[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI481102B - Protected active metal electrode and device with the electrode - Google Patents

Protected active metal electrode and device with the electrode Download PDF

Info

Publication number
TWI481102B
TWI481102B TW102148520A TW102148520A TWI481102B TW I481102 B TWI481102 B TW I481102B TW 102148520 A TW102148520 A TW 102148520A TW 102148520 A TW102148520 A TW 102148520A TW I481102 B TWI481102 B TW I481102B
Authority
TW
Taiwan
Prior art keywords
oxide
lithium
metal
active metal
film
Prior art date
Application number
TW102148520A
Other languages
Chinese (zh)
Other versions
TW201432988A (en
Inventor
jin bao Wu
Li Duan Tsai
Jia Jen Chang
Ming Sheng Leu
Jenn Yeu Hwang
Chun Lung Li
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102148520A priority Critical patent/TWI481102B/en
Publication of TW201432988A publication Critical patent/TW201432988A/en
Application granted granted Critical
Publication of TWI481102B publication Critical patent/TWI481102B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

受保護的活性金屬電極及具有此電極的元件Protected active metal electrode and component having the same

本發明是有關於一種活性金屬電極的結構,且特別是有關於一種受保護的活性金屬電極及具有此電極的元件。The present invention relates to the structure of an active metal electrode, and more particularly to a protected active metal electrode and an element having the same.

提昇儲存電容量是目前二次電池研發重點之一。在二次電池中的鋰離子電池正極與負極分別使用可進行鋰離子嵌入/脫出的材料可具有最高的能量密度,但由於受限於正極與負極材料有限的電容量,使得鋰離子電池所能達到的最高能量密度受限於材料瓶頸而無法向上提升,因此急需具有高電容量的電極材料開發。Improving storage capacity is one of the current research and development priorities for secondary batteries. Lithium-ion battery cells can have the highest energy density by using lithium ion intercalation/extraction materials respectively in the positive and negative electrodes of the lithium ion battery, but the lithium ion battery is limited by the limited capacitance of the positive and negative materials. The highest energy density that can be achieved is limited by the material bottleneck and cannot be lifted upwards, so electrode material development with high capacitance is urgently needed.

在眾多材料之中,以使用活性金屬如鋰、鈉、鎂、鈣、鋁等作為電池的活性材料可具有輕量化與高電容量的優點,其中尤以鋰金屬本身以及與鋰可進行合金化之材料(如矽、錫、鋁等)皆可達到高電容量的效果,然而使用與鋰可進行合金化之材料在與鋰反應時則伴隨著不可避免的體積膨脹,在反覆充放電過程中使活性物質碎裂與脫落,導致其可循環壽命不佳。在活性金屬中, 例如鋰金屬本身雖具有高達3862mAh/g的電容量,但其活性極高,不但對於水氣與空氣都相當敏感,且在充放電過程中鋰金屬也會與電解液中的物質產生反應導至活性逐漸喪失而可提供的電容量降低,其他的活性金屬如鈉、鎂、鈣、鋁也都會同樣受到外界可反應物質的侵蝕而影響其電容量。另一方面例如鋰金屬表面在多次反覆充放電後會產生枝晶鋰沉積,此種表面的鋰沉積則隱藏了刺穿隔離膜使元件短路的安全疑慮。因此,若能在活性金屬電極的表面鍍製一導電保護層,應可有效的提高元件的電容量與提高其可循環之壽命。Among many materials, the use of active metals such as lithium, sodium, magnesium, calcium, aluminum, etc. as active materials for batteries can have the advantages of light weight and high capacitance, especially lithium metal itself and alloying with lithium. Materials such as tantalum, tin, aluminum, etc. can achieve high capacitance. However, materials that are alloyed with lithium are accompanied by inevitable volume expansion in the reaction with lithium, during the reverse charging and discharging process. The active material is broken and detached, resulting in poor cycle life. Among the active metals, For example, lithium metal itself has a capacitance of up to 3862 mAh/g, but its activity is extremely high, not only sensitive to water vapor and air, but also lithium metal reacts with substances in the electrolyte during charge and discharge. The gradual loss of activity and the reduction in the available capacity, other active metals such as sodium, magnesium, calcium, and aluminum are also affected by the external reactive substances and affect their capacitance. On the other hand, for example, the lithium metal surface will produce dendritic lithium deposition after repeated charging and discharging, and the lithium deposition on the surface hides the safety concerns of piercing the isolation film to short-circuit the element. Therefore, if a conductive protective layer can be plated on the surface of the active metal electrode, the capacitance of the component should be effectively improved and the life of the cycle can be improved.

目前作為活性金屬電極表面的保護層的有單層結構或多層結構。若表面保護層採用單層結構設計者,對活性電極在元件中使用時無法產生有效的抑制劣化效果。但若表面保護層採用多層結構設計者,則有相容性與導電能力的問題。在現有技術中,多層結構若包含離子傳導陶瓷、離子傳導鹽類、有機化合物、高分子等,容易有傳導電子能力不佳的問題。如果多層結構包含可與離子進行合金反應的金屬,則容易在與離子合金化過程則不可避免地產生體積膨脹,導致電極各層無法維持穩定相容性結構而影響使用壽命,甚至發生保護層材料碎裂的情形。At present, there is a single layer structure or a multilayer structure as a protective layer on the surface of the active metal electrode. If the surface protective layer is a single-layer structure designer, the active electrode cannot be effectively degraded when used in the element. However, if the surface protective layer is a multilayer structure designer, there is a problem of compatibility and electrical conductivity. In the prior art, if the multilayer structure contains an ion-conducting ceramic, an ion-conductive salt, an organic compound, a polymer, or the like, there is a problem that the electron-conducting ability is unfavorable. If the multilayer structure contains a metal that can be alloyed with ions, it is easy to cause volume expansion during the alloying process with the ions, resulting in the electrode layers not being able to maintain a stable compatible structure and affecting the service life, and even the protective layer material is broken. Cracked situation.

本發明的受保護的活性金屬電極,包括活性金屬基材與位於活性金屬基材的表面的保護層。這層保護層至少包括被覆於 活性金屬基材的所述表面之金屬薄膜與被覆於金屬薄膜的表面之導電薄膜。上述金屬薄膜的材料為鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢;導電薄膜的材料則是選自包括金屬薄膜的金屬之氮化物、金屬薄膜的金屬之碳化物、類鑽碳薄膜(DLC)及其組合其中之一。The protected active metal electrode of the present invention comprises an active metal substrate and a protective layer on the surface of the active metal substrate. This protective layer includes at least a metal thin film on the surface of the active metal substrate and a conductive film coated on the surface of the metal thin film. The material of the metal thin film is titanium, vanadium, chromium, zirconium, hafnium, molybdenum, niobium, tantalum or tungsten; the material of the electroconductive thin film is selected from the group consisting of a metal nitride including a metal thin film, a metal carbide of a metal thin film, and the like. Drilling carbon film (DLC) and one of its combinations.

本發明的又一種受保護的鋰金屬電極,包括鋰金屬基材與位於鋰金屬基材的表面的保護層。這層保護層至少包括被覆於鋰金屬基材的所述表面之金屬薄膜與被覆於金屬薄膜的表面之導電薄膜。上述金屬薄膜的材料為鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢;導電薄膜的材料則是選自包括金屬薄膜的金屬之氮化物、金屬薄膜的金屬之碳化物、類鑽碳薄膜(DLC)及其組合其中之一。Yet another protected lithium metal electrode of the present invention comprises a lithium metal substrate and a protective layer on the surface of the lithium metal substrate. The protective layer includes at least a metal thin film coated on the surface of the lithium metal substrate and a conductive thin film coated on the surface of the metal thin film. The material of the metal thin film is titanium, vanadium, chromium, zirconium, hafnium, molybdenum, niobium, tantalum or tungsten; the material of the electroconductive thin film is selected from the group consisting of a metal nitride including a metal thin film, a metal carbide of a metal thin film, and the like. Drilling carbon film (DLC) and one of its combinations.

本發明的另一種具有受保護的活性金屬電極的元件,包括正極、活性金屬負極、以及與正極和活性金屬負極接觸以提供傳導用活性金屬離子的電解質。所述活性金屬負極為上述受保護的活性金屬電極。Another element of the present invention having a protected active metal electrode includes a positive electrode, an active metal negative electrode, and an electrolyte in contact with the positive electrode and the active metal negative electrode to provide a conductive metal ion for conduction. The active metal negative electrode is the above-mentioned protected active metal electrode.

基於上述,本發明在活性金屬表面形成由特定金屬薄膜與導電薄膜構成之保護層,因此能解決既有使用活性金屬為負極的電化學元件之可循環壽命過低的缺點。而且當活性金屬電極在應用時對外界可反應物質的侵蝕可具有較佳的抵抗能力而不會因而造成活性喪失,因此當應用在元件中時,不會與電解液所含有的成份產生反應而影響其電化學可循環能力,也可有效避免充放 電循環過程鋰金屬因表面型態改變所產生的劣化現象。Based on the above, the present invention forms a protective layer composed of a specific metal thin film and a conductive thin film on the surface of the active metal, so that the disadvantage that the recyclable life of the electrochemical element using the active metal as the negative electrode is too low can be solved. Moreover, when the active metal electrode is applied to the externally reactive material, it can have better resistance without causing loss of activity, so when applied to the component, it does not react with the components contained in the electrolyte. Affecting its electrochemical recyclability, it can also effectively avoid charging and discharging Deterioration of lithium metal due to surface type changes during electrical cycling.

為讓本發明的上述特徵能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-described features of the present invention more comprehensible, the following detailed description of the embodiments will be described in detail below.

100‧‧‧活性金屬基材100‧‧‧Active metal substrate

100a、104a‧‧‧表面100a, 104a‧‧‧ surface

102‧‧‧保護層102‧‧‧Protective layer

104‧‧‧金屬薄膜104‧‧‧Metal film

106、300、302‧‧‧導電薄膜106, 300, 302‧‧‧ conductive film

200、400‧‧‧正極200, 400‧‧‧ positive

202、402‧‧‧活性金屬負極202, 402‧‧‧active metal anode

204、404‧‧‧電解質204, 404‧‧‧ electrolyte

圖1是依照本發明之第一實施例之一種受保護的活性金屬電極的剖面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a protected active metal electrode in accordance with a first embodiment of the present invention.

圖2是依照本發明之第二實施例之一種具有受保護的活性金屬電極的元件的剖面示意圖。2 is a schematic cross-sectional view of an element having a protected active metal electrode in accordance with a second embodiment of the present invention.

圖3是依照本發明之第三實施例之又一種受保護的活性金屬電極的剖面示意圖。3 is a cross-sectional view showing still another protected active metal electrode in accordance with a third embodiment of the present invention.

圖4是依照本發明之第四實施例之另一種具有受保護的活性金屬電極的元件的剖面示意圖。4 is a cross-sectional view showing another element having a protected active metal electrode in accordance with a fourth embodiment of the present invention.

圖5是實驗例三之循環次數與電容量的關係曲線圖。Fig. 5 is a graph showing the relationship between the number of cycles and the capacitance of Experimental Example 3.

圖6A是實驗例三之經20次循環後的對照元件一的SEM相片。Figure 6A is a SEM photograph of Control Element 1 after 20 cycles of Experimental Example 3.

圖6B是實驗例三之經20次循環後的元件一的SEM相片。Fig. 6B is a SEM photograph of the element one after the 20th cycle of the experimental example 3.

圖7是實驗例三之經20次循環後的對照元件一與元件一的阻抗圖譜。Fig. 7 is an impedance spectrum of the control element one and the element one after the 20th cycle of the experimental example 3.

圖1是依照本發明之第一實施例之一種受保護的活性金屬電極的剖面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a protected active metal electrode in accordance with a first embodiment of the present invention.

請參照圖1,本實施例的受保護的活性金屬電極包括活性金屬基材100與位於其表面100a的保護層102。該活性金屬基材100可包括鋰、鈉、鎂、鈣、鋁、或其組合,以高容量化、輕量化而言,可選用鋰。該保護層102至少包括被覆於活性金屬基材100的表面100a之金屬薄膜104與被覆於金屬薄膜104的表面104a之導電薄膜106。上述金屬薄膜104的厚度例如在10nm~100nm之間。而導電薄膜106的厚度例如在10nm~1000nm之間;較佳是50nm~1000nm之間。上述金屬薄膜104是不會與活性金屬基材100發生反應的金屬,可為鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢;以高穩定性、抗侵蝕能力佳、低阻抗等特性而言,可選用鈦、鉻、鈮或鉭。至於導電薄膜106的材料是選自包括金屬薄膜104的金屬之氮化物、金屬薄膜104的金屬之碳化物及其組合其中之一,這是因為金屬氮化物或金屬碳化物具有良好導電能力。在本實施例中,導電薄膜106的電阻率例如在10-5 Ω.cm~102 Ω.cm之間;較佳為10-5 Ω.cm~100 Ω.cm之間;更佳為10-5 Ω.cm~10-2 Ω.cm之間。若金屬薄膜104的材料是鈦、鉻、鈮或鉭,導電薄膜106的材料可為TiNx 、CrNx 、NbNx 或TaNx ,或為TiCx 、CrCx 、NbCx 或TaCx ,其中x=0.01~1.0;較佳為x=0.1~1.0之間;更佳為x=0.3~1.0之間。另外,若活性金屬基材100是鋰, 當導電薄膜106是金屬氮化物時,可適當調整金屬薄膜104的厚度,以確保氮不致影響到活性金屬基材100。Referring to FIG. 1, the protected active metal electrode of the present embodiment includes an active metal substrate 100 and a protective layer 102 on its surface 100a. The active metal substrate 100 may include lithium, sodium, magnesium, calcium, aluminum, or a combination thereof, and lithium may be used in terms of high capacity and weight. The protective layer 102 includes at least a metal thin film 104 coated on the surface 100a of the active metal substrate 100 and a conductive film 106 coated on the surface 104a of the metal thin film 104. The thickness of the metal thin film 104 is, for example, between 10 nm and 100 nm. The thickness of the conductive film 106 is, for example, between 10 nm and 1000 nm; preferably between 50 nm and 1000 nm. The metal thin film 104 is a metal that does not react with the active metal substrate 100, and may be titanium, vanadium, chromium, zirconium, hafnium, molybdenum, niobium, tantalum or tungsten; high stability, good corrosion resistance, low impedance For other characteristics, titanium, chromium, ruthenium or osmium may be used. The material of the electroconductive thin film 106 is one selected from the group consisting of a metal nitride including the metal thin film 104, a metal carbide of the metal thin film 104, and a combination thereof because the metal nitride or the metal carbide has good electrical conductivity. In this embodiment, the resistivity of the conductive film 106 is, for example, 10 -5 Ω. Cm~10 2 Ω. Between cm; preferably 10 -5 Ω. Cm~10 0 Ω. Between cm; more preferably 10 -5 Ω. Cm~10 -2 Ω. Between cm. If the material of the metal film 104 is titanium, chromium, tantalum or niobium, the material of the conductive film 106 may be TiN x , CrN x , NbN x or TaN x , or TiC x , CrC x , NbC x or TaC x , where x =0.01~1.0; preferably between x=0.1~1.0; more preferably between x=0.3~1.0. In addition, if the active metal substrate 100 is lithium, when the conductive film 106 is a metal nitride, the thickness of the metal film 104 can be appropriately adjusted to ensure that nitrogen does not affect the active metal substrate 100.

在第一實施例中,導電薄膜106也可為類鑽碳薄膜(DLC),其例如是四面體非晶碳(ta-C)結構,且sp3 比例>40%。若活性金屬基材100是鋰,由於類鑽碳薄膜不影響活性金屬基材100,所以對金屬薄膜104的厚度有較大裕度。而且本實施例可利用如陰極電弧(Cathodic Arc)沉積薄膜技術,在高真空下成長具備低電阻率和高附著力特性之薄膜。In the first embodiment, the conductive film 106 may also be a diamond-like carbon film (DLC), which is, for example, a tetrahedral amorphous carbon (ta-C) structure, and has a sp 3 ratio of >40%. If the active metal substrate 100 is lithium, since the diamond-like carbon film does not affect the active metal substrate 100, there is a large margin for the thickness of the metal film 104. Moreover, this embodiment can use a Cathodic Arc deposited thin film technique to grow a film having low resistivity and high adhesion characteristics under high vacuum.

圖2是依照本發明之第二實施例之一種具有受保護的活性金屬電極的元件的剖面示意圖。2 is a schematic cross-sectional view of an element having a protected active metal electrode in accordance with a second embodiment of the present invention.

請參照圖2,本實施例的元件包括正極200、活性金屬負極202、以及與正極200和活性金屬負極202接觸以提供傳導用活性金屬離子的電解質204。這裡的活性金屬負極202例如是圖1的受保護的活性金屬電極,其中包括活性金屬基材100與堆疊於其表面100a的金屬薄膜104與堆疊於其表面104a的導電薄膜106。至於正極200並未特別限定但可為選自包括含硫物質、金屬氧化物、碳材、以及其組合中的材料。前述含硫物質例如是選自包括硫、金屬硫化物、有機硫、以及其組合中的物質。前述金屬氧化物例如含鋰之金屬氧化物或不含鋰之金屬氧化物。所述含鋰之氧化物例如是選自包括鋰鈷氧化物、鋰鎳氧化物、鋰錳氧化物、鋰鎳錳氧化物、鋰鎳鈷氧化物、鋰鈷錳氧化物、鋰鎳鈷錳氧化物、鋰鐵氧化物、鋰鈷磷氧化物、鋰鎳磷氧化物、鋰鐵磷氧化物、鋰 錳磷氧化物、鋰鈷錳磷氧化物、鋰鎳鈷磷氧化物、鋰鐵鈷磷氧化物、鋰鐵鎳磷氧化物、鋰鐵錳磷氧化物、鋰鐵矽氧化物、鋰鐵硼氧化物、鋰鈦氧化物、鋰鈷鈦氧化物、鋰錳鈦氧化物、鋰鐵鈦氧化物、鋰鈦磷氧化物、鋰釩氧化物、鋰釩磷氧化物、以及其組合中的氧化物。所述不含鋰之氧化物例如是選自包括釩氧化物、錳氧化物、鎢氧化物、鈦氧化物、鉻氧化物、鐵氧化物、鈷氧化物、鎳氧化物、鈮氧化物、鉬氧化物、錫氧化物、鈉釩氧化物、鈉錳氧化物、鈉鈦氧化物、鈉鉻氧化物、鈉鐵氧化物、鈉鈷氧化物、鈉鎳錳氧化物、鈉鎳鈷氧化物、鈉鈷錳氧化物、鈉鎳鈷錳氧化物、鈉鈷磷氧化物、鈉鎳磷氧化物、鈉鐵磷氧化物、鈉錳磷氧化物、鈉鐵錳磷氧化物、鈉釩磷氧化物、鈉鈦磷氧化物、以及其組合中的氧化物。前述碳材例如是選自包括活性碳、碳黑、石墨、碳纖維、碳奈米管、中孔碳、石墨烯、以及其組合中的材料。前述電解質204並未特別限定但可為固態電解質、熔融鹽、離子液體、膠態電解質、或電解液。該電解質包括選自鋰離子、鈉離子、鎂離子、鈣離子、鋁離子、以及其組合中的活性金屬離子。舉例來說,前述電解質204可列舉含鋰離子的固態電解質、含鋰離子的熔融鹽、含鋰離子的離子液體、含鋰離子的膠態電解質、含鋰離子的電解液、含鈉離子的固態電解質、含鈉離子的熔融鹽、含鈉離子的離子液體、含鈉離子的膠態電解質、含鈉離子的電解液、含鎂離子的固態電解質、含鎂離子的熔融鹽、含鎂離子的離子液體、含鎂離子的膠態電解質、含鎂離子的電解液、含鈣離子的固 態電解質、含鈣離子的熔融鹽、含鈣離子的離子液體、含鈣離子的膠態電解質、含鈣離子的電解液、含鋁離子的固態電解質、含鋁離子的熔融鹽、含鋁離子的離子液體、含鋁離子的膠態電解質、或含鋁離子的電解液等。Referring to FIG. 2, the element of the present embodiment includes a positive electrode 200, an active metal negative electrode 202, and an electrolyte 204 that is in contact with the positive electrode 200 and the active metal negative electrode 202 to provide a conductive metal ion for conduction. The active metal negative electrode 202 herein is, for example, the protected active metal electrode of FIG. 1, including the active metal substrate 100 and the metal thin film 104 stacked on the surface 100a thereof and the conductive film 106 stacked on the surface 104a thereof. The positive electrode 200 is not particularly limited but may be selected from materials including sulfur-containing substances, metal oxides, carbon materials, and combinations thereof. The aforementioned sulfur-containing substance is, for example, a substance selected from the group consisting of sulfur, metal sulfide, organic sulfur, and combinations thereof. The aforementioned metal oxide is, for example, a lithium-containing metal oxide or a lithium-free metal oxide. The lithium-containing oxide is, for example, selected from the group consisting of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt oxide, lithium cobalt manganese oxide, lithium nickel cobalt manganese oxide. , lithium iron oxide, lithium cobalt phosphorus oxide, lithium nickel phosphorus oxide, lithium iron phosphorus oxide, lithium Manganese phosphorus oxide, lithium cobalt manganese phosphorus oxide, lithium nickel cobalt phosphorus oxide, lithium iron cobalt phosphorus oxide, lithium iron nickel phosphorus oxide, lithium iron manganese phosphorus oxide, lithium iron oxide, lithium iron boron oxidation , lithium titanium oxide, lithium cobalt titanium oxide, lithium manganese titanium oxide, lithium iron titanium oxide, lithium titanium phosphorus oxide, lithium vanadium oxide, lithium vanadium phosphorus oxide, and combinations thereof. The lithium-free oxide is, for example, selected from the group consisting of vanadium oxide, manganese oxide, tungsten oxide, titanium oxide, chromium oxide, iron oxide, cobalt oxide, nickel oxide, antimony oxide, molybdenum. Oxide, tin oxide, sodium vanadium oxide, sodium manganese oxide, sodium titanium oxide, sodium chromium oxide, sodium iron oxide, sodium cobalt oxide, sodium nickel manganese oxide, sodium nickel cobalt oxide, sodium Cobalt manganese oxide, sodium nickel cobalt manganese oxide, sodium cobalt phosphorus oxide, sodium nickel phosphorus oxide, sodium iron phosphorus oxide, sodium manganese phosphorus oxide, sodium iron manganese phosphorus oxide, sodium vanadium phosphorus oxide, sodium Titanium phosphorus oxides, and oxides in combinations thereof. The foregoing carbon material is, for example, a material selected from the group consisting of activated carbon, carbon black, graphite, carbon fiber, carbon nanotube, mesoporous carbon, graphene, and combinations thereof. The foregoing electrolyte 204 is not particularly limited but may be a solid electrolyte, a molten salt, an ionic liquid, a colloidal electrolyte, or an electrolytic solution. The electrolyte includes active metal ions selected from the group consisting of lithium ions, sodium ions, magnesium ions, calcium ions, aluminum ions, and combinations thereof. For example, the foregoing electrolyte 204 may be a solid electrolyte containing lithium ions, a molten salt containing lithium ions, an ionic liquid containing lithium ions, a colloidal electrolyte containing lithium ions, an electrolyte containing lithium ions, and a solid containing sodium ions. Electrolyte, molten salt containing sodium ion, ionic liquid containing sodium ion, colloidal electrolyte containing sodium ion, electrolyte containing sodium ion, solid electrolyte containing magnesium ion, molten salt containing magnesium ion, ion containing magnesium ion Liquid, colloidal electrolyte containing magnesium ions, electrolyte containing magnesium ions, solid with calcium ions Electrolyte, molten salt containing calcium ions, ionic liquid containing calcium ions, colloidal electrolyte containing calcium ions, electrolyte containing calcium ions, solid electrolyte containing aluminum ions, molten salt containing aluminum ions, aluminum-containing ions Ionic liquid, colloidal electrolyte containing aluminum ions, or electrolyte containing aluminum ions.

圖3是依照本發明之第三實施例之又一種受保護的活性金屬電極的剖面示意圖,其中使用與第一實施例相同的元件符號代表相同的構件。Figure 3 is a cross-sectional view showing still another protected active metal electrode in accordance with a third embodiment of the present invention, wherein the same reference numerals are used to denote the same members as the first embodiment.

在圖3中,除圖1顯示的活性金屬基材100與金屬薄膜104外,在金屬薄膜104的表面104a之導電薄膜106是由第一導電薄膜300和第二導電薄膜302所構成,其中第二導電薄膜302為類鑽碳薄膜(DLC),其厚度例如在10nm~1000nm之間。而第一導電薄膜300材料可為金屬薄膜104的金屬之氮化物或碳化物,如以金屬薄膜104為鈦、鉻、鈮或鉭為例,第一導電薄膜300的材料可為TiNx 、CrNx 、NbNx 、TaNx 、TiCx 、CrCx 、NbCx 或TaCx ,0.01<x<1.0。此外,第二導電薄膜302因為是類鑽碳薄膜,所以第一導電薄膜300的材料較佳是選用金屬薄膜104的金屬之碳化物。In FIG. 3, in addition to the active metal substrate 100 and the metal film 104 shown in FIG. 1, the conductive film 106 on the surface 104a of the metal film 104 is composed of a first conductive film 300 and a second conductive film 302, wherein The second conductive film 302 is a diamond-like carbon film (DLC) having a thickness of, for example, 10 nm to 1000 nm. The first conductive film 300 may be a metal nitride or a carbide of the metal film 104. For example, the metal film 104 is titanium, chromium, tantalum or niobium. The material of the first conductive film 300 may be TiN x or CrN. x , NbN x , TaN x , TiC x , CrC x , NbC x or TaC x , 0.01 < x < 1.0. In addition, since the second conductive film 302 is a diamond-like carbon film, the material of the first conductive film 300 is preferably a metal carbide of the metal film 104.

圖4是依照本發明之第四實施例之另一種具有受保護的活性金屬電極的元件的剖面示意圖。4 is a cross-sectional view showing another element having a protected active metal electrode in accordance with a fourth embodiment of the present invention.

請參照圖4,本實施例的元件包括正極400、活性金屬負極402、以及與正極400和活性金屬負極402接觸以提供傳導用活性金屬離子的電解質404。這裡的活性金屬負極402例如是圖3的受保護的活性金屬電極,其中包括活性金屬基材100與堆疊於 其表面100a的金屬薄膜104,還有由第一導電薄膜300和第二導電薄膜302所構成的導電薄膜106,其中第二導電薄膜302為類鑽碳薄膜(DLC),其厚度例如在10nm~1000nm之間。至於正極400並未特別限定但可為選自包括含硫物質、金屬氧化物、碳材、以及其組合中的材料。前述含硫物質例如是選自包括硫、金屬硫化物、有機硫、以及其組合中的物質。前述金屬氧化物例如含鋰之金屬氧化物或不含鋰之金屬氧化物。所述含鋰之氧化物例如是選自包括鋰鈷氧化物、鋰鎳氧化物、鋰錳氧化物、鋰鎳錳氧化物、鋰鎳鈷氧化物、鋰鈷錳氧化物、鋰鎳鈷錳氧化物、鋰鐵氧化物、鋰鈷磷氧化物、鋰鎳磷氧化物、鋰鐵磷氧化物、鋰錳磷氧化物、鋰鈷錳磷氧化物、鋰鎳鈷磷氧化物、鋰鐵鈷磷氧化物、鋰鐵鎳磷氧化物、鋰鐵錳磷氧化物、鋰鐵矽氧化物、鋰鐵硼氧化物、鋰鈦氧化物、鋰鈷鈦氧化物、鋰錳鈦氧化物、鋰鐵鈦氧化物、鋰鈦磷氧化物、鋰釩氧化物、鋰釩磷氧化物、以及其組合中的氧化物。所述不含鋰之氧化物例如是選自包括釩氧化物、錳氧化物、鎢氧化物、鈦氧化物、鉻氧化物、鐵氧化物、鈷氧化物、鎳氧化物、鈮氧化物、鉬氧化物、錫氧化物、鈉釩氧化物、鈉錳氧化物、鈉鈦氧化物、鈉鉻氧化物、鈉鐵氧化物、鈉鈷氧化物、鈉鎳錳氧化物、鈉鎳鈷氧化物、鈉鈷錳氧化物、鈉鎳鈷錳氧化物、鈉鈷磷氧化物、鈉鎳磷氧化物、鈉鐵磷氧化物、鈉錳磷氧化物、鈉鐵錳磷氧化物、鈉釩磷氧化物、鈉鈦磷氧化物、以及其組合中的氧化物。前述碳材例如是選自包括活性碳、碳黑、石墨、碳纖維、碳奈米 管、中孔碳、石墨烯、以及其組合中的材料。前述電解質404並未特別限定但可為固態電解質、熔融鹽、離子液體、膠態電解質、或電解液。該電解質包括選自鋰離子、鈉離子、鎂離子、鈣離子、鋁離子、以及其組合中的活性金屬離子。舉例來說,前述電解質404可列舉含鋰離子的固態電解質、含鋰離子的熔融鹽、含鋰離子的離子液體、含鋰離子的膠態電解質、含鋰離子的電解液、含鈉離子的固態電解質、含鈉離子的熔融鹽、含鈉離子的離子液體、含鈉離子的膠態電解質、含鈉離子的電解液、含鎂離子的固態電解質、含鎂離子的熔融鹽、含鎂離子的離子液體、含鎂離子的膠態電解質、含鎂離子的電解液、含鈣離子的固態電解質、含鈣離子的熔融鹽、含鈣離子的離子液體、含鈣離子的膠態電解質、含鈣離子的電解液、含鋁離子的固態電解質、含鋁離子的熔融鹽、含鋁離子的離子液體、含鋁離子的膠態電解質、或含鋁離子的電解液等。Referring to FIG. 4, the element of the present embodiment includes a positive electrode 400, an active metal negative electrode 402, and an electrolyte 404 that is in contact with the positive electrode 400 and the active metal negative electrode 402 to provide a conductive metal ion for conduction. The active metal anode 402 herein is, for example, the protected active metal electrode of FIG. 3, including the active metal substrate 100 and stacked thereon. The metal film 104 of the surface 100a has a conductive film 106 composed of a first conductive film 300 and a second conductive film 302, wherein the second conductive film 302 is a diamond-like carbon film (DLC) having a thickness of, for example, 10 nm. Between 1000nm. The positive electrode 400 is not particularly limited but may be selected from materials including sulfur-containing substances, metal oxides, carbon materials, and combinations thereof. The aforementioned sulfur-containing substance is, for example, a substance selected from the group consisting of sulfur, metal sulfide, organic sulfur, and combinations thereof. The aforementioned metal oxide is, for example, a lithium-containing metal oxide or a lithium-free metal oxide. The lithium-containing oxide is, for example, selected from the group consisting of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt oxide, lithium cobalt manganese oxide, lithium nickel cobalt manganese oxide. , lithium iron oxide, lithium cobalt phosphorus oxide, lithium nickel phosphorus oxide, lithium iron phosphorus oxide, lithium manganese phosphorus oxide, lithium cobalt manganese phosphorus oxide, lithium nickel cobalt phosphorus oxide, lithium iron cobalt phosphorus oxidation , lithium iron nickel phosphorus oxide, lithium iron manganese phosphorus oxide, lithium iron lanthanum oxide, lithium iron boron oxide, lithium titanium oxide, lithium cobalt titanium oxide, lithium manganese titanium oxide, lithium iron titanium oxide , lithium titanium phosphorus oxide, lithium vanadium oxide, lithium vanadium phosphorus oxide, and combinations thereof. The lithium-free oxide is, for example, selected from the group consisting of vanadium oxide, manganese oxide, tungsten oxide, titanium oxide, chromium oxide, iron oxide, cobalt oxide, nickel oxide, antimony oxide, molybdenum. Oxide, tin oxide, sodium vanadium oxide, sodium manganese oxide, sodium titanium oxide, sodium chromium oxide, sodium iron oxide, sodium cobalt oxide, sodium nickel manganese oxide, sodium nickel cobalt oxide, sodium Cobalt manganese oxide, sodium nickel cobalt manganese oxide, sodium cobalt phosphorus oxide, sodium nickel phosphorus oxide, sodium iron phosphorus oxide, sodium manganese phosphorus oxide, sodium iron manganese phosphorus oxide, sodium vanadium phosphorus oxide, sodium Titanium phosphorus oxides, and oxides in combinations thereof. The foregoing carbon material is, for example, selected from the group consisting of activated carbon, carbon black, graphite, carbon fiber, carbon nanotubes. Materials in tubes, mesoporous carbon, graphene, and combinations thereof. The foregoing electrolyte 404 is not particularly limited but may be a solid electrolyte, a molten salt, an ionic liquid, a colloidal electrolyte, or an electrolytic solution. The electrolyte includes active metal ions selected from the group consisting of lithium ions, sodium ions, magnesium ions, calcium ions, aluminum ions, and combinations thereof. For example, the foregoing electrolyte 404 may be a solid electrolyte containing lithium ions, a molten salt containing lithium ions, an ionic liquid containing lithium ions, a colloidal electrolyte containing lithium ions, an electrolyte containing lithium ions, and a solid containing sodium ions. Electrolyte, molten salt containing sodium ion, ionic liquid containing sodium ion, colloidal electrolyte containing sodium ion, electrolyte containing sodium ion, solid electrolyte containing magnesium ion, molten salt containing magnesium ion, ion containing magnesium ion Liquid, colloidal electrolyte containing magnesium ions, electrolyte containing magnesium ions, solid electrolyte containing calcium ions, molten salt containing calcium ions, ionic liquid containing calcium ions, colloidal electrolyte containing calcium ions, calcium-containing ions An electrolyte, a solid electrolyte containing aluminum ions, a molten salt containing aluminum ions, an ionic liquid containing aluminum ions, a colloidal electrolyte containing aluminum ions, or an electrolyte containing aluminum ions.

以下列舉數個實驗來證實本發明的上述實施例之效果。Several experiments are listed below to confirm the effects of the above-described embodiments of the present invention.

製作例一 :製作金屬鋰/鈦/碳化鈦/類鑽薄膜的鋰金屬電極 Production Example 1 : Lithium metal electrode for metal lithium/titanium/titanium carbide/dye-like film

鍍膜製程:直流電弧離子鍍膜,是由帶負電的陰極靶材與帶正電之陽極引弧器所組成,所使用的為低電壓(~20V)與電流從數十安培至一百安培左右。由陰極弧斑所產生之電漿會快速地擴散至真空腔,以進行鍍膜。陰極靶材包括純石墨碳靶與鈦金屬靶材來製作類鑽薄膜(DLC)與碳化鈦薄膜,其沉積薄膜的製程溫度 約為50℃~100℃,製程的壓力約為10-4 Pa~1Pa,通入的氣體為氬氣或甲烷氣體。Coating process: DC arc ion plating consists of a negatively charged cathode target and a positively charged anode arc starter using low voltage (~20V) and current from tens of amps to one hundred amps. The plasma generated by the cathodic arc spot rapidly diffuses into the vacuum chamber for coating. The cathode target comprises a pure graphite carbon target and a titanium metal target to produce a diamond-like film (DLC) and a titanium carbide film, and the deposition temperature of the deposited film is about 50 ° C ~ 100 ° C, and the process pressure is about 10 -4 Pa ~ 1Pa, the gas that is introduced is argon or methane gas.

利用上述鍍膜製程在鋰金屬基材上依序披覆鈦金屬薄膜、碳化鈦層與類鑽薄膜結構,如圖3的結構。而結構中之類鑽薄膜的厚度約530nm,碳化鈦薄膜的厚度在50nm~180nm之間,金屬鈦薄膜的厚度在10nm~95nm之間。The titanium metal film, the titanium carbide layer and the diamond-like film structure are sequentially coated on the lithium metal substrate by the above coating process, as shown in FIG. The thickness of the drill film in the structure is about 530 nm, the thickness of the titanium carbide film is between 50 nm and 180 nm, and the thickness of the titanium metal film is between 10 nm and 95 nm.

經測量得到保護層(鈦/碳化鈦/類鑽薄膜)的電阻率為8×10-4 Ω.cm。而在組成結構的分析是以XPS鑑定其碳之鍵結型式。由XPS之能譜解析得知,此類鑽薄膜具C-O、sp3 與sp2 之鍵結其束縛能之位置分別為286.4、284.9和284.2eV。計算其sp3 比例為42%。The resistivity of the protective layer (titanium/titanium carbide/dye-like film) was measured to be 8×10 -4 Ω. Cm. The analysis of the compositional structure is based on XPS to identify its carbon bond pattern. According to the energy spectrum analysis of XPS, the binding energy of such a drill film with CO, sp 3 and sp 2 is 286.4, 284.9 and 284.2 eV, respectively. The sp 3 ratio was calculated to be 42%.

製作例二 :製作金屬鋰/鈦/氮化鈦的鋰金屬電極 Production Example 2 : Lithium metal electrode for metal lithium/titanium/titanium nitride

如同製作例一的方式,但使用鈦金屬為靶材,所通入的氣體以氮氣取代甲烷氣體,在鋰金屬基材上依序披覆鈦金屬薄膜與氮化鈦(TiNx )薄膜,如圖1的結構。而結構中之氮化鈦(TiNx )薄膜的厚度在50nm~500nm之間,金屬鈦薄膜的厚度在25nm~95nm之間。As in the case of the first example, but using titanium as a target, the gas introduced is replaced with nitrogen gas by methane gas, and a titanium metal film and a titanium nitride (TiN x ) film are sequentially coated on the lithium metal substrate, such as The structure of Figure 1. The thickness of the titanium nitride (TiN x ) film in the structure is between 50 nm and 500 nm, and the thickness of the titanium metal film is between 25 nm and 95 nm.

經測量得到保護層(Ti/TiNx )的電阻率約為9.9×10-5 Ω.cm。而在組成結構的分析是以XPS鑑定其鈦與氮之鍵結型式。由XPS之能譜解析得知,氮化鈦(TiNx )薄膜之Ti 2p3/2 的束縛能(binding energy)在454.9eV相當接近TiN材料之值(454.8eV)。而N 1s束縛能的位置為397.2eV,是氮化物之能譜位置。由Ti與N能譜之束縛能相互比對,所成長之薄膜是Ti與N相互鍵 結而形成的TiN0.98 薄膜。The resistivity of the protective layer (Ti/TiN x ) is measured to be about 9.9×10 -5 Ω. Cm. The analysis of the compositional structure is based on XPS to identify its bond pattern of titanium and nitrogen. From the energy spectrum analysis of XPS, the binding energy of Ti 2p 3/2 of titanium nitride (TiN x ) film is quite close to the value of TiN material (454.8 eV) at 454.9 eV. The position of the N 1s binding energy is 397.2 eV, which is the energy spectrum position of the nitride. The binding energy of Ti and N energy spectrum can be compared with each other, and the grown film is a TiN 0.98 film formed by bonding Ti and N to each other.

製作例三 :製作金屬鋰/鈦/碳化鈦的鋰金屬電極 Production Example 3 : Lithium metal electrode for metal lithium/titanium/titanium carbide

如同製作例一的方式,但使用鈦金屬為靶材,在鋰金屬基材上依序披覆鈦金屬薄膜與碳化鈦(TiCx )薄膜,如圖1的結構。結構中之碳化鈦薄膜的厚度在50nm~500nm之間,金屬鈦薄膜的厚度在25nm~95nm之間。As in the case of the first example, titanium metal was used as a target, and a titanium metal film and a titanium carbide (TiC x ) film were sequentially coated on the lithium metal substrate, as shown in FIG. The thickness of the titanium carbide film in the structure is between 50 nm and 500 nm, and the thickness of the metal titanium film is between 25 nm and 95 nm.

經測量得到保護層(鈦/碳化鈦)的電阻率為1.5×10-4 Ω.cm。而在組成結構的分析是以XPS鑑定其碳與鈦之鍵結型式。由XPS之能譜解析得知,碳化鈦薄膜之Ti 2p3/2的束縛能在454.6eV。而C 1s束縛能的位置為281.8eV,是碳化物之能譜位置。由Ti與C能譜之束縛能相互比對,所成長之薄膜是Ti與C相互鍵結而形成TiC0.95 之薄膜。The resistivity of the protective layer (titanium/titanium carbide) was measured to be 1.5×10 -4 Ω. Cm. The analysis of the compositional structure is based on XPS to identify its carbon-titanium bonding pattern. From the energy spectrum analysis of XPS, the Ti 2p3/2 binding energy of the titanium carbide film is 454.6 eV. The position of the C 1s binding energy is 281.8 eV, which is the energy spectrum position of the carbide. The Ti and C energy spectrum binding can be compared with each other. The grown film is a film in which Ti and C are bonded to each other to form TiC 0.95 .

製作例四 :製作金屬鋰/鈦/氮化鈦的鋰金屬電極 Production Example 4 : Lithium metal electrode for metal lithium/titanium/titanium nitride

如同製作例二的方式,但控制氮氣流量以於鋰金屬基材上依序披覆鈦金屬薄膜與氮化鈦(TiNx )薄膜,如圖1的結構。而結構中之氮化鈦(TiNx )的組成0.01<x<1.0,厚度在100nm~180nm之間,其餘與製作例二相同。經測量得到保護層(Ti/TiNx )的電阻率約為6.1×10-5 Ω.cm。由XPS之能譜解析得知,所成長之薄膜是Ti與N相互鍵結而形成的氮化鈦(TiNx )薄膜。As in the second embodiment, the nitrogen flow rate was controlled to sequentially coat the titanium metal film and the titanium nitride (TiN x ) film on the lithium metal substrate, as shown in FIG. The composition of titanium nitride (TiN x ) in the structure is 0.01<x<1.0, and the thickness is between 100 nm and 180 nm, and the rest is the same as in Production Example 2. The resistivity of the protective layer (Ti/TiN x ) is estimated to be about 6.1×10 -5 Ω. Cm. From the energy spectrum analysis of XPS, the grown film is a titanium nitride (TiN x ) film formed by bonding Ti and N to each other.

製作例五 :製作金屬鋰/鈦/碳化鈦的鋰金屬電極 Production Example 5 : Lithium metal electrode for metal lithium/titanium/titanium carbide

如同製作例三的方式,但控制甲烷流量以於鋰金屬基材上依序披覆鈦金屬薄膜與碳化鈦(TiCx )薄膜,如圖1的結構。 而結構中碳化鈦(TiCx )的組成0.01<x<1.0,厚度在100nm~180nm之間,其餘與製作例二相同。經測量得到保護層(Ti/TiCx )的電阻率約為1.8×10-4 Ω.cm。由XPS之能譜解析得知,所成長之薄膜是Ti與C相互鍵結而形成的碳化鈦(TiCx )薄膜。As in the case of the third example, the methane flow rate was controlled to sequentially coat the titanium metal film and the titanium carbide (TiC x ) film on the lithium metal substrate, as shown in FIG. The composition of titanium carbide (TiC x ) in the structure is 0.01<x<1.0, and the thickness is between 100 nm and 180 nm, and the rest is the same as in the second production example. The resistivity of the protective layer (Ti/TiC x ) is measured to be about 1.8×10 -4 Ω. Cm. From the energy spectrum analysis of XPS, the grown film is a titanium carbide (TiC x ) film formed by bonding Ti and C to each other.

製作例六 :製作金屬鋰/鉻/氮化鉻的鋰金屬電極 Production Example 6 : Lithium metal electrode for metal lithium/chromium/chromium nitride

如同製作例一的方式,但使用鉻金屬為靶材,所通入的氣體以氮氣取代甲烷氣體,在鋰金屬基材上依序披覆鉻金屬薄膜與氮化鉻(CrNx )薄膜,如圖1的結構。而結構中氮化鉻(CrNx )的組成是0.01<x<1.0。氮化鉻薄膜厚度在50nm~500nm之間,鉻金屬薄膜之厚度則在25nm~95nm之間。As in the case of the first example, but using chromium metal as the target, the gas introduced replaces the methane gas with nitrogen, and sequentially chrome metal film and chromium nitride (CrN x ) film are coated on the lithium metal substrate, such as The structure of Figure 1. The composition of chromium nitride (CrN x ) in the structure is 0.01 < x < 1.0. The thickness of the chromium nitride film is between 50 nm and 500 nm, and the thickness of the chromium metal film is between 25 nm and 95 nm.

經測量得到保護層(Cr/CrNx )的電阻率約為1.4×10-4 Ω.cm。而在組成結構的分析是以XPS鑑定其鉻與氮之鍵結型式。由XPS之能譜解析得知,氮化鉻薄膜之Cr 2p3/2的束縛能在574.9eV。而N 1s束縛能的位置為397.1eV,是氮化物之能譜位置。由Cr與N能譜之束縛能相互比對,所成長之薄膜是Cr與N相互鍵結而形成的CrN0.85 薄膜。The resistivity of the protective layer (Cr/CrN x ) is estimated to be about 1.4×10 -4 Ω. Cm. The analysis of the compositional structure is based on XPS to identify its bond pattern of chromium and nitrogen. From the energy spectrum analysis of XPS, the binding energy of Cr 2p3/2 of the chromium nitride film is 574.9 eV. The position of the N 1s binding energy is 397.1 eV, which is the energy spectrum position of the nitride. The binding energy of Cr and N energy spectrum can be compared with each other, and the grown film is a CrN 0.85 film formed by bonding Cr and N to each other.

製作例七 :製作金屬鋰/鉻/碳化鉻的鋰金屬電極 Production Example 7 : Lithium metal electrode for metal lithium/chromium/chromium carbide

如同製作例一的方式,但使用鉻金屬為靶材,在鋰金屬基材上依序披覆鉻金屬薄膜與碳化鉻(CrCx )薄膜,如圖1的結構。而結構中碳化鉻(CrCx )的組成是0.01<x<1.0。碳化鉻薄膜厚度50nm~500nm之間,鉻金屬薄膜之厚度則在25nm~100nm之間。As in the case of the first example, a chromium metal was used as a target, and a chromium metal film and a chromium carbide (CrC x ) film were sequentially coated on the lithium metal substrate, as shown in FIG. The composition of chromium carbide (CrC x ) in the structure is 0.01 < x < 1.0. The thickness of the chromium carbide film is between 50 nm and 500 nm, and the thickness of the chromium metal film is between 25 nm and 100 nm.

經測量得到保護層(Cr/CrCx )的電阻率約為7.8×10-4 Ω.cm。由XPS之能譜解析得知,氮化鉻薄膜之Cr 2p3/2的束縛能在574.7eV。而C 1s束縛能的位置為283.0eV,是碳化物之能譜位置。由Cr與C能譜之束縛能相互比對,所成長之薄膜是Cr與C相互鍵結而形成的CrC0.37 薄膜。The resistivity of the protective layer (Cr/CrC x ) is estimated to be about 7.8×10 -4 Ω. Cm. From the energy spectrum analysis of XPS, the binding energy of Cr 2p3/2 of the chromium nitride film is 574.7 eV. The position of the C 1s binding energy is 283.0 eV, which is the energy spectrum position of the carbide. The binding energy of Cr and C energy spectrum can be compared with each other, and the grown film is a CrC 0.37 film formed by bonding Cr and C to each other.

製作例八 :製作金屬鋰/鈮/氮化鈮的鋰金屬電極 Production Example 8 : Lithium metal electrode for metal lithium/germanium/tantalum nitride

如同製作例一的方式,但使用鈮金屬為靶材,所通入的氣體以氮氣取代甲烷氣體,在鋰金屬基材上依序披覆鈮金屬薄膜與氮化鈮(NbNx )薄膜,如圖1的結構。而結構中氮化鉻(NbNx )的組成是0.01<x<1.0。氮化鈮薄膜厚度50nm~500nm之間,鈮金屬薄膜之厚度則在25nm~95nm之間。As in the case of the first example, but using a base metal as a target, the introduced gas replaces the methane gas with nitrogen, and the tantalum metal film and the tantalum nitride (NbN x ) film are sequentially coated on the lithium metal substrate, such as The structure of Figure 1. The composition of chromium nitride (NbN x ) in the structure is 0.01 < x < 1.0. The thickness of the tantalum nitride film is between 50 nm and 500 nm, and the thickness of the tantalum metal film is between 25 nm and 95 nm.

經測量得到保護層(Nb/NbNx )的電阻率約為4.8×10-5 Ω.cm。而在組成結構的分析是以XPS鑑定其鈮與氮之鍵結型式。由XPS之能譜解析得知,所成長之薄膜是Nb與N相互鍵結而形成的氮化鈮(NbNx )薄膜。The resistivity of the protective layer (Nb/NbN x ) is estimated to be about 4.8×10 -5 Ω. Cm. The analysis of the compositional structure is based on XPS to identify the bond pattern of bismuth and nitrogen. From the energy spectrum analysis of XPS, the grown film is a tantalum nitride (NbN x ) film formed by bonding Nb and N to each other.

製作例九 :製作金屬鋰/鈮/碳化鈮的鋰金屬電極 Production Example 9 : Lithium Metal Electrode for Metal Lithium/Yttrium/Carbide

如同製作例一的方式,但使用鈮金屬為靶材,在鋰金屬基材上依序披覆鈮金屬薄膜與碳化鈮(NbCx )薄膜,如圖1的結構。而結構中氮化鉻(NbCx )的組成是0.01<x<1.0。碳化鈮薄膜厚度50nm~500nm之間,鈮金屬薄膜之厚度則在25nm~95nm之間。As in the case of the first example, but using a base metal as a target, a tantalum metal film and a niobium carbide (NbC x ) film are sequentially coated on the lithium metal substrate, as shown in FIG. The composition of chromium nitride (NbC x ) in the structure is 0.01 < x < 1.0. The thickness of the tantalum carbide film is between 50 nm and 500 nm, and the thickness of the tantalum metal film is between 25 nm and 95 nm.

而在組成結構的分析是以XPS鑑定其碳與鈮之鍵結型式。由XPS之能譜解析得知,所成長之薄膜是Nb與C相互鍵結而形成的碳化鈮(NbCx )薄膜。The analysis of the compositional structure is based on XPS to identify the bonding pattern of carbon and yttrium. From the energy spectrum analysis of XPS, the grown film is a niobium carbide (NbC x ) film formed by bonding Nb and C to each other.

製作例十 :製作金屬鋰/鉭/氮化鉭的鋰金屬電極 Production Example 10 : Lithium metal electrode for metal lithium/germanium/tantalum nitride

如同製作例一的方式,但使用鉭金屬為靶材,所通入的氣體以氮氣取代甲烷氣體,在鋰金屬基材上依序披覆鉭金屬薄膜與氮化鉭(TaNx )薄膜,如圖1的結構。而結構中氮化鉻(TaNx )的組成是0.01<x<1.0。氮化鉭薄膜厚度50nm~500nm之間,鉭金屬薄膜之厚度則在25nm~95nm之間。As in the case of the first example, but using a base metal as a target, the introduced gas replaces the methane gas with nitrogen, and the tantalum metal film and tantalum nitride (TaN x ) film are sequentially coated on the lithium metal substrate, such as The structure of Figure 1. The composition of chromium nitride (TaN x ) in the structure is 0.01 < x < 1.0. The thickness of the tantalum nitride film is between 50 nm and 500 nm, and the thickness of the tantalum metal film is between 25 nm and 95 nm.

經測量得到保護層(Ta/TaNx )的電阻率約為2.7×10-4 Ω.cm。而在組成結構的分析是以XPS鑑定其鉭與氮之鍵結型式。由XPS之能譜解析得知,所成長之薄膜是Ta與N相互鍵結而形成的氮化鉭(TaNx )薄膜。The resistivity of the protective layer (Ta/TaN x ) was measured to be about 2.7 × 10 -4 Ω. Cm. The analysis of the compositional structure is based on XPS to identify the bond pattern of bismuth and nitrogen. From the energy spectrum analysis of XPS, the grown film is a tantalum nitride (TaN x ) film formed by bonding Ta and N to each other.

製作例十一 :製作金屬鋰/鉭/碳化鉭的鋰金屬電極 Production Example 11 : Lithium Metal Electrode for Metal Lithium/钽/Carbide

如同製作例一的方式,但使用鉭金屬為靶材,在鋰金屬基材上依序披覆鉭金屬薄膜與碳化鈮(TaCx )薄膜,如圖1的結構。而結構中碳化鈮(TaCx )的組成是0.01<x<1.0。碳化鉭薄膜厚度50nm~500nm之間,鉭金屬薄膜之厚度則在25nm~95nm之間。As a way of forming an example, but using tantalum as a target, a lithium metal on a substrate sequentially coated with a thin metal film of tantalum, niobium carbide (TaC x) film, a structure of FIG. The composition of tantalum carbide (TaC x ) in the structure is 0.01 < x < 1.0. The thickness of the tantalum carbide film is between 50 nm and 500 nm, and the thickness of the tantalum metal film is between 25 nm and 95 nm.

而在組成結構的分析是以XPS鑑定其碳與鉭之鍵結型式。由XPS之能譜解析得知,所成長之薄膜是Ta與C相互鍵結而形成的碳化鉭(TaCx )薄膜。The analysis of the compositional structure is based on XPS to identify the bonding pattern of carbon and yttrium. From the energy spectrum analysis of XPS, the grown film is a tantalum carbide (TaC x ) film formed by bonding Ta and C to each other.

製作比較例一Production comparison example 1

對鋰金屬基材表面不作任何保護。No protection is given to the surface of the lithium metal substrate.

製作比較例二Production comparison example 2

在鋰金屬基材表面只披覆鋰氮化物薄膜。製作鋰氮化物 薄膜的方式是,於真空腔體內通入2.8×10-1 Pa~3Pa的混合氣體(氮氣和氬氣),製程溫度為50℃~70℃,基材偏壓約為400V~150V,製程時間5分鐘~20分鐘。Only the lithium nitride film is coated on the surface of the lithium metal substrate. The lithium nitride film is formed by introducing a mixed gas (nitrogen gas and argon gas) of 2.8 × 10 -1 Pa to 3 Pa into the vacuum chamber at a process temperature of 50 ° C to 70 ° C and a substrate bias of about 400 V. 150V, process time 5 minutes to 20 minutes.

實驗例一Experimental example one

分別以製作例四、製作比較例一與製作比較例二的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件一、對照元件一和對照元件二,如圖2的元件結構。In the production example 4, the lithium metal electrode of Comparative Example 1 and Comparative Example 2 was prepared as a negative electrode material, and lithium cobalt oxide was used as a positive electrode and a binder was mixed and coated on the aluminum foil as a positive electrode, and the electrolyte was composed of a lithium ion-containing electrolyte. Element 1, control element one and control element two, as shown in the element structure of FIG.

將上述三個元件進行測試,得到下表一。The above three components were tested to obtain the following table 1.

Zp:正極阻抗;Ze:電解液阻抗;Zn:負極阻抗。Zp: positive electrode impedance; Ze: electrolyte impedance; Zn: negative electrode impedance.

由表一可知,採用傳統的非導電性鋰氮化物保護鋰電極方式,會造成阻抗大幅上升。而本發明的元件一在阻抗方面可較未保護鋰電極具有更低的阻抗表現。As can be seen from Table 1, the use of conventional non-conductive lithium nitride to protect the lithium electrode method will result in a significant increase in impedance. The component of the present invention, in terms of impedance, can have a lower impedance performance than the unprotected lithium electrode.

實驗例二Experimental example 2

測量實驗例一的元件一和對照元件一的初次電容量並與其總阻抗一併記載於下表二。The initial capacitance of the component 1 and the control component 1 of the experimental example 1 was measured and recorded together with the total impedance thereof in the following Table 2.

另外,以實驗例一的相同方式組成元件一和對照元件一,但組成前需對鋰負極進行以下劣化試驗。Further, the element one and the control element were combined in the same manner as in Experimental Example 1, except that the lithium negative electrode was subjected to the following deterioration test before the composition.

劣化試驗:將各種鋰電極暴露於25℃、70%RH的大氣環境下3分鐘。Deterioration test: Various lithium electrodes were exposed to an atmosphere of 25 ° C and 70% RH for 3 minutes.

然後測量具有經劣化試驗的鋰負極之元件一和對照元件一的初次電容量與總阻抗,結果同樣記載於下表二。Then, the initial capacitance and the total impedance of the element 1 and the control element 1 of the lithium negative electrode having the deterioration test were measured, and the results are also shown in Table 2 below.

由表二可知,未保護鋰電極在劣化試驗後總阻抗大幅上升,且活性電容量明顯降低。使用製作例四之受保護的鋰金屬電極為負極之設計,即使經劣化試驗,其阻抗上升幅度仍遠較未保護之鋰電極者為低,且活性電容量損失幅度小。As can be seen from Table 2, the total resistance of the unprotected lithium electrode was greatly increased after the deterioration test, and the active capacitance was remarkably lowered. The design of the protected lithium metal electrode of the fourth example was used as the negative electrode, and even after the deterioration test, the impedance increase range was much lower than that of the unprotected lithium electrode, and the active capacitance loss range was small.

實驗例三Experimental example three

以實驗例一的相同方式組成元件一、對照元件一和對照元件二,然後進行20次的充放電循環,其循環次數與電容量之關係顯示於圖5,且初次與20次循環後的電容量結果記載於下表三。In the same manner as in Experimental Example 1, component one, control element one and control element two were combined, and then 20 charge-discharge cycles were performed. The relationship between the number of cycles and the capacitance is shown in Fig. 5, and the electricity after the first and 20 cycles. The capacity results are reported in Table 3 below.

實驗例四Experimental example four

以製作例二的鋰金屬電極為負極材料,並採用鋰鈷氧化 物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件二,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the second example is used as a negative electrode material, and is oxidized by lithium cobalt. The positive electrode and the binder are mixed and coated on the aluminum foil as the positive electrode, and the electrolyte containing the lithium ion is composed of the component 2, as shown in the element structure of FIG. 2, and then the charge and discharge cycle is performed 20 times, and the electricity after the first time and 20 cycles The capacity results are reported in Table 3 below.

實驗例五Experimental example five

以製作例三的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件三,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the third example is used as the negative electrode material, and the lithium cobalt oxide is used as the positive electrode and the binder is mixed and coated on the aluminum foil as the positive electrode, and the electrolyte containing the lithium ion is composed of the component three, as shown in the component structure of FIG. The charge and discharge cycle was performed 20 times, and the results of the capacitance after the first and 20 cycles are described in Table 3 below.

實驗例六Experimental example six

以製作例五的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件四,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the fifth example is used as the negative electrode material, and the lithium cobalt oxide is used as the positive electrode and the binder is mixed and coated on the aluminum foil as the positive electrode, and the electrolyte containing the lithium ion is composed of the component four, as shown in the component structure of FIG. The charge and discharge cycle was performed 20 times, and the results of the capacitance after the first and 20 cycles are described in Table 3 below.

實驗例七Experimental example seven

以製作例六的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件五,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the sixth example is used as the negative electrode material, and the lithium cobalt oxide is used as the positive electrode and the binder is mixed and coated on the aluminum foil as the positive electrode, and the electrolyte containing the lithium ion is composed of the component five, as shown in the component structure of FIG. The charge and discharge cycle was performed 20 times, and the results of the capacitance after the first and 20 cycles are described in Table 3 below.

實驗例八Experimental example eight

以製作例七的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件六,如圖2的元件結構,然後進行20次的充放電 循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the seventh example is used as a negative electrode material, and the lithium cobalt oxide is used as a positive electrode and a binder is mixed and coated on the aluminum foil as a positive electrode, and the electrolyte containing lithium ions is composed of a component six, as shown in the component structure of FIG. Perform 20 charge and discharge cycles The cycle, the capacitance results after the first and 20 cycles are described in Table 3 below.

實驗例九Experimental example nine

以製作例八的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件七,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the eighth example is used as a negative electrode material, and lithium cobalt oxide is used as a positive electrode and a binder is mixed and coated on the aluminum foil as a positive electrode, and the electrolyte containing lithium ions is composed of a component seven, as shown in the component structure of FIG. The charge and discharge cycle was performed 20 times, and the results of the capacitance after the first and 20 cycles are described in Table 3 below.

實驗例十Experimental example ten

以製作例九的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件八,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the production example 9 is used as a negative electrode material, and lithium cobalt oxide is used as a positive electrode and a binder is mixed and coated on the aluminum foil as a positive electrode, and an electrolyte containing lithium ions is composed of an element eight, as shown in the component structure of FIG. The charge and discharge cycle was performed 20 times, and the results of the capacitance after the first and 20 cycles are described in Table 3 below.

實驗例十一Experimental example eleven

以製作例十的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件九,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the tenth example is used as a negative electrode material, and lithium cobalt oxide is used as a positive electrode and a binder is mixed and coated on the aluminum foil as a positive electrode, and an electrolyte containing lithium ions is composed of a component nine, as shown in the component structure of FIG. The charge and discharge cycle was performed 20 times, and the results of the capacitance after the first and 20 cycles are described in Table 3 below.

實驗例十二Experimental example twelve

以製作例十一的鋰金屬電極為負極材料,並採用鋰鈷氧化物為正極與黏結劑混合塗布於鋁箔上作為正極,搭配含鋰離子的電解液組成元件十,如圖2的元件結構,然後進行20次的充放電循環,其初次與20次循環後的電容量結果記載於下表三。The lithium metal electrode of the eleventh example is used as the negative electrode material, and the lithium cobalt oxide is used as the positive electrode and the binder is mixed and coated on the aluminum foil as the positive electrode, and the electrolyte containing the lithium ion is composed of the component ten, as shown in the component structure of FIG. Then, the charge and discharge cycle was performed 20 times, and the results of the capacitance after the first and 20 cycles are described in Table 3 below.

由表三可知,本發明的元件一具備較高電容量之性能。As can be seen from Table 3, the component of the present invention has a higher capacitance performance.

然後利用SEM分別觀察20次循環後的對照元件一和元件一的鋰負極表面,結果顯示於圖6A與圖6B。圖6A是未保護的鋰電極,其表面明顯產生區域性的不均一坑洞,並出現樹枝狀的沉積物(請參照虛線圍起的部份),此種樹枝狀沉積可能有刺穿隔離膜使元件短路的安全疑慮。反之,圖6B是本發明的元件一的鋰電極表面,雖有碎裂但呈現較為平整的型態,並無樹枝狀沉積產生。Then, the surface of the lithium negative electrode of the control element 1 and the element 1 after 20 cycles was observed by SEM, and the results are shown in Fig. 6A and Fig. 6B. Fig. 6A is an unprotected lithium electrode, the surface of which apparently produces regional uneven pits and dendritic deposits (please refer to the portion enclosed by the dotted line), which may have a piercing separator Safety concerns for shorting components. On the other hand, Fig. 6B shows the surface of the lithium electrode of the element 1 of the present invention, which is fragmented but exhibits a relatively flat pattern without dendritic deposition.

至於20次循環後的對照元件一和元件一的總阻抗表現經測量後顯示於圖7。-Z”是阻抗圖譜的虛數部分,Z’是阻抗圖 譜的實數部分。由圖7可知,本發明的元件一經20次循環後,可具有較低的總阻抗表現。The total impedance performance of the control element one and the element one after 20 cycles was measured and shown in Fig. 7. -Z" is the imaginary part of the impedance spectrum, and Z' is the impedance map The real part of the spectrum. As can be seen from Figure 7, the elements of the present invention can have a lower total impedance performance after 20 cycles.

實驗例十三Experimental example thirteen

分別以製作例一、製作例四、製作例八、製作例七、製作例三與製作比較例一的鋰金屬電極為負極材料,並採用硫/碳複合材料、助導劑與黏結劑於鋁箔上作為正極,搭配含鋰離子的電解液組成元件十一、元件十二、元件十三、元件十四、元件十五和對照元件三。這些元件都如圖4的元件結構。Lithium metal electrodes of Production Example 1, Production Example 4, Production Example 8, Production Example 7, Production Example 3, and Comparative Example 1 were used as negative electrode materials, and sulfur/carbon composite materials, a promoter and a binder were used for the aluminum foil. As the positive electrode, the electrolyte containing lithium ions is composed of element eleven, component twelve, component thirteen, component fourteen, component fifteen and comparison component three. These components are as shown in the component structure of FIG.

測試上述六個元件的的初次電容量,再進行10次的充放電循環,初次與10次循環後的電容量結果記載於下表四。The initial capacitance of the above six elements was tested, and the charge and discharge cycles were further performed 10 times. The results of the capacitance after the first and 10 cycles are described in Table 4 below.

由表四可知,本發明的元件十一到十五與未保護鋰電極相比都具備高電容量之性能。As can be seen from Table 4, the elements 11 to 15 of the present invention have high capacitance performance as compared with the unprotected lithium electrode.

綜上所述,本發明在鋰金屬表面形成由特定金屬薄膜與 導電薄膜構成之保護層,故可得到較未保護鋰電極更低的阻抗表現,同時提高保護層之附著力。而且當本發明之鋰金屬電極應用在元件中時,不但能維持高電容量且不會與電解液所含有的成份產生反應而影響其電化學可循環能力,並可有效避免充放電循環過程鋰金屬因表面型態改變所產生的劣化現象。In summary, the present invention forms a surface of a lithium metal with a specific metal film and The conductive film constitutes a protective layer, so that a lower impedance performance than the unprotected lithium electrode can be obtained, and the adhesion of the protective layer is improved. Moreover, when the lithium metal electrode of the present invention is applied to an element, not only the high electric capacity can be maintained but also reacts with the components contained in the electrolyte to affect its electrochemical recyclability, and the lithium during the charge and discharge cycle can be effectively avoided. Deterioration of metal due to surface pattern changes.

由如上所揭露以鋰金屬基材為實施例者可得知本發明之保護層結構整體相較於傳統的保護層設計不但具有低阻抗特性且可避免鋰電極劣化,以使元件維持較穩定的高電容量。本發明之保護層設計概念,亦可適用於鈉、鎂、鈣或鋁等活性金屬保護層。It is known from the above that the lithium metal substrate is an embodiment that the protective layer structure of the present invention not only has low impedance characteristics but also avoids deterioration of the lithium electrode compared to the conventional protective layer design, so that the element is maintained relatively stable. High capacity. The protective layer design concept of the present invention can also be applied to an active metal protective layer such as sodium, magnesium, calcium or aluminum.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧活性金屬基材100‧‧‧Active metal substrate

100a、104a‧‧‧表面100a, 104a‧‧‧ surface

102‧‧‧保護層102‧‧‧Protective layer

104‧‧‧金屬薄膜104‧‧‧Metal film

106‧‧‧導電薄膜106‧‧‧Electrical film

Claims (24)

一種受保護的鋰金屬電極,包括:一鋰金屬基材;以及一保護層,位於該鋰金屬基材的表面,其中該保護層包括:一金屬薄膜,被覆於該鋰金屬基材的該表面,其中該金屬薄膜的材料為鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢;以及一導電薄膜,被覆於該金屬薄膜的表面,其中該導電薄膜的材料是選自包括該金屬薄膜的金屬之氮化物、該金屬薄膜的金屬之碳化物、類鑽碳薄膜(DLC)及其組合其中之一。A protected lithium metal electrode comprising: a lithium metal substrate; and a protective layer on a surface of the lithium metal substrate, wherein the protective layer comprises: a metal film coated on the surface of the lithium metal substrate The material of the metal film is titanium, vanadium, chromium, zirconium, hafnium, molybdenum, niobium, tantalum or tungsten; and a conductive film coated on the surface of the metal film, wherein the material of the conductive film is selected from the group consisting of One of a metal nitride of a metal thin film, a metal carbide of the metal thin film, a diamond-like carbon thin film (DLC), and a combination thereof. 如申請專利範圍第1項所述之受保護的鋰金屬電極,其中該金屬薄膜的厚度為10nm~100nm之間。The protected lithium metal electrode according to claim 1, wherein the metal thin film has a thickness of between 10 nm and 100 nm. 如申請專利範圍第1項所述之受保護的鋰金屬電極,其中該導電薄膜的電阻率為10-5 Ω.cm~102 Ω.cm之間。The protected lithium metal electrode according to claim 1, wherein the conductive film has a resistivity of 10 -5 Ω. Cm~10 2 Ω. Between cm. 如申請專利範圍第1項所述之受保護的鋰金屬電極,其中該導電薄膜的厚度為10nm~1000nm之間。The protected lithium metal electrode according to claim 1, wherein the conductive film has a thickness of between 10 nm and 1000 nm. 如申請專利範圍第1項所述之受保護的鋰金屬電極,其中該類鑽碳薄膜為四面體非晶碳(ta-C)結構,且sp3 比例>40%。The protected lithium metal electrode according to claim 1, wherein the carbon-like film is a tetrahedral amorphous carbon (ta-C) structure, and the sp 3 ratio is >40%. 如申請專利範圍第1項所述之受保護的鋰金屬電極,其中該導電薄膜的材料包括TiNx 、CrNx 、NbNx 或TaNx ,且0.01<x<1.0。The protected lithium metal electrode according to claim 1, wherein the material of the conductive film comprises TiN x , CrN x , NbN x or TaN x , and 0.01 < x < 1.0. 如申請專利範圍第1項所述之受保護的鋰金屬電極,其中該導電薄膜的材料包括TiCx 、CrCx 、NbCx 或TaCx ,且0.01<x<1.0。The protected lithium metal electrode according to claim 1, wherein the material of the conductive film comprises TiC x , CrC x , NbC x or TaC x , and 0.01 < x < 1.0. 一種具有受保護的活性金屬電極的元件,包括: 一正極,具有電化學活性;一活性金屬負極,包括:一活性金屬基材;以及一保護層,位於該活性金屬基材的表面,其中該保護層包括:一金屬薄膜,被覆於該活性金屬基材的該表面,其中該金屬薄膜的材料為鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢;以及一導電薄膜,被覆於該金屬薄膜的表面,其中該導電薄膜的材料是選自包括該金屬薄膜的金屬之氮化物、該金屬薄膜的金屬之碳化物、類鑽碳薄膜(DLC)及其組合其中之一;以及一電解質,與該正極和該活性金屬負極接觸,以提供傳導用的活性金屬離子。An element having a protected active metal electrode comprising: a positive electrode having electrochemical activity; an active metal negative electrode comprising: an active metal substrate; and a protective layer on a surface of the active metal substrate, wherein the protective layer comprises: a metal film coated on the active metal The surface of the substrate, wherein the metal film is made of titanium, vanadium, chromium, zirconium, hafnium, molybdenum, niobium, tantalum or tungsten; and a conductive film coated on the surface of the metal film, wherein the material of the conductive film Is one selected from the group consisting of a metal nitride including the metal thin film, a metal carbide of the metal thin film, a diamond-like carbon thin film (DLC), and a combination thereof; and an electrolyte in contact with the positive electrode and the active metal negative electrode, To provide active metal ions for conduction. 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該活性金屬負極的該金屬薄膜的厚度為10nm~100nm之間。An element having a protected active metal electrode according to claim 8 wherein the thickness of the metal thin film of the active metal negative electrode is between 10 nm and 100 nm. 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該活性金屬負極的該導電薄膜的電阻率為10-5 Ω.cm~102 Ω.cm之間。An element having a protected active metal electrode according to claim 8 wherein the conductive film of the active metal negative electrode has a resistivity of 10 -5 Ω. Cm~10 2 Ω. Between cm. 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該活性金屬負極的該導電薄膜的厚度為10nm~1000nm之間。An element having a protected active metal electrode according to claim 8, wherein the conductive film of the active metal negative electrode has a thickness of between 10 nm and 1000 nm. 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該類鑽碳薄膜為四面體非晶碳(ta-C)結構,且sp3 比 例>40%。An element having a protected active metal electrode as described in claim 8 wherein the diamond-like carbon film is a tetrahedral amorphous carbon (ta-C) structure and has a sp 3 ratio of >40%. 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該活性金屬負極的該導電薄膜的材料包括TiNx 、CrNx 、NbNx 或TaNx ,且0.01<x<1.0。An element having a protected active metal electrode according to claim 8, wherein the material of the conductive film of the active metal negative electrode comprises TiN x , CrN x , NbN x or TaN x , and 0.01<x<1.0 . 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該活性金屬負極的該導電薄膜的材料包括TiCx 、CrCx 、NbCx 或TaCx ,且0.01<x<1.0。An element having a protected active metal electrode according to claim 8, wherein the material of the conductive film of the active metal negative electrode comprises TiC x , CrC x , NbC x or TaC x , and 0.01<x<1.0 . 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該正極是選自包括含硫物質、金屬氧化物、碳材、以及其組合中的材料。An element having a protected active metal electrode as described in claim 8 wherein the positive electrode is selected from the group consisting of sulfur-containing materials, metal oxides, carbon materials, and combinations thereof. 如申請專利範圍第15項所述之具有受保護的活性金屬電極的元件,其中該含硫物質是選自包括硫、金屬硫化物、有機硫、以及其組合中的物質。An element having a protected active metal electrode as described in claim 15 wherein the sulfur-containing material is selected from the group consisting of sulfur, metal sulfides, organic sulfur, and combinations thereof. 如申請專利範圍第15項所述之具有受保護的活性金屬電極的元件,其中該碳材是選自包括活性碳、碳黑、石墨、碳纖維、碳奈米管、中孔碳、石墨烯、以及其組合中的材料。An element having a protected active metal electrode according to claim 15, wherein the carbon material is selected from the group consisting of activated carbon, carbon black, graphite, carbon fiber, carbon nanotube, mesoporous carbon, graphene, And the materials in their combination. 如申請專利範圍第15項所述之具有受保護的活性金屬電極的元件,其中該金屬氧化物包括含鋰之金屬氧化物或不含鋰之金屬氧化物。An element having a protected active metal electrode as described in claim 15 wherein the metal oxide comprises a lithium-containing metal oxide or a lithium-free metal oxide. 如申請專利範圍第18項所述之具有受保護的活性金屬電極的元件,其中該含鋰之氧化物是選自包括鋰鈷氧化物、鋰鎳氧化物、鋰錳氧化物、鋰鎳錳氧化物、鋰鎳鈷氧化物、鋰鈷錳氧化 物、鋰鎳鈷錳氧化物、鋰鐵氧化物、鋰鈷磷氧化物、鋰鎳磷氧化物、鋰鐵磷氧化物、鋰錳磷氧化物、鋰鈷錳磷氧化物、鋰鎳鈷磷氧化物、鋰鐵鈷磷氧化物、鋰鐵鎳磷氧化物、鋰鐵錳磷氧化物、鋰鐵矽氧化物、鋰鐵硼氧化物、鋰鈦氧化物、鋰鈷鈦氧化物、鋰錳鈦氧化物、鋰鐵鈦氧化物、鋰鈦磷氧化物、鋰釩氧化物、鋰釩磷氧化物、以及其組合中的氧化物;該不含鋰之氧化物是選自包括釩氧化物、錳氧化物、鎢氧化物、鈦氧化物、鉻氧化物、鐵氧化物、鈷氧化物、鎳氧化物、鈮氧化物、鉬氧化物、錫氧化物、鈉釩氧化物、鈉錳氧化物、鈉鈦氧化物、鈉鉻氧化物、鈉鐵氧化物、鈉鈷氧化物、鈉鎳錳氧化物、鈉鎳鈷氧化物、鈉鈷錳氧化物、鈉鎳鈷錳氧化物、鈉鈷磷氧化物、鈉鎳磷氧化物、鈉鐵磷氧化物、鈉錳磷氧化物、鈉鐵錳磷氧化物、鈉釩磷氧化物、鈉鈦磷氧化物、以及其組合中的氧化物。An element having a protected active metal electrode according to claim 18, wherein the lithium-containing oxide is selected from the group consisting of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide. , lithium nickel cobalt oxide, lithium cobalt manganese oxide , lithium nickel cobalt manganese oxide, lithium iron oxide, lithium cobalt phosphorus oxide, lithium nickel phosphorus oxide, lithium iron phosphorus oxide, lithium manganese phosphorus oxide, lithium cobalt manganese phosphorus oxide, lithium nickel cobalt phosphorus oxidation , lithium iron cobalt phosphorus oxide, lithium iron nickel phosphorus oxide, lithium iron manganese phosphorus oxide, lithium iron lanthanum oxide, lithium iron boron oxide, lithium titanium oxide, lithium cobalt titanium oxide, lithium manganese titanium oxide An oxide in lithium iron titanium oxide, lithium titanium phosphorus oxide, lithium vanadium oxide, lithium vanadium phosphorus oxide, and combinations thereof; the lithium-free oxide is selected from the group consisting of vanadium oxide, manganese oxide , tungsten oxide, titanium oxide, chromium oxide, iron oxide, cobalt oxide, nickel oxide, cerium oxide, molybdenum oxide, tin oxide, sodium vanadium oxide, sodium manganese oxide, sodium titanium Oxide, sodium chromium oxide, sodium iron oxide, sodium cobalt oxide, sodium nickel manganese oxide, sodium nickel cobalt oxide, sodium cobalt manganese oxide, sodium nickel cobalt manganese oxide, sodium cobalt phosphorus oxide, sodium Nickel phosphorus oxide, sodium iron phosphorus oxide, sodium manganese phosphorus oxide, sodium iron manganese phosphorus oxide, sodium vanadium phosphorus oxide, sodium Phosphorus oxide, oxides and combinations thereof. 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該電解質為固態電解質、熔融鹽、離子液體、膠態電解質、或電解液。An element having a protected active metal electrode as described in claim 8 wherein the electrolyte is a solid electrolyte, a molten salt, an ionic liquid, a colloidal electrolyte, or an electrolyte. 如申請專利範圍第20項所述之具有受保護的活性金屬電極的元件,其中該電解質包括選自鋰離子、鈉離子、鎂離子、鈣離子、鋁離子、以及其組合中的活性金屬離子。An element having a protected active metal electrode as described in claim 20, wherein the electrolyte comprises an active metal ion selected from the group consisting of lithium ion, sodium ion, magnesium ion, calcium ion, aluminum ion, and combinations thereof. 如申請專利範圍第8項所述之具有受保護的活性金屬電極的元件,其中該活性金屬基材包括鋰、鈉、鎂、鈣、鋁金屬基材、或其組合。An element having a protected active metal electrode as described in claim 8 wherein the active metal substrate comprises a lithium, sodium, magnesium, calcium, aluminum metal substrate, or a combination thereof. 一種受保護的活性金屬電極,包括:一活性金屬基材;以及一保護層,位於該活性金屬基材的表面,其中該保護層包括:一金屬薄膜,被覆於該活性金屬基材的該表面,其中該金屬薄膜的材料為鈦、釩、鉻、鋯、鈮、鉬、鉿、鉭或鎢;以及一導電薄膜,被覆於該金屬薄膜的表面,其中該導電薄膜的材料是選自包括該金屬薄膜的金屬之氮化物、該金屬薄膜的金屬之碳化物、類鑽碳薄膜(DLC)及其組合其中之一。A protected active metal electrode comprising: an active metal substrate; and a protective layer on a surface of the active metal substrate, wherein the protective layer comprises: a metal film coated on the surface of the active metal substrate The material of the metal film is titanium, vanadium, chromium, zirconium, hafnium, molybdenum, niobium, tantalum or tungsten; and a conductive film coated on the surface of the metal film, wherein the material of the conductive film is selected from the group consisting of One of a metal nitride of a metal thin film, a metal carbide of the metal thin film, a diamond-like carbon thin film (DLC), and a combination thereof. 如申請專利範圍第23項所述之受保護的活性金屬電極,其中該活性金屬基材包括鋰、鈉、鎂、鈣、鋁金屬基材、或其組合。The protected active metal electrode of claim 23, wherein the active metal substrate comprises a lithium, sodium, magnesium, calcium, aluminum metal substrate, or a combination thereof.
TW102148520A 2012-12-28 2013-12-26 Protected active metal electrode and device with the electrode TWI481102B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102148520A TWI481102B (en) 2012-12-28 2013-12-26 Protected active metal electrode and device with the electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210585333 2012-12-28
TW101151089 2012-12-28
TW102148520A TWI481102B (en) 2012-12-28 2013-12-26 Protected active metal electrode and device with the electrode

Publications (2)

Publication Number Publication Date
TW201432988A TW201432988A (en) 2014-08-16
TWI481102B true TWI481102B (en) 2015-04-11

Family

ID=51797509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148520A TWI481102B (en) 2012-12-28 2013-12-26 Protected active metal electrode and device with the electrode

Country Status (1)

Country Link
TW (1) TWI481102B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686975B (en) * 2019-02-13 2020-03-01 行政院原子能委員會核能研究所 An electrochemical unit, the manufacturing method and the use of the same as a component of batteries, and an electrochemical device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726608A (en) * 2002-10-15 2006-01-25 波利普拉斯电池有限公司 Ionically conductive membranes for protection of active metal anodes
CN1938895A (en) * 2004-02-06 2007-03-28 波利普拉斯电池有限公司 Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US20070221265A1 (en) * 2006-03-22 2007-09-27 Sion Power Corporation Rechargeable lithium/water, lithium/air batteries
US20080057387A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
CN101702444A (en) * 2004-02-06 2010-05-05 波利普拉斯电池有限公司 Protected active metal electrode and battery cell structures with non-aqueous interplayer architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726608A (en) * 2002-10-15 2006-01-25 波利普拉斯电池有限公司 Ionically conductive membranes for protection of active metal anodes
US20080057387A1 (en) * 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
CN1938895A (en) * 2004-02-06 2007-03-28 波利普拉斯电池有限公司 Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
CN101702444A (en) * 2004-02-06 2010-05-05 波利普拉斯电池有限公司 Protected active metal electrode and battery cell structures with non-aqueous interplayer architecture
US20070221265A1 (en) * 2006-03-22 2007-09-27 Sion Power Corporation Rechargeable lithium/water, lithium/air batteries

Also Published As

Publication number Publication date
TW201432988A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
CN103915604B (en) Protected active metal electrode, lithium metal electrode and element having such electrode
KR101224760B1 (en) Secondary-battery current collector foil and method of manufacturing the same
CN107910496A (en) A kind of secondary cell lithium anode, preparation method and applications
US20160013480A1 (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
JP5595349B2 (en) Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and method for producing positive electrode current collector for lithium ion secondary battery
JP2016517157A (en) Electrochemical cell with solid and liquid electrolyte
JP2010103051A (en) Composite electrode for power storage device, its manufacturing method, and power storage device
WO2001084654A9 (en) Lithium secondary battery-use electrode and lithium secondary battery
TW201707027A (en) Current collector for electrode, positive electrode for non-aqueous electrolytic secondary battery, negative electrode for non-aqueous electrolytic secondary battery, non-aqueous electrolytic secondary battery
US20100279003A1 (en) Free standing nanostructured metal and metal oxide anodes for lithium-ion rechargeable batteries
JP5435469B2 (en) Negative electrode material in all solid lithium ion secondary battery and method for producing all solid lithium ion secondary battery
US11158849B2 (en) Lithium ion battery including nano-crystalline graphene electrode
Zhu et al. Anode/Cathode Dual‐Purpose Aluminum Current Collectors for Aqueous Zinc‐Ion Batteries
TWI481102B (en) Protected active metal electrode and device with the electrode
JP5097260B2 (en) Method for producing positive electrode for lithium ion secondary battery and positive electrode current collector for lithium ion secondary battery
US10454105B2 (en) Electrode for an energy accumulator and manufacturing method
Fenech et al. Mechanistic insights into the phenomena of increasing capacity with cycle number: Using pulsed-laser deposited MoO 2 thin film electrodes
KR20200113338A (en) A surface-treated negative electrode current collector, a lithium metal all-solid secondary battery including the same and manufacturing method thereof
JP2011003383A (en) Manufacturing method of negative electrode for lithium secondary battery, and lithium secondary battery
Xu et al. Engineering the direct deposition of Si nanoparticles for improved performance in Li-ion batteries
WO2023281911A1 (en) Battery and method for producing same
KR101453602B1 (en) Alloy for electrode and method for preparing electrode comprising same
KR20180023380A (en) Lithium ion battery and method of preparing the same
WO2017171580A1 (en) Porous lithium anode
WO2023200405A2 (en) Core-shell nanoparticles and methods of fabrication thereof