[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI311061B - Aerosol generator for drug formulation and method for generating an aerosol with the same - Google Patents

Aerosol generator for drug formulation and method for generating an aerosol with the same Download PDF

Info

Publication number
TWI311061B
TWI311061B TW92100591A TW92100591A TWI311061B TW I311061 B TWI311061 B TW I311061B TW 92100591 A TW92100591 A TW 92100591A TW 92100591 A TW92100591 A TW 92100591A TW I311061 B TWI311061 B TW I311061B
Authority
TW
Taiwan
Prior art keywords
aerosol
fluid
nozzle
aerosol generator
valve
Prior art date
Application number
TW92100591A
Other languages
Chinese (zh)
Other versions
TW200302115A (en
Inventor
Walter A Nichols
Donald L Brookman
Gary E Grollimund
Ulysses Smith
Original Assignee
Philip Morris Usa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris Usa Inc filed Critical Philip Morris Usa Inc
Publication of TW200302115A publication Critical patent/TW200302115A/en
Application granted granted Critical
Publication of TWI311061B publication Critical patent/TWI311061B/en

Links

Landscapes

  • Nozzles (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

1311061 1 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單說明) (一) 發明所屬之技術領域 本發明係一般係關於一種氣溶膠(aerosol)產生。更具體 地,本發明係關於一種氣溶膠產生器,在使用時,其可提 供藥物之控制劑量。 (二) 先前技術 由病人本身吸入用之輸送氣溶膠的計量藥劑吸入器已被 揭示於美國專利 Nos.5 ,487,378; 5, 522, 378;5 ,622,162; 5,839, 430;5, 894,841;及 6,152, 130 中。一些吸入器使用 推進劑系統,例如液化氟氯化碳之混合物之推進力。其他 之吸入器超音波噴霧器系統將在載氣流中之液體霧化,或 者吸入空氣之爆裂而使流體化,而將粉末劑拉入支氣管中 。共同擁有之美國專利Nos.5, 743,251及6,234, 167掲示 一種氣溶膠產生器,其中一種液體配方被蒸發以形成一中 吸入用氣溶膠。 爲了使氣溶膠從吸入器產生輸送,許多種呼吸致動系統 已被提議出來。依照美國專利No. 5,622,162,一些呼吸 致動系統需要病人本身呼吸之努力,以移動一個機柄或產 生上升到預設界限之受檢測流動。此系統之一個問題爲,個 人呼吸狀況各不相同,而且一些病人無法產生足夠的氣流 以作動該單元。 雖然有許多嘗試用來改善呼吸致動系統,檢測方面仍以 —6 - 1311061 , • , 由病人本身產生氣流爲主,因而往往在氣溶膠被送到之前 都會吸入一些空氣。因此,病人可能無法全部之藥劑。 其他用來產生氣溶膠之技術,習知如美國專利No s · 4,811,731及4,627,432中揭示有用來管理藥劑施予病人 之裝置,其中一個膠囊被針刺穿,以使藥劑成粉末狀釋出 。然後使用者經由裝置之開口而吸入釋出之藥劑。 (三)發明內容 依照第1實施例,本發明之一種氣溶膠產生器,其包括 有:一個吸嘴,其具有出口可使氣溶膠被輸送到氣溶膠產 生器之使用者;一個空氣通道,空氣可通過此通道而被輸 送到吸嘴之內部;以及一個感測器,用來檢測在吸嘴內部 之壓力降。 氣溶膠產生器可包括有:一個外殼;一個毛細通道,其 被設置在外殻中;一個儲存器,其被設置在外殼中;一個 計量室,其被設置在外殻中,流體經由第1流動通道而從 儲存器中被輸送到該計量室,並且流體經由第2流動通道 而從計量室被輸送到毛細通道;電源,用來供應電力到加 熱器;第1閥,用來將第1流動通道打開及關閉;第2閥, 用來將第2流動通道打開及關閉;第3閥,用來將空氣通 道打開及關閉。閥可由馬達或凸輪軸打開及關閉。凸輪軸 包含有多數個凸輪軸突出部,其與第丨,第2及第3閥在 操作上相連,凸輪軸突出部在~個氣溶膠輸送周期中可作 用以關閉第1閥並且打開第2及第3閥,使流體被輸送到 毛細通道。凸輪軸突出部在塡充周期中可作用,以打開第 -7- 1311061 1閥並且關閉第2及第3閥,以使流體被輸送到計量室。 ~個步進馬達可在操作上與凸輪軸相聯結,其中步進馬達 可轉動凸輪軸,以打開及關閉第1閥,第2及第3閥。儲 存器可移除地被固定到外殼,並且/或者儲存器可包含有 一個活塞,其可操作而對儲存器中之流體加壓。 依照一個較佳實施例,外殼可包括有一個蓋子,其可滑 動地被固定到外殼,蓋子之—端有吸嘴。並且,一個液晶 顯示器,其位於外殼之一個部份上,當蓋子被移動到氣溶 膠輸送位置時,其可被暴露出來。當使用者在吸嘴之出口 上開吸入日xr,感測器可作用送出_個信號到控制器。感 測器包括有一個換能器,其可在當使用者在吸嘴之出口上 開始吸入時,檢測吸嘴內部之壓力降。控制器可用來監視 加熱器之參數,並且從電源處輸送電力到加熱器,使加熱 器可在氣溶膠輸送周期中被保持在所需之溫度範圍。 在另一個較佳實施例中,氣溶膠產生器爲手持式吸入器, 僅空氣可經由空氣通道而被供應到吸嘴之內部,並且氣溶 膠產生器包含有一個閥,其可在使用者於出口開始吸入之 後一段預定時間內打開空氣通道。 在第2實施例中,氣溶膠產生器包括有:一個吸嘴,其 具有出口可使氣溶膠被輸送到氣溶膠產生器之使用者;一 個氣溶膠產生器系統,其可作用而供應氣溶膠到吸嘴之內 部;一個空氣通道,空氣可通過此通道而被輸送到吸嘴之 內部;一個壓力感測器,其可在檢測到吸嘴內部之壓力降 時產生作用而輸出一個信號;一個控制器,其可作用而作 -8 - 1311061 動氣溶膠產生器系統,以反應於壓力感測器之信號輸出而 供應氣溶膠到吸嘴之內部;以及一個閥,其可作用以打開 及關閉空氣通道,控制器可反應於壓力感測器之信號輸出 而作用以打開閥。氣溶膠產生器系統包括有一個推進劑爲 主之氣溶膠產生器,噴灑藥水爲主之氣溶膠產生器,或是 揮發爲主之氣溶膠產生器。 在第2實施例中,氣溶膠產生器包含有外殼及一個蓋子, 其可滑動地被固定到外殼,蓋子之一端有吸嘴,蓋子可從 氣溶膠被防止被輸送到吸嘴內部之關閉位置滑動到氣溶膠 輸送位置,使氣溶膠產生器系統於此可位於呼吸作動模式 狀態,其中使用者可由在出口上之吸入而獲得所需之氣溶 膠劑量。較佳爲,氣溶膠產生器包含有手持式吸入器,並 且氣溶膠產生器系統包括有具毛細管尺寸大小之流動通道 及一個加熱器,其被配置成可使流動通道中之流體揮發, 以在吸嘴內部產生氣溶膠。氣溶膠產生器可包括有一個投 藥件及計量室,計量室包括一個凹部及蓋住凹部之彈性 壁,投藥件可從相對於彈性壁之第1位置移動到第2位置, 使彈性壁在此變形進入凹部中,計量室提供流體源與流動 通道之間的流體相通,並且投藥件可以一個方式移動,而 提供流體在流動通道中之恆定流量。 在第3實施例中,一種氣溶膠產生器,其包括有:一個 計量室,其包含有一個凹部在其材料之第一層,以及一個 彈性層覆蓋在凹部上;投藥件,其可從相對於彈性壁之第 1位置移動到第2位置,使彈性壁在此變形進入凹部中; -9- 1311061 一個流動通道,其可與計量室做流體相通;一個吸嘴,其 內部可與流動通道之出口做流體相通;加熱器,其可與& 動通道之至少一部份做熱傳遞相通,加熱器可作用而使流 動通道中之流體揮發,使揮發之流體在吸嘴內部形成氣溶 膠。 依照第3實施例,一個控制器電氣地操作一個致動機構, 其可使投藥件從第1位置移動到第2位置,以使預定體積 之流體通過流動通道而提供一個恆定流量。流動通道較佳 爲毛細管尺寸大小之流動通道,並且材料之第1層包括一 個入口,伸設於入口與計量室之間的第1通道,出口及伸 設於計量室與出口之間的第2通道,彈性層覆蓋入口,第 1通道,第2通道,及出口。第1及第2柱塞可被用來打 開及關閉入口及出口,第1柱塞可從入口被打開之第1位 置移動第2位置,在此彈性層被壓抵住第1閥座以關閉入 口,並且第2柱塞可從出口被打開之第1位置移動到第2 位置,在此彈性層在此彈性層被壓抵住第2閥座以關閉出 口。一個致動機構可被用來將第1柱塞移動到第2位置,而 仍使第2柱塞保持在第1位置。 在第4實施例中,本發明提供一種以氣溶膠產生器產生 氣溶膠之方法,氣溶膠具有吸嘴使氣溶膠可被輸送到使用 者,該方法包括有:當使用者在吸嘴之出口上吸入時,感 測吸嘴內部之壓力降;當壓力降被檢測到之時,使氣溶膠 被供應到吸嘴內部;當壓力降被檢測到之時,打開空氣通 道而使空氣被供應到吸嘴內部。 -10- 1311061 在較佳實施例中,氣溶膠產生器包括有一個具有可滑動 蓋子之手持式吸入器,該方法另外包括有:使蓋子從關閉 位置滑動到打開位置,當壓力降被檢測到之時,打開位置 可作動氣溶膠產生器之元件而輸送氣溶膠到使用者。氣溶 膠產生器最好包括有一個加熱器及毛細通道,其等足以使 其中之流體揮發,此揮發之流體與空氣混合而形成氣溶膠 。氣溶膠產生器可包括有一個控制器,加熱器及毛細通道, 控制器用來監視加熱器之參數,並且控制輸送電力到加熱 器,使流體通過毛細通道時,加熱器可被保持在所需之溫 度範圍,流體揮發成氣溶膠。 在這個較佳方法中,氣溶膠產生器包括有一個外殼;一 個毛細通道,其被設置在外殼中,毛細通道具有出□與吸 嘴內部做流體相通;一個加熱器被設置在外殻中;一個儲 存器,其被設置在外殼中;一個計量室被設置在外殼中,流 體經由第1流動通道而從儲存器中被輸送到該計量室,並 且流體經由第2流動通道而從計量室被輸送到毛細通道; 一個電源,用來供應電力到加熱器;第1閥,用來將第1 流動通道打開及關閉;第2閥,用來將第2流動通道打開 及關閉;第3閥,用來將空氣通道打開及關閉,氣溶膠是 由:輸送電力到加熱器,關閉第1閥,打開第2及第3閥, 將流體從計量室移除,供應預定體積之流體到毛細通道且 使毛細通道中之流體揮發。一個馬達驅動之凸輪軸可被用 來打開及關閉第1 ,第2及第3閥,其方法包括:轉動凸 輪軸到第1位置,使第1閥在此被關閉並且第2及第3閥 -11- 1311061 被打開,以在氣溶膠輸送周期時達成預定體積之流體被輸 送到毛細通道,進一步轉動凸輪軸到第2位置,使第2及 第3閥在此被關閉並且第1閥被打開,因而在塡充周期中 可達成流體從儲存器被輸送到計量室中。 依照另一個較佳之方法,氣溶膠產生器包括有一個儲存 器,其容納有至少1 0劑之藥用流體,該方法另外包括: 將預定體積之藥用流體塡充了計量室,並且將預定體積之 _用流體輸送到毛細通道。此方法可包括有一個位移活塞, 該方法包括:將位移活塞從使計量室塡充流體之第1位置, 移動到第2位置,位移活塞在此可使計量室之彈性壁偏斜 ° 一個控制電路可被用來使電力被供應到加熱器,而使流 體在通過毛細通道時可加熱毛細通道,因而控制毛細通道 中之流體的溫度,流體被揮發並且在吸嘴中形成氣溶膠。 最好,吸嘴內部經由空氣通道僅被供應空氣,空氣通道由 一個閥所打開及關閉,閥在感測到壓力降時被關閉,並且 閥在感測到壓力降之後,並且氣溶膠被輸送到吸嘴內部之 後被打開一段時間。 (四)實施方式 整體言之,.本發明提供一種如手持式吸入器之氣溶膠產 生器,以及當壓力降在吸嘴內被檢測到之時輸送氣溶膠到 在吸嘴之出口上進行吸入之使用者。通過一個毛細通道之 藥物流體被加熱到足夠使流體蒸發,並且當其與空氣混合 之時,使揮發之流體凝縮,而形成氣溶膠。空氣經由一個 空氣通道被輸送到吸嘴,該空氣通道起初在壓力降之檢測 -12- 1311061 時被關閉。一個計量室使流體劑量很精確地被 。壓力降在空氣被輸送到吸嘴之前被檢測,結 可以在使用者開始在吸嘴上吸入時很快地被輸 。氣溶膠之快速輸送對使用者胸腔容量可提供 用。 本發明一個較佳實施例之氣溶膠產生器包括巧 力換能器以及可輸送控制量之藥物配方到使用 空氣輸送系統。在氣溶膠產生器之使用時,使 殻上之滑動蓋子,因而作動一個主開關,其可 生器置於隨時可被使用之情況。在主開關作動 用者在氣溶膠產生器之吸嘴上進行吸入時,一 感測到吸嘴中之壓力降。壓力換能器送出一信号 因而作動一個步進馬達,以轉動一個與入口閥 投藥活塞、出口閥、以及空氣通道閥相連之凸 輪軸轉動時,流體從計量室移動到一個已被加 道中,其中流體會在此揮發。在已揮發流體從 來並且進入吸嘴內部之後,周遭空氣與揮發流 而提供了氣溶膠。 第1圖爲本發明一個實施例之氣溶膠產生器 。氣溶膠產生器101包含有外殼103,毛細通 體及空氣輸送系統100及儲存器118。除此之 產生器101包含有一個(ΟΝ/OFF)主開關142, 138,電池組140及控制電路136。外殼103包 動蓋子103a,其在操作上與氣溶膠產生器101 不斷地輸送 果爲氣溶膠 送到使用者 更有效之使 I"外殼,壓 者之流體及 用者移動外 將氣溶膠產 之後,當使 壓力感測器 虎到控制器, 、計量室、 輪軸。當凸 熱之毛細通 毛細通道出 體混合,因 1 01之槪圖 道102,流 外,氣溶膠 壓力換能器 括有一個滑 聯結,因而 -13- 1311061 在氣溶膠產生器101被使用之時,使用者可使蓋子1〇3a 沿者如箭頭A所指示之方向而向上方移動。在本發明—個 實施例中,外殼103及蓋子103a可使用塑膠射出成型製 造。 氣溶膠產生器101之毛細通道102可包括有一小段金_ 配管,其可使經過第1電極1〇6及第2電極108之電流通 過。但是,流動通道可設置在其他之配置中,如在高分子, 玻璃,金屬及/或陶瓷薄片中且具有一層電阻式加熱材料 製成之加熱器之通道。通道102之最大寬度可爲0.01到1〇 公厘,較佳爲0.05到1公厘,更佳爲0.1至0.5公厘。 或者,毛細通道之通道橫向橫剖面可被形成爲8x1 0·5平方 公厘,較佳爲2x10·3平方公厘,更佳爲 8x1〇-3至2x10-1 平方公厘。以此配置,毛細通道102可在氣溶膠產生器1〇1 使用時加熱從儲存器118來之藥劑112(參照第2圖)。依 照本發明一個實施例,儲存器118具有藥劑容量爲可輸送 5 β 1劑量,較佳爲在1 〇劑量到約5 0 0劑量之間,例如5 0 至250劑量。但是藥劑容量是視所需劑量體積而定,並且 所需劑量可視氣溶膠產生器之施打量而預先設定。而且,儲 存器118可被設計成爲可移除之部分,以便在氣溶膠產生 器101使用時可與替換用儲存器互相更換。如此,氣溶膠 產生器101之使用壽命由於儲存器118及裝在內部之藥劑 112之更換而可增加。 氣溶膠產生器101亦包含有壓力換能器138,其可經由 通路109而與吸嘴105相通。使用者可在吸嘴105之出口 1311061 上進行吸入而作動氣溶膠產生器101。在進 吸入造成之壓力變化可作動壓力換能器138 1 3 8經由通路1 〇 9而感測壓力變化,因而作 輸送系統1 0 0。如下列將述及者,流體及空粲 可促進藥劑112進入毛細通道102中。 除此之外,流體及空氣輸送系統1 00可使 凝縮區域107中,而與從毛細通道102來做 蒸發藥劑進行混合。氣溶膠產生器1 0 1包括 110a,其可使周遭空氣通過進入氣溶膠產生 空氣通道110a進給到空氣通道110,其可使 中之周遭空氣與跑出毛細通道102之蒸發藥 須提及者,在本發明另一個實施例中,可使 提供稀釋用空氣而與蒸發藥劑進行混合,如 產生器內之壓縮空氣源(未顯示),風扇/鼓, 入吸嘴,或其類同物。 除了周遭空氣通道110a之外,氣溶膠產5 括有控制電路1 3 6。如下列將參照第5圖所 電路1 3 6在氣溶膠產生器1 0 1操作時用來控制 的溫度。控制電路1 3 6亦可監視一個液晶顯 來顯示剩餘之藥劑量,在氣溶膠產生器1 〇 1 制流體及空氣輸送系統100之一個步進馬達 圖),監視一個光學感測器,其與步進馬達 保馬達之精確定位,監視起初之壓力降,監 之情況,監視已被加熱之毛細通道102之操f 行吸入時,由 。壓力換能器 動流體及空氣 ^輸送系統1 0 0 周遭空氣進入 藥物配方用之 周遭空氣通道 器101。周遭 凝縮區域107 劑進行混合。 用加壓空氣源 設置在氣溶膠 風機使空氣流 器101亦包 敘述者,控制 丨毛細通道102 示器,其被用 操作時用來控 1 34(參考第2 1 3 4合作以確 視電池組1 4 0 P等等。 1311061 氣溶膠產生器101也包括有電池組140。在 示之實施例中,電池組1 40可爲使用5個電池 伏特鎳氫電池。在此實施例中,電池組1 4 0可 聯之三洋HF-CIU, 600mAh之鎳氫電池,其可使 "1體積之藥劑被輸送。電池組140可提供電力 生器101之元件(如控制電路136,壓力換能i 及(ΟΝ/OFF)主開關142。 (ΟΝ/OFF)主開關142控制氣溶膠產生器101 電力提供或切斷。再者,本發明一個實施例中 主開關142作動一個在LCD(未顯示),使其可提 儲存器118中剩餘之藥劑含量,是否加熱器失 池組1 40被檢測到低電壓,及其他等。 在氣溶膠產生器1 0 1操作時,使用者移動蓋 在方向A中之打開位置,以作動氣溶膠產生器 。蓋子l〇3a在打開位置時,使用者可在吸嘴 吸入藥劑。當使用者在吸嘴105上進行吸入藥 吸嘴內部造成壓力降,此可由壓力換能器138 在感測壓力降時,壓力換能器138送出一個信顯 其可用來操作流體及空氣輸送系統1 00,如第 地顯示。 第2圖爲顯示參照第1圖之本發明一個實施 空氣輸送系統1 00之槪圖。流體及空氣輸送系g 有上述之毛細通道102,第1及第2電極106 及儲存器118。儲存器118包括有壓縮彈簧116 第1圖所顯 【之充電式6 使用5個串 [10 0劑之5 到氣溶膠產 I 1 3 8等)以 在操作時之 ,(ON/OFF) 供訊息,如 效,是否電 子1 0 3 a到 1 0 1之元件 105上進行 劑時,會在 檢測出來。 t到控制器, 2圖中清楚 例的流體及 流1 0 0包括 及1 0 8,以 ,柱塞1 14 1311061 及藥劑112。壓縮彈簧116在方向箭頭B所示之方向上提 供壓力到柱塞1 1 4上,當入口閥1 2 0被打開之時,可以保 持液體藥劑1 1 2流動通過通道1 1 8 a且進入計量室1 22中。 入口閥120形成氣溶膠產生器1〇1之流體及空氣輸送系 統1 00的一部份。在本發明一個實施例中,流體及空氣輸 送系統1 00包括有許多由凸輪軸1 3 2所作動之閥,凸輪軸 132具有凸輪軸突出部及啣接齒輪132a。 啣接齒輪132a與步進馬達134之啣接齒輪134a聯結。 如此情況下,當步進馬達1 3 4轉動時,凸輪軸1 3 2亦經由 啣接齒輪132a與134a而轉動。當凸輪軸132轉動時,凸 輪軸突出部132b至132e亦轉動。凸輪軸132轉動時,凸 輪軸突出部132b至132e選擇地與閥柱塞120‘a, 124a及 1 3 0 a,以及投藥柱塞丨2 2 a聯結,投藥柱塞1 2 2 a由彈簧( 未顯示)加壓,以壓抵住凸輪軸突出部。在轉動之時,凸 輪軸突出部132b至132e依照由凸輪軸突出部之構造所決 定之所需順序而作動閥柱塞120a,124a及130a,以及投 藥柱塞122a。例如,凸輪軸突出部132b在操作上與閥柱 塞120a聯結,因而在凸輪軸轉動時可打開及關閉閥12〇。 凸輪軸突出部132c在操作上與投藥柱塞122a聯結,因而 在凸輪軸轉動時可將計量室1 22放空。較佳者,投藥柱塞 可以恆定流量將流體從計量室1 22中射出。凸輪軸突出部 1 32d在操作上與閥柱塞1 24a聯結,因而可打開及關閉閥 1 2 4,而凸輪軸突出部丨3 2 e在操作上與閥柱塞1 3 〇 a聯結, 因而在凸輪軸轉動時可打開及關閉閥1 3 〇。 -17- 1311061 如前所述,當蓋子1 0 3 a在打開位置並且使用者在在吸 嘴1 05上進行吸入藥劑時,吸嘴內部之壓力降可由壓力換 能器1 3 8檢測出來。在壓力換能器1 3 8感測壓力降時,壓 力換能器1 3 8可送出一個信號到控制電路1 3 6,接著其可 造成步進馬達134被作動。在本發明一個實施例中,步進 馬達1 34可爲美國佛羅里達州,淸水市之麥克羅模電子公 司所生產之類型者。 計量室122可由移動投藥柱塞122a而被放空。例如,當 凸輪軸突出部132c與投藥柱塞122a啣接時,投藥柱塞122a 之一端抵住計量室1 22之彈性壁,直到彈性壁抵住室之對 向壁爲止。因此,室中之流體被迫入通道100 b中,而通 道1 00b中之流體被迫入毛細通道中。彈性壁最好在通道 100a,100b,入口閥120及出口閥124之上方形成密封,使 出入口閥可在閥柱塞120a, 124a將彈性壓抵住閥開口周圍 之閥座時被打開或關閉。計量室122可確保所需要量之藥 劑112可由氣溶膠產生器101而被輸送給病人。在本發明 一個實施例中,計量室具有預定之體積(例如,5//1)。但 是須了解,計量室122可視氣溶膠產生器101之應用而定, 而被設計成任何需要量之體積。在預定體積之藥劑被輸送 到毛細通道1 0 2之後,出口閥1 2 4由凸輪軸突出部1 3 2 d 與柱塞124a之啣接而關閉。 凸輪軸1 3 2也包括有凸輪軸突出部1 3 2 e,其在操作上與 閥柱塞1 3 0 a聯結。柱塞1 3 0 a操作上連接到空氣閥1 3 0,當 凸輪軸突出部132e轉動而使閥柱塞130a移動之時,空氣 -18- 1311061 閥130會打開。空氣閥130使周遭空氣經由周遭空氣通道 110a而進入氣溶膠產生器1〇1中。空氣閥130進入將周遭 空氣通道110a與空氣通道110連接,因而在由空氣閥13〇 打開時,進入周遭空氣通道ll〇a之周遭空氣繼續通過空 氣通道110,而與從凝縮區域1〇7(參考第1圖中之顯示) 內之毛細通道102跑出之蒸發藥劑混合。空氣閥13〇亦可 使加壓空氣進入,而取代周遭空氣。 第2圖顯示流體及空氣輸送系統1〇〇在計量室被充塡流 體時之充塡周期時之情況。在充塡周期時,凸輪軸i 3 2轉 動而使凸輪軸突出部132b將閥120打開,並且凸輪軸突 出部132d將閥124關閉,而仍然保持投藥柱塞i22a在一 個位置上,使藥劑1 12可塡充計量室122。 第3圖爲流體及空氣輸送系統丨〇 〇之槪圖,其中流體及 空氣輸送系統100爲在氣溶膠輸送周期之開始。在此操作 中,凸輪軸突出部132b將閥120關閉。當閥120關閉時,凸 輪軸突出部132d及132e使閥124及130保持在關閉位置, 而凸輪軸突出部132c仍然保持投藥柱塞122a在非投藥位 置上。 第4圖爲流體及空氣輸送系統1〇〇之槪圖,其中流體及 空氣輸送系統100爲在氣溶膠輸送周期之終了。在氣溶膠 輸送周期之中,凸輪軸突出部132c使投藥柱塞122a移動 到投藥位置上,其中半球形柱塞頭將計量室之彈性壁壓住 朝向對向壁,因而使半球形計量室122被放空。當投藥柱 塞1 2 2 a開始壓住彈性壁時,凸輪軸突出部1 3 2 d及丨3 2 e -19- 1311061. 將柱塞124a及130a移動到打開位置,因而將閥124及130 打開。 當藥劑1 1 2流入被加熱之毛細通道1 〇 2並且以蒸發之流 體跑出時,周遭空氣由於使用者之吸入作用而從周遭'空氣 通道110a進入空氣通道11〇。將空氣閥130保持關閉直到 氣溶膠在吸嘴中產生爲止,氣溶膠可在病人吸入呼吸周期 中之早期被供應到病人,因而可將藥劑之正確劑量輸送到 病人之胸腔中。 第5圖顯示入口閥,出口閥,泵致動器(投藥柱塞),步 進馬達,呼吸致動感測器以及聯結到步進馬達之光學感測 器之時程順序槪圖。如圖所示,在2 0 0毫秒檢測使用者拉 動吸嘴之中,入口閥被關閉,隨後出口閥被打開。同時,空 氣通道閥被打開,使周遭空氣被病人在吸嘴出口上之吸入 作用而拉入吸嘴中。在出口閥打開之情況下,泵致動器( 投藥柱塞)將流體之精確體積之恆定流量提供到被加熱之毛 細通道2秒鐘。周遭空氣與被加熱之毛細通道所輸送之蒸 發流體混合而形成氣溶膠,並且病人可因而吸入氣溶膠。 隨後,出口閥關閉並且然後入口閥打開,以再塡充計量室 。因爲氣溶膠在病人之吸入開始時被輸送,氣溶膠中之藥 劑配方可有效地被管理。 第6圖爲本發明較佳之加熱器裝置的一個實施例,其中 毛細通道包括有具第1電極106之電導管,其爲下游電極, 以及第2電極1 〇 8,其爲上游電極。在此實施例中,毛細 通道102爲一個被控制溫度之外形設計,如於西元200 1 -20- 1311061 年 9月 21日而仍待審中之共同提出的專利申請案 No. 0 9 / 9 5 7, 026中所揭示者。在被控制溫度之外形的毛細 管中,下游電極具有電阻,其値足以在裝置之使用時造成 電極之加熱,因而減少在毛細管之出口端的熱損失。 依照本發明之一個實施形態,毛細通道是由不銹鋼或其 他導電材料製成之管子,或非導體或半導電管加入一個由 導電材料如白金所製成之電熱器所形成。兩個電極沿著管 長度方向在隔開位置上相連接,使加熱部被形成於兩個電 極之間。施加到兩個電極之間的電壓可依照不銹鋼或其他 製成管子或電熱器之材料的電阻,以及如加熱部之橫剖面 積及長度之其他參數,而在加熱部上產生熱。當流體流經 毛細管而進入第1及第2電極之間的加熱部之時,流體被 加熱並且轉換成蒸氣。蒸氣從毛細管之加熱部通過而到毛 細管之頂端,並且從毛細管之出口端跑出。若揮發之流體 從毛細管之頂端進入周遭空氣中之時,揮發之流體會凝縮 成小滴,因而形成較佳爲具有所需小滴尺寸爲〇 . 5至2 . 5 # m的氣溶膠。 毛細管流動通道中之液體溫度可根據加熱元件的測量或 δ十算出來之電阻而計算之。在本發明一個較佳實施例中,加 熱器爲金屬管之一部份,或者加熱器可爲帶狀或螺旋狀電 阻加熱材料。控制器較佳爲可由監視加熱器之電阻而調節 流動通道之溫度。 電阻控制爲根據一個簡單之原理:電熱器之電阻在其溫 度增加之時會提高。因爲電力被施加到加熱元件,其溫度 -21- 1311061 由於電阻式加熱而提高,並且電熱器之實際電阻値亦會增 加。當電力被關閉時,電熱器之溫度會降低,相對地其電 阻亦降低。因而,監視電熱器之參數(例如使用已知電流 及通過電熱器之電壓以計算電阻)並且控制電力施加之時, 控制器可維持電熱器在一個相當於具體化電阻目標之溫度 上。若電阻式加熱器並不被用來加熱流動通道中之液體之 時,一或多個電阻之使用亦可被用來監視被加熱液體之溫 度。 電阻目標値被選定成可對應於足以引起到液體之熱傳遞 的溫度,使液體被揮發並且從毛細管之開口端膨脹出來。 控制器可使作動電熱器之開關被閉路,因而通電到電熱器 一段時間,並且在此段時間之後,使用測量裝置之輸入値 而可決定電熱器之瞬時電阻値。在一個較佳實施例中,電 熱器之電阻是由測量通過與電熱器串聯之分流電阻(未顯示) 的電壓(因而可決定流到電熱器之電流),並且測量通過電 熱器之電壓降(因而可根據測量電壓及流過分流電阻之電流 而求出電阻値)而計算出來。爲了得到連續之測量,可使 小量之電流連續地通過分流電阻且加熱,以方便電阻計算, 並且使較高電流可被用來加熱該加熱器到所需之溫度。 若需要的話,電熱器之電阻可從通過電熱器之電流的測 量而求得,或者其他技術亦可用來獲得相同訊息。然後控 制器可根據電熱器之所需電阻目標値與由控制器所決定之 實際電阻値之間的差異,而決定是否送出另一段時間之電 力。 -22- 1311061 在一個發展模式中,供應到電熱器之電力的時間被設定 爲1毫秒。若電熱器之被監視電阻減去調整値小於目標値 的話,控制器之程式會使開關進入閉路(on )之位置而輸送 出另一段時間之電力。調整値考慮一些因素,例如電熱器 在未被致動之時的熱損失,測量裝置,及控制及開關裝置 之循環期之誤差,等等。實際上,因爲電熱器之電阻隨其 溫度而變化,電阻控制可被用來達成溫度控制。 依然本發明一個實施例,毛細通道1 02使用標準規格爲 32的SS 304配管,其具有12公厘之流體加熱部。除此之 外,在此實施例中,下游電極106是標準規格爲29號配 管3.5公厘長,而上游電極108可爲任何幾何形狀,只要 其可減少電極108之電阻,如鍍金之銅銷。 控制電路1 36可由監視被加熱之毛細通道1 〇2的電阻而 控制毛細通道1 02之溫度。在本發明一個實施例中,毛細 通道102之目標溫度較佳爲約220°C。在此實施例中,一 個被加熱毛細通道1 0 2的已測量之電阻對目標溫度爲2 2 0 °C 而言較佳爲0.4歐姆。爲了達成0.4歐姆之電阻値,控制 電路136測量電壓及電流,以計算通過毛細通道1〇2長度 之電阻。若控制電路1 3 6計算出,最終電阻在目標値之下 時,控制電路136會使電力ON大約1〇毫秒。控制電路136 繼續重覆此程序直到毛細通道1 〇 2之目標電阻値達到爲止 。同樣地,若控制電路1 3 6測量電阻値高出毛細通道1 〇 2 溫度之所需時,控制電路1 3 6會使電力off大約1 〇毫秒 。在此實施例中,控制電路1 3 6可包含有任何處理器,只 -23- 1311061 要其可經由電極1 06及1 08控制毛細通道1 02之電阻,例 如美國亞利桑那州張德勒市之微晶片公司所販賣之微晶片 PIC16F8 7 7,其以組合語言寫入程式。須提及者,控制電 路1 3 6包括有控制步進馬達1 3 4,光學及壓力感測器,檢 查電池組1 4 0及含在(ON / OFF )主開關1 4 2中之LCD的功能 。控制電路1 3 6亦可包含有經由處理器而顯示剩餘藥劑數 目,病人順從訊息,投藥完了時間及/或兒童安全鎖之功 能。毛細通道1 0 2内的藥劑1 1 2蒸發之後,蒸發之藥劑膨 脹到凝縮區域1 07中,而與周遭空氣混合以達到凝縮。 氣溶膠產生器可產生凝縮之氣溶膠,其具有高數量之濃 度及尺寸約爲與約2.5#ra範圍之間的微粒。氣溶 膠產生器可小型化成手持式,可攜帶式之裝置,其具有相 當的藥劑目標値輸送到胸腔深度之潛力。這些氣溶膠提供 了輸送藥劑到胸膛深度之優許多點。例如,嘴及喉嚨之沉 積可被減少,而沉積到胸腔深度則可增加。再者,當使用 適當的親水載體之時,沉積可進一步地由濕度之成長而被 強化。 氣溶膠之中間値微粒尺寸可由增加毛細管尺寸,及/或 減少通過毛細通道之流體流速而提高。氣溶膠產生器較佳 爲產生氣溶膠,其中9 5%之氣溶膠粒子(氣溶膠滴)小於 5 . 6 μ m ,更佳爲在0.5#m與約2.5#m範圍之間。氣溶膠 產生器較佳爲含有處理器晶片,以用來控制產生之程序。 具有適當感測器之處理器亦可在任何所需時間病人進行吸 入時啓動氣溶膠之產生。處理器亦可儲存且報告病人回饋 -24- 1311061 之順從性訊息。在氣溶膠產生器使用之時,待噴霧之藥劑 被溶解到載體之中。適當地選擇親水性載體之時,此氣溶 膠產生器可充分利用到呼吸系統之濕度成長之優點。 較佳氣溶膠產生器之操作如下。首先,一種流體載體連 同藥物一起被泵啷通過已加熱之毛細通道。流體在通道中 蒸發,並且從通道之開口端以蒸發噴射而跑出。蒸發噴射 輸送且與周遭空氣混合,冷卻然後凝縮成高濃縮之細微氣 溶膠。已加熱之毛細通道可包括許多形式,包括使用玻璃 毛細管由加電熱器所纏繞,以及由不銹鋼所形成之毛細管 。使氣溶膠產生蒸發之熱的施加通常是由通電到金屬毛細 管,使電阻性電熱器加熱而達成。施加之電力被調整,以 增加流體變成氣溶膠之轉換。 氣溶膠產生器視毛細管尺寸及使流體蒸發所需電力而定, 可在一個流體流量範圍內產生氣溶膠。可被用來產生氣溶 膠之流體可爲美國喬治亞州亞特蘭大市之費雪科技公司所 生產之USP等級(CAS#5 7 - 5 5 - 6 )之乙二醇(PG)。乙二醇之沸 點爲1 8 9 °C ,並且其密度爲1 · 〇 3 6克/毫升。做爲藥劑模式 之溶液化合物亦爲費雪科技公司所生產之三苯基甲烷 (CAS#519-73-3),及油醇(CAS# 1 4 3 - 28 - 2 )。 由氣溶膠產生器所生產之氣溶膠的質量中間値空氣動力 直徑(MMAD)爲已加熱毛細管尺寸大小之流動通道以及輸入 流量之函數。第7圖顯示對許多毛細管直徑,其MMAD與PG 流量之曲線關係。參考第7圖所顯示之資料反應未含溶解 物之PG。當流量增加時,氣溶膠之MMAD首先減少,然後 -25- 1311061 成水平而趨向恆定値。當毛細管直徑增加時,整個流量範 圍之微粒尺寸亦增加。在本發明一個實施例中,這兩個效 果可被用來減少氣溶膠之MMAD。 加入如藥物之溶質到PG之時,可改變凝縮程序,因爲 溶質可做爲PG之核形成劑。若溶質之蒸氣壓等於PG時,溶 質在氣溶膠中與PG凝縮之相同時間上進行凝縮。當三苯基 甲烷(TPM)在PG中具有0,28%之濃度時,TPM活動類似PG , 並且TPM及PG兩者形成一種氣溶膠,其中TPM具有與所 有氣溶膠相同之化學分佈,如第8圖中淸楚地顯示。在第 8圖所顯示之曲線中,流體進給速率爲2 . 5克/秒,並且PG 具有之MMAD爲在約1 . 1 /z m與1 . 5 # m之間。 在一個溶質比PG更易揮發之實施例中,溶質可較早開 始凝縮程序,並且做爲隨後PG凝縮所用之核生長劑。在 此實施例中,會產生溶質之化學分佈與整體氣溶膠之質量 分佈之間的差異。此可證明溶質及PG本身之不同的MMADs 。須提及者,沒有兩種分別的氣溶膠。相反地,一種氣溶 膠被生產出,其具有隨尺寸變化的可變化學成分。MMADs 可爲溶質濃度之函數,如第9圖中淸楚顯示,含在PG中 之油醇(OA)由於PG氣溶膠核生長之溶質效應者。在第9圖 所顯示之實施例中,流體進給速率爲3 . 3克/秒。須提及 者,做爲PG之核生長之溶質的存在會造成氣溶膠中匪AD 値之減少。在此實施例中,具有溶液重量之1 0%的0A之串 級衝擊器及USP電導口之總恢復値爲泵啣到毛細管之量的 95 . 1± 1.2% -26- 1311061 如眾人可能有興趣者,本發明一個較佳實施例提供一種 氣溶膠產生器,其可控制蒸發及藥物配方之凝縮。除此之 外,本發明一個較佳實施例提供可更換之儲存器,其具有 預定量之藥劑。氣溶膠產生器之一個較佳實施例可將氣溶 膠立即輸送到病人,以不浪費由於病人健康情況而受限之 胸腔容量。而且,氣溶膠產生器之一個較佳實施例可提供 恆定輸送控制量之藥劑配方給病人。如此情況下,與此氣 溶膠產生器之較佳實施例相關之整體成本可減少,因爲使 用者可連續地更換儲存器及電池,因而增加氣溶膠產生器 之使用壽命。 上述爲執行本發明之舉例模式,並且並不意在限制本發 明。明顯地,對熟於此技術者而言,在不違反本發明之精 神及由隨附申請專利範圍所規定之範圍之下,可從事許多 改變。例如,雖然已加熱的毛細管已被敘述爲較佳之氣溶 膠產生器,但是氣溶膠亦可以其他技術產生,例如以推進 劑爲主之氣溶膠產生器,或噴灑藥水爲主之氣溶膠產生器, 其中液體或粉末可由加壓氣體或經由超音波振動而被形成 氣溶膠。另外,雖然已加熱的毛細管已被敘述爲較佳之被 加熱毛細通道,但是毛細通道可被設置成在薄層中之一或 多個通路,此薄層中具有逼個加熱器沿著通路而配置,或 多數個毛細管配置,或一個具有加熱器裝設在通道內側之 通道,或同心配置,其中流體可流動通過'環狀通道等。另 外,雖然凸輪配置已被敘述做爲較佳之閥操作機構,但是 個別之’電磁閥或其他閥作動裝置亦可取代而使用。 -27-1311061 1 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Aerosol) produced. More specifically, the present invention relates to an aerosol generator which, when used, provides a controlled dose of the drug. (ii) Prior art Metered dose inhalers for inhaled aerosols by the patient itself have been disclosed in U.S. Patent Nos. 5, 487, 378; 5, 522, 378; 5, 622, 162; 5, 839, 430; 5, 894, 841; and 6, 152, 130. Some inhalers use a propellant system, such as the propulsive force of a mixture of liquefied CFCs. Other inhaler ultrasonic nebulizer systems atomize the liquid in the carrier gas stream, or inhale the air to burst and fluidize, and pull the powder into the bronchi. Co-owned US Patent Nos. 5, 743, 251 and 6,234, 167 show an aerosol generator in which a liquid formulation is evaporated to form a mid-inhalation aerosol. In order to deliver aerosols from the inhaler, a variety of respiratory actuation systems have been proposed. According to US Patent No.  5,622,162, some respiratory actuation systems require the patient's own breathing effort to move a handle or produce a detected flow that rises to a preset limit. One problem with this system is that individual breathing conditions vary and some patients are unable to generate enough airflow to activate the unit. Although there are many attempts to improve the respiratory actuation system, the detection is still dominated by the gas flow of the patient itself, and therefore the air is often inhaled before the aerosol is delivered. Therefore, the patient may not be able to take all the medication. Other techniques for the production of aerosols are disclosed in U.S. Patent Nos. 4,811,731 and 4,627,432, the disclosure of which is incorporated herein by reference to the entire entire entire entire entire entire entire entire entire disclosure . The user then inhales the released medicament through the opening of the device. (C) SUMMARY OF THE INVENTION According to a first embodiment, an aerosol generator of the present invention includes: a nozzle having an outlet for allowing an aerosol to be delivered to a user of the aerosol generator; an air passage, Air can be delivered to the inside of the nozzle through this passage; and a sensor for detecting the pressure drop inside the nozzle. The aerosol generator may comprise: a housing; a capillary channel disposed in the housing; a reservoir disposed in the housing; a metering chamber disposed in the housing, the fluid passing through the first flow channel And being transported from the reservoir to the metering chamber, and the fluid is transported from the metering chamber to the capillary channel via the second flow channel; the power source is used to supply power to the heater; and the first valve is used to transfer the first flow channel Open and close; the second valve is used to open and close the second flow passage; the third valve is used to open and close the air passage. The valve can be opened and closed by a motor or camshaft. The camshaft includes a plurality of camshaft projections operatively coupled to the second, second, and third valves, the camshaft projections acting to close the first valve and open the second during an aerosol delivery cycle And the third valve allows fluid to be delivered to the capillary channel. The camshaft projection acts during the refilling cycle to open the -7-1311061 1 valve and close the 2nd and 3rd valves to allow fluid to be delivered to the metering chamber. A stepping motor can be operatively coupled to the camshaft, wherein the stepper motor can rotate the camshaft to open and close the first valve, the second and third valves. The reservoir is removably secured to the outer casing and/or the reservoir can include a piston operable to pressurize fluid in the reservoir. According to a preferred embodiment, the outer casing may include a cover slidably secured to the outer casing and a suction nozzle at the end of the cover. Also, a liquid crystal display is located on a portion of the outer casing which is exposed when the cover is moved to the aerosol delivery position. When the user opens the suction xr at the outlet of the nozzle, the sensor can act to send a signal to the controller. The sensor includes a transducer that detects the pressure drop inside the nozzle when the user begins to inhale at the outlet of the nozzle. The controller can be used to monitor the parameters of the heater and deliver power from the power source to the heater so that the heater can be maintained at the desired temperature range during the aerosol delivery cycle. In another preferred embodiment, the aerosol generator is a hand-held inhaler, only air can be supplied to the interior of the nozzle via the air passage, and the aerosol generator includes a valve that is The air passage is opened for a predetermined period of time after the outlet begins to inhale. In a second embodiment, the aerosol generator comprises: a nozzle having an outlet for the aerosol to be delivered to a user of the aerosol generator; an aerosol generator system operable to supply the aerosol To the inside of the nozzle; an air passage through which air can be delivered to the inside of the nozzle; a pressure sensor that acts to detect a pressure drop inside the nozzle to output a signal; a controller that functions as an -8 - 1310661 dynamic aerosol generator system to supply aerosol to the interior of the nozzle in response to a signal output from the pressure sensor; and a valve that acts to open and close the air The channel, the controller acts in response to the signal output of the pressure sensor to open the valve. The aerosol generator system includes a propellant-based aerosol generator, a spray-based aerosol generator, or a volatile-based aerosol generator. In the second embodiment, the aerosol generator comprises a housing and a cover slidably fixed to the housing, the nozzle having a nozzle at one end thereof, and the cover being prevented from being transported from the aerosol to the closed position inside the nozzle Sliding to the aerosol delivery position allows the aerosol generator system to be in a breathing mode of operation wherein the user can obtain the desired aerosol dose by inhalation at the outlet. Preferably, the aerosol generator comprises a hand held inhaler, and the aerosol generator system comprises a capillary channel having a capillary size and a heater configured to volatilize fluid in the flow channel to An aerosol is generated inside the nozzle. The aerosol generator may include an applicator member and a metering chamber. The metering chamber includes a recess and an elastic wall covering the recess, and the applicator member is movable from the first position to the second position relative to the elastic wall, so that the elastic wall is here. The deformation enters the recess, the metering chamber provides fluid communication between the fluid source and the flow channel, and the drug delivery member can be moved in one manner to provide a constant flow of fluid in the flow channel. In a third embodiment, an aerosol generator includes: a metering chamber including a recess in a first layer of material thereof; and an elastic layer covering the recess; and a drug dispensing member operatively Moving to the second position at the first position of the elastic wall, the elastic wall is deformed therein into the concave portion; -9-1311061 a flow passage which is in fluid communication with the metering chamber; a nozzle having an internal passage and a flow passage The outlet is fluidly connected; the heater is in thermal communication with at least a portion of the & moving passage, the heater acts to volatilize the fluid in the flow passage, causing the volatilized fluid to form an aerosol inside the nozzle . According to a third embodiment, a controller electrically operates an actuating mechanism that moves the applicator member from the first position to the second position to provide a constant volume of fluid through the flow passage. The flow channel is preferably a capillary-sized flow channel, and the first layer of material comprises an inlet extending from the first passage between the inlet and the metering chamber, the outlet and the second extending between the metering chamber and the outlet The passage, the elastic layer covers the inlet, the first passage, the second passage, and the outlet. The first and second plungers can be used to open and close the inlet and the outlet, and the first plunger can be moved from the first position where the inlet is opened to the second position, where the elastic layer is pressed against the first valve seat to close. The inlet and the second plunger are movable from a first position in which the outlet is opened to a second position, where the elastic layer is pressed against the second valve seat to close the outlet. An actuating mechanism can be used to move the first plunger to the second position while still maintaining the second plunger in the first position. In a fourth embodiment, the present invention provides a method of producing an aerosol by an aerosol generator having a nozzle for allowing aerosol to be delivered to a user, the method comprising: when the user is at the mouth of the nozzle When inhaling, sensing the pressure drop inside the nozzle; when the pressure drop is detected, the aerosol is supplied to the inside of the nozzle; when the pressure drop is detected, the air passage is opened and the air is supplied to Inside the nozzle. -10- 1311061 In a preferred embodiment, the aerosol generator comprises a hand held inhaler having a slidable lid, the method additionally comprising: sliding the lid from the closed position to the open position, when the pressure drop is detected At this time, the open position activates the components of the aerosol generator to deliver aerosol to the user. Preferably, the aerosol-generating device comprises a heater and a capillary passage sufficient to volatilize the fluid therein, the volatilized fluid mixing with the air to form an aerosol. The aerosol generator can include a controller, a heater and a capillary channel, the controller is used to monitor the parameters of the heater, and control the delivery of power to the heater so that when the fluid passes through the capillary channel, the heater can be maintained at the desired level. The temperature range and the fluid evaporates into an aerosol. In this preferred method, the aerosol generator comprises a housing; a capillary channel disposed in the housing, the capillary channel having a discharge port in fluid communication with the interior of the nozzle; a heater disposed in the housing; a reservoir disposed in the housing; a metering chamber disposed in the housing, fluid being delivered from the reservoir to the metering chamber via the first flow channel, and fluid being delivered from the metering chamber via the second flow channel To the capillary channel; a power supply for supplying power to the heater; a first valve for opening and closing the first flow passage; a second valve for opening and closing the second flow passage; and a third valve for To open and close the air passage, the aerosol is: delivering power to the heater, closing the first valve, opening the second and third valves, removing the fluid from the metering chamber, supplying a predetermined volume of fluid to the capillary channel and The fluid in the capillary channel evaporates. A motor-driven camshaft can be used to open and close the first, second, and third valves by rotating the camshaft to the first position, causing the first valve to be closed and the second and third valves -11- 1311061 is opened to deliver a predetermined volume of fluid to the capillary channel during the aerosol delivery cycle, further rotating the camshaft to the second position, causing the second and third valves to be closed and the first valve to be closed It is opened so that fluid can be delivered from the reservoir into the metering chamber during the filling cycle. According to another preferred method, the aerosol generator comprises a reservoir containing at least 10 doses of the medical fluid, the method additionally comprising: filling a predetermined volume of the medical fluid into the metering chamber and prescribing The volume is transported to the capillary channel with fluid. The method can include a displacement piston, the method comprising: moving the displacement piston from a first position in which the metering chamber is filled with fluid to a second position, wherein the displacement piston deflects the elastic wall of the metering chamber. The circuit can be used to supply electrical power to the heater such that the fluid can heat the capillary channel as it passes through the capillary channel, thereby controlling the temperature of the fluid in the capillary channel, the fluid being volatilized and forming an aerosol in the nozzle. Preferably, the inside of the nozzle is only supplied with air via the air passage, the air passage is opened and closed by a valve, the valve is closed when the pressure drop is sensed, and the valve is sensed after the pressure drop, and the aerosol is delivered It is opened for a while after reaching the inside of the nozzle. (IV) Implementation method Overall, SUMMARY OF THE INVENTION The present invention provides an aerosol generator, such as a hand-held inhaler, and a user who delivers aerosol to inhalation at the outlet of the nozzle when a pressure drop is detected within the nozzle. The drug fluid passing through a capillary channel is heated sufficiently to evaporate the fluid, and when it is mixed with air, the volatilized fluid is condensed to form an aerosol. Air is delivered to the nozzle via an air passage that is initially closed when the pressure drop is detected -12-1311061. A metering chamber allows the fluid dose to be accurately measured. The pressure drop is detected before the air is delivered to the nozzle, and the knot can be quickly lost when the user begins to inhale on the nozzle. Rapid delivery of aerosols is available to the user's chest volume. An aerosol generator in accordance with a preferred embodiment of the present invention includes a smart transducer and a drug formulation that delivers a controlled amount to an air delivery system. In the use of the aerosol generator, the cover is slid over the cover, thereby actuating a main switch that can be placed ready for use. When the main switch actuator inhales on the nozzle of the aerosol generator, the pressure drop in the nozzle is sensed. The pressure transducer sends a signal to actuate a stepper motor to rotate a camshaft coupled to the inlet valve dispensing valve, the outlet valve, and the air passage valve, and the fluid moves from the metering chamber to an already-added path, wherein The fluid will evaporate here. After the volatilized fluid has entered and entered the interior of the nozzle, the surrounding air and volatilization flow provide an aerosol. Figure 1 is an aerosol generator of one embodiment of the present invention. The aerosol generator 101 includes a housing 103, a capillary body and air delivery system 100, and a reservoir 118. In addition to this, the generator 101 includes a (ΟΝ/OFF) main switch 142, 138, a battery pack 140 and a control circuit 136. The outer casing 103 envelops the lid 103a, which is operatively transported with the aerosol generator 101 to deliver the aerosol to the user more efficiently, allowing the I" outer casing, the fluid of the presser and the user to move the aerosol after production. When making the pressure sensor tiger to the controller, the metering chamber, the axle. When the capillary channel of the hot heat is mixed with the body, since the channel 102 is 102, the aerosol pressure transducer includes a sliding joint, and thus the-13-1311061 is used in the aerosol generator 101. At this time, the user can move the cover 1〇3a along the direction indicated by the arrow A. In an embodiment of the invention, the outer casing 103 and the cover 103a can be formed by plastic injection molding. The capillary channel 102 of the aerosol generator 101 can include a small length of gold-tube that can pass current through the first electrode 1〇6 and the second electrode 108. However, the flow channels can be placed in other configurations, such as in a polymer, glass, metal, and/or ceramic sheet and have a passage of a heater made of a resistive heating material. The maximum width of the channel 102 can be 0. 01 to 1 mm, preferably 0. 05 to 1 mm, more preferably 0. 1 to 0. 5 mm. Alternatively, the transverse cross-section of the channel of the capillary channel may be formed to be 8 x 1 0. 5 mm 2 , preferably 2 x 10 · 3 mm 2 , more preferably 8 x 1 〇 - 3 to 2 x 10 - 1 mm 2 . With this configuration, the capillary channel 102 can heat the medicament 112 from the reservoir 118 when the aerosol generator 1 is used (see Fig. 2). According to one embodiment of the invention, the reservoir 118 has a medicament volume that can deliver a 5β1 dose, preferably between 1 〇 dose and about 50,000 dose, such as a 50 to 250 dose. However, the dosage of the medicament depends on the required dose volume, and the required dose can be set in advance depending on the amount of application of the aerosol generator. Moreover, the reservoir 118 can be designed as a removable portion for mutual replacement with the replacement reservoir when the aerosol generator 101 is in use. As such, the useful life of the aerosol generator 101 can be increased by the replacement of the reservoir 118 and the internally contained medicament 112. The aerosol generator 101 also includes a pressure transducer 138 that is in communication with the nozzle 105 via a passage 109. The user can actuate the aerosol generator 101 by inhaling at the outlet 1311061 of the nozzle 105. The pressure change caused by the inhalation can be actuated by the pressure transducer 138 1 3 8 to sense the pressure change via the passage 1 〇 9 and thus serve as the delivery system 100. Fluid and voids may facilitate entry of the medicament 112 into the capillary channel 102, as will be described below. In addition to this, the fluid and air delivery system 100 can be condensed in the condensation zone 107 and mixed with the evaporating agent from the capillary channel 102. The aerosol generator 101 includes a 110a that allows ambient air to be introduced into the air passage 110 through the aerosol generating air passage 110a, which can cause the ambient air and the evaporating drug that runs out of the capillary channel 102 to be mentioned. In another embodiment of the invention, dilution air may be provided for mixing with the evaporating agent, such as a source of compressed air (not shown) in the generator, a fan/drum, a nozzle, or the like. In addition to the surrounding air passage 110a, the aerosol product 5 includes a control circuit 136. The temperature to be controlled when the aerosol generator 1 0 1 is operated as will be referred to in Fig. 5 will be referred to below. The control circuit 136 can also monitor a liquid crystal display to display the remaining dose, in the aerosol generator 1 制1 fluid and air delivery system 100 stepper motor diagram), monitor an optical sensor, and The stepper motor maintains the precise positioning of the motor, monitors the initial pressure drop, and monitors the condition of the heated capillary channel 102 when it is inhaled. Pressure Transducer Fluid and Air ^ Delivery System 1 0 0 ambient air enters the ambient air channel 101 for drug formulation. The surrounding condensed area 107 was mixed. A pressurized air source is provided in the aerosol fan so that the air flow device 101 also includes the narrator, and the capillary channel 102 is controlled, which is used to control 1 34 when operating. (Refer to the 2 1 3 4 cooperation to confirm the battery. Group 1 40 P, etc. 1311061 The aerosol generator 101 also includes a battery pack 140. In the illustrated embodiment, the battery pack 140 can be a five battery volt nickel hydrogen battery. In this embodiment, the battery Group 1 40 can be connected to Sanyo HF-CIU, a 600 mAh nickel-hydrogen battery, which allows a volume of drug to be delivered. Battery pack 140 can provide components of power generator 101 (eg, control circuit 136, pressure transduction) i and (ΟΝ/OFF) main switch 142. (ΟΝ/OFF) The main switch 142 controls the aerosol generator 101 to provide or cut off power. Further, in one embodiment of the invention, the main switch 142 operates one on the LCD (not shown) ), to make it possible to extract the remaining amount of the drug in the reservoir 118, whether the heater lost cell group 140 is detected with a low voltage, and the like. When the aerosol generator 1 0 1 is operated, the user moves the cover in the direction Open position in A to activate the aerosol generator. Cover l〇3a at In the open position, the user can inhale the medicament at the nozzle. When the user performs a pressure drop on the inside of the suction nozzle 105, the pressure transducer 138 can sense the pressure drop, the pressure transducer 138. A letter is sent to operate the fluid and air delivery system 100, as shown on the ground. Fig. 2 is a diagram showing an implementation of the air delivery system 100 of the present invention with reference to Fig. 1. Fluid and air delivery system g There are the above capillary channel 102, the first and second electrodes 106 and the reservoir 118. The reservoir 118 includes a compression spring 116 shown in Fig. 1 [Charging type 6 using 5 strings [10 0 dose of 5 to aerosol) Production I 1 3 8 , etc.) In the operation, (ON / OFF) for the message, if it is effective, whether the agent is on the component 105 of the electron 1 0 3 a to 1 0 1 will be detected. t to control 2, the fluid and flow of the clear example in the figure include 1 0 8, and the plunger 1 14 1311061 and the medicament 112. The compression spring 116 provides pressure to the plunger 1 1 in the direction indicated by the direction arrow B. 4, when the inlet valve 1 2 0 is opened, the liquid medicament 1 1 2 can be kept flowing The channel 1 18 a and enters the metering chamber 1 22. The inlet valve 120 forms part of the fluid and air delivery system 100 of the aerosol generator 1〇1. In one embodiment of the invention, the fluid and air delivery system 100 includes a plurality of valves actuated by a camshaft 132, the camshaft 132 having a camshaft projection and a catching gear 132a. The engagement gear 132a is coupled to the engagement gear 134a of the stepper motor 134. In this case, when the stepping motor 1 34 rotates, the cam shaft 1 3 2 also rotates via the engaging gears 132a and 134a. When the cam shaft 132 rotates, the cam shaft projections 132b to 132e also rotate. When the cam shaft 132 rotates, the cam shaft projections 132b to 132e are selectively coupled to the valve plungers 120'a, 124a and 130a, and the drug plunger 215 2 a, and the drug plunger 1 2 2 a is spring ( Pressurized to press against the camshaft projection. At the time of rotation, the cam shaft projections 132b to 132e actuate the valve plungers 120a, 124a and 130a, and the dispensing plunger 122a in accordance with the desired sequence determined by the configuration of the cam shaft projections. For example, the camshaft projection 132b is operatively coupled to the spool plug 120a so that the valve 12A can be opened and closed as the camshaft rotates. The camshaft projection 132c is operatively coupled to the dosing plunger 122a so that the metering chamber 1 22 can be emptied as the camshaft rotates. Preferably, the dosing plunger can eject fluid from the metering chamber 1 22 at a constant flow rate. The camshaft projection 1 32d is operatively coupled to the valve plunger 1 24a so that the valve 1 24 can be opened and closed, and the camshaft projection 丨3 2 e is operatively coupled to the valve plunger 13 3a, thus The valve 1 3 可 can be opened and closed while the camshaft is rotating. -17- 1311061 As previously mentioned, when the lid 1 0 3 a is in the open position and the user inhales the medicament on the nozzle 105, the pressure drop inside the nozzle can be detected by the pressure transducer 138. When the pressure transducer 138 senses the pressure drop, the pressure transducer 138 can send a signal to the control circuit 136, which can then cause the stepper motor 134 to be actuated. In one embodiment of the invention, the stepper motor 134 may be of the type produced by Macron's, Inc., of Surabaya, Florida. The metering chamber 122 can be emptied by moving the dosing plunger 122a. For example, when the camshaft projection 132c is engaged with the administration plunger 122a, one end of the administration plunger 122a abuts against the elastic wall of the measurement chamber 1 22 until the elastic wall abuts against the opposing wall of the chamber. Therefore, the fluid in the chamber is forced into the passage 100b, and the fluid in the passage 100b is forced into the capillary passage. Preferably, the resilient wall forms a seal over the passages 100a, 100b, the inlet valve 120 and the outlet valve 124 such that the inlet and outlet valves can be opened or closed when the valve plungers 120a, 124a resiliently press against the valve seat around the valve opening. The metering chamber 122 can ensure that the required amount of medicament 112 can be delivered to the patient by the aerosol generator 101. In one embodiment of the invention, the metering chamber has a predetermined volume (e.g., 5//1). It should be understood, however, that the metering chamber 122 can be sized to any desired volume, depending on the application of the aerosol generator 101. After the predetermined volume of medicament is delivered to the capillary channel 1 0 2 , the outlet valve 1 24 is closed by engagement of the camshaft projection 1 3 2 d with the plunger 124a. The camshaft 1 32 also includes a camshaft projection 1 3 2 e that is operatively coupled to the valve plunger 1 30 a. The plunger 1 30 a is operatively coupled to the air valve 130, and when the cam shaft projection 132e is rotated to move the valve plunger 130a, the air -18-1311061 valve 130 is opened. The air valve 130 allows ambient air to enter the aerosol generator 1〇1 via the ambient air passage 110a. The air valve 130 enters to connect the peripheral air passage 110a with the air passage 110, so that when the air valve 13 is opened, the ambient air entering the peripheral air passage 11a continues to pass through the air passage 110, and from the condensed region 1〇7 ( Referring to the image shown in Figure 1, the evaporating agent escaping from the capillary channel 102 is mixed. The air valve 13〇 also allows pressurized air to enter, replacing the surrounding air. Figure 2 shows the fluid and air delivery system 1 when the metering chamber is filled with fluid during the filling cycle. During the filling cycle, the camshaft i 3 2 rotates such that the camshaft projection 132b opens the valve 120, and the camshaft projection 132d closes the valve 124 while still maintaining the dispensing plunger i22a in one position, causing the medicament 1 12 can fill the metering chamber 122. Figure 3 is a diagram of a fluid and air delivery system, wherein the fluid and air delivery system 100 is at the beginning of the aerosol delivery cycle. In this operation, the camshaft projection 132b closes the valve 120. When the valve 120 is closed, the camshaft projections 132d and 132e maintain the valves 124 and 130 in the closed position, while the camshaft projection 132c still maintains the dosing plunger 122a in the non-dosing position. Figure 4 is a diagram of a fluid and air delivery system in which the fluid and air delivery system 100 is at the end of the aerosol delivery cycle. During the aerosol delivery cycle, the camshaft projection 132c moves the dosing plunger 122a to the dosing position, wherein the hemispherical plunger head presses the resilient wall of the metering chamber against the opposing wall, thereby causing the hemispherical metering chamber 122 Was emptied. When the plunger 1 2 2 a starts to press against the elastic wall, the camshaft protrusions 1 3 2 d and 丨 3 2 e -19- 1311061.  The plungers 124a and 130a are moved to the open position, thereby opening the valves 124 and 130. When the medicament 1 12 flows into the heated capillary channel 1 〇 2 and escaping with the evaporating fluid, the ambient air enters the air passage 11 from the surrounding 'air passage 110a' by the user's suction action. The air valve 130 is kept closed until the aerosol is generated in the nozzle, and the aerosol can be supplied to the patient early in the patient's inhalation breathing cycle, thereby delivering the correct dose of the medicament into the chest of the patient. Figure 5 shows a timing diagram of the inlet valve, the outlet valve, the pump actuator (dosing plunger), the stepper motor, the breath actuating sensor, and the optical sensor coupled to the stepper motor. As shown, in the 2000 millisecond detection user pulls the nozzle, the inlet valve is closed, and then the outlet valve is opened. At the same time, the air passage valve is opened to allow ambient air to be drawn into the nozzle by the patient's suction at the nozzle outlet. With the outlet valve open, the pump actuator (dosing plunger) provides a constant flow of precise volume of fluid to the heated capillary channel for 2 seconds. The ambient air is mixed with the evaporating fluid delivered by the heated capillary channel to form an aerosol, and the patient can thereby inhale the aerosol. Subsequently, the outlet valve closes and then the inlet valve opens to refill the metering chamber. Since the aerosol is delivered at the beginning of the patient's inhalation, the formulation of the aerosol in the aerosol can be effectively managed. Figure 6 is an embodiment of a preferred heater apparatus of the present invention, wherein the capillary channel includes an electrical conduit having a first electrode 106, which is a downstream electrode, and a second electrode 1, 8 which is an upstream electrode. In this embodiment, the capillary channel 102 is designed to be outside of a controlled temperature, such as the co-sponsored patent application No. 2001, dated September 21, pp.  0 9 / 9 5 7, 026. In a capillary tube shaped outside of the controlled temperature, the downstream electrode has an electrical resistance that is sufficient to cause heating of the electrode during use of the device, thereby reducing heat loss at the outlet end of the capillary. According to one embodiment of the invention, the capillary channel is a tube made of stainless steel or other electrically conductive material, or a non-conductor or semiconductive tube is formed by adding an electric heater made of a conductive material such as platinum. The two electrodes are connected at spaced positions along the length of the tube such that the heating portion is formed between the two electrodes. The voltage applied between the two electrodes may generate heat on the heating portion in accordance with the resistance of the stainless steel or other material forming the tube or the electric heater, and other parameters such as the cross-sectional area and length of the heating portion. As the fluid flows through the capillary into the heating portion between the first and second electrodes, the fluid is heated and converted into vapor. Vapor passes from the heated portion of the capillary to the top of the capillary and escaping from the outlet end of the capillary. If the volatilized fluid enters the surrounding air from the top of the capillary, the volatilized fluid will condense into droplets, which are preferably formed to have the desired droplet size.  5 to 2 .  5 #m of aerosol. The temperature of the liquid in the capillary flow channel can be calculated from the measurement of the heating element or the resistance calculated from δ. In a preferred embodiment of the invention, the heater is part of a metal tube or the heater can be a strip or spiral resistor material. Preferably, the controller adjusts the temperature of the flow channel by monitoring the resistance of the heater. The resistance is controlled according to a simple principle: the resistance of the heater increases as its temperature increases. Since electric power is applied to the heating element, its temperature -21 - 1311061 is increased by resistive heating, and the actual resistance 电 of the electric heater is also increased. When the power is turned off, the temperature of the heater is lowered, and the resistance is also lowered. Thus, by monitoring the parameters of the heater (e.g., using a known current and the voltage through the heater to calculate the resistance) and controlling the application of power, the controller can maintain the heater at a temperature corresponding to the target of the specific resistance. The use of one or more resistors can also be used to monitor the temperature of the heated liquid if the resistive heater is not used to heat the liquid in the flow path. The resistive target 値 is selected to correspond to a temperature sufficient to cause heat transfer to the liquid such that the liquid is volatilized and expanded from the open end of the capillary. The controller can cause the switch of the actuating electric heater to be closed and thus energized to the electric heater for a period of time, and after this time, the instantaneous resistance 値 of the electric heater can be determined using the input 値 of the measuring device. In a preferred embodiment, the resistance of the electric heater is measured by a voltage across a shunt resistor (not shown) in series with the electric heater (thus determining the current flowing to the electric heater) and measuring the voltage drop across the electric heater ( Therefore, it can be calculated based on the measured voltage and the current flowing through the shunt resistor to obtain the resistance 値). To obtain a continuous measurement, a small amount of current can be continuously passed through the shunt resistor and heated to facilitate resistance calculations, and a higher current can be used to heat the heater to the desired temperature. If desired, the resistance of the heater can be determined from the measurement of the current through the heater, or other techniques can be used to obtain the same message. The controller then determines whether to send another period of power based on the difference between the desired resistance target of the heater and the actual resistance 决定 determined by the controller. -22- 1311061 In one development mode, the time for supplying power to the heater is set to 1 millisecond. If the monitored resistance minus the adjustment 値 of the heater is less than the target ,, the controller's program will cause the switch to enter the closed (on) position and deliver power for another period of time. Adjustments take into account factors such as heat loss of the electric heater when it is not actuated, measurement equipment, and errors in the cycle of the control and switching devices, and so on. In fact, because the resistance of the heater varies with its temperature, resistance control can be used to achieve temperature control. Still in one embodiment of the invention, the capillary channel 102 uses a SS 304 pipe of standard size 32 having a 12 mm fluid heating section. In addition, in this embodiment, the downstream electrode 106 is a standard gauge No. 29 pipe 3. The length of the upstream electrode 108 can be any geometric shape as long as it reduces the resistance of the electrode 108, such as a gold plated copper pin. Control circuit 136 controls the temperature of capillary channel 102 by monitoring the resistance of heated capillary channel 1 〇2. In one embodiment of the invention, the target temperature of the capillary channel 102 is preferably about 220 °C. In this embodiment, the measured resistance of a heated capillary channel 1 0 2 is preferably 0 for a target temperature of 2 2 0 °C. 4 ohms. In order to achieve 0. After 4 ohms of resistance, control circuit 136 measures the voltage and current to calculate the resistance through the length of the capillary channel 1〇2. If the control circuit 136 calculates that the final resistance is below the target ,, the control circuit 136 will turn the power ON for approximately 1 〇 milliseconds. Control circuit 136 continues to repeat this procedure until the target resistance of capillary channel 1 〇 2 is reached. Similarly, if the control circuit 136 measures the resistance 値 higher than the capillary channel 1 〇 2 temperature, the control circuit 136 will cause the power off for approximately 1 〇 milliseconds. In this embodiment, the control circuit 136 may include any processor, only -23-1311061, which can control the resistance of the capillary channel 102 via the electrodes 106 and 108, such as the city of Zhangdele, Arizona, USA. The microchip PIC16F8 7 7 sold by the microchip company writes the program in a combined language. It should be mentioned that the control circuit 136 includes a control stepper motor 134, an optical and pressure sensor, and a battery pack 1 400 and an LCD included in the (ON / OFF) main switch 142. Features. The control circuit 136 may also include the function of displaying the remaining dose via the processor, the patient compliance message, the time of administration, and/or the child safety lock. After evaporation of the medicament 1 1 2 in the capillary channel 1 0 2 , the evaporated medicament expands into the condensing zone 107 and mixes with the surrounding air to achieve condensation. The aerosol generator produces a condensed aerosol having a high concentration and a size of about 2. Particles between 5#ra range. The aerosol gel generator can be miniaturized into a hand-held, portable device that has the potential to deliver a comparable drug target to the depth of the chest. These aerosols provide an excellent point of delivery of the agent to the depth of the chest. For example, the deposition of the mouth and throat can be reduced, while the depth of deposition into the chest can be increased. Further, when a suitable hydrophilic carrier is used, the deposition can be further enhanced by the growth of humidity. The intermediate particle size of the aerosol can be increased by increasing the capillary size and/or reducing the fluid flow rate through the capillary channel. The aerosol generator preferably produces an aerosol wherein 95% of the aerosol particles (aerosol drops) are less than 5.  6 μ m, more preferably 0. 5#m and about 2. Between 5#m range. The aerosol generator preferably contains a processor wafer for controlling the generated program. A processor with a suitable sensor can also initiate aerosol production when the patient inhales at any desired time. The processor can also store and report patient feedback -24- 1311061 compliance information. At the time of use of the aerosol generator, the agent to be sprayed is dissolved into the carrier. When the hydrophilic carrier is appropriately selected, the aerosol-soluble toner can take advantage of the humidity growth of the respiratory system. The preferred aerosol generator operates as follows. First, a fluid carrier is pumped through the heated capillary channel along with the drug. The fluid evaporates in the channel and escaping from the open end of the channel by evaporative jetting. Evaporative spray is delivered and mixed with ambient air, cooled and then condensed into a highly concentrated fine aerosol. The heated capillary channel can comprise many forms, including the use of a glass capillary tube to be wound by an electric heater, and a capillary tube formed of stainless steel. The application of heat to evaporate the aerosol is typically achieved by energizing the metal capillary to heat the resistive heater. The applied power is adjusted to increase the conversion of the fluid into an aerosol. Aerosol generators produce aerosols over a range of fluid flows, depending on the size of the capillary and the power required to evaporate the fluid. The fluid that can be used to produce the aerosol is the USP grade (CAS #5 7 - 5 5 - 6 ) of ethylene glycol (PG) produced by Fisher Scientific of Atlanta, Georgia, USA. The boiling point of ethylene glycol is 1 8 9 ° C and its density is 1 · 〇 3 6 g / ml. The solution compound used as the pharmaceutical mode is also triphenylmethane (CAS #519-73-3) produced by Fisher Scientific, and oleyl alcohol (CAS # 1 4 3 - 28 - 2 ). The mass intermediate aerodynamic diameter (MMAD) of the aerosol produced by the aerosol generator is a function of the flow channel of the heated capillary size and the input flow. Figure 7 shows the relationship between MMAD and PG flow for many capillary diameters. Refer to the data shown in Figure 7 for the reaction of PG without dissolved material. As the flow rate increases, the MMAD of the aerosol first decreases, then -25-1311061 levels and tends to be constant. As the capillary diameter increases, the particle size of the entire flow range also increases. In one embodiment of the invention, these two effects can be used to reduce the MMAD of the aerosol. When a solute such as a drug is added to the PG, the condensing procedure can be changed because the solute can be used as a nucleating agent for PG. If the vapor pressure of the solute is equal to PG, the solute condenses in the aerosol at the same time as the PG condenses. When triphenylmethane (TPM) has a concentration of 0,28% in PG, TPM activity is similar to PG, and both TPM and PG form an aerosol, wherein TPM has the same chemical distribution as all aerosols, such as 8 is shown in abundance. In the curve shown in Figure 8, the fluid feed rate is 2.  5 g / sec, and PG has a MMAD of about 1.  1 /z m and 1 .  Between 5 # m. In an embodiment where a solute is more volatile than PG, the solute can begin the condensing procedure earlier and act as a nuclear growth agent for subsequent PG condensation. In this embodiment, a difference between the chemical distribution of the solute and the mass distribution of the overall aerosol occurs. This demonstrates the different MMADs of the solute and PG itself. It must be mentioned that there are no two separate aerosols. Conversely, an aerosol is produced which has a variable chemical composition that varies with size. MMADs can be a function of solute concentration, as shown in Figure 9, where the oleoresin (OA) contained in PG is due to the solute effect of PG aerosol core growth. In the embodiment shown in Figure 9, the fluid feed rate is three.  3 g / sec. It must be mentioned that the presence of solute as a nuclear growth of PG causes a decrease in 匪AD 値 in the aerosol. In this embodiment, the total recovery enthalpy of the 0A cascade impactor and the USP conductance port having 10% of the solution weight is 95 of the amount of the pump to the capillary.  1± 1. 2% -26- 1311061 As one may be interested, a preferred embodiment of the present invention provides an aerosol generator that controls evaporation and condensing of a pharmaceutical formulation. In addition, a preferred embodiment of the present invention provides a replaceable reservoir having a predetermined amount of medicament. A preferred embodiment of the aerosol generator delivers aerosols to the patient immediately without wasting chest volume limited by patient health. Moreover, a preferred embodiment of the aerosol generator provides a constant delivery control amount of the formulation of the medicament to the patient. In this case, the overall cost associated with the preferred embodiment of the aerosol generator can be reduced because the user can continuously change the reservoir and battery, thereby increasing the useful life of the aerosol generator. The above is an exemplary mode for carrying out the invention and is not intended to limit the invention. It will be apparent to those skilled in the art that many changes may be made without departing from the spirit of the invention and the scope of the appended claims. For example, although heated capillaries have been described as preferred aerosol generators, aerosols can be produced by other techniques, such as propellant-based aerosol generators or aerosol-based aerosol generators. The liquid or powder may be formed into an aerosol by a pressurized gas or by ultrasonic vibration. In addition, although the heated capillary has been described as a preferred heated capillary channel, the capillary channel can be configured to have one or more passages in the thin layer with a heater configured along the passage. , or a plurality of capillary configurations, or a channel having a heater mounted inside the channel, or concentrically configured, wherein fluid can flow through the 'annular channel, and the like. In addition, although the cam arrangement has been described as a preferred valve operating mechanism, individual solenoid valves or other valve actuating devices may be used instead. -27-

Claims (1)

‘1311061 U ^ 31 i^Sk 第92100591號「用於藥方的氣溶膠產生器及以此氣溶膠產 生器產生氣溶膠之方法」專利申請案 (2 0 0 9年3月修正) 拾、申請專利範圍 1. 一種氣溶膠產生器,其包括有: 一吸嘴,其具有出口’氣溶膠經由該出口被輸送到氣 溶膠產生器之使用者; 一空氣通道,空氣可通過此通道而被輸送到吸嘴之內 φ 部;以及 —感測器,用來檢測在吸嘴內部之壓力降; 一外殼; —毛細通道,其被設置在外殻中; 一加熱器,其被設置在外殻中; 一儲存器,其被設置在外殻中; 一計量室,其被設置在外殼中,流體經由第1流動通 道而從儲存器中被輸送到該計量室,並且流體經由第2 φ 流動通道而從計量室被輸送到毛細通道; 電源,用來供應電力到加熱器; 一第1閥,用來將第1流動通道打開及關閉; 一第2閥,用來將第2流動通道打開及關閉; 一第3閥,用來將空氣通道打開及關閉; 一馬達及一馬達驅動凸輪軸,凸輪軸包含有多數個凸 輪軸突出部,其與第1,第2及第3閥在操作上相連,凸 輪軸突出部在流體被輸送到毛細通道的氣溶膠輸送周期 ,1311061 中可作用以關閉第i閥並且打開第2及第3閥。 2. 如申請專利範圍第1項之氣溶膠產生器,其中凸輪軸突 出部在流體被輸送到計量室之塡充周期中,可作用以打 開第1閥並且關閉第2及第3閥。 3. 如申請專利範圍第1項之氣溶膠產生器,其中又包括有 步進馬達,其操作上與凸輪軸相聯結,其中步進馬達 可轉動凸輪軸,以打開及關閉第1閥,第2及第3閥。φ 4. 如申請專利範圍第1項之氣溶膠產生器,其中儲存器可 移除地被固定到外殻,儲存器包含可操作以對儲存器中 之流體加壓的活塞。 5. 如申請專利範圍第1項之氣溶膠產生器,其中外殻包括 有一蓋子,其可滑動地被固定到外殻,蓋子之一端有吸 嘴,並且蓋子可從第1儲存位置滑動到氣溶膠輸送位置, 在此位置氣溶膠產生器處於呼吸作動模式狀態,其中使 用者可藉由在出口上之吸入而獲得氣溶膠劑量。 馨 6. 如申請專利範圍第5項之氣溶膠產生器,其中氣溶膠產 生器又包括有: 一液晶顯示器,其位於外殼之一部份上,當蓋子被移 動到氣溶膠輸送位置時,其可被暴露出來。 7 ·如申請專利範圍第1項之氣溶膠產生器,其中又包括有 一控制器,當使用者在吸嘴之出口上吸入時,感測器可 操作以送出一信號到控制器。 8.如申請專利範圍第7項之氣溶膠產生器,其中感測器包 -2 - 1311061 括有一換能器,其可在當使用者在吸嘴之出口上吸入時, 檢測吸嘴內部之壓力降。 9.如申請專利範圍第1項之氣溶膠產生器,其中另外包括有 一投藥用活塞,其可在氣溶膠輸送周期中與計量室之彈 性壁接合。 10. 如申請專利範圍第1項之氣溶膠產生器,其中又包括有— 投藥用活塞,其可在氣溶膠輸送周期中與計量室之彈性 壁接合,凸輪軸包含有一凸輪軸突出部,其可作用而使 投藥用活塞往復移動。 11. 如申請專利範圍第1項之氣溶膠產生器,其中又包括有一 控制器用來監視加熱器之參數,並且從電源處輸達電力 到加熱器,使加熱器可在氣溶膠輸送周期中被保持在所 需之溫度範圍。 1 2 .如申請專利範圍第1項之氣溶膠產生器,其中氣溶膠產生 器爲手持式吸入器,僅空氣可經由空氣通道而被供應到 吸嘴之內部,並且氣溶膠產生器包含有一閥控制機構,其 可在感測器於使用者在出口吸入時檢測到吸嘴內部之壓 力降之後,在預定時間內將第3閥打開。 1 3 .如申請專利範圍第1項之氣溶膠產生器,其中馬達驅動凸 輪軸係可依照凸輪軸轉動一圈之程式化周期而作用以打 開及關閉第1,第2及第3閥,氣溶膠產生器包含有一光 感測器,當凸輪軸完成轉動一圈時可作用而進行感測。 14· 一種氣溶膠產生器,其包括有: 一吸嘴,其具有出口,氣溶膠經過出口被輸送到氣溶膠 -3- 1311061 產生器之使用者; 一氣溶膠產生器系統,其可作用而供應氣溶膠到吸嘴 之內部,氣溶膠產生器系統包括有具毛細管尺寸之流動 通道及一加熱器,其被配置成可使流動通道中之流體揮 發,以在吸嘴內部產生氣溶膠; 一空氣通道,空氣可通過此通道而被輸送到吸嘴之內 部; 一壓力感測器,其可在檢測到吸嘴內部之壓力降時產 生作用而輸出一信號; 一控制器,其可作用而作動氣溶膠產生器系統,以反 應於壓力感測器之信號輸出而供應氣溶膠到吸嘴之內部; 一閥,其可作用以打開及關閉空氣通道,控制器可反 應於壓力感測器之信號輸出而作用以打開閥 一投藥件及計量室,計量室包括一凹部及蓋住凹部之 彈性壁,投藥件可從第1位置相對於彈性壁移動到第2 位置,彈性壁在此變形進入凹部中,計量室提供流體源 與流動通道之間的流體相通,並且投藥件以提供在流動 通道中之流體之恆定流量方式移動。 15.如申請專利範圍第I4項之氣溶膠產生器,其中氣溶膠產 生器包含有外殼及一蓋子,其可滑動地被固定到外殼,蓋 子之一端有吸嘴,蓋子可從氣溶膠被防止被輸送到吸嘴 內部之關閉位置滑動到氣溶膠輸送位置,氣溶膠產生器 系統於此處於呼吸作動模式狀態,其中使用者藉由在出 口上之吸入而獲得氣溶膠劑量。 -4- 1311061 16. —種氣溶膠產生器,其包括有: 一計量室,其包含有一在材料之第一層的凹部,以及 一覆蓋在凹部上的彈性層,材料之第1層包括一入口,伸 設於入口與計量室之間的第1通道,出口及伸設於計量室 與出口之間的第2通道,彈性層覆蓋入口,第1通道,第 2通道,及出口; 投藥件,其可從第1位置相對於彈性壁移動到第2位置 ,彈性壁在此變形進入凹部中; φ 一毛細通道,其可與計量室流體相通; —吸嘴,其內部可與毛細通道之出口流體相通; 一加熱器,其可與毛細通道之至少一部份熱傳遞相通, 加熱器可作用而使毛細通道中之流體揮發,使揮發之流 體在吸嘴內部形成氣溶膠。 17. 如申請專利範圍第16項之氣溶膠產生器,其中氣溶膠產 生器包含有外殼及一蓋子,其可滑動地被固定到外殼,蓋 子之一端有吸嘴,蓋子可從氣溶膠被防止被輸送到吸嘴 · 內部之關閉位置滑動到氣溶膠輸送位置,氣溶膠產生器 系統於此處於呼吸作動模式狀態,其中使用者藉由在出 口上之吸入而獲得氣溶膠劑量。 18. 如申請專利範圍第16項之氣溶膠產生器,其中又包括有 一控制器,其可電性地操作一致動機構,其可使投藥件 從第1位置移動到第2位置,以使預定體積之流體通過毛 細通道而提供一恆定流量。 19. 如申請專利範圍第16項之氣溶膠產生器,其中又包括有 -5- 1311061 第1及第2柱塞,第1柱塞可從入口被打開之第1位置移 動到第2位置,在此彈性層被壓抵住第1閥座以關閉入 口,並且第2柱塞可從出口被打開之第1位置移動到第2 位置,在此彈性層被壓抵住第2閥座以關閉出口。 20.如申請專利範圍第19項之氣溶膠產生器,其中又包括有 致動機構,其可將第1柱塞移動到第2位置,而仍使第2 柱塞保持在第1位置。 2 1 .—種以如申請專利範圍第1項之氣溶膠產生器產生氣溶 0 膠之方法,該方法包括有: 當使用者在吸嘴之出口上吸入時,感測吸嘴內部之壓 力瞎; 當壓力降被檢測到之時,使氣溶膠被供應到吸嘴內部; 當壓力降被檢測到之時,打開空氣通道而使空氣被供 應到吸嘴內部。 22 .如申請專利範圍第2 1項之產生氣溶膠的方法,其中氣溶 膠產生器包括有一可滑動蓋子,該方法包括有: · 使蓋子從關閉位置滑動到打開位置,當壓力降被檢測 到之時,打開位置可作動氣溶膠產生器之元件而輸送氣 溶膠到使用者。 2 3 ·如申請專利範圍第2 1項之產生氣溶膠的方法,其中加熱 器充分加熱毛細通道,以使其中之流體揮發,此揮發之 流體與空氣混合而形成氣溶膠。 24·如申請專利範圍第21項之產生氣溶膠的方法,其中儲存 器容納有藥物,該藥物被揮發並且被供應到吸嘴內部。 一 6- •1311061 25_如申請專利範圍第21項之產生氣溶膠的方法,其中氣溶 膠產生器包括有一控制器,用來監視加熱器之參數,並 且控制輸送電力到加熱器,使流體通過毛細通道時,加 熱器可被保持在所需之溫度範圍,使流體揮發以形成氣 溶膠。 2 6 .如申請專利範圍第2 1項之產生氣溶膠的方法,其中藉由 輸送電力到加熱器,關閉第1閥,打開第2及第3閥,將 流體從計量室移除,供應預定體積之流體到毛細通道且 使毛細通道中之流體揮發,而將氣溶膠輸送到吸嘴之內 部。 27 ·如申請專利範圍第26項之產生氣溶膠的方法,其中該方 法包括:轉動凸輪軸到第1位置,在此第1閥被關閉並且 第2及第3閥被打開,以在氣溶膠輸送周期時達成預定體 積之流體被輸送到毛細通道,進一步轉動凸輪軸到第2 位置,在此第2及第3閥被關閉並且第1閥被打開,因 而在塡充周期中可達成流體從儲存器被輸送到計量室中。 28.如申請專利範圍第21項之產生氣溶膠的方法,其中儲存 器容納有至少10劑之藥用流體,該方法又包括:以預定 體積之藥用流體塡充計量室,從計量室輸送一體積之藥 用流體到毛細通道,將毛細通道加熱而使預定體積之藥 用流體揮發,並且將蒸發之流體與吸嘴內部之空氣混合 而形成氣溶膠。 29 _如申請專利範圍第28項之產生氣溶膠的方法,其中氣溶 膠產生器包括有一位移活塞,該方法包括:將位移活塞從 -7 - 1311061 使計量室塡充流體之第1位置,移動到第2位置,在此 位移活塞使計量室之彈性壁偏斜。 30 ·如申請專利範圍第23項之產生氣溶膠的方法,其中氣溶 膠產生器包括有一控制電路,其藉由使電力以脈衝方式 供應到加熱器,在流體通過毛細通道時加熱毛細通道,因 而控制毛細通道中之流體的溫度,流體被揮發並且在吸 嘴中形成氣溶膠。 31.如申請專利範圍第21項之產生氣溶膠的方法,其中空氣 _ 經僅由空氣通道被供應至吸嘴內部,在感測到壓力降時關 閉第3閥,並且在感測到壓力降之後一段時間內打開第3 閥,此後將氣溶膠輸送到吸嘴內部。'1311061 U ^ 31 i^Sk No. 92100591 "Aerosol Generator for Prescription and Method for Producing Aerosol Using the Aerosol Generator" Patent Application (Amended in March 2009) Picking up, applying for a patent Scope 1. An aerosol generator comprising: a nozzle having an outlet through which the aerosol is delivered to a user of the aerosol generator; an air passage through which air can be delivered to a φ portion in the nozzle; and a sensor for detecting a pressure drop inside the nozzle; an outer casing; a capillary channel disposed in the outer casing; a heater disposed in the outer casing; a reservoir disposed in the housing; a metering chamber disposed in the housing, fluid being delivered from the reservoir to the metering chamber via the first flow channel, and fluid being metered from the second φ flow channel The chamber is transported to the capillary channel; a power source for supplying power to the heater; a first valve for opening and closing the first flow passage; and a second valve for opening and closing the second flow passage; a third valve for opening and closing the air passage; a motor and a motor driving the cam shaft, the cam shaft including a plurality of camshaft projections operatively connected to the first, second and third valves, The camshaft projection acts to close the i-th valve and open the second and third valves during the aerosol delivery cycle in which the fluid is delivered to the capillary channel, 1311061. 2. The aerosol generator of claim 1, wherein the camshaft projection acts to open the first valve and close the second and third valves during a charge cycle in which the fluid is delivered to the metering chamber. 3. The aerosol generator of claim 1, further comprising a stepping motor operatively coupled to the camshaft, wherein the stepper motor is rotatable to open and close the first valve, 2 and the third valve. φ 4. The aerosol generator of claim 1, wherein the reservoir is removably secured to the outer casing, the reservoir including a piston operable to pressurize fluid in the reservoir. 5. The aerosol generator of claim 1, wherein the outer casing includes a cover slidably secured to the outer casing, the one end of the cover having a nozzle, and the cover being slidable from the first storage position to the gas The sol delivery position, where the aerosol generator is in a breathing mode of operation wherein the user can obtain an aerosol dose by inhalation at the outlet. An aerosol generator according to claim 5, wherein the aerosol generator further comprises: a liquid crystal display located on a portion of the outer casing, when the cover is moved to the aerosol delivery position, Can be exposed. 7. The aerosol generator of claim 1, further comprising a controller operable to send a signal to the controller when the user inhales at the outlet of the nozzle. 8. The aerosol generator of claim 7, wherein the sensor package-2 - 1311061 includes a transducer that detects the inside of the nozzle when the user inhales at the outlet of the nozzle Pressure drop. 9. An aerosol generator according to claim 1 wherein additionally comprising a pharmaceutical plunger is engageable with the elastomeric wall of the metering chamber during the aerosol delivery cycle. 10. The aerosol generator of claim 1, further comprising a drug-using piston that engages an elastic wall of the metering chamber during an aerosol delivery cycle, the camshaft including a camshaft projection, It can act to reciprocate the drug-traffic piston. 11. The aerosol generator of claim 1, further comprising a controller for monitoring the parameters of the heater and delivering power from the power source to the heater so that the heater can be in the aerosol delivery cycle Maintain the desired temperature range. An aerosol generator according to claim 1, wherein the aerosol generator is a hand-held inhaler, only air can be supplied to the inside of the nozzle via the air passage, and the aerosol generator includes a valve A control mechanism that opens the third valve for a predetermined time after the sensor detects a pressure drop inside the nozzle when the user inhales at the outlet. 13. The aerosol generator of claim 1, wherein the motor-driven camshaft acts to open and close the first, second, and third valves in accordance with a stylized cycle of the camshaft rotating one revolution. The sol generator includes a light sensor that acts to sense when the cam shaft completes one revolution. An aerosol generator comprising: a nozzle having an outlet through which an aerosol is delivered to a user of an aerosol-3-1311061 generator; an aerosol generator system operable to supply An aerosol to the inside of the nozzle, the aerosol generator system comprising a capillary channel having a capillary size and a heater configured to volatilize fluid in the flow channel to generate an aerosol inside the nozzle; a passage through which air can be delivered to the inside of the nozzle; a pressure sensor that outputs a signal when a pressure drop inside the nozzle is detected; a controller that can act An aerosol generator system that supplies aerosol to the interior of the nozzle in response to a signal output from the pressure sensor; a valve that acts to open and close the air passage, and the controller can react to the signal from the pressure sensor The output acts to open the valve, the dispensing member and the metering chamber, the measuring chamber includes a recess and an elastic wall covering the recess, and the dispensing member is movable from the first position Of wall move to the second position, the resilient deformation of this wall into the recess, the metering chamber providing fluid communication between the fluid source and the flow path member and administered to provide a constant flow mode of the fluid in the flow channel of the move. 15. The aerosol generator of claim 1, wherein the aerosol generator comprises a housing and a cover slidably secured to the housing, the nozzle having a nozzle at one end and the cover being removable from the aerosol The closed position that is delivered to the interior of the nozzle slides to the aerosol delivery position where the aerosol generator system is in a breathing mode of operation wherein the user obtains an aerosol dose by inhalation at the outlet. -4- 1311061 16. An aerosol generator comprising: a metering chamber comprising a recess in a first layer of material and an elastic layer overlying the recess, the first layer of material comprising a An inlet, a first passage extending between the inlet and the metering chamber, an outlet and a second passage extending between the metering chamber and the outlet, the elastic layer covering the inlet, the first passage, the second passage, and the outlet; It can move from the first position relative to the elastic wall to the second position, where the elastic wall is deformed into the recess; φ a capillary channel which can be in fluid communication with the metering chamber; - a nozzle, the interior of which can be connected to the capillary channel The outlet fluid is in communication; a heater is coupled to at least a portion of the capillary passage for heat transfer, and the heater acts to volatilize the fluid in the capillary passage to cause the volatilized fluid to form an aerosol within the nozzle. 17. The aerosol generator of claim 16, wherein the aerosol generator comprises a housing and a cover slidably secured to the housing, the nozzle having a nozzle at one end, the cover being removable from the aerosol The aerosol is delivered to the closed position of the nozzle and is slid to the aerosol delivery position where the aerosol generator system is in a breathing mode of operation wherein the user obtains an aerosol dose by inhalation at the outlet. 18. The aerosol generator of claim 16, further comprising a controller electrically operable to move the dispensing member from the first position to the second position for predetermined The volume of fluid provides a constant flow through the capillary channel. 19. The aerosol generator of claim 16 further comprising -5 - 1310661 first and second plungers, wherein the first plunger is movable from a first position in which the inlet is opened to a second position, The elastic layer is pressed against the first valve seat to close the inlet, and the second plunger is movable from the first position where the outlet is opened to the second position, where the elastic layer is pressed against the second valve seat to close Export. 20. The aerosol generator of claim 19, further comprising an actuating mechanism that moves the first plunger to the second position while still maintaining the second plunger in the first position. 2 1 . A method for producing a gas-soluble glue by using an aerosol generator according to claim 1 of the patent application, the method comprising: sensing a pressure inside the nozzle when the user inhales at the outlet of the nozzle瞎; when the pressure drop is detected, the aerosol is supplied to the inside of the nozzle; when the pressure drop is detected, the air passage is opened to allow the air to be supplied to the inside of the nozzle. 22. The method of producing an aerosol according to claim 21, wherein the aerosol generator comprises a slidable cover, the method comprising: • sliding the lid from the closed position to the open position, when the pressure drop is detected At this time, the open position activates the components of the aerosol generator to deliver aerosol to the user. 2 3 The method of producing an aerosol according to the scope of claim 2, wherein the heater sufficiently heats the capillary passage to volatilize the fluid therein, and the volatilized fluid is mixed with air to form an aerosol. 24. The method of producing an aerosol according to claim 21, wherein the reservoir contains a drug which is volatilized and supplied to the inside of the nozzle. A method for producing an aerosol according to claim 21, wherein the aerosol generator includes a controller for monitoring parameters of the heater and controlling the delivery of electric power to the heater to pass the fluid In the capillary channel, the heater can be maintained at the desired temperature range to volatilize the fluid to form an aerosol. 2 6. The method for producing an aerosol according to claim 21, wherein the first valve is closed by supplying electric power to the heater, the second and third valves are opened, and the fluid is removed from the metering chamber, and the supply is scheduled. The volume of fluid is transferred to the capillary channel and the fluid in the capillary channel is volatilized, and the aerosol is delivered to the interior of the nozzle. 27. The method of producing an aerosol according to claim 26, wherein the method comprises: rotating the camshaft to a first position, where the first valve is closed and the second and third valves are opened to act on the aerosol The fluid reaching a predetermined volume during the delivery cycle is delivered to the capillary channel, further rotating the camshaft to the second position, where the second and third valves are closed and the first valve is opened, thereby achieving fluid flow during the filling cycle The reservoir is delivered to the metering chamber. 28. The method for producing an aerosol according to claim 21, wherein the reservoir contains at least 10 doses of the medicinal fluid, the method further comprising: charging the metering chamber with a predetermined volume of the medicinal fluid, and transporting the metering chamber from the metering chamber A volume of the medicinal fluid to the capillary channel heats the capillary channel to volatilize a predetermined volume of the medicinal fluid and mixes the vaporized fluid with the air inside the nozzle to form an aerosol. The method of producing an aerosol according to claim 28, wherein the aerosol generator comprises a displacement piston, the method comprising: moving the displacement piston from the -7 - 1311061 to the first position of the metering chamber to be filled with the fluid, moving In the second position, the displacement piston deflects the elastic wall of the metering chamber. 30. The method of producing an aerosol according to claim 23, wherein the aerosol generator comprises a control circuit for heating the capillary channel when the fluid passes through the capillary channel by supplying power to the heater in a pulsed manner. The temperature of the fluid in the capillary channel is controlled, the fluid is volatilized and an aerosol is formed in the nozzle. 31. The method of producing an aerosol according to claim 21, wherein the air_ is supplied to the inside of the nozzle only by the air passage, the third valve is closed when the pressure drop is sensed, and the pressure drop is sensed The third valve is then opened for a period of time, after which the aerosol is delivered to the inside of the nozzle.
TW92100591A 2002-01-15 2003-01-13 Aerosol generator for drug formulation and method for generating an aerosol with the same TWI311061B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34787202P 2002-01-15 2002-01-15

Publications (2)

Publication Number Publication Date
TW200302115A TW200302115A (en) 2003-08-01
TWI311061B true TWI311061B (en) 2009-06-21

Family

ID=45020629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92100591A TWI311061B (en) 2002-01-15 2003-01-13 Aerosol generator for drug formulation and method for generating an aerosol with the same

Country Status (2)

Country Link
MY (1) MY142841A (en)
TW (1) TWI311061B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716700B (en) * 2017-07-07 2021-01-21 瑞士商菲利浦莫里斯製品股份有限公司 Aerosol-generating system, method for controlling the electrical power supplied to an electric heater in an aerosol-generating system and cartridge for an aerosol-generating system
TWI716730B (en) * 2018-02-03 2021-01-21 美商伊路米納有限公司 Apparatus for biological or chemical analysis and method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716700B (en) * 2017-07-07 2021-01-21 瑞士商菲利浦莫里斯製品股份有限公司 Aerosol-generating system, method for controlling the electrical power supplied to an electric heater in an aerosol-generating system and cartridge for an aerosol-generating system
TWI716730B (en) * 2018-02-03 2021-01-21 美商伊路米納有限公司 Apparatus for biological or chemical analysis and method using the same
US11565252B2 (en) 2018-02-03 2023-01-31 Illumina, Inc. Cartridge with laminated manifold

Also Published As

Publication number Publication date
MY142841A (en) 2011-01-14
TW200302115A (en) 2003-08-01

Similar Documents

Publication Publication Date Title
JP4340155B2 (en) Aerosol generator for pharmaceutical products
US6854461B2 (en) Aerosol generator for drug formulation and methods of generating aerosol
JP4166952B2 (en) Aerosol generator
AU2003270320B2 (en) Aerosol generating device and method of use thereof
TWI311061B (en) Aerosol generator for drug formulation and method for generating an aerosol with the same
AU2003203475B2 (en) Aerosol generator and methods of making and using an aerosol generator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees