[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI300497B - Reflection type liquid crystal display and method of manufacturing the same - Google Patents

Reflection type liquid crystal display and method of manufacturing the same Download PDF

Info

Publication number
TWI300497B
TWI300497B TW90120365A TW90120365A TWI300497B TW I300497 B TWI300497 B TW I300497B TW 90120365 A TW90120365 A TW 90120365A TW 90120365 A TW90120365 A TW 90120365A TW I300497 B TWI300497 B TW I300497B
Authority
TW
Taiwan
Prior art keywords
region
insulating film
substrate
organic insulating
electrode
Prior art date
Application number
TW90120365A
Other languages
Chinese (zh)
Inventor
Jang Yong-Kyu
Uh Kee-Han
Hyun Kim Jae
Choi Bang-Sil
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to TW90120365A priority Critical patent/TWI300497B/en
Application granted granted Critical
Publication of TWI300497B publication Critical patent/TWI300497B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

1300497 A7 _B7__ 五、發明説明(i ) (請先閲讀背面之注意事項再填寫本頁) 本發明係有關於一種反射型液晶顯示器及其製造方 法,尤有關於一種具有多數校準的微透鏡組列之液晶顯示 器及其製造方法。 在資訊導向社會的今日,一電子顯示器之角色乃變得 更為重要。各種電子顯示器已被廣泛地使用於不同的產業 領域中。由於在電子顯示器方面的技術係不斷地發展,故 具有嶄新功能之各種電子顯示器,乃對應於此資訊導向社 會之各種需求而被研發提供。 概括而言,電子顯示器係為可供人們傳輸視頻資訊的 裝置。即是,電子顯示器乃可被定義為一種電子裝置,其 可將各種電子設備輸出之電資訊信號轉換成一可供視覺辨 認的光資訊信號。又,其亦可被定義成一種可用來作為連 接人們與電子設備之橋樑的電子裝置。 該等電子顯示器乃可被分類成一種發光式顯示器:即 該光資訊信號係以發光方法來顯示者,及一種非發光式顯 示器,其信號係以光調制方法來顯示者,例如光反射、散 射、及干涉現象等。該發光式顯示被稱為主動型顯示.器, 諸如CRT(陰極射線管),PDP(電漿顯示面板),LED(發光二 極體),及ELD(場致發光顯示器)等。而非發光式顯示器乃 稱為被動型顯示器,即如LCD(液晶顯示器)、EPID(電泳影 像顯示器)等。_ 該CRT已被使用於例如電視接收器及監視器等之影像 顯示器,歷經甚長的時間。該CRT因顯示品.質及經濟效益 佳而佔有最高的市場比率,但仍有許多缺點,例如重量較 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 4 1300497 A7 —___B7______ 五、發明説明() 2 重,體積較大以及耗電量高等等。 同時,由於半導體技術的快速進步,有許多電子裝置 已被小型化,且重量更輕,又具有較低電壓及較低的驅動 電力者乃被陸續開發;依據目前的環境所趨,則要具備更 細薄更輕巧,以及更低驅動電壓與更低耗電量等特性之平 面型顯示器,方能符合需求。 在各種先進的平面型顯示器中,LCD要比其它任何的 顯示器更為細薄又更輕,且其具有較低的驅動電壓及較低 的耗電量。又,該LCD亦有類似於CRT的顯示品質。因此, 該LCD乃被廣泛地使用在各種電子裝置中。又,由於lCd 可被容易製造,故其應用範圍更逐漸擴大。 該等LCD乃被分類成一種透射式LCD,其係使用外部 光源來顯示影像,及另一種反射式LCD,其係以周遭的光 取代外部光源來顯示影像。 該反射式LCD具有一優點,即與投射式LCD相較,其 耗電較少,而且能在戶外展現絕佳的顯示效果。又,該反 射式LCD會較薄及較輕,因為其不須要有附設的光源,例 如一背光裝置等。 但是’目·前的反射式LCD會有較暗的螢幕,而且不能 顯示兩解析度及多色的影像。因此,該反射式LCD乃僅限 使用於需要顯示~簡單圖案,例如數字或簡單文字等之產品。 為使反射式LCD能供使用於各種電子裝置中,高解析 度與多色顯示以及增強的反射照明乃是必須的。此外,適 當壳度、快速反應速度以及對比的加強亦是須要的。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 丨丨訂1300497 A7 _B7__ V. INSTRUCTIONS (i) (Please read the note on the back and fill out this page.) The present invention relates to a reflective liquid crystal display and a method of fabricating the same, and more particularly to a microlens array having a plurality of calibrations. Liquid crystal display and its manufacturing method. In today's information-oriented society, the role of an electronic display has become even more important. Various electronic displays have been widely used in various industrial fields. As the technology in electronic displays continues to evolve, various electronic displays with new functions have been developed in response to the various needs of this information-oriented society. In summary, an electronic display is a device that allows people to transmit video information. That is, an electronic display can be defined as an electronic device that converts electrical information signals output by various electronic devices into a visually identifiable optical information signal. Also, it can be defined as an electronic device that can be used as a bridge between people and electronic devices. The electronic displays can be classified into an illuminating display: the optical information signal is displayed by a illuminating method, and a non-illuminating display, the signals of which are displayed by light modulation methods, such as light reflection and scattering. And interference phenomena. The illuminating display is referred to as an active type display device such as a CRT (Cathode Ray Tube), a PDP (plasma display panel), an LED (Light Emitting Diode), and an ELD (Electro Luminescence Display). Non-illuminated displays are referred to as passive displays, such as LCD (liquid crystal display), EPID (electrophoretic image display), and the like. _ This CRT has been used for image displays such as TV receivers and monitors for a long time. The CRT has the highest market ratio due to its good quality and economic benefits, but there are still many shortcomings, such as the weight of this paper. The Chinese National Standard (CNS) A4 specification (210X297 mm) is applicable. 4 1300497 A7 —___B7______ , invention description () 2 heavy, large size and high power consumption, and so on. At the same time, due to the rapid advancement of semiconductor technology, many electronic devices have been miniaturized, and the weight is lighter, and those with lower voltage and lower driving power are being developed one after another; according to the current environment, it is necessary to have A flatter display that is thinner and lighter, and features lower drive voltages and lower power consumption to meet demand. Among various advanced flat-panel displays, LCDs are thinner and lighter than any other display, and have a lower driving voltage and lower power consumption. Moreover, the LCD also has a display quality similar to that of a CRT. Therefore, the LCD is widely used in various electronic devices. Moreover, since lCd can be easily manufactured, its application range is gradually expanded. These LCDs are classified as a transmissive LCD that uses an external light source to display an image, and another reflective LCD that replaces an external light source to display an image with ambient light. The reflective LCD has an advantage in that it consumes less power than a projection LCD and can display an excellent display effect outdoors. Moreover, the reflective LCD will be thinner and lighter because it does not require an attached light source, such as a backlight. However, the front reflective LCD has a darker screen and cannot display two resolutions and multiple colors. Therefore, the reflective LCD is limited to products that require display of simple patterns such as numbers or simple text. In order for reflective LCDs to be used in a variety of electronic devices, high resolution and multicolor display as well as enhanced reflective illumination are necessary. In addition, proper shelling, rapid response speed and contrast enhancement are also needed. This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the notes on the back and fill out this page)

••線L 1300497 A7 __B7 _^_ 五、發明説明(3 ) 在目前的反射式LCD中,有兩種技術乃被結合來供加 強其亮度。其一係加強反射電極的反射效率,另一則是達 到一超高的孔隙比。 在名稱為“反射膜上具有凸體的反射式液晶顯示裝置” 之第5,610,741號(NaofumiKimur)美國專利中,乃揭示一種 在一反射電極上形成凸體來增加反射效率的方法。 第1圖即為前述美國專利案中所揭之反射式LCD裝置 的部份平面圖;而第2圖為第1圖中之反射式LCD裝置的剖 視圖。 請參閱第1、2圖,該反射式LCD裝置具有一第一基板 10,一第二基板15對設於該第一基板10,及一液晶層20介 設於該第一與第二基板10與15之間。 該第一基板10含有一第一絕緣基材30,其上設有許多 閘極匯流線25。閘極電極35等會由閘極匯流線25分支設 置。又會有許多源極匯流線40被設成與閘極匯流線25交 叉。該等源極匯流線40係利用一絕緣層而來與該等閘極匯 流線25絕緣隔離。源極電極45等倉由源極匯流線40分支設 置。 : 反射電極·50等係設在該第一基板10與液晶層20之間, 並係被設在由該等閘極匯流線25與源極匯流線40所交叉形 成的許多矩形區域中。 該反射電極50會連接設在第一基板10上之一 TFT裝置 55,該TFT裝置55會形成一具有該閘極匯流線25與源極匯 流線40的切換裝置。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -------------—r、:裝-·—「……訂........ .....線」-^丨‘ (請先閱讀背面之注意事項再填寫本頁) 6 1300497 A7 _B7____ 五、發明説明( ) 4 有許多的凹痕70、71等被設在該反射電極50的表面 上,而使該表面形成凹凸不平。 該等凹痕70、71係不規則地佈設在整個表面上。該反 射電極50與TFT裝置55之一汲極電極會經由一接觸孔65來 互相連接。 該閘極匯流線2 5與閘極電極3 5係被設在例如由玻璃製 成的第一絕緣基材30上,其係以濺射法來沈積鈕(Ta)膜, 並利用蝕刻或光微影法來使沈積的Ta膜圖樣化而製成者。 然後,該閘極絕緣膜75會被設來覆蓋該閘極匯流線25 與閘電極3 5。該閘極絕緣膜75乃被以電漿CVD(化學氣相沈 積)法沈積一 SiNx膜,而製成例如4000A的厚度。 有二非結晶矽(a-Si)的半導體層80會被設在該閘極絕 緣膜75上來覆蓋該閘極電極35。n+型摻雜之a-Si層所形成 的接觸層85與90會被設在該半導體層80上。 ^ 然後,鉬(Mo)膜會被設在第一絕緣基材30上,來覆蓋 以上述方法所製成的結構,嗣該Mo膜會被圖樣化來形成一 源極匯流線40,一源極電極45,及一汲極電極60。以此方 法,乃可製成該TFT裝置55。 、 在設有該TFT裝置55之絕緣基材30的整個表面上,乃 設有一有機絕緣膜95及一反射電極50,其皆具有凹凸不平 的表面。 第3A至3C圖皆為剖視圖,乃示出製成第2圖中之裝置 的有機絕緣膜及反射電極的方法之各步驟。. 請參閱第3A圖,有一光阻膜100會被以旋塗法來設在 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 」-----------------------Γ裝-·-----:「……訂……---------ΨΦ (請先閲讀背面之注意事項再填寫本頁) -7 - 1300497 A7 ______B7 __ 五、發明説明() 5 第一絕緣基材30的表面上而覆蓋該TFT裝置55。