TWI486543B - Flat type heat pipe - Google Patents
Flat type heat pipe Download PDFInfo
- Publication number
- TWI486543B TWI486543B TW099110234A TW99110234A TWI486543B TW I486543 B TWI486543 B TW I486543B TW 099110234 A TW099110234 A TW 099110234A TW 99110234 A TW99110234 A TW 99110234A TW I486543 B TWI486543 B TW I486543B
- Authority
- TW
- Taiwan
- Prior art keywords
- capillary structure
- wall
- heat pipe
- tubular body
- flat thin
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
本發明涉及一種熱導管,特別涉及一種扁平薄型熱導管。 The present invention relates to a heat pipe, and more particularly to a flat thin heat pipe.
現階段,熱導管因其具有較高傳熱量的優點,已被廣泛應用於具較大發熱量的電子元件中。該熱導管工作時,利用管體內部填充的低沸點工作介質在其蒸發部吸收發熱電子元件產生的熱量後蒸發汽化,蒸氣帶著熱量運動至冷凝部,並在冷凝部液化凝結將熱量釋放出去,對電子元件進行散熱。該液化後的工作介質在熱導管壁部毛細結構的作用下回流至蒸發部,繼續蒸發汽化及液化凝結,使工作介質在熱導管內部循環運動,將電子元件產生的熱量源源不斷的散發出去。 At this stage, the heat pipe has been widely used in electronic components with large heat generation because of its high heat transfer capacity. When the heat pipe is in operation, the low-boiling working medium filled inside the pipe body absorbs the heat generated by the heat-generating electronic component in the evaporation portion, and then evaporates and vaporizes, the vapor moves with heat to the condensation portion, and condenses and condenses in the condensation portion to release the heat. , heat dissipation of electronic components. The liquefied working medium is returned to the evaporation portion under the action of the capillary structure of the heat pipe wall, and further evaporative vaporization and liquefaction condensation are performed, so that the working medium circulates inside the heat pipe, and the heat generated by the electronic component is continuously emitted.
當今電子產品不斷傾向於輕薄短小方向發展,電子產品在不斷縮小的空間內散熱問題越發變的重要,這就需要散熱產品在走向輕薄短小的同時,更需要有較高的傳熱、散熱性能。 Today's electronic products are continually inclined to develop in a light, short, and short direction. The problem of heat dissipation in electronic products is becoming more and more important in ever-shrinking spaces. This requires heat-dissipating products to be lighter and shorter, and more need to have higher heat transfer and heat dissipation performance.
習知熱導管僅採用單一毛細結構,毛細結構一般可分為溝槽型、燒結型、纖維型及絲網型等,所述毛細結構設於熱導管的管壁上或與管壁緊密貼合,在圓形熱導管內可使冷凝部的工作介質及時回流至熱導管的蒸發部。但是,當熱導管打扁後,尤其是打扁至厚度很薄的時候,所述毛細結構容易出現變形、崩解等狀況,使其液體輸送能力大幅下降,並且整個熱導管的液體輸送能力不能 得到其他方式補充,從而導致熱導管最大傳熱量的大幅下降及熱阻的增加。同時因為熱導管的厚度很薄,使用習知的毛細結構會使熱導管內部的蒸氣通道很窄,無法及時將蒸氣從蒸發段運送至冷凝段,這也在很大程度上導致熱導管的最大傳熱量的大幅下降。 Conventional heat pipes use only a single capillary structure, and the capillary structure can be generally divided into a groove type, a sintered type, a fiber type, a wire mesh type, etc., and the capillary structure is disposed on the pipe wall of the heat pipe or closely adheres to the pipe wall. In the circular heat pipe, the working medium of the condensation portion can be timely returned to the evaporation portion of the heat pipe. However, when the heat pipe is flattened, especially when it is flattened to a very thin thickness, the capillary structure is liable to be deformed, disintegrated, etc., so that the liquid transporting ability is greatly reduced, and the liquid transporting ability of the entire heat pipe cannot be It is supplemented by other means, resulting in a large drop in the maximum heat transfer of the heat pipe and an increase in the thermal resistance. At the same time, because the thickness of the heat pipe is very thin, the use of the conventional capillary structure makes the vapor passage inside the heat pipe narrow, and it is impossible to transport the vapor from the evaporation section to the condensation section in time, which also largely leads to the maximum heat pipe. The amount of heat transfer has dropped dramatically.
有鑒於此,有必要提供一種具較高傳熱性能的扁平薄型熱導管。 In view of this, it is necessary to provide a flat thin heat pipe with high heat transfer performance.
一種扁平薄型熱導管,包括中空扁平的管體及設置在管體內的第一毛細結構與第二毛細結構,所述管體包括蒸發段及冷凝段,所述第一毛細結構由絲線形成,所述第二毛細結構由粉末燒結形成,所述第二毛細結構貼附於管體的蒸發段的內壁上,所述蒸發段內形成供蒸氣通過的第一蒸氣通道,所述第一毛細結構夾設於管體的冷凝段,所述第一毛細結構包括與管體的內壁貼合的第一部分及未與管體的內壁貼合的第二部分,所述第一毛細結構的第二部分與管體的內壁之間在冷凝段形成供蒸氣通過的第二蒸氣通道,所述第一蒸氣通道與所述第二蒸氣通道相互連通,所述第一毛細結構從管體的冷凝段延伸至冷凝段與蒸發段的交接處並在所述交接處與第二毛細結構連接。 A flat thin heat pipe comprising a hollow flat tube body and a first capillary structure and a second capillary structure disposed in the tube body, the tube body comprising an evaporation section and a condensation section, the first capillary structure being formed by a wire The second capillary structure is formed by sintering a powder, the second capillary structure is attached to an inner wall of the evaporation section of the tubular body, and a first vapor passage for vapor passage is formed in the evaporation section, the first capillary structure The first capillary structure includes a first portion that is bonded to the inner wall of the tubular body and a second portion that is not attached to the inner wall of the tubular body, and the first capillary structure A second vapor passage for vapor passage is formed between the two portions and the inner wall of the tubular body in the condensation section, the first vapor passage and the second vapor passage are in communication with each other, and the first capillary structure is condensed from the tubular body The section extends to the junction of the condensation section and the evaporation section and is joined to the second capillary structure at the junction.
與習知技術相比,本發明的扁平薄型熱導管的厚度變薄,且燒結粉末型的第二毛細結構設置於管體的蒸發段的內壁,在冷凝段設置佔據空間相對較少的第一毛細結構,這可相對增加冷凝段的內部蒸氣通道以供蒸氣順暢流動,同時在冷凝段凝結的工作介質可以通過第一毛細結構及第二毛細結構回流到蒸發段,從而能保證扁平薄型熱導管良好的散熱性能,尤其適用於內部空間狹小的電 子設備。 Compared with the prior art, the thickness of the flat thin heat pipe of the present invention is thin, and the second capillary structure of the sintered powder type is disposed on the inner wall of the evaporation section of the pipe body, and the space occupied by the condensation section is relatively small. a capillary structure, which relatively increases the internal vapor passage of the condensation section for the smooth flow of the vapor, and the working medium condensed in the condensation section can be returned to the evaporation section through the first capillary structure and the second capillary structure, thereby ensuring flat and thin heat Good heat dissipation of the catheter, especially suitable for small internal space Child device.
10、20、30、40‧‧‧扁平薄型熱導管 10, 20, 30, 40‧‧‧ flat thin heat pipes
11、21、31、41‧‧‧管體 11, 21, 31, 41‧‧‧ body
12、13、22、32、33、35‧‧‧第一毛細結構 12, 13, 22, 32, 33, 35‧‧‧ first capillary structure
14、44‧‧‧第二毛細結構 14, 44‧‧‧Second capillary structure
17‧‧‧整體結構 17‧‧‧ overall structure
70‧‧‧發熱電子元件 70‧‧‧Fever electronic components
111、411‧‧‧蒸發段 111,411‧‧‧Evaporation section
113、213、313‧‧‧冷凝段 113, 213, 313‧‧ ‧ Condensation section
114、214、414‧‧‧頂板 114, 214, 414‧‧‧ top board
115、215、415‧‧‧底板 115, 215, 415‧‧ ‧ bottom plate
116、117、216、217‧‧‧側板 116, 117, 216, 217‧‧‧ side panels
118、418‧‧‧內壁 118, 418‧‧‧ inner wall
121、131‧‧‧頂壁 121, 131‧‧‧ top wall
122、132‧‧‧底壁 122, 132‧‧‧ bottom wall
123、133‧‧‧左側壁 123, 133‧‧‧ left wall
124、134‧‧‧右側壁 124, 134‧‧‧ right side wall
125、135‧‧‧第一部分 125, 135‧‧‧ first part
126、136‧‧‧第二部分 126, 136‧‧‧ Part II
140‧‧‧通道 140‧‧‧ channel
141、441‧‧‧第一蒸氣通道 141, 441‧‧‧ first vapor channel
142、242、342‧‧‧第二蒸氣通道 142, 242, 342‧‧‧ second vapor channel
148‧‧‧端部 148‧‧‧End
149‧‧‧交接處 149‧‧‧ junction
2421、2422、3421、3422‧‧‧分蒸氣通道 2421, 2422, 3421, 3422‧ ‧ sub-vapor channel
圖1為本發明第一實施方式中扁平薄型熱導管的側視圖。 Fig. 1 is a side view of a flat thin heat pipe according to a first embodiment of the present invention.
圖2為圖1所示扁平薄型熱導管的沿II-II橫向剖面示意圖。 2 is a transverse cross-sectional view along the II-II of the flat thin heat pipe of FIG. 1.
圖3為圖1所示扁平薄型熱導管的沿III-III橫向剖面示意圖。 3 is a schematic cross-sectional view along the III-III of the flat thin heat pipe shown in FIG. 1.
圖4為圖1所示扁平薄型熱導管的沿IV-IV縱向剖面示意圖。 4 is a schematic longitudinal cross-sectional view of the flat thin heat pipe of FIG. 1 taken along line IV-IV.
圖5為本發明第二實施方式中扁平薄型熱導管的冷凝段的橫向剖面示意圖。 Figure 5 is a transverse cross-sectional view showing a condensation section of a flat thin heat pipe in a second embodiment of the present invention.
圖6為本發明第三實施方式中扁平薄型熱導管的冷凝段的橫向剖面示意圖。 Figure 6 is a transverse cross-sectional view showing a condensation section of a flat thin heat pipe according to a third embodiment of the present invention.
圖7為本發明第四實施方式中扁平薄型熱導管的蒸發段的橫向剖面示意圖。 Fig. 7 is a transverse cross-sectional view showing an evaporation section of a flat thin heat pipe according to a fourth embodiment of the present invention.
請參閱圖1至圖4,該扁平薄型熱導管10包括一中空扁平管體11、兩個第一毛細結構12、13、一第二毛細結構14及注入該管體11內的適量工作介質(圖未示)。 Referring to FIGS. 1 to 4 , the flat thin heat pipe 10 includes a hollow flat tube body 11 , two first capillary structures 12 , 13 , a second capillary structure 14 , and an appropriate amount of working medium injected into the tube body 11 ( The figure is not shown).
該管體11由銅等具良好導熱性的材料製成,可將其外部的熱量傳遞至其內部。該管體11呈縱長扁平狀且密封,沿其縱向包括一蒸發段111及一冷凝段113,蒸發段111及冷凝段113分別位於管體11的縱向兩端。該管體11為一中空密封腔體,其由一中空圓管壓扁而成,包括一頂板114、一底板115及兩側板116、117。該頂板114與底板115相互平行且上下相對,該兩側板116、117呈弧形, 分別位於管體11的兩側並與頂板114和底板115相連,從而使該管體11在與縱向垂直的橫向的截面上形成類似跑道型的輪廓。該管體11具有一光滑的內壁118。 The tube body 11 is made of a material having good thermal conductivity such as copper, and heat from the outside thereof can be transmitted to the inside thereof. The tube body 11 is vertically long and sealed, and includes an evaporation section 111 and a condensation section 113 along the longitudinal direction thereof. The evaporation section 111 and the condensation section 113 are respectively located at longitudinal ends of the tube body 11. The tube body 11 is a hollow sealed cavity which is formed by flattening a hollow tube and includes a top plate 114, a bottom plate 115 and two side plates 116, 117. The top plate 114 and the bottom plate 115 are parallel to each other and face up and down, and the two side plates 116, 117 are curved. They are respectively located on both sides of the pipe body 11 and connected to the top plate 114 and the bottom plate 115, so that the pipe body 11 forms a runway-like profile on a lateral cross section perpendicular to the longitudinal direction. The tube body 11 has a smooth inner wall 118.
第二毛細結構14為由銅等金屬粉末燒結形成的毛細結構。第二毛細結構14設置於管體11的蒸發段111內,且貼附於管體11的蒸發段111的內壁118上。在本實施方式中,第二毛細結構14環設於蒸發段111的整個內壁118上,第二毛細結構14在蒸發段111圍成可供蒸氣通過的第一蒸氣通道141,即蒸發段111內形成第一蒸氣通道141。 The second capillary structure 14 is a capillary structure formed by sintering a metal powder such as copper. The second capillary structure 14 is disposed in the evaporation section 111 of the tubular body 11 and is attached to the inner wall 118 of the evaporation section 111 of the tubular body 11. In the present embodiment, the second capillary structure 14 is disposed on the entire inner wall 118 of the evaporation section 111, and the second capillary structure 14 encloses a first vapor passage 141 through which the vapor can pass, that is, the evaporation section 111. A first vapor passage 141 is formed therein.
每一第一毛細結構12、13呈一縱長的中空管狀體結構,其由複數銅或不銹鋼等材料製成的絲線編織後形成一單層絲網,在該管狀體內部形成一縱長的通道140,並在該管狀體的壁部形成複數細小的孔隙,孔隙由絲線編織後形成。在其他實施方式中,每一第一毛細結構12、13也可以編織形成沿其徑向相互層疊的多層絲網。 Each of the first capillary structures 12, 13 has an elongated hollow tubular structure, and the wires made of a plurality of materials such as copper or stainless steel are woven to form a single-layer mesh, and a longitudinal length is formed inside the tubular body. The passage 140 forms a plurality of fine pores in the wall portion of the tubular body, and the pores are formed by weaving the yarn. In other embodiments, each of the first capillary structures 12, 13 can also be woven to form a multilayer screen that is laminated to one another in its radial direction.
第一毛細結構12、13設置在管體11的冷凝段113,且分別位於管體11的兩側。每一第一毛細結構12、13被管體11的內壁118擠壓呈扁平狀,每一第一毛細結構12、13的中空的管狀體的外壁包括頂壁121、131、底壁122、132、左側壁123、133及右側壁124、134。第一毛細結構12設置在管體11的右側,第一毛細結構12的頂壁121、底壁122及右側壁124與管體11的內壁118貼合,形成與管體11的內壁118貼合的呈U形的第一部分125。第一毛細結構12的左側壁123未與管體11的內壁118貼合,形成未與管體11的內壁118貼合的呈C形的第二部分126。 The first capillary structures 12, 13 are disposed in the condensation section 113 of the tubular body 11, and are respectively located on both sides of the tubular body 11. Each of the first capillary structures 12, 13 is extruded flat by the inner wall 118 of the tubular body 11, and the outer wall of the hollow tubular body of each of the first capillary structures 12, 13 includes a top wall 121, 131, a bottom wall 122, 132, left side walls 123, 133 and right side walls 124, 134. The first capillary structure 12 is disposed on the right side of the tubular body 11, and the top wall 121, the bottom wall 122, and the right side wall 124 of the first capillary structure 12 are attached to the inner wall 118 of the tubular body 11 to form an inner wall 118 with the tubular body 11. A U-shaped first portion 125 that fits. The left side wall 123 of the first capillary structure 12 is not attached to the inner wall 118 of the tubular body 11 to form a C-shaped second portion 126 that is not attached to the inner wall 118 of the tubular body 11.
第一毛細結構13設置在管體11的左側,第一毛細結構13的頂壁131、底壁132及左側壁133與管體11的內壁118貼合,形成與管體11的內壁118貼合的呈U形的第一部分135。第一毛細結構13的右側壁134未與管體11的內壁118貼合,形成未與管體11的內壁118貼合的呈C形的第二部分136。 The first capillary structure 13 is disposed on the left side of the tubular body 11, and the top wall 131, the bottom wall 132, and the left side wall 133 of the first capillary structure 13 are attached to the inner wall 118 of the tubular body 11 to form an inner wall 118 with the tubular body 11. The first portion 135 of the U shape is fitted. The right side wall 134 of the first capillary structure 13 is not attached to the inner wall 118 of the tubular body 11 to form a C-shaped second portion 136 that is not attached to the inner wall 118 of the tubular body 11.
每一第一毛細結構12、13的第一部分125、135貼合於管體11的內壁118上,即與管體11的側板116、117及與側板116、117緊相連的頂板114與底板115的部分壁面貼合。第二部分126、136朝向管體11的中央,並未貼合於管體11的內壁118上。第一毛細結構13的右側壁134與第一毛細結構12的左側壁123相對,且在冷凝段113內相互間隔形成第二蒸氣通道142。所述第一蒸氣通道141與所述第二蒸氣通道142沿縱向相互連通。 The first portions 125, 135 of each of the first capillary structures 12, 13 are attached to the inner wall 118 of the tubular body 11, i.e., the side panels 116, 117 of the tubular body 11 and the top panel 114 and the bottom panel that are in close contact with the side panels 116, 117. Part of the wall of 115 is fitted. The second portions 126, 136 are oriented toward the center of the tubular body 11 and are not attached to the inner wall 118 of the tubular body 11. The right side wall 134 of the first capillary structure 13 is opposite the left side wall 123 of the first capillary structure 12 and is spaced apart from each other within the condensation section 113 to form a second vapor passage 142. The first vapor passage 141 and the second vapor passage 142 communicate with each other in the longitudinal direction.
第一毛細結構12、13在管體11的冷凝段113沿縱向延伸,並在管體11的蒸發段111與冷凝段113的交接處149與第二毛細結構14連接,即第一毛細結構12、13在管體11的冷凝段113沿縱向延伸至第二毛細結構14的靠近於冷凝段113的端部148,並與之連接。在第二毛細結構14燒結成型過程中,第一毛細結構12、13與第二毛細結構14於交接處149與第二毛細結構14燒結連接成一整體結構17。第一毛細結構12、13的通道140的孔徑大於第二毛細結構14的壁厚,從而第一毛細結構12、13的通道140與第一蒸氣通道141連通。 The first capillary structure 12, 13 extends longitudinally in the condensation section 113 of the tubular body 11 and is joined to the second capillary structure 14 at the junction 149 of the evaporation section 111 of the tubular body 11 with the condensation section 113, i.e., the first capillary structure 12 13, extends in the longitudinal direction of the condensation section 113 of the tubular body 11 to the end 148 of the second capillary structure 14 adjacent to the condensation section 113 and is connected thereto. During the sintering process of the second capillary structure 14, the first capillary structures 12, 13 and the second capillary structure 14 are sintered at the junction 149 and the second capillary structure 14 into a unitary structure 17. The apertures of the channels 140 of the first capillary structures 12, 13 are larger than the wall thickness of the second capillary structure 14, such that the channels 140 of the first capillary structures 12, 13 are in communication with the first vapor channels 141.
該工作介質為水、酒精、甲醇等具較低沸點的物質。當管體11的蒸發段111與熱源接觸時,該工作介質從蒸發段111處吸熱蒸發成汽體,蒸氣溢散至位於蒸發段111的第一蒸氣通道141中,蒸氣帶 著熱量從第一蒸氣通道141往冷凝段113運送,並從交接處149進入通道140與第二蒸氣通道142中,最後在冷凝段113放熱後凝結成液體,將熱量釋放出去,完成對發熱元件(圖未示)的散熱。第一毛細結構12、13及第二毛細結構14提供毛細力使在管體11的冷凝段113凝結形成的工作介質回流至蒸發段111,實現工作介質在管體11內的循環運動,以完成對發熱元件的持續散熱。 The working medium is a substance having a lower boiling point such as water, alcohol or methanol. When the evaporation section 111 of the pipe body 11 is in contact with the heat source, the working medium absorbs heat from the evaporation section 111 to evaporate into a vapor, and the vapor overflows to the first vapor passage 141 located in the evaporation section 111, and the vapor zone The heat is transported from the first vapor passage 141 to the condensation section 113, and enters the passage 140 and the second vapor passage 142 from the junction 149, and finally condenses into a liquid after the condensation section 113 releases heat, releasing the heat to complete the heating element. Heat dissipation (not shown). The first capillary structure 12, 13 and the second capillary structure 14 provide a capillary force to cause the working medium formed by the condensation of the condensation section 113 of the pipe body 11 to flow back to the evaporation section 111, thereby realizing the circulation movement of the working medium in the pipe body 11 to complete Continuous heat dissipation of the heating element.
燒結粉末型的第二毛細結構14設置於管體11的蒸發段111,有效增加蒸發段111的毛細力,使冷凝段113冷凝後的液體可以及時運送回蒸發段111,防止發生幹燒現象;同時在冷凝段113設置佔據空間相對較少的第一毛細結構12、13,這可相對增加冷凝段113的內部蒸氣通道以供蒸氣順暢流動,同時保證在冷凝段113凝結的工作介質通過第一毛細結構12、13回流到蒸發段111。第二毛細結構14在交接處149與第一毛細結構12、13燒結連接,從而第一毛細結構12、13與第二毛細結構14之間結合緊密,工作介質通過第一毛細結構12、13回流至交接處149後,可以迅速滲透到第二毛細結構14中。本實施方式的扁平薄型熱導管10可達到2mm以下,甚至當扁平薄型熱導管10厚度為1.5mm時,該扁平薄型熱導管10仍能保證良好的性能,適用於內部空間狹小的電子設備如筆記型電腦等。 The second capillary structure 14 of the sintered powder type is disposed in the evaporation section 111 of the pipe body 11, effectively increasing the capillary force of the evaporation section 111, so that the liquid condensed by the condensation section 113 can be transported back to the evaporation section 111 in time to prevent dry burning phenomenon; At the same time, the first capillary structure 12, 13 occupying a relatively small space is disposed in the condensation section 113, which can relatively increase the internal vapor passage of the condensation section 113 for the smooth flow of the vapor while ensuring that the working medium condensed in the condensation section 113 passes through the first The capillary structures 12, 13 are returned to the evaporation section 111. The second capillary structure 14 is sinteredly joined to the first capillary structure 12, 13 at the junction 149 such that the first capillary structure 12, 13 is tightly coupled to the second capillary structure 14, and the working medium is reflowed through the first capillary structure 12, 13. After the junction 149, it can quickly penetrate into the second capillary structure 14. The flat thin heat pipe 10 of the present embodiment can reach 2 mm or less, and even when the flat thin heat pipe 10 has a thickness of 1.5 mm, the flat thin heat pipe 10 can ensure good performance, and is suitable for electronic devices with small internal space such as notes. Computer, etc.
圖5示出本發明的第二實施方式的扁平薄型熱導管20的冷凝段213的橫向剖面示意圖,與上述第一實施方式不同之處在於,熱導管20內設置第一毛細結構22的數量為一個,第一毛細結構22夾設於扁平薄型熱管20的冷凝段213的中央,第一毛細結構22將冷凝段213的第二蒸氣通道242分成位於第一毛細結構22左側的分蒸氣通 道2421及位於第一毛細結構22右側的分蒸汽通道2422。第一毛細結構22的頂部與底部分別連接於管體21的頂板214與底板215之間,第一毛細結構22與管體21左側的側板217間隔形成可供蒸氣通過的分蒸氣通道2421,第一毛細結構22與管體21右側的側板216間隔形成可供蒸氣通過的分蒸氣通道2422。熱導管20的蒸發段的結構與第一實施方式相同,在此不贅述,其中第一毛細結構22在熱導管20的蒸發段與冷凝段213的交接處亦與蒸發段的第二毛細結構連接。熱導管20的工作原理與第一實施方式相同,在此亦不贅述。 5 is a schematic transverse cross-sectional view showing a condensation section 213 of the flat thin heat pipe 20 of the second embodiment of the present invention, which differs from the first embodiment in that the number of the first capillary structures 22 disposed in the heat pipe 20 is One, the first capillary structure 22 is sandwiched in the center of the condensation section 213 of the flat thin heat pipe 20, and the first capillary structure 22 divides the second vapor passage 242 of the condensation section 213 into a vapor-distributing passage located on the left side of the first capillary structure 22. Lane 2421 and a steam dividing passage 2422 located to the right of the first capillary structure 22. The top and bottom of the first capillary structure 22 are respectively connected between the top plate 214 of the tubular body 21 and the bottom plate 215, and the first capillary structure 22 is spaced apart from the side plate 217 on the left side of the tubular body 21 to form a vapor dividing passage 2421 through which the vapor can pass. A capillary structure 22 is spaced from the side panels 216 on the right side of the tubular body 21 to form a vapor dividing passage 2422 through which vapor can pass. The structure of the evaporation section of the heat pipe 20 is the same as that of the first embodiment, and is not described here, wherein the first capillary structure 22 is also connected to the second capillary structure of the evaporation section at the intersection of the evaporation section of the heat pipe 20 and the condensation section 213. . The working principle of the heat pipe 20 is the same as that of the first embodiment, and will not be described herein.
圖6示出本發明的第三較佳實施方式的扁平薄型熱導管30的冷凝段313的橫向剖面示意圖,與第一實施方式不同之處在於,熱導管30內設置三個第一毛細結構32、33、35,其中一個第一毛細結構35位於熱導管30的冷凝段313的中央,另外兩個第一毛細結構32、33在冷凝段313分別位於管體31的兩側,位於中央的第一毛細結構35與位於左側的第一毛細結構33間隔形成可供蒸氣通過的分蒸氣通道3421,位於中央的第一毛細結構35與位於右側的第一毛細結構32間隔形成可供蒸氣通過的可供蒸氣通過的分蒸氣通道3422。冷凝段313內的第二蒸氣通道342由分蒸氣通道3421、3422組成。熱導管30的蒸發段的結構與第一實施方式相同,在此不贅述,其中第一毛細結構32、33、35在熱導管30的蒸發段與冷凝段313的交接處亦與蒸發段的第二毛細結構連接。熱導管30的工作原理與第一實施方式相同,在此亦不贅述。 6 is a transverse cross-sectional view showing a condensation section 313 of the flat thin heat pipe 30 of the third preferred embodiment of the present invention, which is different from the first embodiment in that three first capillary structures 32 are disposed in the heat pipe 30. 33, 35, wherein one of the first capillary structures 35 is located at the center of the condensation section 313 of the heat pipe 30, and the other two first capillary structures 32, 33 are respectively located at the condensation section 313 on both sides of the pipe body 31, at the center A capillary structure 35 is spaced apart from the first capillary structure 33 on the left side to form a vapor-dividing channel 3421 through which the vapor passes, and the centrally located first capillary structure 35 is spaced from the first capillary structure 32 on the right side to form a vapor-permeable passage. A vapor dividing channel 3422 through which the vapor passes. The second vapor passage 342 in the condensation section 313 is comprised of sub-vapor passages 3421, 3422. The structure of the evaporation section of the heat pipe 30 is the same as that of the first embodiment, and the details of the first capillary structure 32, 33, 35 at the intersection of the evaporation section of the heat pipe 30 and the condensation section 313 are also the same as those of the evaporation section. Two capillary structures are connected. The working principle of the heat pipe 30 is the same as that of the first embodiment, and will not be described here.
圖7示出本發明的第四較佳實施方式的扁平薄型熱導管40的蒸發段411的橫向剖面示意圖,與第一實施方式不同之處在於,第二 毛細結構44貼附於管體41的蒸發段411的底板415的內側,即第二毛細結構44貼附於管體41的蒸發段411的部分內壁418上。發熱電子元件70貼附於底板415的外側。由於蒸發段411的頂板414的內側未設置所述第二毛細結構44,這可進一步增加蒸發段411內的第一蒸氣通道441的容積,同時發熱電子元件70所產生的熱量經由管體41迅速傳遞到第二毛細結構44,從而提升扁平薄型熱導管40的散熱性能。 7 is a transverse cross-sectional view showing an evaporation section 411 of a flat thin heat pipe 40 according to a fourth preferred embodiment of the present invention, which is different from the first embodiment in that a second The capillary structure 44 is attached to the inner side of the bottom plate 415 of the evaporation section 411 of the pipe body 41, that is, the second capillary structure 44 is attached to a portion of the inner wall 418 of the evaporation section 411 of the pipe body 41. The heat-generating electronic component 70 is attached to the outside of the bottom plate 415. Since the second capillary structure 44 is not disposed on the inner side of the top plate 414 of the evaporation section 411, the volume of the first vapor passage 441 in the evaporation section 411 can be further increased, and the heat generated by the heat-generating electronic component 70 is quickly transmitted via the tube 41. It is transferred to the second capillary structure 44, thereby improving the heat dissipation performance of the flat thin heat pipe 40.
綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,在爰依本發明精神所作之等效修飾或變化,皆應涵蓋於以下之申請專利範圍內。 In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims.
11‧‧‧管體 11‧‧‧Body
12、13‧‧‧第一毛細結構 12.13‧‧‧First capillary structure
14‧‧‧第二毛細結構 14‧‧‧Second capillary structure
17‧‧‧整體結構 17‧‧‧ overall structure
111‧‧‧蒸發段 111‧‧‧Evaporation section
113‧‧‧冷凝段 113‧‧‧Condensation section
141‧‧‧第一蒸氣通道 141‧‧‧First vapor channel
142‧‧‧第二蒸氣通道 142‧‧‧Second vapor channel
148‧‧‧端部 148‧‧‧End
149‧‧‧交接處 149‧‧‧ junction
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099110234A TWI486543B (en) | 2010-04-01 | 2010-04-01 | Flat type heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099110234A TWI486543B (en) | 2010-04-01 | 2010-04-01 | Flat type heat pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201135174A TW201135174A (en) | 2011-10-16 |
TWI486543B true TWI486543B (en) | 2015-06-01 |
Family
ID=46751764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099110234A TWI486543B (en) | 2010-04-01 | 2010-04-01 | Flat type heat pipe |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI486543B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184071B (en) * | 2020-09-15 | 2024-03-12 | 亚浩电子五金塑胶(惠州)有限公司 | Heat pipe |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08303972A (en) * | 1995-05-02 | 1996-11-22 | Fujikura Ltd | Flat heat pipe for use in cooling portable personal computer and its manufacturing method |
JPH08303971A (en) * | 1995-04-28 | 1996-11-22 | Fujikura Ltd | Flat heat pipe for use in cooling portable personal computer and its manufacturing method |
JP2007040597A (en) * | 2005-08-03 | 2007-02-15 | Matsushita Electric Ind Co Ltd | Flexible heat pipe |
CN101398272A (en) * | 2007-09-28 | 2009-04-01 | 富准精密工业(深圳)有限公司 | Hot pipe |
TWM367324U (en) * | 2009-05-19 | 2009-10-21 | Tai Sol Electronics Co Ltd | Heat pipe |
US20090308576A1 (en) * | 2008-06-17 | 2009-12-17 | Wang Cheng-Tu | Heat pipe with a dual capillary structure and manufacturing method thereof |
-
2010
- 2010-04-01 TW TW099110234A patent/TWI486543B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08303971A (en) * | 1995-04-28 | 1996-11-22 | Fujikura Ltd | Flat heat pipe for use in cooling portable personal computer and its manufacturing method |
JPH08303972A (en) * | 1995-05-02 | 1996-11-22 | Fujikura Ltd | Flat heat pipe for use in cooling portable personal computer and its manufacturing method |
JP2007040597A (en) * | 2005-08-03 | 2007-02-15 | Matsushita Electric Ind Co Ltd | Flexible heat pipe |
CN101398272A (en) * | 2007-09-28 | 2009-04-01 | 富准精密工业(深圳)有限公司 | Hot pipe |
US20090308576A1 (en) * | 2008-06-17 | 2009-12-17 | Wang Cheng-Tu | Heat pipe with a dual capillary structure and manufacturing method thereof |
TWM367324U (en) * | 2009-05-19 | 2009-10-21 | Tai Sol Electronics Co Ltd | Heat pipe |
Also Published As
Publication number | Publication date |
---|---|
TW201135174A (en) | 2011-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100581115B1 (en) | Flat plate heat transferring apparatus and Method for manufacturing the same | |
KR100495699B1 (en) | Flat plate heat transferring apparatus and manufacturing method thereof | |
CN101900507B (en) | Flat and thin type heat pipe | |
EP2713132A1 (en) | A vapor-based heat transfer apparatus | |
US8459340B2 (en) | Flat heat pipe with vapor channel | |
JP6648824B2 (en) | Loop heat pipe, method for manufacturing the same, and electronic equipment | |
TWI289655B (en) | Heat pipe | |
US20120227935A1 (en) | Interconnected heat pipe assembly and method for manufacturing the same | |
US20140166244A1 (en) | Flat heat pipe and method for manufacturing the same | |
TWI633269B (en) | Heat pipe | |
TWI585358B (en) | Heat pipe and method for manufacturing the same | |
JP2007507685A (en) | Plate heat transfer device | |
US20120175084A1 (en) | Heat pipe with a radial flow shunt design | |
US20110174466A1 (en) | Flat heat pipe | |
TWI457528B (en) | Plate type heat pipe | |
TWI486543B (en) | Flat type heat pipe | |
CN208936834U (en) | A kind of flexible flat heat pipe structure | |
TWI494531B (en) | Flat heat pipe and method for manufacturing the same | |
TWI482937B (en) | Flat type heat pipe | |
KR20120042403A (en) | Heat pipe and cooling apparatus having the same | |
TWI530655B (en) | Plate type heat pipe | |
TWI482938B (en) | Flat type heat pipe and method of manufacturing the same | |
CN108917444A (en) | A kind of flexible flat heat pipe structure | |
TWI702371B (en) | Composite siphon temperature plate | |
TWI497026B (en) | Flat heat pipe and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |