[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI476584B - Method and system for regulating monitor data of cloud platform - Google Patents

Method and system for regulating monitor data of cloud platform Download PDF

Info

Publication number
TWI476584B
TWI476584B TW102144362A TW102144362A TWI476584B TW I476584 B TWI476584 B TW I476584B TW 102144362 A TW102144362 A TW 102144362A TW 102144362 A TW102144362 A TW 102144362A TW I476584 B TWI476584 B TW I476584B
Authority
TW
Taiwan
Prior art keywords
monitoring
data
reference matrix
cloud platform
collector
Prior art date
Application number
TW102144362A
Other languages
Chinese (zh)
Other versions
TW201523238A (en
Inventor
Yung Cheng Kao
Kual Zheng Lee
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102144362A priority Critical patent/TWI476584B/en
Priority to CN201410035318.3A priority patent/CN104702653B/en
Application granted granted Critical
Publication of TWI476584B publication Critical patent/TWI476584B/en
Publication of TW201523238A publication Critical patent/TW201523238A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5083Techniques for rebalancing the load in a distributed system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

雲端平台之監測資料調控方法及系統Monitoring method and system for monitoring data of cloud platform

本發明係有關於雲端平台運算方法,特別是有關於雲端平台之監測資料調控方法。The invention relates to a cloud platform computing method, in particular to a monitoring data monitoring method for a cloud platform.

近年來由於多媒體應用及視訊監控等需求提昇,造成視訊資料量巨幅地成長。因此,運用電腦處理大量視訊資料之需求日漸提高,例如:(1)針對視訊監控影片,進行車牌辨識或人流計數等功能,以協助統計分析;(2)針對錄影畫面進行品質強化處理,以提高其畫面能見度;(3)針對錄影畫面進行視訊濃縮,以減少調閱影片所耗費之時間;(4)自大量影片中檢索一特定物件出現之時間及地點;或(5)針對高解析度視訊內容進行壓縮格式轉碼,以降低資料量以利儲存傳送等應用。上述針對視訊內容所做之辨識、統計、強化、濃縮、檢索或轉碼等應用泛稱視訊處理(Video Processing,VP)。伴隨視訊解析度不斷提升,傳統單機運算架構已無法負荷視訊處理之大量運算需求。因此具有運算資源擴充性之雲端平台是需要的,來滿足這些大量且不斷增加之運算需求。In recent years, the demand for multimedia applications and video surveillance has increased, resulting in a huge increase in the amount of video data. Therefore, the demand for using a computer to process a large amount of video data is increasing. For example, (1) for video surveillance video, license plate recognition or flow counting, etc., to assist in statistical analysis; (2) quality enhancement processing for video images to improve (4) video enrichment for video footage to reduce the time spent on viewing the video; (4) time and place to retrieve a particular object from a large number of videos; or (5) for high resolution video Content is transcoded in a compressed format to reduce the amount of data for applications such as storage transfers. The above-mentioned applications for identification, statistics, enhancement, enrichment, retrieval or transcoding of video content are generally referred to as Video Processing (VP). With the continuous improvement of video resolution, the traditional stand-alone computing architecture has been unable to load the computational demands of video processing. Therefore, a cloud platform with computing resource scalability is needed to meet these large and ever-increasing computing needs.

雲端平台將多台實體運算機器,利用虛擬化技術,產生大量虛擬運算機器。雲端平台並根據使用者需求及應用服 務運算需求,配置不同資源的虛擬機器(CPU、記憶體、儲存空間、網路頻寬)來執行各種視訊處理。習知雲端視訊處理將單一影片切割成多組片段,均勻分配至雲端處理程序進行處理,其總體運算時間取決於最慢之處理程序。惟視訊處理具許多變因(虛擬機器之運算資源、視訊處理複雜度、處理的視訊內容差異),須不斷監測處理程序之即時處理狀態才能動態調配運算資源。The cloud platform will use multiple virtual computing machines to generate a large number of virtual computing machines. Cloud platform and based on user needs and application services The computing needs, the virtual machines (CPU, memory, storage space, network bandwidth) of different resources are configured to perform various video processing. The conventional cloud video processing cuts a single movie into multiple sets of clips and evenly distributes them to the cloud processing program for processing. The overall computing time depends on the slowest processing procedure. However, video processing has many causes (virtual machine computing resources, video processing complexity, and processed video content differences), and the real-time processing status of the processing program must be constantly monitored to dynamically allocate computing resources.

因為各種視訊處理運算複雜度的差異,不同視訊 處理功能的運算資源需求也不同。即使是同一種視訊處理功能,也可能因為視訊源隨著時間變化。在不同時段,同時出現在攝影機畫面中的物件個數不同,所需要的運算資源也隨著變化。Different video because of the complexity of various video processing operations The computing resource requirements for processing functions are also different. Even the same video processing function may be due to the fact that the video source changes over time. At different times, the number of objects appearing in the camera screen at the same time is different, and the required computing resources also change.

該如何同時監測各種視訊處理功能在虛擬機器上 之處理狀態,以發現資源不足之處理程序。或是如何根據監測處理狀態之結果,找出系統中執行效能最差的處理程序集合,配置較多之資源給這些程序,以最佳化整體的運算效能,皆成為重要的議題。因此,本發明提出一種雲端平台之監測資料調控方法。針對大量資料處理應用需求,在兼顧可用之傳輸頻寬及即時發現最異常處理程序條件下,有效利用運算資源,以提昇系統整體運算效能。How to monitor various video processing functions simultaneously on a virtual machine The processing state to find out the processing of insufficient resources. Or how to find out the worst performing processor set in the system based on the results of monitoring the processing status, and allocate more resources to these programs to optimize the overall computing performance, which has become an important issue. Therefore, the present invention provides a monitoring method for monitoring data of a cloud platform. For a large number of data processing applications, the operating resources are effectively utilized to improve the overall computing performance of the system while taking into account the available transmission bandwidth and the ability to find the most abnormal processing procedures.

本發明之一實施例提出一種雲端平台之監測資料 調控方法。該調控方法包括下列步驟:由一監測狀態收集器收集複數個虛擬機器內各運算程序的各監測資料。該監測狀態收集器,依據一參照矩陣及目前可用之網路頻寬對該等監測資料 進行取樣,以得到複數監測係數資料。該監測狀態收集器將該等監測係數資料傳輸至一主控端。該主控端根據該參照矩陣處理該等監測係數資料,以重建複數監測重組資料。該主控端依該等監測重組資料,判定該等虛擬機器內各運算程序中是否有效能異常的運算程序。An embodiment of the present invention provides a monitoring data of a cloud platform Control methods. The control method includes the following steps: collecting, by a monitoring status collector, each monitoring data of each computing program in a plurality of virtual machines. The monitoring status collector, based on a reference matrix and currently available network bandwidth, the monitoring data Sampling is performed to obtain a plurality of monitoring coefficient data. The monitoring status collector transmits the monitoring coefficient data to a main control terminal. The main control unit processes the monitoring coefficient data according to the reference matrix to reconstruct the complex monitoring and reorganizing data. Based on the monitoring of the reorganization data, the main control unit determines whether an arithmetic program capable of being abnormal in each of the arithmetic programs in the virtual machines is determined.

本發明之實施例提出一種雲端平台之監測資料調控系統。該調控系統包括:複數個虛擬機器、一監測狀態收集器、一第一暫存器、一主控端以及一第二暫存器。該監測狀態收集器耦接該等虛擬機器,收集該等虛擬機器內各運算程序的各監測資料。該監測狀態收集器依據一參照矩陣及目前可用之網路頻寬對該等監測資料進行取樣,以得到複數監測係數資料。該第一暫存器耦接該監測狀態收集器,用以儲存該參照矩陣。該主控端接收來自該監測狀態收集器之該等監測係數資料。該主控端根據該參照矩陣處理該等監測係數資料,以重建複數監測重組資料。該主控端依該等監測重組資料,判定該等虛擬機器內各運算程序中是否有效能異常的運算程序。該第二暫存器耦接該主控端,接收並儲存來自該監測狀態收集器之該參照矩陣。Embodiments of the present invention provide a monitoring data monitoring system for a cloud platform. The control system includes: a plurality of virtual machines, a monitoring state collector, a first register, a master, and a second register. The monitoring status collector is coupled to the virtual machines to collect various monitoring data of each computing program in the virtual machines. The monitoring status collector samples the monitoring data according to a reference matrix and the currently available network bandwidth to obtain a plurality of monitoring coefficient data. The first register is coupled to the monitoring state collector for storing the reference matrix. The master receives the monitoring coefficient data from the monitoring status collector. The main control unit processes the monitoring coefficient data according to the reference matrix to reconstruct the complex monitoring and reorganizing data. Based on the monitoring of the reorganization data, the main control unit determines whether an arithmetic program capable of being abnormal in each of the arithmetic programs in the virtual machines is determined. The second register is coupled to the master, and receives and stores the reference matrix from the monitoring state collector.

10‧‧‧雲端平台10‧‧‧Cloud Platform

100‧‧‧虛擬機器群組100‧‧‧Virtual Machine Group

101‧‧‧監測狀態收集器101‧‧‧Monitor Status Collector

102‧‧‧第一暫存器102‧‧‧First register

103、104、105、106‧‧‧虛擬機器103, 104, 105, 106‧‧‧ virtual machines

110‧‧‧主控端110‧‧‧Master

111‧‧‧第二暫存器111‧‧‧Second register

第1圖顯示依據本發明之一實施例提出之一雲端平台10。Figure 1 shows a cloud platform 10 in accordance with one embodiment of the present invention.

第2A圖及第2B圖係以流程圖舉例說明該雲端平台10之監測資料調控方法。2A and 2B are flowcharts illustrating a method for monitoring monitoring data of the cloud platform 10.

第3圖係以流程圖舉例說明該主控端110如何針對上述判 定處理狀態異常之運算程序進行資源調配之動作。Figure 3 is a flow chart illustrating how the master 110 responds to the above The operation program that determines the processing state abnormality performs the resource allocation operation.

第4圖顯示使用本發明之監測資料調控方法在該等監測資料不同的壓縮率下,所需使用到的網路頻寬。Figure 4 shows the network bandwidth required to use the monitoring data control method of the present invention at different compression rates for the monitoring data.

第1圖顯示依據本發明之一實施例提出之一雲端平台10。如第1圖所示之一實施例,本發明之該雲端平台10包括至少一虛擬機器群組100以及一主控端110。該虛擬機器群組100與該主控端110係透過一實體網路進行資料傳輸,且該實體網路的頻寬有限。該虛擬機器群組100包括一監測狀態收集器101、一第一暫存器102以及複數個虛擬機器103-106。該監測狀態收集器101耦接該等虛擬機器103-106,其中每一虛擬機器可執行一至數個運算程序。該第一暫存器102位於該監測狀態收集器101之中,用以儲存來自該監測狀態收集器101之資料。該第二暫存器111則位於該主控端110之中,用以儲存該主控端110之資料以及來自該監測狀態收集器101之資料。Figure 1 shows a cloud platform 10 in accordance with one embodiment of the present invention. As shown in FIG. 1 , the cloud platform 10 of the present invention includes at least one virtual machine group 100 and one host 110. The virtual machine group 100 and the host terminal 110 transmit data through a physical network, and the bandwidth of the physical network is limited. The virtual machine group 100 includes a monitoring status collector 101, a first temporary register 102, and a plurality of virtual machines 103-106. The monitoring status collector 101 is coupled to the virtual machines 103-106, wherein each virtual machine can execute one to several computing programs. The first register 102 is located in the monitoring state collector 101 for storing data from the monitoring state collector 101. The second register 111 is located in the host 110 for storing the data of the host 110 and the data from the monitoring status collector 101.

值得注意的是,本發明並不以此為限。例如,該雲端平台10亦能包括複數個虛擬機器群組,其中每一虛擬機器群組皆具有對應之一監測狀態收集器、一第一暫存器以及複數個虛擬機器;該第一暫存器102和該第二暫存器111亦可分別外部連接至該監測狀態收集器101和該主控端110。It should be noted that the present invention is not limited thereto. For example, the cloud platform 10 can also include a plurality of virtual machine groups, wherein each virtual machine group has a corresponding one of a monitoring status collector, a first temporary register, and a plurality of virtual machines; the first temporary storage The device 102 and the second register 111 can also be externally connected to the monitoring state collector 101 and the master terminal 110, respectively.

第2A圖及第2B圖係以流程圖舉例說明該雲端平台10之監測資料調控方法。在步驟S210中,該監測狀態收集器101週期性收集該等虛擬機器103-106中各運算程序之各監測資料,並記錄所有運算程序(或該等監測資料)之一第一數目N。舉 例來說,假設該等虛擬機器103-106中分別執行一、三、一和二個運算程序(共7個運算程序),該監測狀態收集器101就會週期性收集到7個監測資料,此時該第一數目N為7。2A and 2B are flowcharts illustrating a method for monitoring monitoring data of the cloud platform 10. In step S210, the monitoring status collector 101 periodically collects each monitoring data of each computing program in the virtual machines 103-106, and records a first number N of all the computing programs (or the monitoring data). Lift For example, assuming that one, three, one, and two arithmetic programs (a total of seven arithmetic programs) are executed in the virtual machines 103-106, the monitoring state collector 101 periodically collects seven monitoring materials. At this time, the first number N is 7.

在步驟S220中,該監測狀態收集器101依據該第一 數目N建構維度為N乘N之一參照矩陣LNxN ;接著,該監測狀態收集器101將該參照矩陣LNxN 儲存於該第一暫存器102之中,並透過該實體網路將該參照矩陣LNxN 傳輸至該主控端110中之該第二暫存器111儲存。因此,該監測狀態收集器101與該主控端110具有相同之該參照矩陣LNxN 。該參照矩陣LNxN 為一結構化的隨機矩陣(Structured Random Matrix),係用於稀疏矩陣運算之參考。該參照矩陣LNxN 可以採用隨機部份傅立葉矩陣(Random Partial Fourier Matrix)或是採用隨機方式搭配高斯分佈(Gaussian Distribution)產生,但是並非限定於此。In step S220, the monitoring state collector 101 is N by one N reference matrix L NxN according to the first number N construction dimension; then, the monitoring state collector 101 stores the reference matrix L NxN in the first temporary The reference matrix L NxN is transmitted to the second temporary storage unit 111 in the main control terminal 110 through the physical network. Therefore, the monitoring state collector 101 has the same reference matrix L NxN as the master terminal 110. The reference matrix L NxN is a structured random matrix (Structured Random Matrix), which is used as a reference for sparse matrix operations. The reference matrix L NxN may be generated by a Random Partial Fourier Matrix or a Gaussian Distribution in a random manner, but is not limited thereto.

在步驟S230中,該監測狀態收集器101依據該參照 矩陣LNxN 以及該實體網路目前可用之網路頻寬,對該N個監測資料x1 ~xN 取樣得到M個監測係數資料y1 ~yM ,其中M為一取樣係數數量,且M不大於N。有關步驟S230更詳細的實施方式可見於第2B圖之實施例之步驟S231~S233如下:在步驟S231中,該監測狀態收集器101先將收集到之該N個監測資料x1 ~xN 正規化轉換為具有稀疏特性之N個監測數值x’1 ~x’N ,其中該稀疏特性代表該N個監測數值x’1 ~x’N 僅含有少量非零之數值。這是由於該雲端平台10中異常之運算程序之數量為相對少數,故可利用稀疏編碼(Sparse Coding)演算法將該N個監測資料正規化轉換為具有稀疏特性之N個監測數 值x’1 ~x’N 。目前已知相關的演算法有Linear Generative Model、Feature-Sign、Least Angle Regression、Grafting及QP Solver等。舉例來說,可運用Linear Generative Model計算得到對應之一轉換矩陣WNxN 。該監測狀態收集器101再使用該轉換矩陣WNxN 對該N個監測資料x1 ~xN 進行正規化轉換後,可得到該N個監測數值x’1 ~x’N ,其中該正規化轉換之運算式為X’Nx1 =WNxN T XNx1 =[x’1 ,x’2 ,...,x’N ]TIn step S230, the monitoring state collector 101 samples the N monitoring data x 1 ~ x N according to the reference matrix L NxN and the network bandwidth currently available to the physical network to obtain M monitoring coefficient data y 1 ~y M , where M is the number of sampling coefficients and M is not greater than N. A more detailed implementation of step S230 can be found in steps S231-S233 of the embodiment of FIG. 2B as follows: in step S231, the monitoring state collector 101 first collects the N monitoring data x 1 ~ x N The conversion is converted to N monitored values x' 1 ~ x' N having sparse characteristics, wherein the sparse characteristic represents that the N monitored values x' 1 ~ x' N contain only a small number of non-zero values. This is because the number of abnormal operation programs in the cloud platform 10 is relatively small, so the N monitoring data can be normalized into N monitoring values x' 1 with sparse characteristics by using a sparse coding (Sparse Coding) algorithm. ~x' N . Related algorithms are currently known as Linear Generative Model, Feature-Sign, Least Angle Regression, Grafting, and QP Solver. For example, the corresponding one of the transformation matrices W NxN can be calculated using the Linear Generative Model. The monitoring state collector 101 further normalizes the N monitoring data x 1 ~x N using the conversion matrix W NxN to obtain the N monitored values x' 1 ~x' N , wherein the normalized conversion The expression is X' Nx1 = W NxN T X Nx1 = [x' 1 , x' 2 , ..., x' N ] T .

在步驟S232中,該監測狀態收集器101依據該實體網路目前可用之網路頻寬決定用以取樣之該取樣係數數量M。當M的值越小,該等監測資料之壓縮率越高;反之亦然。此時,定義BMAX 為該雲端平台10配置給該虛擬機器群組100用於傳輸監測資料之網路頻寬上限(可為網路頻寬之固定比率,例如1GB網路頻寬之1%),以及BFREE 為目前可用之網路剩餘頻寬,此剩餘頻寬可由已知的估測技術得到,其中BMAX 及BFREE 之單位為bytes/sec。在每秒傳送一次監測資料的週期下,每個監測資料之資料量為D bytes,則可依以下兩種情況計算該取樣係數數量M:(一)當BFREE 小於BMAX 時,M=╚BFREE /D╛;(二)否則,M=╚BMAX /D╛,其中╚A╛表示對數值A無條件捨去得到之一整數。因此,本發明之實施例可藉由該實體網路目前可用之網路頻寬動態調整該等監測資料之壓縮比率。In step S232, the monitoring state collector 101 determines the number M of sampling coefficients to be sampled according to the network bandwidth currently available to the physical network. The smaller the value of M, the higher the compression ratio of such monitoring data; and vice versa. At this time, the B MAX is defined as the network bandwidth limit that the cloud platform 10 configures to transmit the monitoring data to the virtual machine group 100 (which may be a fixed ratio of the network bandwidth, for example, 1% of the 1 GB network bandwidth). ), and B FREE is the currently available network residual bandwidth, which can be obtained by known estimation techniques, where B MAX and B FREE are in bytes/sec. Under the period of transmitting monitoring data once per second, the amount of data of each monitoring data is D bytes, then the number of sampling coefficients M can be calculated according to the following two conditions: (1) When B FREE is less than B MAX , M=╚ B FREE /D╛; (b) Otherwise, M=╚B MAX /D╛, where ╚A╛ indicates that the logarithm A is unconditionally rounded off to get one of the integers. Therefore, embodiments of the present invention can dynamically adjust the compression ratio of the monitoring data by the network bandwidth currently available to the physical network.

在步驟S233中,該監測狀態收集器101依據該取樣係數數量M,取出該參照矩陣LNxN 的前M個列形成一子參照矩陣LMxN 。接著,該監測狀態收集器101依據該子參照矩陣LMxN 及該N個監測數值x’1 ~x’N 運算得到M個監測係數資料y1 ~yM ,其中該運算過程如下:YMx1 ([y1 ,y2 ,...,yM ]T )=AMxN X’Nx1In step S233, the monitoring state collector 101 extracts the first M columns of the reference matrix L NxN according to the number M of sampling coefficients to form a sub-reference matrix L MxN . Then, the monitoring state collector 101 obtains M monitoring coefficient data y 1 ~ y M according to the sub-reference matrix L MxN and the N monitored values x' 1 ~ x' N , wherein the operation process is as follows: Y Mx1 ( [y 1 , y 2 ,...,y M ] T )=A MxN X' Nx1 .

在步驟S240中,該監測狀態收集器101透過該實體網路將該M個監測係數資料y1 ~yM 傳送至該主控端110。In step S240, the monitoring status collector 101 transmits the M monitoring coefficient data y 1 ~ y M to the main control terminal 110 through the physical network.

在步驟250中,該主控端110依據接收到之該M個監測係數資料y’1 ~y’M 得知該監測狀態收集器101進行取樣之該取樣係數數量M的大小,並取出該參照矩陣LNxN 的前M個列形成相同之該子參照矩陣AMxN 。該主控端110再依據該子參照矩陣AMxN 及該接收到之M個監測係數資料y’1 ~y’M 重建出N個監測重組資料x~ 1 ~x~ N ,其中該重建過程係依據下式: In step 250, the master terminal 110 knows the magnitude of the sampling coefficient M of the sampling state collector 101 according to the received M monitoring coefficient data y' 1 y' M , and takes out the reference. The first M columns of the matrix L NxN form the same sub-reference matrix A MxN . The master 110 further reconstructs N monitored recombination data x ~ 1 ~ x ~ N according to the sub-reference matrix A MxN and the received M monitoring coefficient data y' 1 ~ y' M , wherein the reconstruction process is According to the following formula:

雖然滿足上述限制條件YMx1 =AMxN X~ Nx1 的解x~ 1 ~x~ N 有無限多組,但由於上述執行過正規化轉換之該N個監測數值x’1 ~x’N 具有稀疏(Sparse)的特性,即大部分的元素值為0或接近0。理論上該N個監測數值x’1 ~x’N 的絕對值總和是很小的。因此,為了得到接近或等於x’1 ~x’N 的解,可選擇上式所有可能解中絕對值總和最小之解作為該N個監測重組資料x~ 1 ~x~ N 。在本實施例中,由於求該最小之解屬於一線性最佳化(11 -Minimization)的問題,可利用相關的演算法(例如IRLS(Iteratively Re-Weighted Least Squares)演算法)求得該N個監測重組資料x ~ 1 ~x ~ N 滿足X~ Nx1 =AT NxM YMx1 ,其中X~ Nx1 =[x~ 1 ,x~ 2 ,...,x~ N ]TAlthough there are infinitely many sets of solutions x ~ 1 ~ x ~ N satisfying the above-mentioned constraint condition Y Mx1 = A MxN X ~ Nx1 , the N monitored values x' 1 ~ x' N having the normalized conversion described above are sparse The characteristic of (Sparse) is that most of the elements have a value of 0 or close to zero. Theoretically, the sum of the absolute values of the N monitored values x' 1 ~ x' N is small. Therefore, in order to obtain a solution close to or equal to x' 1 ~x' N , the solution with the smallest sum of absolute values among all possible solutions of the above formula can be selected as the N monitored recombination data x ~ 1 ~ x ~ N . In the present embodiment, since the minimum of solving a linear optimization problem belongs to (1 1 -Minimization) may be utilized in the correlation algorithm (e.g. IRLS (Iteratively Re-Weighted Least Squares ) algorithm) to obtain the N monitoring recombination data x ~ 1 ~ x ~ N satisfies X ~ Nx1 = A T NxM Y Mx1 , where X ~ Nx1 = [x ~ 1 , x ~ 2 , ..., x ~ N ] T .

在步驟S260中,該主控端110依據該N個監測重組資料x~ 1 ~x~ N 判定該等運算程序是否異常。由於處理狀態正常之 一運算程序Pi (i=1~N)對應的監測資料在經由上述正規化轉換後,其監測數值x’i 會接近於0,且該監測數值x’i 再經過取樣並傳輸至該主控端110重組後,亦會接近於0。利用上述特性,可以說明若該運算程序Pi 對應之監測重組資料值| x~ i |小於一門檻值ε,則可判定該運算程序Pi 之處理狀態正常;反之即可找出處理狀態較異常之複數運算程序,其中該門檻值ε可視該等監測資料的特性調整。In step S260, the master terminal 110 determines whether the operation programs are abnormal according to the N monitored reorganization data x ~ 1 ~ x ~ N. Since the monitoring data corresponding to one of the processing states P i (i=1~N) is converted by the above normalization, the monitored value x' i will be close to 0, and the monitored value x' i is sampled again. And after being transmitted to the master 110 for reorganization, it will also be close to zero. By using the above characteristics, it can be determined that if the monitoring recombination data value | x ~ i | corresponding to the operation program P i is less than a threshold value ε, it can be determined that the processing state of the operation program P i is normal; An abnormal multiplicity operation program, wherein the threshold value ε can be adjusted according to the characteristics of the monitoring data.

此外由於監測資料正規化後的資料x’1 ~x’N 具有稀 疏(Sparse)的特性,當處理狀態愈異常之運算程序之監測重組資料絕對值| x~ i |愈大。另外,步驟S250中所述之資料重建過程的準確度取決於該取樣係數數量M的大小,M越大重建結果越準確。當僅有小量的M時,該N個監測數值x’1 ~x’N 之中具有最大值之一監測數值將會被重建出來。隨著該取樣係數數量M的增加,其餘監測數值由大至小逐一被重建出來。In addition, since the data x' 1 ~x' N after the normalization of the monitoring data has the characteristics of sparse (Sparse), the greater the absolute value of the processing data, the larger the absolute value of the monitoring recombination data | x ~ i | In addition, the accuracy of the data reconstruction process described in step S250 depends on the size of the sampling coefficient number M, and the larger the M, the more accurate the reconstruction result. When there is only a small amount of M, the monitored value of one of the N monitored values x' 1 ~ x' N will be reconstructed. As the number M of sampling coefficients increases, the remaining monitored values are reconstructed one by one from large to small.

因此,即使取樣的係數數量M很小,仍然能夠反應 該稀疏特性於該N個監測重組資料值x~ 1 ~x~ N ,且處理狀態愈異常之運算程序之監測重組資料絕對值| x~ i |會有愈高的機率能夠遠大於0。基於此原理,盡管使用較少的網路頻寬傳輸會讓該主控端110只能得到少量的取樣資料,卻仍能發現處理狀態最異常之運算程序,並藉此改善該雲端平台10之運算效能。Therefore, even if the number M of sampling coefficients is small, the sparsity characteristic can be reflected in the N monitored recombination data values x ~ 1 ~ x ~ N , and the abnormality of the processing state is monitored by the arithmetic program absolute value | x ~ i | The higher the probability, the greater the probability. Based on this principle, although the use of less network bandwidth transmission allows the host 110 to obtain only a small amount of sampled data, the operating program with the most abnormal processing status can be found, and the cloud platform 10 can be improved. Operational efficiency.

在步驟S270中,該主控端110針對上述判定處理狀態異常之運算程序進行運算資源調配之動作,其中更詳細的運算資源調配過程可見於以下第3圖之實施例。In step S270, the master terminal 110 performs an operation resource allocation operation on the operation program for determining the abnormality of the processing state. The more detailed operation resource allocation process can be found in the embodiment of FIG. 3 below.

第3圖係以流程圖舉例說明該主控端110如何針對 上述判定處理狀態異常之運算程序進行資源調配之動作。在步驟S310中,該主控端110依據該N個監測重組資料絕對值|x~ 1 |~|x~ N |大小排序該N個運算程序。在步驟S320中,該主控端110判斷該N個運算程序是否都已處理完畢。若是,結束本流程;若否,則進入步驟S330。在步驟S330中,該主控端110自所有運算程序中選擇一未處理且處理狀態最異常之運算程序(即所有監測重組資料之絕對值| x~ i |中數值最高之一運算程序)。在步驟S340中,該主控端110判斷該處理狀態異常之運算程序是否需要被處理。若是,進入步驟S350;若否,則進入步驟S320。Fig. 3 is a flow chart for explaining how the master terminal 110 performs resource allocation for the above-described arithmetic program for determining the abnormality of the processing state. In step S310, the master terminal 110 sorts the N operation programs according to the N monitored recombination data absolute values |x ~ 1 |~|x ~ N | size. In step S320, the master terminal 110 determines whether the N arithmetic programs have been processed. If yes, the process ends; if no, the process proceeds to step S330. In step S330, the master terminal 110 selects an unprocessed and abnormally processed operating program (i.e., one of the highest values of the absolute values | x ~ i | of the monitored recombined data) from all the arithmetic programs. In step S340, the master terminal 110 determines whether the arithmetic program whose processing state is abnormal needs to be processed. If yes, go to step S350; if no, go to step S320.

在步驟S350中,該主控端110判斷該處理狀態異常 之運算程序是否已經停止執行?若是,進入步驟S360;若否,進入步驟S370。在步驟S360中,該主控端110通知該處理狀態異常之運算程序所在之虛擬機器重新啟動該處理狀態異常之運算程序,回到步驟S320。在步驟S370中,該主控端110檢查該處理狀態異常之運算程序是否具有足夠的運算資源。若是,回到步驟S320;若否,進入步驟S380。在步驟S380中,該主控端110配置較多的運算資源給該處理狀態異常之運算程序。In step S350, the master terminal 110 determines that the processing state is abnormal. Has the algorithm been stopped? If yes, go to step S360; if no, go to step S370. In step S360, the master terminal 110 notifies the virtual machine in which the processing state abnormality is located to restart the arithmetic program of the processing state abnormality, and returns to step S320. In step S370, the host 110 checks whether the arithmetic program whose processing state is abnormal has sufficient computing resources. If yes, go back to step S320; if no, go to step S380. In step S380, the master terminal 110 allocates a large number of computing resources to the arithmetic program of the processing state abnormality.

在本發明之一實施例中,該監測狀態收集器101收 集該等虛擬機器103-106中五個運算程序之監測資料,分別為X5x1 =[x1 ,x2 ,x3 ,x4 ,x5 ]T =[30,29,30,28,6]T ,其中每一監測資料之數值代表該運算程序每秒可以處理幾個幀(frame)的畫面資料,但並非限定於此。由該筆監測資料的特性,可以知道前4個處理狀態正常之運算程序的監測資料數值較接近,而第5個處理狀態異常之運算程序的監測資料數值則為6。如同步驟 S231,該監測狀態收集器101會利用稀疏編碼(Sparse Coding)演算法(例如,運用Linear Generative Model得到之該轉換矩陣WNxN 執行正規化轉換)將上述5個監測資料正規化轉換為具有稀疏特性之5個監測數值。如上述步驟S231,本發明之最佳實施例係採用稀疏編碼之該轉換矩陣WNxN 執行該正規化運算。但為了使本發明更淺顯易懂,本實施例選用一常見之轉換矩陣P5x5 取代該轉換矩陣WNxN 執行該正規化運算。該監測狀態收集器101得到5個監測數值X 5x1 =P5x5 X5x1 =[5.4,4.4,5.4,3.4,-18.6]T ,其中P5x5 =[0.8,0.8,0.8,0.8,0.8;0.8,0.8,0.8,0.8,0.8;0.8,0.8,0.8,0.8,0.8;0.8,0.8,0.8,0.8,0.8;0.8,0.8,0.8,0.8,0.8]。In an embodiment of the present invention, the monitoring state collector 101 collects monitoring data of five operating programs of the virtual machines 103-106, respectively X 5x1 =[ x1 , x 2 , x 3 , x 4 , x 5 ] T = [30, 29, 30, 28, 6] T , wherein the value of each monitoring data represents the picture data of the frame that can be processed by the operation program per second, but is not limited thereto. From the characteristics of the monitoring data, it can be known that the monitoring data values of the first four processing states with normal processing states are close, and the monitoring data value of the fifth processing state abnormal computing program is 6. As in step S231, the monitoring state collector 101 normalizes the above five monitoring data into having a Sparse Coding algorithm (for example, performing the normalization conversion using the conversion matrix W NxN obtained by the Linear Generative Model). 5 monitored values for sparse characteristics. As in the above step S231, the preferred embodiment of the present invention performs the normalization operation using the conversion matrix W NxN of the sparse coding. However, in order to make the present invention easier to understand, the present embodiment performs a normalization operation by replacing the conversion matrix W NxN with a common conversion matrix P 5x5 . The monitoring state collector 101 obtains 5 monitored values X ' 5x1 = P 5x5 X 5x1 = [5.4, 4.4, 5.4, 3.4, -18.6] T , where P 5x5 = [0.8, 0.8, 0.8, 0.8, 0.8; 0.8 , 0.8, 0.8, 0.8, 0.8; 0.8, 0.8, 0.8, 0.8, 0.8; 0.8, 0.8, 0.8, 0.8, 0.8; 0.8, 0.8, 0.8, 0.8, 0.8].

接著,該監測狀態收集器101隨機產生一參照矩陣L5x5 =[0.2428,0.1958,0.0593,0.0911,0.4024;0.0267,0.1253,0.2437,0.2435,0.0974;0.2943,0.4406,0.3702,0.3913,0.0344;0.3979,0.2722,0.3743,0.0541,0.2121;0.0490,0.1135,0.3727,0.3830,0.3734],並將該參照矩陣L5x5 傳送至該主控端110中之該第二暫存器111儲存。該監測狀態收集器101依據目前之網路頻寬決定上述取樣係數數量M為1,並對該參照矩陣L5x5 取第一列得到一子參照矩陣A1x5 =[0.2428,0.1958,0.0593,0.0911,0.4024]。該監測 狀態收集器101再依據該子參照矩陣與該等監測數值計算得到一監測係數資料Y1x1 =A1x5 X 5x1 =[y1 ]=[-4.6818],並將其傳輸至該主控端110。由於原先監測資料有五個值在經取樣後只剩一個值,因此壓縮率為(N-M)/N=4/5=0.8。Then, the monitoring state collector 101 randomly generates a reference matrix L 5x5 = [0.2428, 0.1958, 0.0593, 0.0911, 0.4024; 0.0267, 0.1253, 0.2437, 0.2435, 0.0974; 0.2943, 0.4406, 0.3702, 0.3913, 0.0344; 0.3979, 0.2722 , 0.3743, 0.0541, 0.2121; 0.0490, 0.1135, 0.3727, 0.3830, 0.3734], and the reference matrix L 5x5 is transmitted to the second register 111 in the main control terminal 110 for storage. The monitoring state collector 101 determines that the number of sampling coefficients M is 1 according to the current network bandwidth, and takes the first column of the reference matrix L 5x5 to obtain a sub-reference matrix A 1x5 = [0.2428, 0.1958, 0.0593, 0.0911, 0.4024]. The monitoring state collector 101 further calculates a monitoring coefficient data Y 1x1 = A 1x5 X ' 5x1 = [y 1 ] = [-4.6818] according to the sub-reference matrix and the monitored values, and transmits the same to the main control. End 110. Since the original monitoring data has five values and only one value remains after sampling, the compression ratio is (NM)/N=4/5=0.8.

最後,該主控端110接收到該監測係數資料Y1x1 後, 利用上述步驟S250重建五個監測重組資料X~ 5x1 =[0,0,0,0,-11.6348]T 。同上述步驟S260,該主控端110藉由重建出來的該監測重組資料X~ 5x1 中的前四個監測重組的絕對值為0,小於定義之一門檻值ε,判定前四個運算程序的處理狀態為正常的,且該主控端110藉由第五個運算程序之大於0之監測重組資料絕對值(|x~ 5 |=11.6348),大於定義之一門檻值ε,判定第五個運算程序為處理狀態異常之運算程序。因此,該監測係數資料Y1x1 被正確地重建以判定出處理狀態異常之第五個運算程序。Finally, after receiving the monitoring coefficient data Y 1x1 , the main control terminal 110 reconstructs five monitoring and recombining data X ~ 5x1 = [0, 0, 0, 0, -11.6348] T by using the above step S250. In the same step S260 as above, the master terminal 110 determines the absolute value of the first four monitored recombinations in the reconstructed monitored reconstructed data X ~ 5x1 to be less than 0, and determines the threshold of the first four operations. The processing state is normal, and the master terminal 110 monitors the absolute value of the recombined data (|x ~ 5 |=11.6348) by the fifth operation program, which is greater than a threshold value ε of the definition, and determines the fifth The arithmetic program is an arithmetic program that handles state abnormalities. Therefore, the monitoring coefficient data Y 1x1 is correctly reconstructed to determine the fifth arithmetic program in which the processing state is abnormal.

第4圖顯示使用本發明之監測資料調控方法在該 等監測資料不同的壓縮率下,所需使用到的網路頻寬。在本實施例中,該監測狀態收集器101依據六種不同的壓縮率(N-M)/N對該等監測資料進行取樣,並根據目前的頻寬限制決定要傳送哪一壓縮率之監測係數資料給該主控端110,其中該監測狀態收集器101在傳送壓縮率為0.89之該等監測係數資料下,該主控端110仍能找出處理狀態最異常之一運算程序。由第4圖可知,傳輸未經壓縮的監測資料所需要的網路頻寬為320Mb/sec。在應用本發明之監測資料調控方法後,傳輸經壓縮後的監測資料所需要的網路頻寬則降低至35.2~92.8Mb/sec。如此一來,大幅降低了該雲端平台10傳送監測資料的網路頻寬需求。另外, 該雲端平台10可根據目前可用之網路頻寬決定取樣後監測係數資料不同的壓縮比例(亦即不同的取樣係數數量M)。Figure 4 shows the use of the monitoring data control method of the present invention in The network bandwidth required for monitoring data at different compression rates. In this embodiment, the monitoring state collector 101 samples the monitoring data according to six different compression ratios (NM)/N, and determines which compression ratio monitoring coefficient data to transmit according to the current bandwidth limitation. To the master terminal 110, wherein the monitoring state collector 101 transmits the monitoring coefficient data with a compression ratio of 0.89, the master terminal 110 can still find one of the most abnormal processing states of the processing state. As can be seen from Figure 4, the network bandwidth required to transmit uncompressed monitoring data is 320 Mb/sec. After applying the monitoring data monitoring method of the present invention, the network bandwidth required for transmitting the compressed monitoring data is reduced to 35.2 to 92.8 Mb/sec. As a result, the network bandwidth requirement for transmitting the monitoring data by the cloud platform 10 is greatly reduced. In addition, The cloud platform 10 can determine different compression ratios (ie, different number of sampling coefficients M) of the post-sampling monitoring coefficient data according to the currently available network bandwidth.

本發明雖以較佳實施例揭露如上,使得本領域具有通常知識者能夠更清楚地理解本發明的內容。然而,本領域具有通常知識者應理解到他們可輕易地以本發明做為基礎,設計或修改流程以及使用不同的雲端平台進行相同的目的和/或達到這裡介紹的實施例的相同優點。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been described above in terms of preferred embodiments, so that those skilled in the art can understand the present invention more clearly. However, those of ordinary skill in the art will appreciate that they can be readily based on the present invention, designing or modifying the processes and using the different cloud platforms for the same purpose and/or achieving the same advantages of the embodiments described herein. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (12)

一種雲端平台之監測資料調控方法,包括:由一監測狀態收集器收集複數個虛擬機器內各運算程序的各監測資料;由該監測狀態收集器,依據一參照矩陣及目前可用之網路頻寬對該等監測資料進行取樣,以得到複數監測係數資料;由該監測狀態收集器將該等監測係數資料透過一實體網路傳輸至一主控端;由該主控端根據該參照矩陣處理該等監測係數資料,以重建複數監測重組資料;以及由該主控端依該等監測重組資料,判定該等虛擬機器內各運算程序中是否有效能異常的運算程序。A monitoring method for monitoring data of a cloud platform, comprising: collecting, by a monitoring state collector, each monitoring data of each computing program in a plurality of virtual machines; and the monitoring state collector, according to a reference matrix and currently available network bandwidth Sampling the monitoring data to obtain a plurality of monitoring coefficient data; the monitoring state collector transmits the monitoring coefficient data to a main control terminal through a physical network; and the main control terminal processes the reference matrix according to the reference matrix The monitoring coefficient data is used to reconstruct the complex monitoring and reorganizing data; and the main controller determines whether the operating program in the virtual machine is abnormal or not according to the monitoring of the reorganization data. 如申請專利範圍第1項所述之監測資料調控方法,其中該監測狀態收集器更依據運算程序之第一數目建構該參照矩陣,並將該參照矩陣傳送至該主控端。The method for monitoring monitoring data according to claim 1, wherein the monitoring state collector further constructs the reference matrix according to the first number of the operating procedures, and transmits the reference matrix to the main control terminal. 如申請專利範圍第2項所述之監測資料調控方法,其中該監測狀態收集器在收集該監測資料時,更包括將該等監測資料轉換為具有稀疏特性之複數監測數值,其中該稀疏特性代表該等監測數值僅含有少數非零數值。The method for monitoring monitoring data according to claim 2, wherein the monitoring status collector further includes converting the monitoring data into a plurality of monitoring values having sparse characteristics, wherein the sparse characteristic represents These monitored values contain only a few non-zero values. 如申請專利範圍第3項所述之監測資料調控方法,其中該監測狀態收集器對該等監測資料進行取樣時,更依據該目前可用之網路頻寬決定該等監測係數資料之第二數目,以及依據該第二數目決定該參照矩陣之一子參照矩陣,該監測狀態收集器再依據該子參照矩陣將具有稀疏特性之該等監測數值轉 換為該等監測係數資料,其中該第二數目小於該第一數目。For example, in the monitoring data monitoring method described in claim 3, wherein the monitoring state collector samples the monitoring data, and determines the second number of the monitoring coefficient data according to the currently available network bandwidth. And determining a sub-reference matrix of the reference matrix according to the second number, and the monitoring state collector further converts the monitoring values having sparse characteristics according to the sub-reference matrix And changing to the monitoring coefficient data, wherein the second number is less than the first number. 如申請專利範圍第4項所述之監測資料調控方法,其中該主控端重建該等監測重組資料時,更依據接收該等監測係數資料之該第二數目決定該參照矩陣之該子參照矩陣,該主控端再依據該子參照矩陣重建該等監測重組資料。For example, in the method for controlling monitoring data according to item 4 of the patent application scope, wherein the main control terminal reconstructs the monitoring and reorganizing data, the sub-reference matrix of the reference matrix is further determined according to the second number of receiving the monitoring coefficient data. The master further reconstructs the monitored reorganization data according to the sub-reference matrix. 如申請專利範圍第1項所述之監測資料調控方法,其中由該主控端針對該效能異常的運算程序進行資源調配之動作。The method for monitoring monitoring data according to claim 1, wherein the main controller performs a resource allocation operation on the performance program of the performance abnormality. 一種雲端平台系統,包括:複數個虛擬機器;一監測狀態收集器,耦接該等虛擬機器,收集該等虛擬機器內各運算程序的各監測資料,該監測狀態收集器依據一參照矩陣及目前可用之網路頻寬對該等監測資料進行取樣,以得到複數監測係數資料;一第一暫存器,耦接該監測狀態收集器,用以儲存該參照矩陣;一主控端,透過一實體網路接收來自該監測狀態收集器之該等監測係數資料;該主控端根據該參照矩陣處理該等監測係數資料,以重建複數監測重組資料;該主控端依該等監測重組資料,判定該等虛擬機器內各運算程序中是否有效能異常的運算程序;以及一第二暫存器,耦接該主控端,接收並儲存來自該監測狀態收集器之該參照矩陣。A cloud platform system includes: a plurality of virtual machines; a monitoring state collector coupled to the virtual machines to collect various monitoring data of each computing program in the virtual machines, the monitoring state collector according to a reference matrix and current The network bandwidth is used to sample the monitoring data to obtain a plurality of monitoring coefficient data; a first temporary register coupled to the monitoring state collector for storing the reference matrix; and a master terminal The physical network receives the monitoring coefficient data from the monitoring status collector; the main control unit processes the monitoring coefficient data according to the reference matrix to reconstruct a plurality of monitoring and recombining data; the main control unit monitors the reorganization data according to the monitoring Determining whether an arithmetic program capable of being abnormal in each of the operating programs in the virtual machine; and a second register coupled to the master to receive and store the reference matrix from the monitoring state collector. 如申請專利範圍第7項所述之雲端平台系統,其中該監測狀態收集器更依據運算程序之數目建構該參照矩陣,並將該參照矩陣傳送至該第二暫存器。The cloud platform system of claim 7, wherein the monitoring state collector further constructs the reference matrix according to the number of operation programs, and transmits the reference matrix to the second temporary register. 如申請專利範圍第8項所述之雲端平台系統,其中該監測狀態收集器在收集該監測資料時,更包括將該等監測資料轉換為具有稀疏特性之複數監測數值,其中該稀疏特性代表該等監測數值僅含有少數非零數值。The cloud platform system of claim 8, wherein the monitoring status collector further includes converting the monitoring data into a plurality of monitoring values having sparse characteristics, wherein the sparse characteristic represents the The monitored values contain only a few non-zero values. 如申請專利範圍第9項所述之雲端平台系統,其中該監測狀態收集器對該等監測資料進行取樣時,更依據該目前可用之網路頻寬決定該等監測係數資料之第二數目,以及依據該第二數目決定該參照矩陣之一子參照矩陣,該監測狀態收集器再依據該子參照矩陣將具有稀疏特性之該等監測數值轉換為該等監測係數資料,其中該第二數目小於該第一數目。The cloud platform system of claim 9, wherein the monitoring status collector determines the second number of the monitoring coefficient data according to the currently available network bandwidth when sampling the monitoring data. And determining, according to the second number, a sub-reference matrix of the reference matrix, wherein the monitoring state collector further converts the monitored values having the sparse characteristics into the monitoring coefficient data according to the sub-reference matrix, wherein the second number is less than The first number. 如申請專利範圍第10項所述之雲端平台系統,其中該主控端重建該等監測重組資料時,更依據接收該等監測係數資料之該第二數目決定該參照矩陣之該子參照矩陣,該主控端再依據該子參照矩陣重建該等監測重組資料。The cloud platform system of claim 10, wherein when the master rebuilds the monitoring and reorganizing data, determining the sub-reference matrix of the reference matrix according to the second number of receiving the monitoring coefficient data, The master further reconstructs the monitored reorganization data according to the sub-reference matrix. 如申請專利範圍第7項所述之雲端平台系統,其中該主控端針對該效能異常的運算程序進行資源調配之動作。The cloud platform system according to claim 7, wherein the master terminal performs a resource allocation action on the performance program of the performance abnormality.
TW102144362A 2013-12-04 2013-12-04 Method and system for regulating monitor data of cloud platform TWI476584B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102144362A TWI476584B (en) 2013-12-04 2013-12-04 Method and system for regulating monitor data of cloud platform
CN201410035318.3A CN104702653B (en) 2013-12-04 2014-01-24 Monitoring data regulation and control method and system of cloud platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102144362A TWI476584B (en) 2013-12-04 2013-12-04 Method and system for regulating monitor data of cloud platform

Publications (2)

Publication Number Publication Date
TWI476584B true TWI476584B (en) 2015-03-11
TW201523238A TW201523238A (en) 2015-06-16

Family

ID=53185895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102144362A TWI476584B (en) 2013-12-04 2013-12-04 Method and system for regulating monitor data of cloud platform

Country Status (2)

Country Link
CN (1) CN104702653B (en)
TW (1) TWI476584B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108228308B (en) * 2016-12-21 2021-07-06 中国电信股份有限公司 Monitoring method and device for virtual machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080155537A1 (en) * 2006-07-24 2008-06-26 Peter Dinda Methods and systems for automatic inference and adaptation of virtualized computing environments
US20090300149A1 (en) * 2008-05-28 2009-12-03 James Michael Ferris Systems and methods for management of virtual appliances in cloud-based network
TW201203118A (en) * 2010-07-07 2012-01-16 Univ Shu Te Load balance design of virtual machine in cloud computation environment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327354B1 (en) * 2007-05-31 2012-12-04 Hewlett-Packard Development Company, L.P. Virtualization with binary translation
US8479276B1 (en) * 2010-12-29 2013-07-02 Emc Corporation Malware detection using risk analysis based on file system and network activity
US9274919B2 (en) * 2011-04-29 2016-03-01 Dynatrace Software Gmbh Transaction tracing mechanism of distributed heterogenous transactions having instrumented byte code with constant memory consumption and independent of instrumented method call depth
US8612599B2 (en) * 2011-09-07 2013-12-17 Accenture Global Services Limited Cloud service monitoring system
CN102799512B (en) * 2012-07-04 2015-06-03 南京邮电大学 Virtual machine monitoring method in vector-autoregression-based cloud computing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080155537A1 (en) * 2006-07-24 2008-06-26 Peter Dinda Methods and systems for automatic inference and adaptation of virtualized computing environments
US20090300149A1 (en) * 2008-05-28 2009-12-03 James Michael Ferris Systems and methods for management of virtual appliances in cloud-based network
TW201203118A (en) * 2010-07-07 2012-01-16 Univ Shu Te Load balance design of virtual machine in cloud computation environment

Also Published As

Publication number Publication date
CN104702653A (en) 2015-06-10
TW201523238A (en) 2015-06-16
CN104702653B (en) 2018-11-06

Similar Documents

Publication Publication Date Title
Zhang et al. Adaptive compressed sensing for wireless image sensor networks
CN109347668B (en) Training method and device for service quality assessment model
JP7026878B2 (en) Quantization parameter prediction with maintained visual quality using deep neural network
CN109194984B (en) Video frame scheduling method based on edge calculation
US20200336699A1 (en) Image processing method and device using line input and output
Zhang et al. Casva: Configuration-adaptive streaming for live video analytics
US10070158B2 (en) Data adaptive compression and data encryption using kronecker products
CN109743356B (en) Industrial internet data acquisition method and device, readable storage medium and terminal
Menon et al. Green video complexity analysis for efficient encoding in adaptive video streaming
AU2019101272A4 (en) Method and apparatus for super-resolution using line unit operation
US20240202982A1 (en) 3d point cloud encoding and decoding method, compression method and device based on graph dictionary learning
CN109412602A (en) Distributed sparse signal detection method and device based on low bit quantization observation
US10726294B1 (en) Logical sensor generation in a behavioral recognition system
Wang et al. Deep image compression toward machine vision: A unified optimization framework
TWI476584B (en) Method and system for regulating monitor data of cloud platform
Khmelevskiy et al. Model of Transformation of the Alphabet of the Encoded Data as a Tool to Provide the Necessary Level of Video Image Qualityi in Aeromonitoring Systems.
CN108288295A (en) The method for fast reconstruction and system of infrared small target image based on structural information
Li et al. Entropy-assisted adaptive compressive sensing for energy-efficient visual sensors
Hsu et al. Content-sensitive data compression for IoT streaming services
CN103678801B (en) A kind of self-adapting compressing perception method of sampling based on image information entropy
JP2020065225A (en) Computer, sensing system, and data communication method
Siokis et al. 5GMediaHUB QoS/QoE Monitoring Engine
CN110868596A (en) Distributed encoding method and device, electronic equipment and readable storage medium
CN111314708B (en) Image data compression method and device, storage medium and electronic equipment
Vincent et al. An enhanced N-pattern hybrid technique for medical images in telemedicine