然後,該 光阻膜100會被預烤。 嗣有一罩幕110會覆設在該光阻膜1〇〇上,其透光區1〇5 及遮光區106係被製成預定圖案,將會進行曝光及顯像處 理。因此,乃可製成對應於該罩幕η〇之圖案的凸體115。 然後對該基材進行熱處理,而使各凸體115的邊角形成圓曲 狀,如第3Β圖所示。 請參閱第3C圖,一有機絕緣膜95會被以例如旋塗法來 形成而覆蓋該等凸體115,並由於該等凸體115之故而使該 有機絕緣膜95的表面亦形成凹凸不平。 然後,該有機絕緣膜95會被以一罩幕(未示出)來圖樣 化,而製成一接觸孔65其會露也該TFT裝置55之汲極電極 60的表面。一作為反射電極50之鋁(A1)或鎳(Ni)的金屬膜會 被設在該有機絕緣膜95上。於此時,該接觸孔65會被填滿 該反射電極的材料。該反射電極材料係以真空濺射法來製 成。結果,凹痕70與71將會被形成於該反射電極50的表面 上,而具有對應於該有機絕緣層25的形狀。 請回參第2圖,有一第一定向膜12〇會被設在該反射電 極50及有機絕緣膜95上,.而完成該第一基板1〇。 该第二基板15包含一第二絕緣基材14〇,其上設有一濾 色膜I25,一共肉電極Π〇及一第二定向膜135等。 該第二絕緣基材140係由玻璃製成。一對應於各像元 145與146之濾色膜125會被設在該第二絕緣基材140上。於 該濾色膜125上,乃設有一如ITO(銦錫氧化物)等透明材料 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) --------------------、:裝-------「------訂..................線一 (請先閲讀背面之注意事項再填寫本頁) 1300497 A7 _____B7 _ 五、發明説明() 6 的共同電極130,且該共同電極13〇上設有一第二定向膜 135,經此而可製成該第二基板15。 (請先閲讀背面之注意事項再填寫本頁) 該第二基板15係被校準對設於第一基板1〇上。嗣有 一包含液晶與色料的液晶層20,會被以真空注入法來注入 於第一基板10與第二基板15之間的空隙中,而可完成一尽 射式LCD 〇 錢’賴習知的LCD具有料凹痕設在其反射電極 上來加強其反射效率,但是其仍會有以下一些問題: 第一,該習知的反射式LCD具有半球狀的凹痕形如微 透鏡並具有不同的大小以增強其反射效率,但在未設有凹 痕的凸脊部份,會隨著它們的位置而有不同的大小,故將 產生一問題即會降低整個反射效率的均一性。換言之,由 於該等凸脊部份的大小各不相同,故在被設於該反射電極 上之凹痕大小互不相同的區域處,該等凸脊部份的高度亦 有差異,因此該反射電極會依不同區域而顯現不同的反射 率,故該反射電極會產生不一致的反射率。在該反射電極 之反射一致性的降低,會導致液易材料之定向一致性的降 低,而形成一顯示在LCD上之影像對比減低的因素之一: 又’液晶材料·之定向的不一致性亦有極高可能導致影像模 糊’以及發生光:¾漏的現象。 此外,該習知反射式LCD會有一缺點,即由於該等凹 痕的大小,以及各凹痕之間的區域之大小係互不相同,故 其將難以在實際製程中依據設計值來精確地控制該等凹痕 的尺寸,以及各凹痕之間的間隔。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 9 1300497 A7 ________Β7___ 五、發明説明()· 7 再者’雖该等具有不同大小尺寸之凹痕係被互相交疊 λ置’但因該等凹痕具有半球狀,故在凹下部份將難以完 全避免入射光的散反射,此將會使影像品質的提升受限。 由於w亥驾知反射式LCD具有一規則四邊形的像 元形狀’故會有-缺點,不僅一設計須由一開始就按規格 進行,才能使用於要求不同像元大小及依照不同資訊傳輸 裝置而改變像疋大小之例如手持終端機或液晶電視接收器 等之顯示,而且一製程的條件不能重新被設定。尤其是, 其乃非常難以應用於要求沿—特定方向展現高反射率的電 子顯示器,例如行動電話等。 緣疋,本發明之一目的係在提供一種反射式LCD,其 包含一反射電極乃具有多數的定向微透鏡,而能增強反射 效率者。 本發明之另一目的係在提供一種製造LCD之反射電極 的方法,其乃特別適用於定向透鏡型之反射式lcd,並能 可觀地減少製造時間及費用者。 本發明之另一目的係在提供二種電子顯示裝置,其乃 包含一反射電極,而能沿一特定方向具有高反射率者。 本發明之·再“目的係為提供一種製造電子顯示器的方 法,其乃特別適用於製造一種包含一反射電極而能沿一特 定方向具有高反射率的電子顯示裝置者。 本發明之又另一目的係在提供一種反射式LCD ,其乃 可解決因在一像元内部區域與外部區域之間的邊界部份形 成階狀部份所發生的問題,而可獲得均一的影像品質者。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) •裝丄 卜—訂· -10 - 1300497 A7 B7 五、發明説明 (請先閲讀背面之注意事項再填寫本頁) 本發明之再另一目的係為提供一種電子顯示裝置,其 乃包含一反射電極,而可解決由於一像元内部區域與外部 區域之間的邊界部份形成階狀部份所發生的問題,故能得 到均一的影像品質者。 為能達到前述本發明之一目的,乃提供一種反射式 LCD,包含:一第一基板其上設有一像元陣列;一第二基 板與該第一基板對向設置;一液晶層設在第一與第二基板 之間,及一反射電極設在第二基板上,並包含多數的第一 區,及多數的第二區具有與第一區不同的高度;被排列垂 直於一第一方向冬該等第二區之第一長度的第一總和,係 比被排列垂直於第二方向之該等第二區之第二長度的第二 總和更大,因此該等第二區於該第一方向會比第二方向具 有更高的反射率。 為達到前述本發明之另一目的,乃提供一種製造反射 式LCD的方法,包含以下步驟:在—第一基板上形成一像 元陣列;在該第·基板所形成的結構上覆設—有機絕緣 膜,該有機絕緣膜包含多數的第一一 1,以及多數的第二區 具有與第―區不同的高度’其中該等第二區乃被製成,使 沿垂直於第-方向的方向排列之該等第二區的第一長度分 量之第-總和,比沿垂直於第二方向的方向排列之該等第 一區的第一長度分量之第二總和更大,而令該等第二區在 第方向比第一方向具有更高的反射率;在該有機絕緣膜 上形成-反射電極;製成—第二基板對設於該第一基板; 及在該第n二基板之間形成—液晶層。•• Line L 1300497 A7 __B7 _^_ V. INSTRUCTIONS (3) In current reflective LCDs, two techniques are combined to enhance their brightness. One is to enhance the reflection efficiency of the reflective electrode, and the other is to achieve an ultra-high void ratio. A method of forming a convex body on a reflective electrode to increase the reflection efficiency is disclosed in U.S. Patent No. 5,610,741 (Naufumi Kimur), which is incorporated herein by reference. Fig. 1 is a partial plan view of a reflective LCD device disclosed in the aforementioned U.S. Patent; and Fig. 2 is a cross-sectional view of the reflective LCD device of Fig. 1. Referring to FIGS. 1 and 2 , the reflective LCD device has a first substrate 10 , a second substrate 15 is disposed on the first substrate 10 , and a liquid crystal layer 20 is disposed on the first and second substrates 10 . Between 15 and 15. The first substrate 10 includes a first insulating substrate 30 on which a plurality of gate bus lines 25 are disposed. The gate electrode 35 and the like are branched by the gate bus line 25. There are also a number of source bus lines 40 that are arranged to intersect the gate bus line 25. The source bus lines 40 are insulated from the gate bus lines 25 by an insulating layer. The source electrode 45 and the like are branched by the source bus line 40. A reflective electrode 50 or the like is provided between the first substrate 10 and the liquid crystal layer 20, and is provided in a plurality of rectangular regions formed by the intersection of the gate bus lines 25 and the source bus lines 40. The reflective electrode 50 is connected to a TFT device 55 disposed on the first substrate 10. The TFT device 55 forms a switching device having the gate bus line 25 and the source bus line 40. This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) --------------r,:---""...book........ .....线"-^丨' (Please read the notes on the back and fill out this page) 6 1300497 A7 _B7____ V. Inventive Note ( ) 4 There are many dimples 70, 71, etc. placed on the reflective electrode. The surface of the surface 50 is such that the surface is uneven. The indentations 70, 71 are irregularly laid over the entire surface. The reflective electrode 50 and one of the drain electrodes of the TFT device 55 are connected to each other via a contact hole 65. The gate bus line 25 and the gate electrode 35 are provided on a first insulating substrate 30 made of, for example, glass, which is deposited by sputtering to form a button (Ta) film and utilizes etching or light. The lithography method is used to pattern the deposited Ta film. Then, the gate insulating film 75 is provided to cover the gate bus line 25 and the gate electrode 35. The gate insulating film 75 is deposited by a plasma CVD (Chemical Vapor Deposition) method to form a SiNx film to have a thickness of, for example, 4000 Å. A semiconductor layer 80 having two amorphous yttrium (a-Si) is provided on the gate insulating film 75 to cover the gate electrode 35. Contact layers 85 and 90 formed of an n+ type doped a-Si layer are provided on the semiconductor layer 80. Then, a molybdenum (Mo) film is disposed on the first insulating substrate 30 to cover the structure formed by the above method, and the Mo film is patterned to form a source bus line 40, a source A pole electrode 45, and a drain electrode 60. In this way, the TFT device 55 can be fabricated. On the entire surface of the insulating substrate 30 provided with the TFT device 55, an organic insulating film 95 and a reflective electrode 50 are provided, each of which has an uneven surface. 3A to 3C are cross-sectional views showing the steps of the method of forming the organic insulating film and the reflective electrode of the device of Fig. 2. Please refer to Figure 3A. A photoresist film 100 will be applied by spin coating to the Chinese National Standard (CNS) A4 specification (210X297 mm) by spin coating."----------- ------------Γ装-·-----: "...订......---------ΨΦ (Please read the notes on the back and fill out this page -7 - 1300497 A7 ______B7 __ V. Description of Invention (5) The surface of the first insulating substrate 30 covers the TFT device 55. Then, the photoresist film 100 is pre-baked. It is disposed on the photoresist film 1 ,, and the light-transmissive region 1〇5 and the light-shielding region 106 are formed into a predetermined pattern, and exposure and development processes are performed. Therefore, it can be made corresponding to the mask η. The convex body 115 of the pattern of the crucible is then heat-treated, and the corners of the respective convex bodies 115 are formed into a rounded shape as shown in Fig. 3C. Referring to Fig. 3C, an organic insulating film 95 is The convex body 115 is formed by, for example, spin coating, and the surface of the organic insulating film 95 is also uneven by the convex body 115. Then, the organic insulating film 95 is covered with a mask. (not shown) Patterning, a contact hole 65 is formed which exposes the surface of the gate electrode 60 of the TFT device 55. A metal film of aluminum (A1) or nickel (Ni) as the reflective electrode 50 is provided in the organic film. On the insulating film 95. At this time, the contact hole 65 is filled with the material of the reflective electrode. The reflective electrode material is formed by vacuum sputtering. As a result, the dimples 70 and 71 will be formed in the The surface of the reflective electrode 50 has a shape corresponding to the organic insulating layer 25. Referring back to FIG. 2, a first alignment film 12 is disposed on the reflective electrode 50 and the organic insulating film 95. The second substrate 15 includes a second insulating substrate 14A, and is provided with a color filter film I25, a common electrode electrode and a second alignment film 135, etc. The insulating substrate 140 is made of glass. A color filter film 125 corresponding to each of the pixels 145 and 146 is disposed on the second insulating substrate 140. The color filter film 125 is provided with an ITO. Transparent materials such as (indium tin oxide) This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) --------- -----------,: Install ------- "------ order ............... line one ( Please read the following precautions and then fill out this page) 1300497 A7 _____B7 _ 5, the common electrode 130 of the invention (6), and the common electrode 13 is provided with a second orientation film 135, which can be made The second substrate 15. (Please read the precautions on the back side and then fill in the page.) The second substrate 15 is calibrated so as to be disposed on the first substrate 1A. A liquid crystal layer 20 containing liquid crystal and color material is injected into the gap between the first substrate 10 and the second substrate 15 by vacuum injection, and an LCD can be completed. There is a dimple provided on its reflective electrode to enhance its reflection efficiency, but it still has the following problems: First, the conventional reflective LCD has a hemispherical concave shape such as a microlens and has different sizes to The reflection efficiency is enhanced, but the ridge portions which are not provided with the dimples have different sizes depending on their positions, so that a problem will occur which lowers the uniformity of the entire reflection efficiency. In other words, since the ridge portions are different in size, the heights of the ridge portions are different at the regions of the dents which are different from each other on the reflective electrode, so the reflection The electrodes exhibit different reflectivities depending on different regions, so the reflective electrodes produce inconsistent reflectance. The decrease in the uniformity of reflection at the reflective electrode results in a decrease in the alignment uniformity of the liquid-friendly material, and forms one of the factors for reducing the contrast of the image displayed on the LCD: the inconsistency of the orientation of the liquid crystal material There is a high probability that the image will be blurred 'and the light will be 3⁄4 leaking. In addition, the conventional reflective LCD has a disadvantage that, due to the size of the dimples and the size of the regions between the dimples, it is difficult to accurately determine the design value according to the actual value in the actual process. The dimensions of the indentations are controlled, as well as the spacing between the indentations. This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) 9 1300497 A7 ________Β7___ V. Invention description ()· 7 Furthermore, although these dimples of different sizes are overlapped with each other However, since the dimples have a hemispherical shape, it is difficult to completely avoid the scattered reflection of incident light in the concave portion, which will limit the improvement of image quality. Since the whirlpool recognizing reflective LCD has a regular quadrilateral pixel shape, it has the disadvantage that not only a design must be performed from the beginning, but also can be used for different cell sizes and according to different information transmission devices. The display such as a handheld terminal or a liquid crystal television receiver, such as a cymbal size, is changed, and the conditions of a process cannot be set again. In particular, it is very difficult to apply to an electronic display that requires high reflectance in a particular direction, such as a mobile phone. Accordingly, it is an object of the present invention to provide a reflective LCD comprising a reflective electrode having a plurality of directional microlenses for enhancing reflection efficiency. Another object of the present invention is to provide a method of manufacturing a reflective electrode for an LCD which is particularly suitable for a lenticular lens type reflective lcd and which can considerably reduce manufacturing time and cost. Another object of the present invention is to provide two types of electronic display devices which include a reflective electrode and which have a high reflectance in a particular direction. The present invention is directed to providing a method of fabricating an electronic display that is particularly suitable for use in the manufacture of an electronic display device comprising a reflective electrode and having a high reflectivity in a particular direction. It is an object of the present invention to provide a reflective LCD which can solve the problem of forming a stepped portion at a boundary portion between an inner region and an outer region of a pixel, thereby obtaining a uniform image quality. The scale applies to China National Standard (CNS) A4 specification (210X297 mm) (Please read the note on the back and fill out this page) • Install the book - order -10 - 1300497 A7 B7 V. Invention description (please read the back first) A further object of the present invention is to provide an electronic display device comprising a reflective electrode, which can solve the problem of forming a step due to a boundary portion between an inner region and an outer region of a pixel. A problem that occurs in a portion, so that a uniform image quality can be obtained. To achieve the foregoing object of the present invention, a reflective LCD comprising: a first a substrate is provided with an array of pixels; a second substrate is disposed opposite the first substrate; a liquid crystal layer is disposed between the first and second substrates, and a reflective electrode is disposed on the second substrate and includes a plurality of first zones, and a plurality of second zones having a different height from the first zone; the first sum of the first lengths of the second zones arranged perpendicular to a first direction in winter, the ratio being perpendicular to The second sum of the second lengths of the second zones of the second direction is greater, such that the second zones have a higher reflectivity in the first direction than the second direction. To achieve the foregoing A purpose is to provide a method for manufacturing a reflective LCD, comprising the steps of: forming a pixel array on a first substrate; and coating an organic insulating film on the structure formed on the first substrate, the organic insulating film a first one, including a plurality, and a plurality of second regions having a height different from the first region, wherein the second regions are formed such that the second regions are arranged in a direction perpendicular to the first direction The first-to-sum of the first length component The second sum of the first length components of the first regions arranged perpendicular to the direction of the second direction is greater, and the second regions have a higher reflectivity in the first direction than the first direction; Forming a reflective electrode on the insulating film; forming a second substrate pair on the first substrate; and forming a liquid crystal layer between the nth substrate.

11 1300497 A7 __ B7 五、發明説明() 9 (請先閲讀背面之注意事項再填寫本頁) 料«述本發狀又-目的,乃提供—種電子顯示 裝置,係包含絕緣基材其上設有—像元陣列及反射 裝置連接於該像元陣列,並包含多數的第一區及多數的第 一區具有與第一區不同的高度;其中該等第二區乃被設 成’使沿垂直於一第一方向之方向排列的該等第二區之第 -長度分量的第一總和,比沿垂直於—第二方向之方向排 列的該等第二區之第二長度分量的第二總和更大,而令該 等第二區於該第一方向比第二方向具有更高的反射率。 為達到前述本發明之再一目的,乃提供—種製造電子 顯示裝置的方法,包含以下步驟:在—絕緣基材上形成一 像元陣列;及在該絕緣基材所形成的結構上覆設一反射裝 置;其中該反射電極係連接於該像元陣列,並包含多數的 第一區及多數的第二區具有與第一區不同的高度;其中該 等第二區乃被設成,使沿垂直於一第一方向之方向排列的 .…》亥·#第一區之第一長度分量的第一總和,比沿垂直於一第 二方向之方向排列的該等第二區之第二長度分量的第二總 和更大,而令該等第二區於該第二_方向比第二方向具有更 南的反射库〇 ' 為達到前.述本發明之又另一目的,乃提供一種反射式 LCD ’其包含:一第一基板其上設有一像元陣列;一第二 基板與該第一基~板對向設置;一液晶層設在第一與第二基 板之間’反射電極設在第一基板上,乃包含多數的第一 區及多數的第二區具有與第一區不同的高度而可將光散 射,其中沿垂直於一第一方向之方向排列的該等第二區之 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐 12 1300497 A7 B7 五、發明説明 (請先閲讀背面之注意事項再填寫本頁) 第一長度分量的第-總和,比沿垂直於一第二方向之方向 排列的該等第二區之第二長度分量的第二總和更大而使 該等第二區於第一方向比第二方向具有更高的反射率;及 -有機絕緣膜設在該第-基板與反射電極之間,並具有與 該反射電極相同的表面結構,其中該有機絕緣膜的表面結 構會延伸至一單位像元之邊界的外侧。 為達到前述本發明之再另一目的,乃提供-種電子顯 示裝置’其包含:-絕緣基材其上設有—像元陣列;反射 裝置連接於該像s陣列,並包含多數的第―區及多數的第 二區具有與第-區不同的高度而可將光散射m垂直 於-第-方向之方向排列的該等第二區之第一長度分量的 第-總和’比沿垂直於一第二方向之方向排列的該等第二 區之第二長度分量的第二總和更大,而使該等第二區於第 -方向比第二方向具有更高的反射率;及—有機絕緣膜設 在該第-基板與反㈣極之間,並具有與該反射電極相同 的表面結構,其中該有機絕緣膜的表面結構會延伸至一單 位像兀之邊界的外側。 依據本發明’有多數的第-凹槽會沿水平方向連續地 列設,及多數的第二凹槽會沿垂直方向不連續地列設並 設有-由第-凹槽與第二凹槽等所圍限的定向微透鏡之反 射電極,而較諸-習用的反射式LCD,乃可於一指定方向具 有加強的反射效率。因此,其對比與影像品f將可顯著改 善。又,由於該等微透鏡係沿著像元的水平或垂直方向來 定向,故其乃適用於對一特定方向須要高反射率的電子顯 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公澄) 13 - 1300497 A7 __B7 五、發明説明( ) 11 示器。且,因該反射電極能以一改良的曝光及顯像方法來 製成,故其製造費用及時間將可減少。當具有各種形狀之 凹槽填充件被設在該反射電極中之各凹槽的交又點處時, 該反射電極之反射率乃可更為增進,而得大大改善其對比 與影像品質。當形成該有機絕緣膜時,該等凹槽會被以相 同於該像元内部區域的方式,來被設在各像元之間的外部 區域處。ϋ,於像元區域與像元之間的外部區域之間將不 會產生南度差異。因此,在液晶定向時因光沒漏而產生的 殘留影像或失真現象乃可被消除。 圖式之簡單說明: 本發明之上述目的及其它優點等,將可藉配合所附圖 式來詳細說明其較佳實施例等而得更為清楚;其中: 第1圖係為一習知反射式LCD的部份平面圖; 第2圖係為第1圖之習知反射式]^cD的剖視圖;— 第3A至3C圖為剖視圖乃示出製造第2圖中之有機絕緣 膜與反射電極的方法; 第4圖為本發明第一實施例之及射式LCD的剖視圖; 第5A圖為第4圖的LCD中之反射電極的平面圖; 第5B圖本·發明另一實施例中之反射電極的平面圖; 第6A至6D圖為示出第4圖之反射式LCD的製造方法之 剖視圖; ' 第7A與7B圖為示出在第6B圖之有機絕緣膜的上表面 製設一接觸孔及多數凹槽之步驟的剖視圖; 第8A至8C圖為製造本發明第二實施例之反射電極的 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) ---------------------Γ 裝丨·- (請先閲讀背面之注意事項再填寫本頁)11 1300497 A7 __ B7 V. Inventive Note () 9 (Please read the note on the back and then fill out this page) Material «The present hair-and-purpose is to provide an electronic display device that contains an insulating substrate. Providing a pixel array and a reflection device coupled to the pixel array, and including a plurality of first regions and a plurality of first regions having different heights from the first region; wherein the second regions are set to 'make a first sum of the first-length components of the second regions arranged in a direction perpendicular to a first direction, and a second length component of the second regions arranged in a direction perpendicular to the second direction The sum of the two is greater, and the second regions have a higher reflectivity in the first direction than in the second direction. In order to achieve the foregoing further object of the present invention, there is provided a method of manufacturing an electronic display device comprising the steps of: forming a pixel array on an insulating substrate; and coating the structure formed on the insulating substrate a reflective device; wherein the reflective electrode is coupled to the pixel array, and includes a plurality of first regions and a plurality of second regions having different heights from the first region; wherein the second regions are configured to a first sum of first length components of the first region of the first region arranged in a direction perpendicular to a first direction, and a second sum of the second regions arranged in a direction perpendicular to a second direction The second sum of the length components is larger, and the second region has a souther reflection library in the second _ direction than the second direction. To achieve the foregoing, another object of the present invention is to provide a The reflective LCD includes: a first substrate on which an array of pixels is disposed; a second substrate disposed opposite the first substrate; a liquid crystal layer disposed between the first and second substrates; Set on the first substrate, which contains most of the The zone and the majority of the second zone have different heights from the first zone to scatter light, wherein the paper dimensions of the second zones arranged in a direction perpendicular to a first direction are applicable to the Chinese National Standard (CNS) A4 Specifications (210X297 mm 12 1300497 A7 B7 V. Invention description (please read the back note first and then fill out this page) The first-sum of the first length component is more than the number arranged in a direction perpendicular to a second direction. The second sum of the second length components of the two regions is greater such that the second regions have a higher reflectivity in the first direction than the second direction; and - the organic insulating film is disposed on the first substrate and the reflective electrode And having the same surface structure as the reflective electrode, wherein the surface structure of the organic insulating film extends to the outside of the boundary of one unit pixel. To achieve the foregoing another object of the present invention, an electronic display is provided. The device 'includes: - an insulating substrate is provided with a pixel array; a reflecting device is coupled to the image s array, and includes a plurality of first regions and a plurality of second regions having different heights from the first region. Light a first-sum sum of first length components of the second regions arranged perpendicular to the direction of the -first direction is greater than a second length component of the second regions arranged in a direction perpendicular to a second direction The second sum is larger, and the second regions have a higher reflectance in the first direction than the second direction; and - the organic insulating film is disposed between the first substrate and the opposite (four) pole, and has The same surface structure of the reflective electrode, wherein the surface structure of the organic insulating film extends to the outside of the boundary of a unit image. According to the invention, the majority of the first groove is continuously arranged in the horizontal direction, and most of The second groove is discontinuously arranged in the vertical direction and provided with a reflective electrode of the directional microlens surrounded by the first groove and the second groove, and the like, compared with the conventional reflective LCD. It has enhanced reflection efficiency in a specified direction. Therefore, the contrast and image product f will be significantly improved. Moreover, since the microlenses are oriented along the horizontal or vertical direction of the pixels, they are suitable for use in the Chinese National Standard (CNS) A4 specification (210X297) for electronic display papers that require high reflectivity in a particular direction. Gong Cheng) 13 - 1300497 A7 __B7 V. Invention Description ( ) 11 Display. Moreover, since the reflective electrode can be formed by an improved exposure and development method, the manufacturing cost and time can be reduced. When the groove filling member having various shapes is provided at the intersection of the grooves in the reflecting electrode, the reflectance of the reflecting electrode can be further improved, and the contrast and image quality are greatly improved. When the organic insulating film is formed, the grooves are provided at the outer region between the pixels in the same manner as the inner region of the pixel. ϋ, there will be no difference in south between the cell area and the external area between the cells. Therefore, residual image or distortion caused by light leakage during liquid crystal orientation can be eliminated. BRIEF DESCRIPTION OF THE DRAWINGS The above and other advantages of the present invention will be more apparent from the detailed description of the preferred embodiments, and the like. Partial plan view of the LCD; Fig. 2 is a cross-sectional view of the conventional reflection type of Fig. 1; - Figs. 3A to 3C are cross-sectional views showing the manufacture of the organic insulating film and the reflective electrode of Fig. 2; 4 is a cross-sectional view of a radiation type LCD according to a first embodiment of the present invention; FIG. 5A is a plan view of a reflective electrode in the LCD of FIG. 4; and FIG. 5B is a reflection electrode of another embodiment of the present invention. 6A to 6D are cross-sectional views showing a method of manufacturing the reflective LCD of FIG. 4; '7A and 7B are diagrams showing a contact hole formed on the upper surface of the organic insulating film of FIG. 6B and A cross-sectional view of the steps of most of the grooves; Figures 8A to 8C show the dimensions of the paper for manufacturing the reflective electrode of the second embodiment of the present invention applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -------- -------------Γ 丨·- (Please read the notes on the back and fill out this page)

•訂I 14 1300497 A7 ___B7_ 五、發明説明( ) 12 方法之剖視圖; 第9圖為本發明第三實施例之反射電極的平面圖; 第10A至10D圖為本發明第四實施例之反射電極的部 份放大圖; 第11圖為本發明第五實施例之反射電極的剖視圖; 第12A至12C圖為示出第11圖的LCD之製造方法的剖 視圖; 第13A圖為具有本發明第六實施例之反射電極的反射 式LCD之平面布局; 第13B圖為沿弟13 A圖之A-A’線所採的剖視示意圖; 第14A至14D圖為示出第13A與13B圖之反射式LcD的 製造方法之剖視圖; - 第15A與15B圖為示出在有機絕緣膜的上表面製設接 觸孔及多數凹槽之步驟的剖視圖; — 第16圖為一平面圖示出設在第二罩幕上之一圖.案的布 局, 第17A至17E圖為示出供製造本發明另一實施例之反 射電極的罩幕圖案之平面圖; 第18 A至·18 C圖為對應於一用來製成本發明實施例之 反射電極的單位像元之反射電極(或罩幕圖案)的平面圖; 第19Α與190圖為示出利用一具有第18Α圖之反射電 極的LCD所測得之反射率變化圖; 第20A與20B圖為示出利用一具有第18马圖之反射電極 的LCD於一視角所測得之反射率變化圖; 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) (請先閲讀背面之注意事項再填寫本頁) …訂· •線> 15 1300497 A7 __ B7 _____ 五、發明説明() 13 第21A與21B圖為示出利用一具有第18C圖之反射電極 的LCD於一視角戶斤測得之反射率變化圖;及 第22 A與22B圖為示出利用一具有第9圖之反射電極的 LCD於一視角所測得之反射率變化圖。 本發明較佳實施例之反射式LCD及其製造方法,現將 參照所附圖式來詳細說明。 〜實施例1〜 第4圖係為本發a月第一實施例之反射式LCD的剖視圖。 請參閱第4圖,一反射式LCD包含:一第一基板210其 上設有一像元陣列;一第二基板220與該第一基板210對向 設置;一液晶層230設在第一基板210與第二基板220之間; 及一反射電極235形如一像元電-極;而被設在第一基板210 與液晶層230之間。 該第一基板210包括一第一絕緣基材240,及一薄膜電 晶體(TFT)245作為設在第一絕緣基材240上的切換裝置。 該第一基板210係由非導電材料,例如玻璃、陶瓷等所 製成。該TFT245包含一閘極電板250,一閘極絕緣膜2.55, 一半導體層260,一電阻接觸層265,一源極電極270,及一 汲極電極275。 該閘極電極250係由第一絕緣基材240上之一閘極線 (未示出)分支設皇,並具有雙層結構其底層係由鉻(Cr)而頂 層則由鋁(A1)所製成。 該閘極絕緣膜255係由氮化矽(SixNy)所.製成,而被形 成於該設有閘極電極250之第一絕緣膜240的整個表面上。 本紙張尺度適用中國國家標準(_) M規格(210X297公釐) -----------------·:裝-·.......「:…訂…………——線· (請先閲讀背面之注意事項再填寫本頁) 1300497 A7 ------^- 五、發明説明() 14 在該閘極絕緣膜255上乃按序設有非結晶矽的半導體層 260,及n+型非結晶矽的電阻接觸層265。 該源極電極270與汲極電極275係被設在該電阻接觸層 265與閘極絕緣膜妈4255上。該閘極電極250係被設在源極 電極270與汲極電極275之間,而完成該TFT245。該源極電 極270與汲極電極275係由金屬製成,例如钽(Ta)、鉬(Mo)、 鈦(Ti)、鉻(Cr)等。 在設有TFT245的第一絕-緣基材240上,乃沈積一由光 阻材料製成之有機絕緣膜280。一接觸孔285被設在該有機 絕緣膜280中,而曝現一部份的汲極電極275。 在含有該接觸孔285之有機絕緣膜280上乃設有該反射 電極235。談反射電極235係經由-接觸孔285來連接於汲極電 極275,而使該TFT245電連接於反射電極235。 第5A圖係為一對應於第4圖所示裝置中的單位像元之 反射電極的詳細平面圖。 如第5A圖所示,依據本發明之該反射電極235乃包含 多數的第一區部份290及多數的策二區部份295其具有與該 第一區部份290不同的高度。沿著垂直於一第一方向(垂直 方向)之一第二方向(水平方向)排列的該尊第二區部份295 之第一長度分量的第<總和,係比沿垂直於該第二方向之 第一方向排列的_該等第二區部份295之第二長度分量的第 二總和更大,因此該等第二區部份295在第一方向比第二方 向具有更高的反射率。 .. 舉例而言,該等第一區部份290與第二區部份295乃可 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 奉在 •、tr_ 17 15 1300497 五、發明說明 度低於成’即令該等第-區290具有凹槽造型其高 (請先閲讀背面之注意事項再填寫本頁) 高於第^挪。2該等第二區295具有凸塊造型其高度 295亦可被製成1 ’ 44第—區部份與第二區部份 於第-F 使該等第-區290具有凸出造型而高度高 二厂品Μ5 ’ *亥等第二區295則具有凹入造型高度低於第 一區 290 〇 §等第區°卩份29〇乃包含多數第一凹槽29〇&沿水平 方向連續設置。又,在相鄰的第一凹槽驗之間乃有多數 第二凹槽2_沿垂直方向不連續地設置。於第从圖中,該 等第凹槽29〇b係呈弧狀來設置,因此入射光將可被反射 於其匕方向,如同該第一與第二方向一般。該等第二凹槽 290b亦可被製成任意形式,例如直線狀、環狀等。 最好是,該等第二凹槽290b乃被製成,使任何凹槽在 沿垂直方向列設時,能與另一相鄰的凹槽互相錯開。最好 疋’沿著垂直方向所設之第二凹槽的數目係於該單位像元 之每一水平線上有〇·5至5條。 該第二區部份295乃含有許多功能如微透鏡的凸出部 份。換言之,由在該反射電極235中之連績凹部所組成的第 一區部份290等,係在比凸出之第二區部份295更低的地方 凹下一定深度。同樣·地,該等由相對於第一區部份290較凸 出部份所組成之第二區部份295,係在第一基板210上被製 成具有一定高度。該等形如可增強反射效率之微透鏡的第 二區部份295,係被由第一凹槽290a與第二凹.槽290b所組成 之第一區部份290,以及一單位像元的邊界所包圍。換言 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 18 工3〇〇497• I 14 1300497 A7 ___B7_ V. BRIEF DESCRIPTION OF THE DRAWINGS ( ) FIG. 9 is a plan view of a reflective electrode according to a third embodiment of the present invention; FIGS. 10A to 10D are diagrams showing a reflective electrode according to a fourth embodiment of the present invention. FIG. 11 is a cross-sectional view showing a reflective electrode of a fifth embodiment of the present invention; FIGS. 12A to 12C are cross-sectional views showing a method of manufacturing the LCD of FIG. 11; and FIG. 13A is a sixth embodiment of the present invention; The planar layout of the reflective LCD of the reflective electrode is shown in FIG. 13B is a schematic cross-sectional view taken along line A-A' of FIG. 13A; and FIGS. 14A to 14D are reflective views showing the 13A and 13B drawings. A cross-sectional view showing a manufacturing method of LcD; - Figs. 15A and 15B are cross-sectional views showing a step of forming a contact hole and a plurality of grooves on the upper surface of the organic insulating film; - Fig. 16 is a plan view showing a second 1A to 17E is a plan view showing a mask pattern for fabricating a reflective electrode according to another embodiment of the present invention; FIGS. 18A to 18C are corresponding to one use. To make the inverse of the unit pixel of the reflective electrode of the embodiment of the present invention a plan view of the emitter electrode (or mask pattern); FIGS. 19 and 190 are graphs showing reflectance changes measured by an LCD having a reflective electrode of the 18th. FIG. 20A and FIG. 20B are diagrams showing the use of one having The reflectance change of the LCD of the reflective electrode of the 18th horse is measured at a viewing angle; the paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 public). (Please read the note on the back and fill out this page. ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) The change pattern; and the 22A and 22B are graphs showing the change in reflectance measured at a viewing angle using an LCD having the reflective electrode of FIG. The reflective LCD of the preferred embodiment of the present invention and a method of manufacturing the same will now be described in detail with reference to the accompanying drawings. ~ Embodiment 1 to Figure 4 are cross-sectional views of a reflective LCD of the first embodiment of the present invention. Referring to FIG. 4, a reflective LCD includes a first substrate 210 having an array of pixels disposed thereon, a second substrate 220 disposed opposite the first substrate 210, and a liquid crystal layer 230 disposed on the first substrate 210. And the second substrate 220; and a reflective electrode 235 shaped like a photo cell electrode; and disposed between the first substrate 210 and the liquid crystal layer 230. The first substrate 210 includes a first insulating substrate 240 and a thin film transistor (TFT) 245 as a switching device disposed on the first insulating substrate 240. The first substrate 210 is made of a non-conductive material such as glass, ceramic or the like. The TFT 245 includes a gate electrode 250, a gate insulating film 2.55, a semiconductor layer 260, a resistive contact layer 265, a source electrode 270, and a drain electrode 275. The gate electrode 250 is branched from a gate line (not shown) on the first insulating substrate 240, and has a two-layer structure, the bottom layer of which is made of chromium (Cr) and the top layer of which is made of aluminum (A1). production. The gate insulating film 255 is made of tantalum nitride (SixNy) and is formed on the entire surface of the first insulating film 240 provided with the gate electrode 250. This paper scale applies to Chinese national standard (_) M specification (210X297 mm) -----------------·:装-·.......":... ............——Line· (Please read the note on the back and then fill out this page) 1300497 A7 ------^- V. Invention description () 14 On the gate insulating film 255 is set in order A semiconductor layer 260 having an amorphous germanium and a resistive contact layer 265 of an n+ type amorphous germanium are provided. The source electrode 270 and the drain electrode 275 are provided on the resistive contact layer 265 and the gate insulating film mother 4255. The gate electrode 250 is disposed between the source electrode 270 and the drain electrode 275 to complete the TFT 245. The source electrode 270 and the drain electrode 275 are made of metal, such as tantalum (Ta), molybdenum (Mo). Titanium (Ti), chromium (Cr), etc. On the first absolute-edge substrate 240 provided with the TFT 245, an organic insulating film 280 made of a photoresist material is deposited. A contact hole 285 is provided. In the organic insulating film 280, a portion of the drain electrode 275 is exposed. The reflective electrode 235 is provided on the organic insulating film 280 including the contact hole 285. The reflective electrode 235 is via the contact hole 285. connection The drain electrode 275 is electrically connected to the reflective electrode 235. Fig. 5A is a detailed plan view of a reflective electrode corresponding to a unit pixel in the device shown in Fig. 4. As shown in Fig. 5A, The reflective electrode 235 of the present invention includes a plurality of first region portions 290 and a plurality of second region portions 295 having different heights from the first region portion 290. Along the first direction (vertical) a sum of the first length components of the second region portion 295 arranged in the second direction (horizontal direction) in a direction other than the first direction perpendicular to the second direction The second sum of the second length components of the second zone portion 295 is greater, such that the second zone portions 295 have a higher reflectivity in the first direction than the second direction.. For example, such The first zone part 290 and the second zone part 295 are applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) on the paper scale (please read the note on the back side and then fill in the page). 17 15 1300497 V. The description of the invention is lower than the number of 290 has a groove shape and its height (please read the back note first and then fill in this page) higher than the second move. 2 These second areas 295 have a bump shape and its height 295 can also be made 1 '44 first - The zone portion and the second zone portion have a convex shape on the first-region 290 and the height is high. The second zone 295 has a concave shape height lower than the first zone 290. 〇§等区°卩29〇 contains a plurality of first grooves 29〇& continually arranged in the horizontal direction. Further, a plurality of second grooves 2_ are discontinuously disposed in the vertical direction between the adjacent first grooves. In the second figure, the equal grooves 29〇b are arranged in an arc shape, so that the incident light will be reflected in the meandering direction as in the first and second directions. The second grooves 290b may also be formed in any form such as a straight line, a ring shape or the like. Preferably, the second recesses 290b are formed such that any of the recesses can be offset from the other adjacent recesses when arranged in the vertical direction. Preferably, the number of the second grooves provided in the vertical direction is 5·5 to 5 on each horizontal line of the unit pixel. The second zone portion 295 is a projection having a plurality of functions such as microlenses. In other words, the first portion 290 or the like composed of the continuous concave portion in the reflective electrode 235 is recessed to a certain depth lower than the projected second portion 295. Similarly, the second portion 295, which is formed by a relatively convex portion with respect to the first portion 290, is formed on the first substrate 210 to have a certain height. The second portion 295 of the microlens, such as a microlens that enhances reflection efficiency, is formed by a first portion 290 of the first recess 290a and the second recess 290b, and a unit pixel. Surrounded by boundaries. In other words, the paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) 18 3 〇〇 497

、發明説明 16 夕 Ads -------------------------Γ装·_ (請先閲讀背面之注意事項再填寫本頁) ,一第二區部份295係由二相鄰的第一凹槽29〇a,及二在 、早位像元中央部份的第二凹槽29〇b等來圍限形成。而靠 近於單位像元邊界區域的第二區部份295,則由二相鄰的第 —凹槽29〇a,與一第二凹槽29〇b,以及該單位像元之一部 份邊界等來共同限界形成。 由於該等第一區部份290的方向性被如此設定,故該等 第二區295的凸出部份會沿著一單位像元之水平方向的第 一方向,及沿該單位像元之垂直方向的第二方向來被定 向。因此,本發明之]^^)乃可被應用於,要求沿一特定方 向具有比其它方向更高反射率的顯示器。 訂、丨 依據本發明,該等第二區295的凸出部份乃具有各種不 同形狀’諸如橢圓形295a,漸齡或漸盈之彎月形295^4,一 凹透鏡之截面狀295c,一跑道形295d,半跑道形295e等。 又,雖該等第二區部份295的凸出部份具有相同形狀,它們 亦可具有互相不同的大小。 在第一區部份290中之第一與第二凹槽29〇a、290b等, 皆具有大約2〜5μηι的寬度範圍。—第二區295的凸出部份貝 具有約4〜:20 μηι範圍内的不同尺寸。沿著水平方向平行列 設之該等第一凹槽290a中心線之間的間隔係被設於5〜2〇 μιη的範圍内,而平均約為8·5 μιη。該等第二區295之凸出 部份的凸脊之間扃間隔則被設於12〜22 μηι的範圍内,而 平均約為17 μηι。故,該等第二區295之凸出部份的形狀及 大小乃可不同地改變,因而被該反射電極反射之光的干涉 現象將可減至最少。 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 19 1300497 A7 _ B7_____ 五、發明説明( ) 17 第5B圖係為本發明另一較佳實施例之反射電極的詳 細平面圖。 第5B圖的反射電極係相同於第5A圖,惟除有一散射凹 槽297設在各第二區295的中央部位。該散射凹槽297可防止 入射光直接反射,並將該入射光散射。該散射凹槽297之大 小最好在2〜3 μηι的範圍内。 請回參第4圖,在具有前述結構的反射電極235上乃沈 積一第一定向膜300 〇 該對向第一基板210之第二基板220乃包含一第二絕緣 基材305,一濾色膜310,一共同電極315,一第二定向膜 320,一相差板325,及一偏光板330。 該第二絕緣基材305亦由玻-璃或陶瓷材料製成,乃與第 一絕緣基材240的材料相同。該相差板325與偏光板330係依 序設在該第二絕緣基材305上。該濾色膜310係被沈積在第 二絕緣基材305底下,該共同電極315與第二定向膜320則依 序設在該濾色膜310底下,而完成該第二基板220。該第二 定向膜320會與第一基板210的策_一定向膜300—起來預斜 該液晶層230的液晶分子。 墊隔物335與336等會被墊置於第一基板210與第二基 板220之間,而於其間形成一固定間隙,以供液晶層230填 設其中,即完成—本發明之一反射式LCD 200。 以下,一種製造本發明之反射式LCD的方法,將配合 所附圖式來詳細說明。 . 第6A至6D圖乃為剖視圖,示出第4圖中本發明第一實 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) ------------------------裝-·- (請先閱讀背面之注意事項再填寫本頁) i訂. 20 1300497 A7 • _B7__ 五、發明説明( ) 18 施例的反射式LCD之製造方法。在第6A至6D圖中,相同的 元件皆以相同的標號來表示。 請參閱第6A圖,在一玻璃或陶瓷的第一絕緣基材上乃 沈積一金屬層,例如组(Ta)、鈦(Ti)、铜(Mo)、銘(A1)、鉻 (Cr)、銅(Cu)、鎢(W)等。然後,該金屬層會被圖樣化來形 成一閘極線,並有一閘極電極250由該閘極線分支設置。在 此時,該閘極電極250與閘極線係可由Al-Cu或Al-Si-Cu的 合金來製成。嗣,一氮化矽膜會被以電漿化學氣相沈積法 來沈積在包括該閘極電極250的第一絕緣基材240之整個表 面上,而形成該閘極絕緣膜255。 在該閘極絕緣膜255上乃被以電漿化學氣相沈積法來 依序設有一非結晶矽膜,以及摻雜的n+型非結晶矽膜。然 後,該非結晶矽膜與摻雜的n+非結晶矽膜將會被圖樣化, 而在設有閘極電極250的閘極絕緣膜255上,連續地製成一 半導體層260及一電阻接觸層265。然後,在該設有上述結 構的第一絕緣基材240上會覆設一金屬層,例如钽(Ta)、鈦 (Ti)、鉬(Mo)、鋁(A1)、鉻(Cr) v銅(Cu)、鎢(W)等。嗣, 該金屬層會被圖樣化來形成一源極電極270,並有一汲極電 極275由一源極線分支設置。故,乃可完成一包括該閘極電 極250、半導體層26.0、電阻接觸層265、源極電極270、汲 極電極275等之缚膜電晶體245。於此時,該閘極絕緣膜255 係被介設於閘極線與源極線之間,故可防止該閘極線接觸 源極線。 .. 再來,有一光阻膜會被以旋塗法塗覆在該設有TFT 245 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -、可丨 21 1300497 A7 _ B7______ 五、發明説明( ) 19 (請先閲讀背面之注意事項再填寫本頁) 的第一絕緣基材245上約1〜3 μιη的厚度,而形成一有機絕 緣膜280,即完成該第一基板210。於此時,該有機絕緣膜 280乃可例如由含有PAC(光作用成分)的丙稀酸樹脂等製 成。 請參閱第6Β圖,有一第一罩幕350乃被校準覆蓋在該 有機絕緣膜280上以製成接觸孔285,嗣該有機絕緣膜會經 由曝光與顯像程序來圖樣化,而製成部份曝現汲極電極275 的接觸孔285,以及多數的四槽等。 在該有機絕緣膜280上製成接觸孔285,以及多數的凹 槽之方法將說明如下。 第7Α與7Β圖為供說明在有機絕緣膜280上形成接觸孔 及凹槽等之方法的剖視圖。- 請參閱第7Α與7Β圖,該第一罩幕350會被校準覆蓋在 有機絕緣膜280上,俾供製成接觸孔285。該第一罩幕350 具有對應於接觸孔285的圖案。然後,該有機絕緣膜280會 接受一第一全量曝光處理,來曝光該有機絕緣膜280在源極 /汲極電極275上的部份。嗣,該曝光的有機絕緣膜280會進 行顯像程序,而使曝現該源極/汲極電極275的接觸孔285 被形成於該有·機絕緣膜中,如第7Α圖所示。 然後,為了形成該等凹槽,有一第二罩幕355具有對應 於可供形成微透_鏡之凹槽的圖案,會被校準覆蓋在該有機 絕緣膜280上,如第7Β圖所示。在此時,該第二罩幕355乃 具有與第5Α、5Β圖中之反射電極235相同的.圖案。又,依 據所使用之光阻種類,該第二罩幕355亦可具有與前述之反 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) -22 - 1300497 A7 ______ B7_____ 五、發明説明( ) 20 射電極235形狀倒反的圖案。 具體而言,該第二罩幕355係在一透明基材上形成一對 應於第5A圖中之第一區的罩幕圖案而來製成。又,如第5b 圖中所示,該第二罩幕355亦可具有約2〜3 μιη大小的中央 凹部圖案。故,籍在該有機絕緣膜的中心部份形成該等中 央凹部,乃可增進其反射效率。 在使用第二罩幕355來加以曝光該有機絕緣膜280除了 接觸孔285以外的部份之後,·即會進行一顯像程序,而在該 有機絕緣膜280的表面上形成多數的規則凹槽281。換言 之,其將會在該有機絕緣膜280上形成多數的連續凹槽 281 ’包含沿該單位像元水平方向之第一方向具有固定寬度 的第一凹槽’及沿該單位像元垂直方向之第二方向不規則 排列的第二凹槽等。故,該有機絕緣膜28〇的表面上,將可 被分成由多數連續凹槽所構成的第一區部份,以及被該等 單位像元的邊界部份與第一區部份所包圍之,由多數的凸 出部份所組成的第二區部份。 換言之’在沿該單位像元的冰平方向製成多數具有固 定寬度的凹槽之後,有多數的凹槽會沿該單位像元的垂直 方向被設在枏對於前述凹槽所形成之凸出部份上,而使該 等被多數凹槽所圍m的凸出部份被製成於該有機絕緣膜 280上。最好是,該等垂向設置的凹槽乃具有半球狀截面造 型。 如上所述,沿著單位像元之水平方向列設的第一凹 槽,與沿垂直方向設製的第二凹槽等,皆具有2〜5 μπ1的 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) .....................Γ 裝-·-......「------訂..........--......線一 (請先閲讀背面之注意事項再填寫本頁) -23 - 1300497 A7 ______B7_ 五、發明説明( ) 21 (請先閲讀背面之注意事項再填寫本頁) 尺寸,而被該等凹槽所圍限的凸出部份乃具有4〜2〇 μηι的 大小。又,沿該垂直方向設製之第二凹槽的數目,係有關 於該沿水平方向之第一方向的反射率,及沿垂直方向之第 二方向的反射率,因此該數目乃可被改變,而最好在一像 元單位之每單一水平線上係為〇·52〜5。該等第二凹槽的形 狀會衫響該像元上除了垂直反射率以外之所有各種反射 率。就此,當針對所有方向要求相等的反射率時,在垂直 於一所須方向的方向增加直線的分量乃是較有利的。因 此,被設在該有機絕緣膜上的凸出部份最好能具有一形 狀’而使它們沿垂直方向延伸的長度有不同的大小,例如 直線或弧形。當考慮該像元於一特定方向的反射率時,其 乃最好使沿垂向設製的凹槽不會與相鄰之垂向凹槽相交 (可參閱第5圖)。又,該等第二凹槽亦可被製成連接第一凹 槽,或與第一凹槽分開。 ' 此外’利用如第5圖所示之罩幕在該有機絕緣膜280的 凸出部份來形成坑狀的凹部,則設在該有機絕緣膜2 8 〇上之 反射電極235的反射率,將可被大地增進。 請參閱第6C圖,如前所述,在一具有優良反射率之金 屬層,例如紹·、鎳、鉻、銀等,被沈積在設有多數凹槽281 的有機絕緣膜280上之後,該沈積的金屬層會被圖樣化成一 像元形狀’而形灰一反射電極23 5。然後,一光阻會被覆設 在該反射電極235上,嗣會被摩擦而製成一第一定向膜 300’其可使在液晶層中的液晶分子以一所擇角度來預斜。 該反射電極235會具有與該有機絕緣膜280表面相同的 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 24 1300497 A7 一 ___________ B7 __ 五、發明説明(). 22 (請先閲讀背面之注意事項再填寫本頁) 形狀。換言之,對應於該有機絕緣膜280之凹槽281的第一 區290會具有一結構,而由多數具有固定寬度而沿水平之第 一方向連續列設的凹槽等,與沿垂直之第二方向不規則列 設的多數凹槽等一起組成。由於在第一區中之反射電極235 的方向性,會使第二區295的凸出部份能沿著像元垂直方向 之第一方向,以及水平方向之第二方向來調準,故在一特 定方向例如垂直方向的反射率將會大大增強。 該反射電極235係被分成有多數凹槽形成於該有機絕 緣膜興之凹槽281上的第一區部份29〇,以及具有多數 凸出部份之微透鏡區的第二區部份295。其中,該等第一區 部份290係為連續凹槽,而被設於比第二區部份295更低的 地方。由於該等第二區部份295係被第一區部份29〇所包 圍’故違反射電極235會具有一由第一區部份290之連續凹 槽所形成的結構。 在本發^复遮』_中,該等形成反射電極235第一區部份 的凹槽乃具有約2〜5 μιη的寬度,而該等凹槽所包圍之第 二區部份295乃具有不同的形狀一,且同時具有大約4〜2〇 μηι的大小:,如第5Α與5Β圖中所示。 明參閱第61)圖’有一渡色膜31〇,一透明共同電極 315,及一第二定向膜32〇等,會依序設在與第一絕緣基材 240相同材料的-第二絕緣基材3〇5上,而完成該第二基板 220。然後,該第二基板220會對設於第一基板21〇,而被互 相連接在一起,且其間被墊置墊隔物335等,因此有一空隙 會形成於該第一基板210與第二基板220之間。嗣,當液晶 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 25 1300497 A7 ^___ B7 _ 五、發明説明( ) 23 被以真空注入法注入第一基板21〇與第二基板22〇之間的空 隙内後,即可形成該液晶層230,而得製成本實施例的反射 式LCD 200。又,若有需要,則一偏光板33〇及一相差板325 乃可被附δ又在第二基板32〇的正面上。雖未被示於圖式中, 一黑色基質亦可被設在第二絕緣基材3〇5與濾色膜31〇之 間。 〜實施例2〜 不似前述之實施例1,本實施例2乃可僅利用一次光罩 操作,而使该等接觸孔與凹槽被形成於有機絕緣層上。 一般而言,有兩種製造作為一LCD的反射板之反.射電 極的方法。其一係使用單層有機絕緣膜的方法,另一者係 使用雙層有機絕緣膜的方法。_ 在該二方法中,後者使用雙層有機絕緣膜的方法,會 將塗設、曝光、及顯像該有機絕緣膜的程序重複兩次。換 言之,在第一次塗設的有機絕緣膜被全量曝光來形成該等 凸出部份之後’有一第二有機絕緣膜會被覆設在該第一有 機絕緣膜上,再次被曝光及顯像2來製成曝現源極/汲極電 極的接觸孔。此方法乃能對被設在該有機絕緣膜上之反射 電極的反射率有所助益,但其缺點係製程較繁複,而會增 加製造時間及費用。 由於該等缺點,故該使用單層有機絕緣膜的方法,主 要係被用來形成該反射電極。 如第7A與7B圖所示,在該有機絕緣膜》80被覆設於含 有該源極/汲極電極275之第一絕緣基材的整個表面之後, 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) (請先閲讀背面之注意事項再填寫本頁) .裝' 、1T— -線·* -26 - 1300497 A7 _ _ '_B7___ 五、發明説明( ) 24 (請先閲讀背面之注意事項再填寫本頁) 該供形成接觸孔的第一罩幕350會被置於一曝光裝置中,然 後該有機絕緣膜280上對應於接觸孔的部份,會被使用該第 一罩幕350來首先曝光。完成首次曝光步驟之後,一可供形 成透鏡之第二罩幕355會被置於該曝光裝置中,而該接觸孔 285以外之要形成微透鏡的部份將會被第二次曝光。該等第 一次與第二次曝光的部份嗣會被顯像,而同時製成該接觸 孔285及微透鏡部份。 但是,由於上述方法須有兩次罩幕置設步驟,及兩次 曝光步驟來製成該等接觸孔及透鏡形成部份,其在不必要 之工作失敗的可能性會增加,而且整體曝光時間亦會增加。 本實施例即為提升在曝光製程的效率,而提供以下的 製造方法。 - 第8A至8C圖為供說明製造本發明之反射電極的方法 之剖視圖。 請參閱第8A圖,有一有機絕緣膜370會被以旋塗法來 製成約1〜3 μπι厚,而設在具有源極/汲極電極的絕緣基材 360之整個表面上。嗣,有一具有預定圖案的第一罩幕375 會被校準覆蓋該有機絕緣膜370以供製成一接觸孔385。然 後,該有機絕·緣膜370會接受部份曝光處理。於此時,穿過 該第一罩幕375之該·有機絕緣膜370的部份曝光量,會變為 由第6C與60圖 > 所述之全部曝光量減去透鏡曝光量之 值。換言之,當該部份曝光量為“Ρ”,全部曝光量為“F”, 而透鏡曝光量為“R”時,該部份曝光量可由,下列公式(1)來 獲得: 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) -27 - 1300497 A7 B7 五、發明説明( ) 25 P=F-R …(1) (請先閲讀背面之注意事項再填寫本頁) 在此例中,最好該部份曝光量“P”係約為全部曝光量 “F”的50%。依據該部份曝光量,則接觸孔385會被以標的 深度的一半來形成於該有機絕緣膜370中。 如第8B圖所示,為能以部份曝光在該有機絕緣膜370 的頂面上製成徵透鏡等,有一具有預定圖案之第二罩幕380 會被校準覆蓋該有機絕緣膜370。嗣,該有機絕緣膜370會 經由該第二罩幕380來曝光,而在其表面形成多數的凹槽 371,同時製成曝覌源極/汲極電極365之接觸孔385。於此, 該第二罩幕380乃具有可曝現該接觸孔部份385及微透鏡部 份之圖案。故,該有機絕緣膜370對應於接觸孔385的部份 會被雙重曝光,而會比形成多數凹槽371的部份更開闊加大 且更深,因此該等凹槽371乃可與曝現源極/汲極電極365 的接觸孔385來同時形成。 ' 換言之,依據本發明,當在該絕緣基材360上覆設可形 成接觸孔的第一罩幕375,及可形成微透鏡的第二罩幕380 之後,該有機絕緣膜370之接觸:?1^卩份會先被利用第一罩幕 375來部份曝光,以形成該接觸孔,而其曝光量係由適於形 成該接觸孔的全部曝光量減去適於形成該等透鏡之透鏡曝 光量。然後,該有機絕緣膜370之透鏡形成部份及接觸孔形 成部份,會被封用第二罩幕380再同時曝光以製成該等透 鏡,因此該有機絕緣膜370上要形成接觸孔385的部份將會 被雙重曝光,而比形成該等凹槽371的部份更闊更深,但該 凹槽部份。即要被形成透鏡的部份會受到比接觸孔部份較 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -28 - 1300497 A7 ___B7_ 五、發明説明( ) 26 淺的曝光,因此該等凹槽371將能與接觸孔385同時地形成 於該有機絕緣膜370上。故,由於一次工作程序能供進行兩 個製程,而可一次設定該絕緣基材與罩幕,以及由全部曝 光量減去透鏡曝光量得縮短時間,將可節省其曝光時間; 因此,實施該方法所用的時間和費用將能大量減省。特別 是,由於在小型及中型反射式LCD,例如手提終端機或LCD 電視接收器中,每一基材的曝光次數甚多,故相較於習知 技術,其曝光時間乃可例如節省30%或更多,而使全部的 製程時間顯著地縮短。 請參閱第8C圖’如前所述,有一具有絕佳反射率之金 屬層,例如鋁、鎳、鉻、銀等,會被沈積在設有接觸孔385 的有機絕緣膜370上,嗣被圖樣化來形成一反射電極390。 在此例中,該反射電極390會被設在與前述之下層有機絕緣 膜370的結構匹配的結構上。由於在形成反射電極390之後 的製程係與第6C及6D圖所示之第一實施例相同,故其說明 將予省略。 〜實施例3〜 _ 第9圖係為本實施例之反射電極的圖案之平面圖。於本 實施例中,由於該反射電極400之外的元件,以及決定該反 射電極400之形狀的有機絕緣膜之造型係相同於第一實施 例,故它們的說_明將予省略。 請參閱第9圖,本實施例之反射電極400的圖案乃包含 多數的第一區部份410及多數的第二區部份4〇5。該等第一 區部份410具有多數的第一凹槽410a,乃沿著該像元的水平 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) !l· 裝··......「----丨#·….............%# (請先閲讀背面之注意事項再填寫本頁) -29 - 1300497 A7 --— _ B7___ 五、發明説明() 27 (請先閲讀背面之注意事項再填寫本頁) 方向互相平行設置,及多數的第二凹槽41〇1)沿該像元的垂 直方向不連續地設置。該等第二區部份4〇5則包含多數的凸 出部份,被該等第一區部份41〇以及像元的邊界線所包圍。 该等形成第二區部份405的凸出部份4〇5a、405b、405c等, 係由多數沿水平方向及垂直方向設置的凹槽所圍限,而务 具有島狀造型。一填槽凸體4〇妙會被設在所擇之各凸出部 份405a、405b、及405c中。該等第二區部份405的凸出部份, 會被粗略地分成設有該填槽-凸體者,及未設有填槽凸體者。 在本實施例中,該等供形成反射電極4〇〇之凹槽、凸出 部份405a、405b、405c、及填槽凸體406等之形狀,係依據 可將設在該反射電極400底下的有機絕緣膜圖樣化之罩幕 的圖案來決定。換言之,第9圖·雖係示出該反射電極4〇〇的 圖案造型,但其亦可被視為該有機絕緣膜的圖案形狀,或 供將該有機絕緣膜圖樣化之罩幕的圖案形狀。如第9圖所 示’該罩幕亦具有對應於該等凹槽的圖案,另更包含可在 第一凹槽410a與第二凹槽41 Ob之交點處形成該填槽凸體 406的填槽圖案。 一 為了製成本實施例之反射電極,有一依據第二實施例 來曝光該底層.有機絕緣膜的製程將會被施行,但該曝光程 序亦可依據第一實施例的方法來進行。 該等凹槽乃包含第一區部份41〇,其為比第二區部份 405凹下的部份,而各具有大約2〜5 μιη的寬度。