TWI474916B - Method for manufacturing flow channel of die - Google Patents
Method for manufacturing flow channel of die Download PDFInfo
- Publication number
- TWI474916B TWI474916B TW102115637A TW102115637A TWI474916B TW I474916 B TWI474916 B TW I474916B TW 102115637 A TW102115637 A TW 102115637A TW 102115637 A TW102115637 A TW 102115637A TW I474916 B TWI474916 B TW I474916B
- Authority
- TW
- Taiwan
- Prior art keywords
- length
- flow
- semi
- die
- flow path
- Prior art date
Links
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
本發明是有關於一種模頭流道之製造方法,特別是有關於一種適用於中空橢圓形狀之模頭,且可使流料流速及密度均勻且流道厚度均厚之模頭流道之製造方法。 The invention relates to a method for manufacturing a die flow channel, in particular to a die flow channel which is suitable for a hollow elliptical die and which can make the flow rate and density of the flow uniform and the thickness of the flow channel are thick. method.
傳統中空圓型模頭可區分為連續式中空圓型模頭及蓄積式中空圓型模頭(accumulator head),塑膠原料經螺桿熔化後進入模頭入口,可區分為中央進料(center feed)及側邊進料(side feed)兩種型式,中央進料流道對稱,型胚均勻度良好;側邊進料雖前端入口不對稱,卻可藉由後端流道整流;故,基本上,無論中央進料或側邊進料其後端流道通常都是對稱圓柱型,進而可達到良好的流料出口均勻度,且可容易地於後端控制型胚(parison)軸向之厚度,亦為流道厚度,以使中空成品之厚度較均一。 The conventional hollow circular die can be divided into a continuous hollow circular die and an accumulator hollow head. The plastic material is melted by a screw and enters the die inlet, and can be divided into a center feed. And side feed two types, the central feed flow channel is symmetrical, the shape of the embryo is good; the side feed is asymmetrical at the front end, but can be rectified by the back flow channel; therefore, basically Whether the central feed or the side feed, the rear flow passage is usually symmetrical cylindrical, which can achieve good flow outlet uniformity and can easily control the axial thickness of the parison at the rear end. It is also the thickness of the runner so that the thickness of the hollow finished product is relatively uniform.
然,在大型長寬比差異大之成品,如保險桿、醫療板、棧板等,圓柱形型胚對長短軸延伸率不同造成吹脹後產品厚度不均;因此,一般依據產品之外型,而設計之中空橢圓模頭,係為具有長短軸之中空橢圓模頭,其係具有流道出口不對稱之缺點,進而造成長短軸之流料出口流速不均、密度不均,無法作軸向厚度控制,導致成品良率降低。 However, in products with large differences in large aspect ratios, such as bumpers, medical boards, pallets, etc., the cylindrical embryo has different elongation of the long and short axes, resulting in uneven thickness of the product after inflation; therefore, generally based on product appearance The hollow elliptical die designed by the hollow elliptical die is a hollow elliptical die with long and short axes, which has the disadvantage of asymmetrical flow channel exit, which results in uneven flow velocity and uneven density of the flow of the long and short shafts. Controlling the thickness leads to a reduction in the yield of the finished product.
有鑑於上述習知技藝之問題,本發明之目的就是在提供一種模頭流道之製造方法,以解決傳統之中空橢圓模頭所具有流速不均、密度不均,無法作軸向厚度控制等問題。 In view of the above problems of the prior art, the object of the present invention is to provide a method for manufacturing a die flow path, which solves the problem that the conventional hollow elliptical die has uneven flow velocity, uneven density, and cannot be controlled by axial thickness. problem.
根據本發明之目的,提出一種模頭流道之製造方法,適用於中空橢圓形狀之模頭,模頭內部包含流道,模頭將流料經流道押出形成型胚,模頭流道之製造方法包含下列步驟:提供平行模頭流動方向之軸段,且軸段兩端分別具有垂直之第一橢圓截面及第二橢圓截面;提供第一橢圓截面之第一半長軸長度及第一半短軸長度,及分別對應第一半長軸長度及第一半短軸長度之第二橢圓截面之第二半長軸長度及第二半短軸長度;利用第一半長軸長度、第一半短軸長度、第二半長軸長度及第二半短軸長度取得第一橢圓截面之各角度至第二橢圓截面對應之各角度之間之流道長度,且流道長度滿足下列條件:
較佳地,第一橢圓截面可為橢圓形狀(a≠b)或圓形狀(a=b),而第二橢圓截面可為橢圓形狀或圓形狀。 Preferably, the first elliptical cross section may be an elliptical shape (a≠b) or a circular shape (a=b), and the second elliptical cross section may be an elliptical shape or a circular shape.
較佳地,當第一橢圓截面或第二橢圓截面為圓形狀時,第一半長軸長度與第一半短軸長度可相等,或第二半長軸長度及第二半短軸長度可相等。 Preferably, when the first elliptical section or the second elliptical section has a circular shape, the first semi-major axis length and the first semi-minor axis length may be equal, or the second semi-major axis length and the second semi-minor axis length may be equal.
較佳地,流道厚度可滿足下列條件:
較佳地,流料之單位寬度流量可滿足下列條件:
較佳地,流動於流道中之流料之總流量可滿足下列條件:
較佳地,流料之黏度可滿足下列條件:
承上所述,依本發明之模頭流道之製造方法,其可利用符合自然平衡之二橢圓形截面之長短軸,代入條件式以計算各角度之流道長度,再將流道長度代入另一條件式以取得流道厚度,當取得之各流道長度近似相等時,流道厚度亦為相等均厚,藉以,模頭製作過程中勿需反覆調整設計流道及厚度,以達到節省時間及材料成本之目的,亦達到出口流料流動平衡及密度均勻,進而提升成品良率之目的。 According to the manufacturing method of the die flow path of the present invention, the long and short axes of the elliptical cross section conforming to the natural balance can be used, and the conditional expression can be substituted to calculate the flow path length of each angle, and then the flow path length is substituted. Another conditional expression is to obtain the thickness of the flow channel. When the lengths of the obtained flow channels are approximately equal, the thickness of the flow channel is also equal and thick, so that it is not necessary to repeatedly adjust the design flow path and thickness during the manufacturing process of the die to save. The purpose of time and material cost is also to achieve the balance of outlet flow and uniform density, thereby improving the yield of finished products.
1‧‧‧模頭 1‧‧‧die
2‧‧‧流道 2‧‧‧ flow path
3‧‧‧心軸 3‧‧‧ mandrel
C1‧‧‧第一橢圓截面 C1‧‧‧ first elliptical section
C2‧‧‧第二橢圓截面 C2‧‧‧Second elliptical section
L‧‧‧流道長度 L‧‧‧Flow path length
S11至S15‧‧‧步驟 S11 to S15‧‧‧ steps
z‧‧‧軸段長度 Z‧‧‧ shaft length
θC1、θC2‧‧‧角度 θ C1 , θ C2 ‧‧‧ angle
第1圖係為本發明之模頭流道之製造方法之流程圖。 Fig. 1 is a flow chart showing a method of manufacturing a die flow path of the present invention.
第2圖係為本發明之模頭流道之示意圖。 Figure 2 is a schematic view of the die flow path of the present invention.
第3圖係為本發明之第一橢圓截面及第二橢圓截面之示意圖。 Figure 3 is a schematic view of the first elliptical section and the second elliptical section of the present invention.
第4圖係為本發明之流道長度示意圖。 Figure 4 is a schematic view of the length of the flow path of the present invention.
請參閱第1圖,其係為本發明之模頭流道之製造方法之流程圖。如圖所示,本發明之模頭流道之製造方法,適用於中空橢圓形狀之模頭,模頭內部包含流道,模頭將流料經流道押出形成型胚,模頭流道之製造方法包含下列步驟: Please refer to FIG. 1 , which is a flow chart of a method for manufacturing a die flow path of the present invention. As shown in the figure, the method for manufacturing a die flow path of the present invention is applicable to a hollow elliptical die, the inside of the die includes a flow path, and the die pushes the flow material through the flow path to form a preform, and the die flow path The manufacturing method consists of the following steps:
在步驟S11中:提供平行模頭流動方向之軸段,且軸段兩端分別具有垂直之第一橢圓截面及第二橢圓截面。其中,該模頭流動方向係指流料於模頭流道中所流動之方向;該軸段係指所欲押出成型之目標物之平行流動方向之軸段。 In step S11, a shaft segment of a parallel die flow direction is provided, and both ends of the shaft segment have a vertical first elliptical cross section and a second elliptical cross section. Wherein, the flow direction of the die refers to the direction in which the flow material flows in the flow path of the die; the axial segment refers to the axial segment of the parallel flow direction of the target object to be extruded.
在步驟S12中:提供第一橢圓截面之第一半長軸長度及第一半短軸長度,及分別對應第一半長軸長度及第一半短軸長度之第二橢圓截面之第二半長軸長度及第二半短軸長度。其中,第一橢圓截 面C1可為橢圓形狀或圓形狀,而第二橢圓截面C2可為橢圓形狀或圓形狀;當截面為圓形狀時,長軸及短軸長度相同,亦即半長軸長度及半短軸長度為該圓之半徑長度。 In step S12, a first semi-major axis length and a first semi-minor axis length of the first elliptical section are provided, and a second half of the second elliptical section corresponding to the first semi-major axis length and the first semi-minor axis length respectively Long shaft length and second half short shaft length. Where the first ellipse The surface C1 may be an elliptical shape or a circular shape, and the second elliptical cross section C2 may be an elliptical shape or a circular shape; when the cross section is a circular shape, the major axis and the minor axis have the same length, that is, the semi-major axis length and the semi-minor axis length. The length of the radius of the circle.
在步驟S13中:利用第一半長軸長度、第一半短軸長度、第二半長軸長度及第二半短軸長度取得第一橢圓截面之各角度至第二橢圓截面對應之各角度之間之流道長度,且流道長度滿足下列條件:
在步驟S14中:利用各角度之流道長度分別對應取得流道厚度。 In step S14, the channel thickness is respectively obtained by using the channel lengths of the respective angles.
在步驟S15中:製作對應各流道長度、各流道厚度及軸段之流道。 In step S15, flow paths corresponding to the lengths of the respective channels, the thicknesses of the respective channels, and the shaft segments are produced.
請一併參閱第2至4圖,第2圖係為本發明之模頭流道之示意圖;第3圖係為本發明之第一橢圓截面及第二橢圓截面之示意圖;第4圖係為本發明之流道長度示意圖。如圖所示,模頭1係將流道2中之流料押出而形成型胚,且由於模中具有心軸3,因此,可經由心軸3隔開流料以使押出後所形成之型胚為中空狀,方便後續充氣成型之工序;然,由於模頭1為中空橢圓模頭,可能因流料出口不對稱而產生流料流速不均、密度不均等問題;因此,本發明係使各截面對應相同角度之間之流道長度L相同,以達到流料出 口之流速一致;以下為本發明之模頭流道之製造方法之詳細說明。 Please refer to Figures 2 to 4 together. Figure 2 is a schematic view of the die flow path of the present invention; Figure 3 is a schematic view of the first elliptical section and the second elliptical section of the present invention; Schematic diagram of the length of the flow path of the present invention. As shown in the figure, the die 1 extrudes the flow material in the flow channel 2 to form a parison, and since the mold has a mandrel 3, the flow can be separated by the mandrel 3 to form a post-extrusion. The type of embryo is hollow, which facilitates the subsequent inflation molding process; however, since the die 1 is a hollow elliptical die, problems such as uneven flow rate and uneven density may occur due to the asymmetry of the discharge outlet; therefore, the present invention is Make each section correspond to the same length L of the flow channel between the same angles to achieve the flow out The flow rate of the mouth is the same; the following is a detailed description of the manufacturing method of the die flow path of the present invention.
首先,找出所欲押出成型之目標物之平行流動方向之軸段,且找出與軸段垂直且分別位於軸段兩端之第一橢圓截面C1及第二橢圓截面C2,第一橢圓截面C1包含第一半長軸長度a、第一半短軸長度b,第二橢圓截面包含第二半長軸長度c及第二半短軸長度d。 First, find the axial section of the parallel flow direction of the target object to be extruded, and find the first elliptical section C1 and the second elliptical section C2 perpendicular to the shaft section and respectively located at both ends of the shaft section, the first elliptical section C1 includes a first half major axis length a, a first semi-minor axis length b, and a second elliptical cross section including a second half major axis length c and a second half minor axis length d.
第一橢圓截面C1及第二橢圓截面C2可符合下列條件:
且,第一半長軸長度a、第一半短軸長度b、第二半長軸長度c、第二半短軸長度d及軸段長度z可滿足下列條件:
進一步地,軸段長度z為第一橢圓截面C1與第二橢圓截面C2相距之距離,而第一橢圓截面C1之角度θC1至對應角度θC1且相同之第二橢圓截面C2之角度θC2之流道長度L可符合下列條件:
因此,推導出流道長度 Therefore, the length of the flow channel is derived
請進一步參閱表1,其係為當時,各軸長之流道長度 對照表。 Please refer to Table 1 for further At the time of the flow path length of each axis, a comparison table.
承上所述,當時,第一橢圓截面C1至第二橢圓截面C2各角度之流道長度L皆為相同。 In accordance with the above, when The flow path length L of each angle from the first elliptical section C1 to the second elliptical section C2 is the same.
另一方面依據流料之黏度η、單位寬度流量q、壓力p及流道長度L,可運算流道厚度H,流道厚度H可滿足下列條件:
其中,H為流道厚度,q為單位寬度流量,s為冪次流體指數之倒數,m為冪次流體稠度,L為流道長度,p為壓力。 Where H is the thickness of the runner, q is the flow per unit width, s is the reciprocal of the power index, m is the power consistency of the power, L is the length of the runner, and p is the pressure.
詳細地說,單位寬度流量可滿足下列條件:
其中,q為單位寬度流量,Q為總流量,W為寬度,H為流道厚度,n為冪次流體指數,p為壓力,m為冪次流體稠度,L為流道長度,s為冪次流體指數之倒數。 Where q is the unit width flow, Q is the total flow, W is the width, H is the runner thickness, n is the power index, p is the pressure, m is the power consistency, L is the runner length, s is the power The reciprocal of the secondary fluid index.
而總流量Q可滿足下列條件:
其中,Q為總流量,W為寬度,H為流道厚度,n為冪次流體指數,p為壓力,m為冪次流體稠度,L為流道長度,s為冪次流體指數之倒數。 Where Q is the total flow, W is the width, H is the thickness of the runner, n is the power index, p is the pressure, m is the power consistency, L is the length of the runner, and s is the reciprocal of the power index.
而流料之黏度可滿足下列條件,其中,流料之黏度以冪次流體(power law fluid)方程式表達,然,流料之範圍並不受限於此:
其中,η為黏度,為剪切率,m為冪次流體稠度,n為冪次流體指數。 Where η is the viscosity, For shear rate, m is the power consistency of the power, and n is the power index of the power.
請進一步參閱表2,其係為對應表1中各流道長度L之流道厚度H之對照表,其中z=2,W=1,Q=1,s=1/n=1,m=1,△p=1。 Please refer to Table 2 for a comparison table corresponding to the channel thickness H of each channel length L in Table 1, where z=2, W=1, Q=1, s=1/n=1, m= 1, △ p = 1.
承上所述,當時,除第一橢圓截面C1至第二橢圓截面C2各角度之流道長度相同之外,其對應之流道厚度H亦為相同。 In accordance with the above, when When the flow path lengths of the respective angles from the first elliptical section C1 to the second elliptical section C2 are the same, the corresponding channel thickness H is also the same.
一般來說,為達到非對稱中空模頭出口流速一致,習知作法係以 嘗誤設計法反覆調整修改流道厚度,直到流速一致為止;然而,此方法十分耗時,且材料耗損成本對應增加;反觀,本發明之第一橢圓截面C1與第二橢圓截面C2之對應相同角度之間之各流道長度L係為相同或小於5~10%之誤差,則可將流道厚度H設為一定值,藉以使得流料流速、密度一致,以及型胚厚度一致,且無需如習知一般進行嘗誤反覆調整,節省製造時間與材料成本。 In general, in order to achieve consistent flow velocity at the exit of an asymmetric hollow die, conventional practices are The error design method repeatedly adjusts the thickness of the flow channel until the flow rate is consistent; however, this method is very time consuming, and the material wear cost is correspondingly increased; in contrast, the first elliptical section C1 of the present invention has the same correspondence with the second elliptical section C2. When the length L of each flow path between the angles is the same or less than 5-10% error, the thickness H of the flow channel can be set to a certain value, so that the flow velocity and density of the flow are uniform, and the thickness of the parison is uniform, and it is not necessary. As is conventional, the error is repeatedly adjusted to save manufacturing time and material cost.
更詳細地說,可依據下列條件式以推得流道長度L與角度θ之相對關係:
由條件式(11)可知,當(a-c)2=(b-d)2時,流道長度L與角度θ無關,此時,模頭可為均厚設計。 It can be seen from the conditional expression (11) that when (ac) 2 = (bd) 2 , the flow path length L is independent of the angle θ, and at this time, the die can be of a uniform design.
反之,若(a-c)2≠(b-d)2則表示流道長度L與角度θ有關,而流道厚度H將隨角度θ變化。 On the other hand, if (ac) 2 ≠(bd) 2, it means that the flow path length L is related to the angle θ, and the flow path thickness H will vary with the angle θ.
進一步地說,若流道厚度H隨角度θ變化,且第一半長軸長度a、第一半短軸長度b、第二半長軸長度c及第二半短軸長度d滿足方程式(4),流道厚度H厚度之變化差距將在10%以內;據此,當模頭採取均厚設計時,其造成之流量差異將控制在10%之內。 Further, if the channel thickness H varies with the angle θ, and the first half major axis length a, the first semi-minor axis length b, the second half major axis length c, and the second half minor axis length d satisfy the equation (4) ), the variation of the thickness of the runner thickness H will be within 10%; accordingly, when the die adopts a uniform design, the flow difference caused by it will be controlled within 10%.
承上述,請參閱表3及表4,其係分別為當,且z=2,W=1,Q=1,m=1,△p=1時,對應各角度之各流道長度L及流道厚度H之對照表,其中分別以s=1.0,2.0,3.3代表不同材料之流變參數。 For the above, please refer to Table 3 and Table 4, which are respectively And z=2, W=1, Q=1, m=1, Δp=1, corresponding to the comparison table of each channel length L and channel thickness H of each angle, wherein s=1.0, 2.0 respectively , 3.3 represents the rheological parameters of different materials.
由表3、表4可知,當時,模頭對應各種材料於各角度之流道長度L或流道厚度H皆相同,亦即當時,模頭對應各角度之流道長度L或流道厚度H與流料材料無關。 As can be seen from Table 3 and Table 4, when When the die corresponds to various materials, the flow path length L or the flow path thickness H at each angle is the same, that is, when When the die corresponds to the flow path length L of each angle or the flow path thickness H is independent of the material of the flow material.
反之,請參閱表5及表6,其係分別為當,且z=2,W=1,Q=1,m=1,△p=1時,對應各角度之各流道長度L及流道厚度H之對照表,其中分別以s=1.0,2.0,3.3代表不同材料之流變參數。 On the contrary, please refer to Table 5 and Table 6, which are respectively And z=2, W=1, Q=1, m=1, Δp=1, corresponding to the comparison table of each channel length L and channel thickness H of each angle, wherein s=1.0, 2.0 respectively , 3.3 represents the rheological parameters of different materials.
由表5、表6可知,當時,模頭對應各種材料於各角度之流道長度L皆不同,而對應各種材料於各角度之流道厚度H亦皆不相同;並且,若改換不同的材料(如採用s=3的材料),將可能造成對應各角度之流道厚度H差距過大,進而無法達到流動平衡之目的。 As can be seen from Table 5 and Table 6, when When the die corresponds to various materials, the flow path length L of each angle is different, and the thickness H of the flow channel corresponding to various materials at various angles is also different; and if different materials are changed (for example, materials with s=3) ), it may cause the gap thickness H of the corresponding angles to be too large, so that the flow balance cannot be achieved.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.
S11至S15‧‧‧步驟 S11 to S15‧‧‧ steps
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102115637A TWI474916B (en) | 2013-05-01 | 2013-05-01 | Method for manufacturing flow channel of die |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102115637A TWI474916B (en) | 2013-05-01 | 2013-05-01 | Method for manufacturing flow channel of die |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201442845A TW201442845A (en) | 2014-11-16 |
TWI474916B true TWI474916B (en) | 2015-03-01 |
Family
ID=52423187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102115637A TWI474916B (en) | 2013-05-01 | 2013-05-01 | Method for manufacturing flow channel of die |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI474916B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104626521A (en) * | 2015-02-05 | 2015-05-20 | 上海物豪塑料有限公司 | Mouth mold of blow mold |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0481933B2 (en) * | 1986-12-17 | 1992-12-25 | Ube Industries | |
JPH06190904A (en) * | 1992-12-25 | 1994-07-12 | Ube Ind Ltd | Flat die for blow molding |
JPH06198721A (en) * | 1993-01-05 | 1994-07-19 | Ube Ind Ltd | Flat die for blow molding |
CN202805606U (en) * | 2012-09-28 | 2013-03-20 | 天津市科润特包装有限公司 | Mouth mold mechanism of blow molding machine |
-
2013
- 2013-05-01 TW TW102115637A patent/TWI474916B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0481933B2 (en) * | 1986-12-17 | 1992-12-25 | Ube Industries | |
JPH06190904A (en) * | 1992-12-25 | 1994-07-12 | Ube Ind Ltd | Flat die for blow molding |
JPH06198721A (en) * | 1993-01-05 | 1994-07-19 | Ube Ind Ltd | Flat die for blow molding |
CN202805606U (en) * | 2012-09-28 | 2013-03-20 | 天津市科润特包装有限公司 | Mouth mold mechanism of blow molding machine |
Also Published As
Publication number | Publication date |
---|---|
TW201442845A (en) | 2014-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203818534U (en) | Improved structure of wide extrusion flat die head | |
CN105398025B (en) | Rubber hose extrudes mould | |
CN104275790A (en) | Three-layer co-extrusion plastic film blow molding machine head with combined type rotary core rod and layered two-channel temperature control device | |
CN104174678B (en) | The continuous extruder that the plane of symmetry of big of die cavity of extension is vertical with extruding wheel axis | |
US7862755B2 (en) | Constant shear rate extrusion die | |
CN104357990B (en) | Shaping silk and preparation method thereof | |
CN105398021B (en) | A kind of exhibition stream method of the full meshing gear of melt extrusion pressure-driven | |
TWI474916B (en) | Method for manufacturing flow channel of die | |
CN101774268A (en) | Precise extruding mold head | |
JP6144981B2 (en) | Rubber member manufacturing equipment | |
CN106671384A (en) | Pipe extrusion molding machine head | |
CN108127882A (en) | A kind of pipe extruder | |
CN206124181U (en) | Extrusion molding screw rod | |
CN104669581A (en) | Combined type extrusion die | |
CN208197529U (en) | A kind of bolt special of low density polyethylene (LDPE), linear polyethylene blown film extruder | |
CN204076769U (en) | Rubber tube processing die sleeve | |
CN204526078U (en) | A kind of combined type extrusion die | |
JP2015189159A (en) | Die plate for rubber extruder, rubber extrusion method and tire production method | |
CN202592709U (en) | Extrusion device for single-wall corrugated pipe | |
CN205075328U (en) | Plug body of inflation film manufacturing machine | |
JP6862746B2 (en) | Manufacturing method of extruded rubber | |
CN202016185U (en) | Wide sectional material extruder head for rubber foaming | |
CN104029369B (en) | Tri-roll press machine glue supply cross-head | |
CN206598517U (en) | A kind of pipe extruder porous plate | |
CN207072110U (en) | A kind of secondary extrusion die of rubber tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |