施例。人類皮膚包含稱為角質層之外部"角質"角皮,其覆蓋表皮。在該表皮下為稱為真皮之層,其又覆蓋皮下組織。研究者已顯示將疫苗注射至皮膚(尤其為真皮)中將刺激免疫反應,其亦可與若干額外優勢相關。使用本文中所述疫苗之真皮內接種形成本發明之一較佳特徵。
真皮內注射之習知技術("孟陀(mantoux)程序")包含下列步驟:清潔皮膚,接著用一隻手拉伸皮膚,且在保持窄號針(26至31號)之斜面向上的情況下以10-15°之間的角度將該針插入。一旦將該針斜面插入,則放低針筒且進一步推入,同時提供微小壓力以將其在皮膚下提起。接著十分緩慢地注入液體,藉此在皮膚表面上形成包或凸塊,接著緩慢將針拔出。
最近,已對經特定設計以用來將液體試劑投與至皮膚內或透過皮膚投與之裝置有所描述,例如在WO 99/34850及EP 1092444中所述之裝置,以及在下列專利案中所述之噴射注射裝置:WO 01/13977;US 5,480,381、US 5,599,302、US 5,334,144、US 5,993,412、US 5,649,912、US 5,569,189、US 5,704,911、US 5,383,851、US 5,893,397、US 5,466,220、US 5,339,163、US 5,312,335、US 5,503,627、US 5,064,413、US 5,520,639、US 4,596,556、US 4,790,824、US 4,941,880、US 4,940,460、WO 97/37705及WO 97/13537。疫苗製劑之真皮內投藥的替代性方法可包括習知注射器及針筒,或針對固體疫苗之彈道式傳遞而設計的裝置(WO 99/27961),或經真皮貼片(WO 97/48440;WO 98/28037);或應用於皮膚表面(經真皮或經皮傳遞WO 98/20734;WO 98/28037)。
當本發明之疫苗待投與至皮膚,或更特定言之待投與至真皮時,該疫苗為低液體體積,尤其為介於約0.05 ml與0.2 ml之間的體積。
在本發明之皮膚或真皮內疫苗中的抗原含量可能與如見於肌肉內疫苗(參看上文)中之習知劑量類似。然而,皮膚疫苗或真皮內疫苗之一特徵在於調配物可能為"低劑量"。相應地,在"低劑量"疫苗中蛋白抗原較佳係以低至每劑0.1至10 μg、較佳每劑0.1至5 μg之量存在;且多醣(較佳經共軛)抗原可存在於每劑0.01至1 μg之範圍內,且較佳為每劑介於0.01與0.5 μg之間的多醣。
如本文中所用,術語"真皮內傳遞"意謂疫苗至皮膚中真皮區域之傳遞。然而,疫苗將不必僅位於真皮中。在人類皮膚中,真皮係皮膚中位於距表面約1.0 mM至約2.0 mM的層,但在個體之間且在身體不同部位存在一定量之變化。一般而言,藉由進入皮膚表面之下1.5 mM預期可達到真皮。真皮係位於表面處之角質層及表皮與下方之皮下層之間。視傳遞模式而定,疫苗可最終單獨地或主要地位於真皮內,或其可最終分佈於表皮及真皮內。
本發明之一實施例為一種預防或治療葡萄球菌感染或疾病之方法,其包含以下步驟:將本發明之免疫原組合物或疫苗投與有需要之患者。
本發明之另一實施例為一種本發明之免疫原組合物在製造用於治療或預防葡萄球菌感染或疾病(視情況為手術後葡萄球菌感染)之疫苗中的用途。
術語"葡萄球菌感染"包含由能夠在哺乳動物(較佳為人類宿主)中引起感染之金黃色葡萄球菌及/或表皮葡萄球菌及其他葡萄球菌菌株所引起的感染。
發明者預期本文中之術語"包含"在每一實例中視情況可以術語"由......組成"取代。
本專利說明書中所引用之所有文獻或專利申請案均以引用之方式併入本文中。
為了更佳地理解本發明,將闡述下列實例。該等實例僅係出於說明之目的,而不應將其視為以任何方式對本發明之範疇進行限制。
A:選殖。
在經工程改造至對葡萄球菌基因具有特異性之寡聚核苷酸中的適當限制性位點允許PCR產物定向選殖至大腸桿菌(E.coli
)表現質體pET24d或pQE-30中,以便使蛋白可表現為在N末端或C末端上含有(His)6親和層析標籤之融合蛋白。
所用引子為:α毒素5'-CGCGGATCCGCAGATTCTGATATTAATATTAAAAC-3'及5' CCCAAGCTTTTAATTTGTCATTTCTTCTTTTTC-3' EbpS-5'-CGCGGATCCGCTGGGTCTAATAATTTTAAAGATG-3'及5'CCCAAGCTTTTATGGAATAACGATTTGTTG-3' ClfA-5'-CGCGGATCCAGTGAAAATAGTGTTACGCAATC-3'及5'CCCAAGCTTTTACTCTGGAATTGGTTCAATTTC-3' FnbpA-5'-CGCGGATCCACACAAACAACTGCAACTAACG-3'及5'CCCAAGCTTTTATGCTTTGTGATTCTTTTTCAAAC3' Sbi-5'-CGCGGATCCAACACGCAACAAACTTC-3'及5'GGAACTGCAGTTATTTCCAGAATGATAATAAATTAC-3' SdrC-5'-CGCGGATCCGCAGAACATACGAATGGAG-3'及5'CCCAAGCTTTTATGTTTCTTCTTCGTAGTAGC-3' SdrG-5'-CGCGGATCCGAGGAGAATTCAGTACAAG-3'及5'CCCAAGCTTTTATTCGTCATCATAGTATCCG-3' Ebh-5'-AAAAGTACTCACCACCACCACCACC-3'及5'AAAAGTACTCACTTGATTCATCGCTTCAG-3' Aaa-5'-GCGCGCCATGGCACAAGCTTCTACACAACATAC-3'及5'GCGCGCTCGAGATGGATGAATGCATAGCTAGA-3' IsaA-5'-GCATCCATGGCACCATCACCATCACCACGAAGTAAACGTTGATCAAGC-3'及5'-AGCACTCGAGTTAGAATCCCCAAGCACCTAAACC-3' HarA-5'-GCACCCATGGCAGAAAATACAAATACTTC-3'及5'TTTTCTCGAGCATTTTAGATTGACTAAGTTG-3'自溶素胺基葡糖苷酶-5'-CAAGTCCCATGGCTGAGACGACACAAGATCAAC-3'及5'-CAGTCTCGAGTTTTACAGCTGTTTTTGGTTG-3'自溶素醯胺酶-5'-AGCTCATATGGCTTATACTGTTACTAAACC-3'及5'GCGCCTCGAGTTTATATTGTGGGATGTCG-3' IsdA-5'-CAAGTCCCATGGCAACAGAAGCTACGAACGCAAC-3'及5'ACCAGTCTCGAGTAATTCTTTAGCTTTAGAGCTTG-3' IsdB-5'-TATTCTCGAGGCTTTGAGTGTGTCCATCATTTG-3'及5' GAAGCCATGGCAGCAGCTGAAGAAACAGGTGG-3' MRPII-5'-GATTACACCATGGTTAAACCTCAAGCGAAA-3'及5'AGGTGTCTCGAGTGCGATTGTAGCTTCATT-3'
首先根據製造商說明書使用前10細菌細胞將PCR產物引入pGEM-T選殖載體(Novagen)中。進行此中間體建構以助於進一步選殖至表現載體中。藉由限制酶分析選擇含有DNA插入物之轉型體。在消化之後,藉由瓊脂糖凝膠電泳(0.8%瓊脂糖於Tris-乙酸鹽-EDTA(TAE)緩衝液中)對約20 μl之反應物等分試樣進行分析。在凝膠電泳及溴化乙錠染色之後,藉由紫外光照射來觀察DNA片段。使DNA分子大小標準(1 Kb階梯(ladder),Life Technologies)平行於測試樣品發生電泳,且用於估算DNA片段之大小。接著使用如由製造商(Life Technologies)推薦之合適限制酶使自各選殖之選定轉型體純化之質體相繼消化完全。接著使用矽膠基旋轉柱將經消化之DNA片段純化,然後與pET24d或pQE-30質體連接。使用pET24d質體進行Ebh(H2片段)、AaA、IsdA、IsdB、HarA、Atl-醯胺酶、Atl-葡糖胺、MRP、IsaA之選殖,且用pQE-30質體進行ClfA、SdrC、SdrE、FnbpA、SdrG/Fbe、α毒素及Sbi之選殖。
B:表現載體之製造。
為製備用於連接之表現質體pET24d或pQE-30,類似地使用適當限制酶使其消化完全。使用約5倍莫耳過量之所製備載體之經消化片段來設計連接反應。用此項技術中熟知之方法,使用T4 DNA連接酶(約2.0單位/反應,Life Technologies)進行標準約20 μl之連接反應(約16℃,約16小時)。根據此項技術中熟知之方法,將該連接反應之等分試樣(約5 μl)用於使M15(pREP4)或BT21::DE3電轉感受態細胞轉型。在37℃下於約1.0 ml LB肉湯中約2至3小時之外生長時期後,將經轉型細胞塗於含有安比西林(ampicillin)(100 μg/ml)及/或康黴素(kanamycin)(30 μg/ml)之LB瓊脂板上。選擇中包括抗生素。將板於37℃下隔夜培養約16小時。用無菌牙籤挑選個別ApR/KanR菌落,且將其用於"貼片(patch)"接種新鮮LB ApR/KanR板以及約1.0 ml LB Ap/Kan肉湯培養物。在標準培養器(板)或震盪水浴中將該等貼片板及肉湯培養物於37℃下隔夜培養。採用基於全細胞之PCR分析來驗證轉型體含有DNA插入物。在此,將約1.0 ml隔夜LB Ap/Kan肉湯培養物轉移至1.5 ml聚丙烯試管中,且藉由在貝克曼(Beckmann)微型離心機中離心分離來收集細胞(約3分鐘,室溫,約12,000 X g)。使細胞小球懸浮於約200 μl無菌水中,且將約10 μl等分試樣用於設計約50 μl最終體積之同時含有正向擴增引子及反向擴增引子之PCR反應。將初始95℃變性步驟增加至3分鐘,以確保細菌細胞之熱破碎及質體DNA之釋放。將ABI 9700型熱循環器及32循環、三步熱擴增流程(profile)(亦即95℃,45秒;55至58℃,45秒;72℃,1分鐘)用於擴增來自溶胞轉型體樣品之BASB203片段。在熱擴增之後,藉由瓊脂糖凝膠電泳(0.8%瓊脂糖於Tris-乙酸鹽-EDTA(TAE)緩衝液中)對約20 μl反應物等分試樣進行分析。在凝膠電泳及溴化乙錠染色之後,藉由紫外光照射來觀察DNA片段。使DNA分子大小標準(1 Kb階梯,Life Technologies)平行於測試樣品發生電泳,且用於估算PCR產物之大小。產生預期大小之PCR產物之轉型體係經鑑別為含有蛋白表現建構體之菌株。接著對含有菌株之表現質體的重組蛋白之誘導表現進行分析。
C:PCR陽性轉型體之表現分析。
將隔夜接種培養物等分試樣(約1.0 ml)接種至含有約25 ml LB Ap/Kan肉湯之125 ml錐形瓶中,且在37℃下加以震盪(約250 rpm)之情況下使其生長,直至該培養物濁度達到約0.5之O.D.600,亦即對數中期(通常約1.5至2.0小時)。在此時,將約一半培養物(約12.5 ml)轉移至第二125 ml燒瓶中,且藉由添加IPTG(於無菌水中製備之1.0 M儲備溶液,Sigma)直至1.0 mM最終濃度來誘發重組蛋白之表現。在37℃下加以震盪之情況下繼續IPTG誘發培養物及非誘發培養物之培養歷時另外約4小時。在誘發期之後將誘發培養物及非誘發培養物之樣品(約1.0 ml)移除,且藉由在室溫下於微型離心機中離心分離約3分鐘來收集細胞。使個別細胞小球懸浮於約50 μl無菌水中,接著與等體積的含有2-巰基乙醇之2X Laemelli SDS-PAGE樣品緩衝液混合,且置於沸水浴中歷時約3分鐘以使蛋白變性。將等體積(約15 μl)粗製IPTG誘發及非誘發細胞溶胞物裝載於雙份12% Tris/甘胺酸聚丙烯醯胺凝膠(1 mm厚迷你凝膠,Novex)上。在習知條件下使用標準SDS/Tris/甘胺酸電泳緩衝液,使該等誘發及非誘發溶胞物樣品與預先染色之分子量標記物(SeeBlue,Novex)一起發生電泳。在電泳之後,使用考馬斯(commassie)亮蘭R250(BioRad)將一凝膠染色,且接著使其脫色來觀察新穎IPTG誘導性蛋白。在4℃下使用BioRad Mini-Protean II墨點設備及Towbin之甲醇(20%)轉移緩衝液使第二凝膠電漬至PVDF膜(0.45微米微孔尺寸,Novex)上,歷時2小時。根據此項技術中熟知之方法執行膜之阻斷及抗體培養。使用單株抗-RGS(His)3抗體,繼之以共軛至HRP(QiaGen)之第二兔抗-小鼠抗體來確認重組蛋白之表現及一致性。使用ABT不溶性基質或使用Hyperfilm同Amersham ECL化學發光系統達成抗-His抗體反應模式之可視化。
使用編碼葡萄球菌蛋白之含有質體pET24d之BL21::DE3或含有質體(pQE30)之大腸桿菌M15(pREP4)的重組表現菌株來製造用於重組蛋白純化之細胞團。
用於製造重組蛋白之醱酵培養基由含有100 μg/ml Ap及/或30 μg/ml Km之2X YT肉湯(Difco)組成。按0.25 ml/L之量將消泡劑(消泡劑204,Sigma)添加至醱酵器之培養基中。為誘發重組蛋白之表現,將IPTG(異丙基β-D-硫代吡喃半乳糖苷)添加至醱酵器中(1 mm,最終)。
以1 mm之最終濃度添加IPTG且使培養物另外生長4小時。接著以6,000 rpm之轉速將該培養物離心分離10分鐘,且使細胞小球重新懸浮於包括蛋白酶抑制劑混合液之磷酸鹽緩衝液(50 mm K2
HPO4
,KH2
PO4
,pH 7)中。使用1500巴壓力使該樣品經受弗氏(French)壓力溶胞(2次)。在以15,000 rpm離心分離30分鐘後,保留上層清液以進一步純化且添加NaCl至0.5 M。接著將該樣品裝載至於50 mm K2
HPO4
,KH2
PO4
,pH7中經調節的Ni-NTA樹脂(XK 16管柱Pharmacia,Ni-NTA樹脂Qiagen)上。裝載樣品後,用緩衝液A(0.2 M NaH2
PO4
,pH 7,0.3 M NaCl,10%甘油)洗滌管柱。使用階段梯度以溶離結合蛋白,其中將不同比例之緩衝液B(0.2 M NaH2
PO4
,pH 7,0.3 M NaCl,10%甘油及200 mm咪唑)添加至緩衝液A。緩衝液B之比例自10%逐漸增加至100%。在純化之後,將含有蛋白之經溶離溶離份混合,濃縮且相對於0.002 M KH2
PO4
/K2
HPO4
pH 7,0.15 M NaCl透析。
該方法用於純化ClfA、SdrG、IsdA、IsaB、HarA、Atl-葡糖胺及α毒素。
以1 mm之最終濃度添加IPTG且使培養物另外生長4小時。接著以6,000 rpm之轉速將該培養物離心分離10分鐘,且使細胞小球重新懸浮於包括蛋白酶抑制劑混合液之磷酸鹽緩衝液(50 mm K2
HPO4
,KH2
PO4
,pH 7)中。使用1500巴壓力使該樣品經受弗氏(French)壓力溶胞(2次)。在以15,000 rpm離心分離30分鐘後,用包括1 M尿素之磷酸鹽緩衝液洗滌細胞小球。以15,000 rpm將該樣品離心分離30分鐘,且使細胞小球重新懸浮於8 M尿素、0.1 M NaH2
PO4
、0.5 M NaCl、0.01 M Tris-Hcl pH 8中且保持在室溫下,隔夜。以15,000 rpm將該樣品離心分離20分鐘,且收集上層清液以進一步純化。接著將該樣品裝載至於8 M尿素、0.1 M NaH2
PO4
、0.5 M NaCl、0.01 M Tris-HCl pH 8經調節的Ni-NTA樹脂(XK 16管柱Pharmacia,Ni-NTA樹脂Qiagen)上。在流穿通道之後,用緩衝液A(8 M尿素,0.1 M NaH2
PO4
,0.5 M NaCl,0.01 M Tris,pH 8.0)、緩衝液C(8 M尿素,0.1 M NaH2
PO4
,0.5 M NaCl,0.01 M Tris,pH 6.3)、緩衝液D(8 M尿素,0.1 M NaH2
PO4
,0.5 M NaCl,0.01 M Tris,pH 5.9)及緩衝液E(8 M尿素,0.1 M NaH2
PO4
,0.5 M NaCl,0.01 M Tris,pH 4.5)連續地洗滌管柱。在用緩衝液D及E洗滌期間使重組蛋白自管柱溶離。可將變性重組蛋白溶解於無尿素之溶液中。出於此目的,使8 M尿素中所含之變性蛋白相對於4 M尿素,0.1 M NaH2
PO4
,0.01 M Tris-HCl,pH 7.1;2 M尿素,0.1 M NaH2
PO4
,0.01 M Tris-HCl,pH 7.1,0.5 M精胺酸;及0.002 M KH2
PO4
/K2
HPO4
pH 7.1,0.15 M NaCl,0.5 M精胺酸連續透析。
該方法用於純化Ebh(H2片段)、AaA、SdrC、FnbpA、Sbi、Atl-醯胺酶及IsaA。
藉由SDS-PAGE分析經純化蛋白。在圖3及圖4中顯示天然條件下經純化之蛋白(α毒素)及變性條件下經純化之蛋白(SdrC)之結果。
於室溫下在連續攪拌之情況下進行活化及偶合。使10 mg天然多醣溶解以獲得於0.2 M NaCl中2.5 mg/ml之最終PS濃度。接著在活化步驟之前將該溶液調整至pH 6.0+/-0.2。
在0時刻,手動添加50 μl CDAP溶液(於50/50之乙腈/WFI中新鮮製備,100 mg/ml),以達到合適CDAP/PS比率(0.5/1)。
1.5分鐘後藉由添加0.5 M NaOH將pH值提高至pH 9.00+/-0.05。
花費約1分鐘添加NaOH,且將pH值穩定於pH 9.00+/-0.05直至載體添加。
在4.5分鐘時刻,添加1.5 ml TT(10 mg/ml於0.2 M NaCl中)以達到合適蛋白/PS比率(1.5/1);立即將pH值調整至偶合pH 9.00+/-0.05。在手動pH值調節下將該溶液留置1小時。
在偶合步驟後,添加0.5 ml 2 M甘胺酸(gly/PS(w/w)比率:7.5/1);立即將pH值調整至9.00+/-0.05。在手動pH值調節下將該溶液留置30分鐘。接著使用5 μm Minisart過濾器淨化共軛物,且將其注射於Sephacryl S400HR(XK16/l00)上。使用150 mM NaCl使流動速率固定為30 ml/h。
藉由間苯二酚及μBCA分析溶離溶離份。將所關注之溶離份混合且經由0.22 μm Sterivex過濾。
所得共軛物具有1.05之最終TT/PS比率(w/w),此如藉由間苯二酚及勞裏(Lowry)檢定分析。
基於10%理論水分含量,稱量PS。將2 g天然濕PS以10 mg/ml之最終濃度隔夜溶解於WFI中。在定大小之前,經由5 μm截止過濾器將天然PS溶液淨化。
在活化步驟之前,使用EMULSIFLEX C-50均質器(其中均質單元係由Microfluidics F20Y-0.75 μm相互作用腔室代替)來降低多醣之分子量及黏度。
大小縮減化係最初於10000 psi下進行10次循環且接著於15000 psi下進行隨後之60次循環而實現。在大小縮減化進程中繼之進行黏度量測。在70次循環後達到2.74±0.2 cp之目標時停止定大小操作。
於室溫下在連續攪拌之情況下進行活化及偶合。
將50 mg經定大小之多醣8稀釋以獲得於0.2 M NaCl中5 mg/ml之最終PS濃度。
在0時刻,手動添加375 μl CDAP溶液(於50/50之乙腈/WFI中新鮮製備,100 mg/ml),以達到合適CDAP/PS比率(0.75/1)。
1分鐘後藉由添加0.5 M NaOH將pH值提高至pH 9.00+/-0.05。
在2.5分鐘時刻,添加10 ml TT(10 mg/ml於0.2 M NaCl中)以達到合適蛋白/PS比率(2/1);立即將pH值調整至偶合pH 9.00+/-0.05。在手動pH值調節下將該溶液留置55分鐘。
在偶合步驟後,添加2.5 ml 2 M甘胺酸(gly/PS(w/w)比率:7.5/1);立即藉由調節劑將pH值調整至9.00+/-0.05。在手動pH值調節下將該溶液留置30分鐘。
接著使用5 μm Minisart過濾器淨化共軛物,且將其注射於Sephacryl S400HR(XK26/100)上。將流動速率固定為60 ml/h。
藉由間苯二酚及蛋白劑量分析溶離溶離份。將所關注之溶離份混合且經由0.22 μm Millipack20過濾。
所得共軛物具有1.94之最終TT/PS比率。
於室溫下在連續攪拌之情況下進行活化及偶合。
將30 mg天然多醣稀釋以獲得水中5 mg/ml之最終多醣濃度。使用0.5 N HCl將該溶液調整至pH 4.5至5.0,且接著添加66 μg ADH(2.2 mg/mg PS)。完成溶解後,添加60 mg EDAC(2 mg/mg PS)。在70分鐘後使用1N NaOH將pH值提高至pH 7.5以使反應停止。藉由經Sephacryl S100HR(XK 16/40)純化將游離ADH移除。使用0.2 M NaCl作為溶離緩衝液將流動速率固定為60 ml/h。藉由15分鐘之超音波處理完成大小縮減化,以允許經由millex過濾器(0.22 μm)無菌過濾。
將破傷風類毒素添加至0.2 M NaCl中之5至10 mg經衍生多醣中,且藉由添加0.5 N HCl將pH值調整至pH 5.0或pH 6.0。將EDAC溶解於0.1 M tris緩衝液(pH 7.5)中,且接著經10分鐘之時段進行添加(每2分鐘1/5體積)。
根據所用條件(參看表6),在介於30分鐘與180分鐘之間的時間後藉由添加1 M tris-HCl(pH 7.5)使反應停止。在經由Sephacryl S400HR純化之前,使用5 μm Minisart過濾器淨化共軛物。或藉由5分鐘之超音波處理步驟淨化該共軛物。接著將該共軛物注射於Sephacryl S400HR(XK16/100)上。使用150 mm NaCl作為溶離緩衝液將流動速率固定為30 ml/h。以間苯二酚及μBCA圖譜(其分別量測多醣及蛋白劑量)為基礎選擇溶離池(elution pool)。經由0.22 μm滅菌膜(Millipack 20)以10 ml/min之速度過濾該共軛物。
所得共軛物具有表6中所示之下列特徵:
亦將金黃色葡萄球菌8型多醣藉由微流化進行處理,然後以ADH加以衍生化。
於室溫下在連續攪拌之情況下進行活化及偶合。
將200 mg經定大小之多醣稀釋以獲得水中10 mg/ml之最終多醣濃度。接著添加440 mg ADH(2.2 mg/mg PS)。使用1N HCl將該溶液調整至pH 4.7,然後添加400 mg EDAC(2 mg/mg PS)。在60分鐘後使用5 M NaOH將pH值提高至pH 7.5以使反應停止。使混合物經Amicon Ultra(截止10.000 MWCO)濃縮。在經Sephacryl S200HR(XK16/100)純化之前,使用5 μm Minisart過濾器淨化共軛物。使用0.150 M NaCl作為溶離緩衝液將流動速率固定為30 ml/h。
將100 mg TT添加至0.2 M NaCl中之50 mg衍生多醣中。藉由添加0.3N HCl將pH值調整為5.0±0.02。將EDAC溶解於0.1 M tris緩衝液(pH 7.5)中,且接著經10分鐘之時段進行添加(每分鐘1/10體積)。根據所用條件(參看表8),在介於30分鐘與180分鐘之間的時間後藉由添加1 M tris-HCl(pH 7.5)使反應停止。在經Sephacryl S400HR純化之前,使用5 μm Minisart過濾器淨化共軛物。接著將該共軛物注射於Sephacryl S400HR(XK50/100)上。使用150 mm NaCl作為溶離緩衝液將流動速率固定為60 ml/h。以間苯二酚及μBCA圖譜(其分別量測多醣及蛋白劑量)為基礎選擇溶離池。接著,經由0.22 μm滅菌膜(Millipack 20)以10 ml/min之速度過濾該共軛物。
將0.1 N NaOH添加至16 ml經定大小之PS(10 mg/ml)中以達到9 mg/ml之最終PS濃度及0.1N之最終NaOH濃度。在37℃下處理1或2小時後,相較於未經處理之PS而言,該PS分別具有為35%及12%(Hestrin劑量)之O-乙醯化程度。
將0.1N NaOH添加至19 ml經定大小之PS(10 mg/ml)中以達到9.5 mg/ml之最終PS濃度及0.05N之最終NaOH濃度。在37℃下處理1或2小時後,相較於未經處理之PS而言,該PS分別具有為78%及58%(Hestrin劑量)之O-乙醯化程度。
對於未經處理之PS,按照先前所述完成衍生化步驟。
移除O-乙醯基導致反應性羧基之可用性增加。實際上,僅具有12% O-乙醯基之PS的衍生化程度比具有78% O-乙醯基之PS高±2.5倍。
對於未經處理之PS,按照先前所述完成偶合
使用下文所述方法製備下列共軛物:dPNAG-TT010:dPNAG-S-GMBS+經DTT處理之TT-LC-SPDP dPNAG-TT011:dPNAG-S-GMBS+經DTT處理之TT-LC-SPDP dPNAG-TT012:dPNAG-S-GMBS+經DTT處理之TT-SPDP dPNAG-TT014:dPNAG-SPDP+經DTT處理之TT-SPDP dPNAG-TT017:經DTT處理之dPNAG-SPDP+TT-LC-SPDP dPNAG-TT019:dPNAG-S-GMBS+經DTT處理之TT-SPDP dPNAG-TT020:dPNAG-S-GMBS+經DTT處理之TT-SPDP dPNAG
將1 g PNAG以20 mg/ml之濃度溶解於5N HCl中且培養1小時。接著用5N NaOH將其中和。使溶液經由5 μm薄膜淨化,且經由Sephacryl S400HR純化。將對應於"中等分子大小"之所關注溶離份(參看Infection and Immunity,70:4433-4440(2002))混合且濃縮,然後進行脫N-乙醯化處理。
以1 M NaOH調整溶液且在37℃下留置24小時。在中和之後,使產物經受透析及濃縮。
將S-GMBS(N-(γ-順丁烯二醯亞胺丁醯基氧基)琥珀醯亞胺磺酸鹽,Pierce)添加至0.2 M NaCl中之dPNAG中(S-GMBS/PS(w/w)比率:1/1),且於室溫下在7.0 pH值下(使用1M NaOH進行pH調節)培養2小時。藉由經由Toyopearl HW-40F使用PBS、10 mm EDTA、50 mm NaCl(pH 7.2)作為溶離緩衝液以固定為60 ml/h之流動速率進行純化來將過量GMBS及副產物移除。根據光學密度(UV=206 nm)選擇溶離池,且接著經由Vivaspin管3,000 MWCO或Amicon Ultra 10,000 MWCO濃縮。
在室溫下將經GMBS活化之dPNAG與經DTT還原之TT-SPDP混合且攪拌。根據所用條件,在20至120分鐘後藉由添加半胱胺酸(4 mg/ml於磷酸鈉緩衝液pH 8.0)歷時30分鐘而使反應中止。將共軛物經5 μm過濾器淨化,且注射於Sephacryl S300HR樹脂(XK16/100)上以進行純化。以200 mm NaCl藉由固定為30 ml/h之流動速率實現溶離。藉由己胺醣及蛋白劑量分析溶離溶離份。將所關注之溶離份混合且經由0.22 μm Sterivex過濾。對最終共軛物之多醣(己胺醣劑量)及蛋白組成(勞裏劑量)進行測試。
將溶解於DMSO(二甲亞碸,Merck)中之5倍莫耳過量的SPDP(N-琥珀醯亞胺基-3-(2-吡啶二硫基)丙酸酯,分子量:312.4,Pierce)添加至100 mg dPNAG(5 mg/ml於100 mm磷酸鈉中,pH 7.2)且在室溫下培養1小時。在經Sephacryl S100HR(XK16/40)純化之前經由Amicon Ultra 10,000 MWCO(以3000 rpm離心分離持續28分鐘)使反應混合物濃縮至±6 ml。以pH值7.4之磷酸鹽緩衝液藉由固定為60 ml/h之流動速率實現溶離。將所關注溶離份(於206 nm下讀數)混合且經由Amicon Ultra 10,000 MWCO(以3000 rpm離心分離持續30分鐘)濃縮至1.1 ml。
將溶解於DMSO(二甲亞碸,Merck)中之15倍莫耳過量的SPDP(Pierce)添加至100 mM磷酸鈉(pH 7.2)中之1 g TT(50 mg/ml)中,且在室溫下培養80分鐘。接著將產物注射於Sephacryl S100HR(XK16/40)上,且以100 mM乙酸鈉(pH 5.6)、100 mM NaCl、1 mM EDTA藉由固定為60 ml/h之流動速率進行溶離。根據光學密度(UV=280 nm)選擇溶離池,且接著經由Amicon Ultra 10,000 MWCO(以3000 rpm離心分離持續75分鐘)濃縮至19.6 ml。
TT-LC-SPDP係按照TT-SPDP,但使用LC-SPDP(6-[3-(2-吡啶二硫基)-丙醯胺基]己酸琥珀醯亞胺基酯,Pierce)及60分鐘之培養時間來製造。
以0.7/1之DTT/TT比率(mg/mg)將DTT添加至TT-SPDP或TT-LC-SPDP中。在室溫下2小時後,繼吡啶-2-硫酮釋放之後為其在343 nm下之特徵吸收。藉由凝膠過濾(PD-10,Amersham)自過量DTT純化硫醇化蛋白。在經由Amicon Ultra 10,000 MWCO濃縮後,藉由勞裏劑量估算蛋白含量。
於室溫下在連續攪拌之情況下且以2/1之初始TT/PS比率(w/w)進行偶合。
將dPNAG與TT-SH混合以獲得20 mg/ml之最終PS濃度及40 mg/ml之最終蛋白濃度。在30分鐘後,藉由添加2-碘乙醯胺(Merck)來抑制未反應之巰基。
將dPNAG與TT-LC-SH混合以獲得10 mg/ml之最終PS濃度及20 mg/ml之最終蛋白濃度。在75分鐘後,藉由添加2-碘乙醯胺(Merck)來抑制未反應之巰基。
接著使用5 μm Minisart過濾器淨化共軛物,且注射於Sephacryl S300HR(XK16/100)上。以200 mM NaCl藉由固定為30 ml/h之流動速率實現溶離。
藉由己胺醣及蛋白劑量分析溶離溶離份。將所關注之溶離份混合且經由0.22 μm Sterivex過濾。
所得共軛物具有2.18(TT-SH)及2.24(TT-LC-SH)之最終TT/PS比率(w/w)。
將11.6 mg DTT(1,4-二硫蘇糖醇,Boerhinger Mannheim,分子量:154.24)添加至16.5 mg dPNAG-SPDP中。在室溫下2小時後,繼吡啶-2-硫酮釋放之後為其在343 nm下之特徵吸收。藉由凝膠過濾(Toyopearl HW40F)自過量DTT純化硫醇化PS,且接著經由Amicon Ultra 10,000 MWCO濃縮至860 μl。
於室溫下在連續攪拌之情況下且以1.7/1之初始TT/PS比率(w/w)進行偶合。
將dPNAG-SH與TT-SPDP混合以獲得7.73 mg/ml之最終PS濃度及13.3 mg/ml之最終蛋白濃度。在90分鐘後,藉由添加2-碘乙醯胺(Merck)來抑制未反應之巰基。
接著使用5 μm Minisart過濾器淨化共軛物,且注射於Sephacryl S300HR(XK16/100)上。以200 mM NaCl藉由固定為30 ml/h之流動速率實現溶離。
藉由己胺醣及蛋白劑量分析溶離溶離份。將所關注之溶離份混合且經由0.22 μm Sterivex過濾。
所得共軛物具有2.74之最終TT/PS比率(w/w)。
在無佐劑或使用具有下列組成之佐劑A輔佐的情況下培養共軛物:佐劑A之組成定性定量(每0.5 mL劑量)
脂質體:DOPC 1 mg膽固醇0.25 mg 3DMPL 50 μg QS21 50 μg KH2
PO4 1
3.124 mg緩衝液Na2
HPO4 1
0.290 mg緩衝液NaCl 2.922 mg(100 mM)WFI足量至0.5 ml溶劑pH 6.1 1.總PO4
濃度=50 mM
自Charles River Laboratories,Kingston,Mass獲得8至10週齡之雌性CD-1小鼠。對於致死率研究,使用連續稀釋之經生長於CSA板上之金黃色葡萄球菌將5組9至11隻CD-1小鼠腹膜內(i.p.)激發。接種大小範圍為約1010
至108
CFU/小鼠。以每天為基礎分析死亡率,持續3天。藉由使用劑量-回應關係之概率單位模型來估算50%致死劑量(LD50
)。普通LD50
之虛無假設係藉由概率比檢定(likelihiid ratio test)來測試。亞致死菌血症係藉由經由靜脈內(i.v.)途徑使用約2×106
CFU/小鼠或經由腹膜內途徑使用約2×107
CFU/小鼠來激發8至20隻小鼠之組而引發。在接種後,在指定時刻將獨立動物組自尾部抽血,且藉由對於具有5%羊血之胰蛋白酶大豆瓊脂板(Becton Dickinson Microbiology Systems)重複兩次進行定量板計數來估算菌血症程度。使用非成對Stutent之t測試的韋爾奇(Welch)修飾來測定統計顯著性。
在第0、14、28及42天使用金黃色葡萄球菌PS8-TT共軛物以3 μg之醣劑量(無佐劑或與佐劑A組合)對30隻小鼠之組皮下接種。在第0天,小鼠接受包括介於0.001與0.013 μg之間的第一醣劑量。以生理食鹽水中0.3 μg之劑量完成另外3次之免疫。第55天自小鼠收集血清,且藉由ELISA測試各血清樣品以分析針對PS8之免疫反應。將10隻小鼠之組用於對照組,且用生理食鹽水或含有佐劑A之生理食鹽水將其接種。
在4℃下將經純化PS8以磷酸鹽緩衝生理食鹽水(PBS)中2 μg/ml之濃度塗佈於高結合力微量滴定板(Nunc Maxisorp)上,隔夜。在室溫下加以攪動用PBS-BSA 1%將該等板阻斷30分鐘。將小鼠抗血清預稀釋1/100,接著在37℃下培養1小時之微量板中進行進一步雙倍稀釋。在洗滌後,使用在PBS-吐溫(tween)0.05%中1:5000稀釋之Jackson ImmunoLaboratories Inc.過氧化酶共軛affiniPure山羊抗小鼠IgG(H+L)(參考:115-035-003)偵測結合鼠類抗體。在室溫下加以攪動將偵測抗體培養30分鐘。在室溫下暗處使用4 mg OPD(Sigma)+5 μl H2
O2
/10 ml pH 4.5 0.1 M檸檬酸鹽緩衝液顯色15分鐘。用50 μl HCl使反應停止,且在490 nm下相對於650 nm讀取光學密度。
以中點效價之形式表示結果,且計算30份樣品(其中10份用於對照)之GMT。結果顯示於下文表14中。
使用金黃色葡萄球菌dPNAG-TT共軛物(含有N-乙醯化率介於10%與30%之間之dPNAG)以於200 mm NaCl中0.3 μg之醣劑量(無佐劑或與佐劑A組合)對30隻小鼠之組皮下接種。在第0、14及28天,小鼠接受三次接種。在第41或42天自小鼠收集血清,且藉由ELISA測試各血清樣品以分析針對PNAG之免疫反應。將10隻小鼠之組用於對照組,且用生理食鹽水或單獨使用佐劑A將其接種。
在4℃下將稀釋於磷酸鹽緩衝生理食鹽水(PBS)中與甲基化HSA(2.5 μg/ml)混合之經純化PNAG(2.5 μg/ml)塗佈於高結合力微量滴定板(Nunc Maxisorp)上,隔夜。
在室溫下加以攪動用PBS-BSA 1%將該等板阻斷30分鐘。將小鼠抗血清預稀釋1/100,接著在微量板中進行進一步雙倍稀釋,且在室溫下加以攪動培養1小時。在洗滌後,使用在PBS-BSA 0.2%-吐溫(tween)0.05%中1:5000稀釋之Jackson ImmunoLaboratories Inc.過氧化酶共軛affiniPure山羊抗小鼠IgG(H+L)(參考號:115-035-003)偵測結合鼠類抗體。在室溫下加以攪動將偵測抗體培養30分鐘。在室溫下暗處使用4 mg OPD(Sigma)+5 μl H2
O2
/10 ml pH 4.5 0.1 M檸檬酸鹽緩衝液顯色15分鐘。用50 μl HCl使反應停止,且在490 nm下相對於650 nm讀取光學密度。
根據30份樣品(其中10份用於對照)之中點效價計算GMT。
如Xu等人1992 Infect.Immun.60;1358中所述執行藉由人類多形核白血球(PMN)對金黃色葡萄球菌之活體外調理吞噬殺滅。人類PMN係藉由在3%葡聚糖T-250中沉降自肝素化血製備。調理反應混合物(1 ml)於補充有10%熱鈍化胎牛血清、約108
CFU之金黃色葡萄球菌及0.1 ml測試血清或IgG製劑之RPMI 1640培養基中含有約106
個PMN。將超免疫兔血清用作陽性對照,且將0.1 ml未免疫兔血清用作IgG樣品之完整源。在37℃下培養反應混合物,且在第0、60及120分鐘將細菌樣品轉移至水中且隨後稀釋,塗佈於胰蛋白酶大豆瓊脂板上,且在37℃下培養以在隔夜培養後進行細菌計數。
圖1-較佳蛋白之多肽序列。表1提供關於由各SEQ ID所表示之蛋白的資訊。
圖2-編碼較佳蛋白之核苷酸序列。表1提供關於由各SEQ ID所編碼之蛋白的資訊。
圖3-天然(native)條件下α毒素之純化。圖A顯示在α毒素純化期間所製備樣品的考馬斯(coommassie)染色SDS-PAGE。色帶1-分子量標記,色帶2-含有過表現α毒素之可溶性溶離份,色帶3-自Ni-NTA柱流過之流體,色帶4-以10%緩衝液B溶離之溶離份,色帶5-以20%緩衝液B溶離之溶離份,色帶6-以30%緩衝液B溶離之溶離份,色帶7-以50%緩衝液B溶離之溶離份,色帶8-以75%緩衝液B溶離之溶離份,色帶9及色帶10-以100%緩衝液B溶離之溶離份,色帶11-誘導前T=0時之細菌,色帶12-誘導後T=4小時時之細菌,色帶13-細胞溶胞物,色帶14-可溶性溶離份,色帶15-不溶性溶離份。
圖B顯示10、5、2及1 μl經純化α毒素之考馬斯染色SDS-PAGE。
圖4-變性條件下SdrC之純化。圖A顯示在α毒素純化期間所製備樣品的考馬斯染色SDS-PAGE。色帶M-分子量標記,色帶Start-由含有過表現SdrC之不溶性溶離份形成之清液,色帶FT1-自Ni-NTA柱流過之流體,色帶C-以洗滌緩衝液C溶離之溶離份,色帶D-以緩衝液D溶離之溶離份,色帶E-以緩衝液E溶離之溶離份。
圖B顯示1、2、5及10 μl經純化SdrC之考馬斯染色SDS-PAGE。
圖5-對抗用經純化蛋白塗佈之板中之葡萄球菌蛋白之抗血清的ELISA結果。
混合小鼠血清/接種前(Pool mice pre)-使用自接種前之小鼠提取之混合血清的結果。混合小鼠血清/免疫後III(Pool mice Post III)-使用免疫後提取之混合小鼠血清的結果。混合兔血清/接種前(Pool rabbit pre)-使用自接種前之兔提取之混合血清的結果。混合兔血清/免疫後III(Pool rabbit Post III)-使用免疫後提取之混合兔血清的結果。Blc-陰性對照。
圖6-對抗用經殺滅葡萄球菌塗佈之板中之葡萄球菌蛋白產生之小鼠抗血清的ELISA結果。
圖A使用以經金黃色葡萄球菌血清型5殺滅之全細胞塗佈之板。圖B使用以經金黃色葡萄球菌血清型8殺滅之全細胞塗佈之板。圖C使用以經表皮葡萄球菌殺滅之全細胞塗佈之板。
以方形符號標記之線顯示使用來自經指示葡萄球菌蛋白免疫三次之小鼠之抗血清的ELISA結果。以菱形符號標記之線顯示預免疫小鼠血清之ELISA結果。
圖7-對抗用經殺滅葡萄球菌塗佈之板中之葡萄球菌蛋白產生之兔抗血清的ELISA結果。
圖A使用以經金黃色葡萄球菌血清型5殺滅之全細胞塗佈之板。圖B使用以經金黃色葡萄球菌血清型8殺滅之全細胞塗佈之板。圖C使用以經表皮葡萄球菌殺滅之全細胞塗佈之板。
以方形符號標記之線顯示使用來自經指示葡萄球菌蛋白免疫三次之兔之抗血清的ELISA結果(HarA除外,其中僅提供一次免疫)。以菱形符號標記之線顯示預免疫兔血清之ELISA結果。
<110> 比利時商葛蘭素史密斯克藍生物品公司美國布萊翰婦女醫院<120> 免疫原組合物<130> VB61917 <140> 206110815 <141> 2007-03-28 <150> 60/787,249;0606416.6;0606417.4;60/787,587 <151> 2006-03-30;2006-03-30;2006-03-30;2006-03-30 <160> 164 <170> Fast SEQ for Windows Version 4.0 <210> 1 <211> 533 <212> PRT <213> 葡萄球菌<400> 1 <210> 2 <211> 535 <212> PRT <213> 葡萄球菌<400> 2 <210> 3 <211> 434 <212> PRT <213> 葡萄球菌<400> 3 <210> 4 <211> 434 <212> PRT <213> 葡萄球菌<400> 4<210> 5 <211> 255 <212> PRT <213> 葡萄球菌<400> 5<210> 6 <211> 267 <212> PRT <213> 葡萄球菌<400> 6 <210> 7 <211> 257 <212> PRT <213> 葡萄球菌<400> 7<210> 8 <211> 309 <212> PRT <213> 葡萄球菌<400> 8 <210> 9 <211> 309 <212> PRT <213> 葡萄球菌<400> 9<210> 10 <211> 233 <212> PRT <213> 葡萄球菌<400> 10 <210> 11 <211> 235 <212> PRT <213> 葡萄球菌<400> 11<210> 12 <211> 3890 <212> PRT <213> 葡萄球菌<400> 12 <210> 13 <211> 6713 <212> PRT <213> 葡萄球菌<400> 13 <210> 14 <211> 701 <212> PRT <213> 葡萄球菌<400> 14 <210> 15 <211> 9439 <212> PRT <213> 葡萄球菌<400> 15 <210> 16 <211> 1115 <212> PRT <213> 葡萄球菌<400> 16 <210> 17 <211> 1469 <212> PRT <213> 葡萄球菌<400> 17 <210> 18 <211> 167 <212> PRT <213> 葡萄球菌<400> 18 <210> 19 <211> 167 <212> PRT <213> 葡萄球菌<400> 19<210> 20 <211> 1141 <212> PRT <213> 葡萄球菌<400> 20 <210> 21 <211> 1056 <212> PRT <213> 葡萄球菌<400> 21 <210> 22 <211> 486 <212> PRT <213> 葡萄球菌<400> 22 <210> 23 <211> 472 <212> PRT <213> 葡萄球菌<400> 23 <210> 24 <211> 165 <212> PRT <213> 葡萄球菌<400> 24<210> 25 <211> 319 <212> PRT <213> 葡萄球菌<400> 25 <210> 26 <211> 428 <212> PRT <213> 葡萄球菌<400> 26 <210> 27 <211> 350 <212> PRT <213> 葡萄球菌<400> 27<210> 28 <211> 645 <212> PRT <213> 葡萄球菌<400> 28 <210> 29 <211> 953 <212> PRT <213> 葡萄球菌<400> 29 <210> 30 <211> 935 <212> PRT <213> 葡萄球菌<400> 30 <210> 31 <211> 1038 <212> PRT <213> 葡萄球菌<400> 31 <210> 32 <211> 877 <212> PRT <213> 葡萄球菌<400> 32 <210> 33 <211> 658 <212> PRT <213> 葡萄球菌<400> 33 <210> 34 <211> 1602 <212> DNA <213> 葡萄球菌<400> 34<210> 35 <211> 1608 <212> DNA <213> 葡萄球菌<400> 35<210> 36 <211> 1305 <212> DNA <213> 葡萄球菌<400> 36<210> 37 <211> 1305 <212> DNA <213> 葡萄球菌<400> 37<210> 38 <211> 768 <212> DNA <213> 葡萄球菌<400> 38<210> 39 <211> 804 <212> DNA <213> 葡萄球菌<400> 39<210> 40 <211> 774 <212> DNA <213> 葡萄球菌<400> 40<210> 41 <211> 930 <212> DNA <213> 葡萄球菌<400> 41<210> 42 <211> 930 <212> DNA <213> 葡萄球菌<400> 42 <210> 43 <211> 702 <212> DNA <213> 葡萄球菌<400> 43<210> 44 <211> 708 <212> DNA <213> 葡萄球菌<400> 44<210> 45 <211> 11670 <212> DNA <213> 葡萄球菌<400> 45 <210> 46 <211> 20139 <212> DNA <213> 葡萄球菌<400> 46 <210> 47 <211> 2103 <212> DNA <213> 葡萄球菌<400> 47<210> 48 <211> 28317 <212> DNA <213> 葡萄球菌<400> 48 <210> 49 <211> 3348 <212> DNA <213> 葡萄球菌<400> 49<210> 50 <211> 4410 <212> DNA <213> 葡萄球菌<400> 50<210> 51 <211> 504 <212> DNA <213> 葡萄球菌<400> 51<210> 52 <211> 504 <212> DNA <213> 葡萄球菌<400> 52<210> 53 <211> 3426 <212> DNA <213> 葡萄球菌<400> 53 <210> 54 <211> 3171 <212> DNA <213> 葡萄球菌<400> 54 <210> 55 <211> 1461 <212> DNA <213> 葡萄球菌<400> 55<210> 56 <211> 1419 <212> DNA <213> 葡萄球菌<400> 56<210> 57 <211> 498 <212> DNA <213> 葡萄球菌<400> 57<210> 58 <211> 960 <212> DNA <213> 葡萄球菌<400> 58<210> 59 <211> 1287 <212> DNA <213> 葡萄球菌<400> 59<210> 60 <211> 1053 <212> DNA <213> 葡萄球菌<400> 60 <210> 61 <211> 1938 <212> DNA <213> 葡萄球菌<400> 61<210> 62 <211> 2862 <212> DNA <213> 葡萄球菌<400> 62 <210> 63 <211> 2808 <212> DNA <213> 葡萄球菌<400> 63 <210> 64 <211> 3117 <212> DNA <213> 葡萄球菌<400> 64<210> 65 <211> 2634 <212> DNA <213> 葡萄球菌<400> 65<210> 66 <211> 1977 <212> DNA <213> 葡萄球菌<400> 66 <210> 67 <211> 961 <212> PRT <213> 葡萄球菌<400> 67 <210> 68 <211> 578 <212> PRT <213> 葡萄球菌<400> 68 <210> 69 <211> 895 <212> PRT <213> 葡萄球菌<400> 69 <210> 70 <211> 747 <212> PRT <213> 葡萄球菌<400> 70 <210> 71 <211> 482 <212> PRT <213> 葡萄球菌<400> 71<210> 72 <211> 706 <212> PRT <213> 葡萄球菌<400> 72 <210> 73 <211> 241 <212> PRT <213> 葡萄球菌<400> 73<210> 74 <211> 995 <212> PRT <213> 葡萄球菌<400> 74 <210> 75 <211> 2186 <212> PRT <213> 葡萄球菌<400> 75 <210> 76 <211> 773 <212> PRT <213> 葡萄球菌<400> 76 <210> 77 <211> 2886 <212> DNA <213> 葡萄球菌<400> 77 <210> 78 <211> 1737 <212> DNA <213> 葡萄球菌<400> 78<210> 79 <211> 2688 <212> DNA <213> 葡萄球菌<400> 79<210> 80 <211> 2238 <212> DNA <213> 葡萄球菌<400> 80 <210> 81 <211> 1443 <212> DNA <213> 葡萄球菌<400> 81<210> 82 <211> 2118 <212> DNA <213> 葡萄球菌<400> 82 <210> 83 <211> 726 <212> DNA <213> 葡萄球菌<400> 83<210> 84 <211> 2988 <212> DNA <213> 葡萄球菌<400> 84 <210> 85 <211> 6561 <212> DNA <213> 葡萄球菌<400> 85 <210> 86 <211> 2319 <212> DNA <213> 葡萄球菌<400> 86<210> 87 <211> 774 <212> PRT <213> 葡萄球菌<400> 87 <210> 88 <211> 128 <212> PRT <213> 葡萄球菌<400> 88<210> 89 <211> 6 <212> PRT <213> 葡萄球菌<400> 89<210> 90 <211> 6 <212> PRT <213> 葡萄球菌<400> 90<210> 91 <211> 13 <212> PRT <213> 葡萄球菌<400> 91<210> 92 <211> 10 <212> PRT <213> 葡萄球菌<400> 92<210> 93 <211> 9 <212> PRT <213> 葡萄球菌<400> 93<210> 94 <211> 13 <212> PRT <213> 葡萄球菌<400> 94<210> 95 <211> 7 <212> PRT <213> 葡萄球菌<400> 95<210> 96 <211> 128 <212> PRT <213> 葡萄球菌<400> 96<210> 97 <211> 9 <212> PRT <213> 葡萄球菌<400> 97<210> 98 <211> 9 <212> PRT <213> 葡萄球菌<400> 98<210> 99 <211> 9 <212> PRT <213> 葡萄球菌<400> 99<210> 100 <211> 9 <212> PRT <213> 葡萄球菌<400> 100<210> 101 <211> 9 <212> PRT <213> 葡萄球菌<400> 101<210> 102 <211> 9 <212> PRT <213> 葡萄球菌<400> 102<210> 103 <211> 9 <212> PRT <213> 葡萄球菌<400> 103<210> 104 <211> 9 <212> PRT <213> 葡萄球菌<400> 104<210> 105 <211> 9 <212> PRT <213> 葡萄球菌<400> 105<210> 106 <211> 9 <212> PRT <213> 葡萄球菌<400> 106<210> 107 <211> 9 <212> PRT <213> 葡萄球菌<400> 107<210> 108 <211> 9 <212> PRT <213> 葡萄球菌<400> 108<210> 109 <211> 9 <212> PRT <213> 葡萄球菌<400> 109<210> 110 <211> 9 <212> PRT <213> 葡萄球菌<400> 110<210> 111 <211> 9 <212> PRT <213> 葡萄球菌<400> 111<210> 112 <211> 9 <212> PRT <213> 葡萄球菌<400> 112<210> 113 <211> 9 <212> PRT <213> 葡萄球菌<400> 113<210> 114 <211> 9 <212> PRT <213> 葡萄球菌<400> 114<210> 115 <211> 9 <212> PRT <213> 葡萄球菌<400> 115<210> 116 <211> 9 <212> PRT <213> 葡萄球菌<400> 116<210> 117 <211> 9 <212> PRT <213> 葡萄球菌<400> 117<210> 118 <211> 9 <212> PRT <213> 葡萄球菌<400> 118<210> 119 <211> 9 <212> PRT <213> 葡萄球菌<400> 119<210> 120 <211> 52 <212> PRT <213> 葡萄球菌<400> 120<210> 121 <211> 36 <212> PRT <213> 葡萄球菌<400> 121<210> 122 <211> 895 <212> PRT <213> 葡萄球菌<400> 122 <210> 123 <211> 35 <212> DNA <213> 葡萄球菌<400> 123<210> 124 <211> 33 <212> DNA <213> 葡萄球菌<400> 124<210> 125 <211> 34 <212> DNA <213> 葡萄球菌<400> 125<210> 126 <211> 30 <212> DNA <213> 葡萄球菌<400> 126<210> 127 <211> 32 <212> DNA <213> 葡萄球菌<400> 127<210> 128 <211> 33 <212> DNA <213> 葡萄球菌<400> 128<210> 129 <211> 31 <212> DNA <213> 葡萄球菌<400> 129<210> 130 <211> 35 <212> DNA <213> 葡萄球菌<400> 130<210> 131 <211> 26 <212> DNA <213> 葡萄球菌<400> 131<210> 132 <211> 36 <212> DNA <213> 葡萄球菌<400> 132<210> 133 <211> 28 <212> DNA <213> 葡萄球菌<400> 133<210> 134 <211> 32 <212> DNA <213> 葡萄球菌<400> 134<210> 135 <211> 28 <212> DNA <213> 葡萄球菌<400> 135<210> 136 <211> 31 <212> DNA <213> 葡萄球菌<400> 136<210> 137 <211> 25 <212> DNA <213> 葡萄球菌<400> 137<210> 138 <211> 29 <212> DNA <213> 葡萄球菌<400> 138<210> 139 <211> 33 <212> DNA <213> 葡萄球菌<400> 139<210> 140 <211> 32 <212> DNA <213> 葡萄球菌<400> 140<210> 141 <211> 48 <212> DNA <213> 葡萄球菌<400> 141<210> 142 <211> 34 <212> DNA <213> 葡萄球菌<400> 142<210> 143 <211> 29 <212> DNA <213> 葡萄球菌<400> 143<210> 144 <211> 31 <212> DNA <213> 葡萄球菌<400> 144<210> 145 <211> 33 <212> DNA <213> 葡萄球菌<400> 145<210> 146 <211> 31 <212> DNA <213> 葡萄球菌<400> 146<210> 147 <211> 30 <212> DNA <213> 葡萄球菌<400> 147<210> 148 <211> 29 <212> DNA <213> 葡萄球菌<400> 148<210> 149 <211> 34 <212> DNA <213> 葡萄球菌<400> 149<210> 150 <211> 35 <212> DNA <213> 葡萄球菌<400> 150<210> 151 <211> 33 <212> DNA <213> 葡萄球菌<400> 151<210> 152 <211> 32 <212> DNA <213> 葡萄球菌<400> 152<210> 153 <211> 30 <212> DNA <213> 葡萄球菌<400> 153<210> 154 <211> 30 <212> DNA <213> 葡萄球菌<400> 154<210> 155 <211> 6 <212> PRT <213> 葡萄球菌<400> 155<210> 156 <211> 4 <212> PRT <213> 葡萄球菌<400> 156<210> 157 <211> 5 <212> PRT <213> 葡萄球菌<400> 157<210> 158 <211> 6 <212> PRT <213> 葡萄球菌<400> 158<210> 159 <211> 7 <212> PRT <213> 葡萄球菌<400> 159<210> 160 <211> 5 <212> PRT <213> 葡萄球菌<400> 160<210> 161 <211> 4 <212> PRT <213> 葡萄球菌<400> 161<210> 162 <211> 15 <212> PRT <213> 葡萄球菌<400> 162<210> 163 <211> 16 <212> PRT <213> 葡萄球菌<400> 163<210> 164 <211> 15 <212> PRT <213> 葡萄球菌<400> 164
Claims (29)
- 一種用於製造包含金黃色葡萄球菌5型或8型多醣或寡醣及載體蛋白之共軛物之方法,該方法包含下列步驟:a)於pH 5.0至7.0及氰化試劑和多醣或寡醣之比率介於0.25/1及1/1(w/w)下,用氰化試劑使該金黃色葡萄球菌5型或8型多醣或寡醣活化,以形成活化金黃色葡萄球菌5型或8型多醣或寡醣;及b)於約pH 9.0及載體蛋白和5型或8型多醣或寡醣之比率介於1.1/1及4/1(w/w)下,使該活化金黃色葡萄球菌5型或8型多醣或寡醣共價地連接至載體蛋白,以形成5型或8型多醣或寡醣共軛物。
- 如請求項1之方法,其中該5型或8型多醣具有天然大小。
- 如請求項1之方法,其中該5型或8型多醣或寡醣經定大小。
- 如請求項3之方法,其中該5型或8型多醣或寡醣係藉由微流化、超音波照射或化學處理而定大小。
- 如請求項1至4中任一項之方法,其中該5型或8型多醣或寡醣具有50至100%之O-乙醯化程度,該O-乙醯化程度係藉由Hestrin方法測量。
- 如請求項1至4中任一項之方法,其中該載體蛋白係選自由下列組成之群:白喉類毒素、Crm197、破傷風類毒素、匙孔螺(keyhole limpet)血藍蛋白、綠膿桿菌外蛋白A、流感嗜血桿菌蛋白D、肺炎球菌溶血素及葡萄球菌蛋 白。
- 如請求項1至4中任一項之方法,其中該載體蛋白為一種選自由下列組成之群的葡萄球菌蛋白或其片段:昆布胺酸受體、SitC/錳運輸蛋白C(MntC)/唾液結合蛋白、胞外基質結合蛋白A(EbhA)、胞外基質結合蛋白B(EbhB)、彈性蛋白結合蛋白(EbpS)、胞外血織維蛋白原(fibrinogen)結合蛋白(EFB)/血織維蛋白原結合蛋白(FIB)、葡萄球菌免疫球蛋白結合蛋白(SBI)、蛋白A、自溶素、凝集(clumping)因子A(ClfA)、富含Ser-Asp血織維蛋白原/骨涎蛋白(sialoprotein)結合蛋白C(SdrC)、富含Ser-Asp血織維蛋白原/骨涎蛋白結合蛋白G(SdrG)、富含Ser-Asp血織維蛋白原/骨涎蛋白結合蛋白H(SdrH)、脂肪酶甘油酯水解酶(GehD)、分泌抗原A(SasA)、纖維網蛋白(fibronectin)結合蛋白A(FnbA)、織維網蛋白結合蛋白B(FnbB)、膠原蛋白結合蛋白(Cna)、凝集因子B(ClfB)、血纖維蛋白原結合蛋白A(FbpA)、中性磷酸酯酶(Npase)、免疫優勢(immunodominant)葡萄球菌抗原A(IsaA)/PisA、金黃色葡萄球菌表面蛋白A(SsaA)、EPB、葡萄球菌表面蛋白1(SSP-1)、葡萄球菌表面蛋白2(SSP-2)、肝素結合蛋白(HBP)、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、微管活化蛋白(MAP)、免疫優勢ABC轉運體、鐵調節表面決定子A(IsdA)、鐵調節表面決定子B(IsdB)、Mg2+轉運體、鐵運輸SitABC之C次單元(SitC)及Ni ABC轉運體、α毒素 (Hla)、α毒素H35R突變體及RNA III活化蛋白(RAP)。
- 如請求項1至4中任一項之方法,其中該氰化試劑為四硼酸1-氰基-二甲基胺基吡錠(CDAP)。
- 如請求項1至4中任一項之方法,其中該5型或8型多醣或寡醣係直接地連接至該載體蛋白。
- 如請求項1至4中任一項之方法,其中該5型或8型多醣或寡醣係經由一個間隔基連接至該載體蛋白。
- 如請求項10之方法,其中該間隔基為己二酸二醯肼(adipic acid dihydrazide,ADH)。
- 如請求項1至4中任一項之方法,其中步驟a)中氰化試劑與多醣或寡醣之比率為介於0.3/1與0.7/1(w/w)之間。
- 如請求項1至4中任一項之方法,其中步驟a)係在5.5至6.5之pH進行。
- 如請求項1至4中任一項之方法,其中步驟a)進行1分鐘與5分鐘之間。
- 如請求項1至4中任一項之方法,其中步驟a)係由pH提高至8.0與10.0之間而中止。
- 如請求項1至4中任一項之方法,其中步驟b)中載體蛋白與5型或8型多醣或寡醣之比率為介於1.2/1與2/1(w/w)之間。
- 如請求項1至4中任一項之方法,其中步驟b)係在約9.0之pH進行。
- 如請求項1至4中任一項之方法,其中步驟b)進行25分鐘與4小時之間。
- 如請求項1至4中任一項之方法,其包含另一步驟:將該5型或8型多醣或寡醣共軛物與至少一種其他葡萄球菌抗原組合。
- 如請求項1至4中任一項之方法,其包含另一步驟:將該5型或8型多醣或寡醣共軛物與醫藥學上可接受之稀釋劑組合以形成疫苗。
- 一種共軛物,其包含金黃色葡萄球菌5型或8型多醣或寡醣及載體蛋白,其藉由一個包含異脲共價鍵之連接體結合。
- 如請求項21之共軛物,其中該金黃色葡萄球菌5型或8型多醣具有天然大小。
- 如請求項21之共軛物,其中該金黃色葡萄球菌5型或8型多醣經定大小。
- 如請求項21至23中任一項之共軛物,其中該金黃色葡萄球菌5型或8型多醣具有50至100%之O-乙醯化程度,該O-乙醯化程度係藉由Hestrin方法測量。
- 如請求項21至23中任一項之共軛物,其中該載體蛋白係選自由下列組成之群:白喉類毒素、Crm197、破傷風類毒素、匙孔螺血藍蛋白、綠膿桿菌外蛋白A、流感嗜血桿菌蛋白D、肺炎球菌溶血素及葡萄球菌蛋白。
- 如請求項21至23中任一項之共軛物,其中該載體蛋白為一種選自由下列組成之群的葡萄球菌蛋白或其片段:昆布胺酸受體、SitC/錳運輸蛋白C(MntC)/唾液結合蛋白、胞外基質結合蛋白A(EbhA)、胞外基質結合蛋白 B(EbhB)、彈性蛋白結合蛋白(EbpS)、胞外血織維蛋白原結合蛋白(EFB)/血織維蛋白原結合蛋白(FIB)、葡萄球菌免疫球蛋白結合蛋白(SBI)、蛋白A、自溶素、凝集因子A(ClfA)、富含Ser-Asp血織維蛋白原/骨涎蛋白結合蛋白C(SdrC)、富含Ser-Asp血織維蛋白原/骨涎蛋白結合蛋白G(SdrG)、富含Ser-Asp血織維蛋白原/骨涎蛋白結合蛋白H(SdrH)、脂肪酶甘油酯水解酶(GehD)、分泌抗原A(SasA)、纖維網蛋白結合蛋白A(FnbA)、織維網蛋白結合蛋白B(FnbB)、膠原蛋白結合蛋白(Cna)、凝集因子B(ClfB)、血纖維蛋白原結合蛋白A(FbpA)、中性磷酸酯酶(Npase)、免疫優勢葡萄球菌抗原A(IsaA)/PisA、金黃色葡萄球菌表面蛋白A(SsaA)、EPB、葡萄球菌表面蛋白1(SSP-1)、葡萄球菌表面蛋白2(SSP-2)、肝素結合蛋白(HBP)、玻璃連結蛋白結合蛋白、纖維蛋白原結合蛋白、凝固酶、Fig、微管活化蛋白(MAP)、免疫優勢ABC轉運體、鐵調節表面決定子A(IsdA)、鐵調節表面決定子B(IsdB)、Mg2+轉運體、鐵運輸SitABC之C次單元(SitC)及Ni ABC轉運體、α毒素(Hla)、α毒素H35R突變體及RNA III活化蛋白(RAP)。
- 一種疫苗,其包含如請求項21至26中任一項之共軛物及醫藥學上可接受之賦形劑。
- 一種製造疫苗之方法,其包含以下步驟:將如請求項21至26中任一項之共軛物混合及添加醫藥學上可接受之賦形劑。
- 一種如請求項21至26中任一項之共軛物的用途,其用於製造用以治療或預防葡萄球菌感染之疫苗。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78758706P | 2006-03-30 | 2006-03-30 | |
US78724906P | 2006-03-30 | 2006-03-30 | |
GB0606416A GB0606416D0 (en) | 2006-03-30 | 2006-03-30 | Immunogenic composition |
GB0606417A GB0606417D0 (en) | 2006-03-30 | 2006-03-30 | Immunogenic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200806314A TW200806314A (en) | 2008-02-01 |
TWI494124B true TWI494124B (zh) | 2015-08-01 |
Family
ID=43217117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096110815A TWI494124B (zh) | 2006-03-30 | 2007-03-28 | 免疫原組合物 |
Country Status (4)
Country | Link |
---|---|
CL (1) | CL2007000839A1 (zh) |
JO (2) | JO3418B1 (zh) |
PE (3) | PE20080129A1 (zh) |
TW (1) | TWI494124B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102120761B (zh) * | 2010-12-24 | 2013-02-06 | 新疆维吾尔自治区畜牧科学院兽医研究所 | 一种无荚膜型金黄色葡萄球菌胞外多糖-蛋白质偶联物的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000056360A2 (en) * | 1999-03-19 | 2000-09-28 | Smithkline Beecham Biologicals S.A. | Vaccine against antigens from bacteriae |
WO2004080490A2 (en) * | 2003-03-07 | 2004-09-23 | Wyeth Holdings Corporation | Polysaccharide - staphylococcal surface adhesin carrier protein conjugates for immunization against nosocomial infections |
WO2005000346A1 (en) * | 2003-06-23 | 2005-01-06 | Baxter International Inc. | Carrier proteins for vaccines |
-
2007
- 2007-03-28 CL CL2007000839A patent/CL2007000839A1/es unknown
- 2007-03-28 TW TW096110815A patent/TWI494124B/zh active
- 2007-03-28 PE PE2007000349A patent/PE20080129A1/es active IP Right Grant
- 2007-03-28 PE PE2007000353A patent/PE20080774A1/es not_active Application Discontinuation
- 2007-03-28 JO JOP/2007/0087A patent/JO3418B1/ar active
- 2007-03-28 PE PE2011001600A patent/PE20120262A1/es active IP Right Grant
- 2007-03-28 JO JOP/2007/0092A patent/JO3420B1/ar active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000056360A2 (en) * | 1999-03-19 | 2000-09-28 | Smithkline Beecham Biologicals S.A. | Vaccine against antigens from bacteriae |
WO2004080490A2 (en) * | 2003-03-07 | 2004-09-23 | Wyeth Holdings Corporation | Polysaccharide - staphylococcal surface adhesin carrier protein conjugates for immunization against nosocomial infections |
WO2005000346A1 (en) * | 2003-06-23 | 2005-01-06 | Baxter International Inc. | Carrier proteins for vaccines |
Non-Patent Citations (1)
Title |
---|
Fattom AI et al., Antigenic determinants of Staphylococcus aureus type 5 and type 8 capsular polysaccharide vaccines. Infect Immun. 1998 Oct;66(10):4588-92. * |
Also Published As
Publication number | Publication date |
---|---|
PE20080774A1 (es) | 2008-08-08 |
JO3418B1 (ar) | 2019-10-20 |
PE20120262A1 (es) | 2012-03-30 |
CL2007000839A1 (es) | 2008-01-25 |
PE20080129A1 (es) | 2008-04-08 |
TW200806314A (en) | 2008-02-01 |
JO3420B1 (ar) | 2019-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5491853B2 (ja) | 免疫原性組成物 | |
US10548963B2 (en) | Immunogenic composition for use in vaccination against staphylococci | |
CA2647441C (en) | Immunogenic composition comprising staphylococcus aureus saccharides | |
TWI494124B (zh) | 免疫原組合物 | |
RU2521501C2 (ru) | Иммуногенная композиция для применения в вакцинации против стафилококков | |
AU2011265368B9 (en) | Immunogenic composition | |
AU2013200670A1 (en) | Immunogenic composition |