該等連續 凹槽係沿像元之水平方向以固定寬度來不規則列設,而使 沿垂直方向所設之凹槽不會在垂直方向之一直線上與另一 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) -30 - 1300497 A7 ______Β7 五、發明説明( ) 28 (請先閲讀背面之注意事項再填寫本頁) 相鄰之凹槽相交。換言之,穿過該等第二區部份4〇5之凸出 部份的垂向列設之凹槽,乃被設成使它們不會在一直線上 相交。由於穿過該等第二區部份4〇5之凸出部份的凹槽數 目,係有關於在水平及垂直方向的反射率,故其可視該像 元的大小而改變,但最好在每一像元之單一水平線上為約 0.5〜5。又,沿著垂直方向列設而穿過凸出部份的凹槽係 最好呈半球狀截面。因為該等垂向列設的凹槽會影響該反 射電極400除了垂向反射率以外之所有方向的反射率,故其 最好呈半球形,俾可於全部方向展現相同的反射率。但, 若要使該反射電極400能沿一特定方向展現一不對稱的高 反射率,則可沿垂直於所須方向之方向來增加一直線分 量。又’由該等第二區部份405的凸出部份突出的填槽凸體 406等,係被設於垂向列設的第二凹槽41〇1)與水平列設的第 一凹槽410a之交界點處。故該等填槽凸體4〇砂可使設在有 機絕緣膜上的凹槽,在製成該反射電極400之前的有機絕緣 膜之曝光及顯像製程時,具有一致的深度。換言之,由於 在水平列設的第一凹槽410a交會沒直列設的第二凹槽41〇b 之父叉點處’其圖案之直線寬度係比該圖案之其它部份相 對地較大,故該等交叉點處在相同的曝光條件下,將會比 其它部份被蝕刻得較深,而會得到不同於該罩幕圖案形狀 的平坦廓形。因_此,在製造該罩幕圖案時,將填槽凹部4〇6 與該罩幕圖案製設在一起’則該有機絕緣膜在交又點處比 其它部份受到的較多蝕刻將能有一定程度的抑止,而得在 該有機絕緣膜370的頂面上形成具有一致深度的凹槽。換言 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公楚) 31 A7 1300497 _B7___ 五、發明説明( ) 29 之,該第一區部份乃可被製成具有一致(或相同)的深度。 該等構成第二區部份之凸出部份405a、405b、405c等, 乃具有跑道形狀(405 a、405b),或一凹透鏡形狀(405c),而 沿著水平方向延伸。但是,雖該等凸出部份具有相同的形 狀,但亦具有不同的大小,而在約4〜20 μιη的範圍内;因 此由反射電極400所反射之光的干涉現象將可減至最少。在 本實施例中,如第5Β圖所示,該反射電極400的反射率, 將可藉在第二區部份405之各凸出部份中央形成坑狀之凹 槽,而得更高地提升。 〜實施例4〜 第10Α至10D圖為本發明第四實施例之反射電極的放 大平面圖,而示出該像元中水平列設之凹槽與垂直列設之 凹槽在交叉點處的放大圖。於此實施例中,整體而言,該 反射電極4 2 0最好具有與第一實施例所揭者相同的形狀,但 其亦可具有如第三實施例的形狀。因本實施例之反射電極 的製造方法係與第一或第三實施例相同,故其說明將予省 略。 — 如第7Α至10D圖所示,在一水平凹槽425與一垂向凹槽 426相交的部份將會形成,例如Τ形(10Α圖)、三角形(10C 圖)、圓形(10D圖)、及倒三角形(10Β)等之填槽件430、431、 432、433等,其> 432係被設在交叉點的外侧。該等填槽件 430、431、432、433係使用一罩幕圖案來製成,該罩幕係 在曝光及顯像該有機絕緣膜時所使用者,而.可用來製成該 反射電極420。換言之,取代第三實施例中所設的填槽凸體 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) ----------------- (請先閲讀背面之注意事項再填寫本頁), invention description 16 eve Ads ------------------------- armored _ (please read the notes on the back and fill out this page), one The second portion 295 is formed by two adjacent first grooves 29〇a, and two second grooves 29〇b in the central portion of the early pixels. And the second portion 295 adjacent to the boundary region of the unit pixel is composed of two adjacent first grooves 29a, a second groove 29b, and a part of the unit pixel Waiting for a common boundary to form. Since the directivity of the first portion 290 is set as such, the convex portion of the second region 295 will follow a first direction in the horizontal direction of a unit pixel, and along the unit pixel. The second direction in the vertical direction is oriented. Therefore, the present invention can be applied to a display having a higher reflectance in a specific direction than in other directions. According to the present invention, the convex portions of the second regions 295 have various shapes such as an elliptical shape 295a, a gradually obscuring or progressively curved meniscus 295^4, and a concave lens cross-sectional shape 295c. Racetrack shape 295d, half runway shape 295e, etc. Further, although the convex portions of the second portion 295 have the same shape, they may have different sizes from each other. The first and second recesses 29A, 290b, etc. in the first zone portion 290 each have a width range of about 2 to 5 μm. - The convex portion of the second region 295 has a different size in the range of about 4 to 20 μm. The interval between the center lines of the first grooves 290a arranged in parallel along the horizontal direction is set in the range of 5 to 2 μm, and the average is about 8·5 μm. The spacing between the ridges of the convex portions of the second regions 295 is set in the range of 12 to 22 μm, and the average is about 17 μm. Therefore, the shape and size of the convex portions of the second regions 295 can be differently changed, so that the interference phenomenon of the light reflected by the reflective electrodes can be minimized. This paper scale is applicable to the Chinese National Standard (CNS) Α4 specification (210X297 mm). 19 1300497 A7 _ B7_____ V. Description of the Invention (17) FIG. 5B is a detailed plan view of a reflective electrode according to another preferred embodiment of the present invention. The reflective electrode of Fig. 5B is the same as Fig. 5A except that a scattering recess 297 is provided in the central portion of each of the second regions 295. The scattering groove 297 prevents direct reflection of incident light and scatters the incident light. The size of the scattering groove 297 is preferably in the range of 2 to 3 μm. Referring back to FIG. 4, a first alignment film 300 is deposited on the reflective electrode 235 having the foregoing structure. The second substrate 220 facing the first substrate 210 includes a second insulating substrate 305, a filter. The color film 310, a common electrode 315, a second alignment film 320, a phase difference plate 325, and a polarizing plate 330. The second insulating substrate 305 is also made of a glass- or ceramic material, which is the same material as the first insulating substrate 240. The phase difference plate 325 and the polarizing plate 330 are sequentially disposed on the second insulating substrate 305. The color filter film 310 is deposited under the second insulating substrate 305, and the common electrode 315 and the second alignment film 320 are sequentially disposed under the color filter film 310 to complete the second substrate 220. The second alignment film 320 pre-angles the liquid crystal molecules of the liquid crystal layer 230 together with the first substrate 210. The spacers 335 and 336 and the like are placed between the first substrate 210 and the second substrate 220 to form a fixed gap therebetween for the liquid crystal layer 230 to be filled therein, that is, one of the reflective forms of the present invention LCD 200. Hereinafter, a method of manufacturing the reflective LCD of the present invention will be described in detail in conjunction with the drawings. Figures 6A to 6D are cross-sectional views showing the first actual paper size of the present invention in Figure 4 applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) ------------ ------------装-·- (Please read the notes on the back and fill out this page) i. 20 1300497 A7 • _B7__ V. Inventions ( ) 18 Reflective LCD of the example Manufacturing method. In the 6A to 6D drawings, the same elements are denoted by the same reference numerals. Referring to FIG. 6A, a metal layer is deposited on a first insulating substrate of glass or ceramic, such as group (Ta), titanium (Ti), copper (Mo), indium (A1), chromium (Cr), Copper (Cu), tungsten (W), and the like. Then, the metal layer is patterned to form a gate line, and a gate electrode 250 is disposed by the gate line branch. At this time, the gate electrode 250 and the gate line may be made of an alloy of Al-Cu or Al-Si-Cu. Further, a tantalum nitride film is deposited on the entire surface of the first insulating substrate 240 including the gate electrode 250 by plasma chemical vapor deposition to form the gate insulating film 255. On the gate insulating film 255, an amorphous ruthenium film and a doped n+ type amorphous ruthenium film are sequentially provided by plasma chemical vapor deposition. Then, the amorphous ruthenium film and the doped n+ amorphous ruthenium film will be patterned, and a semiconductor layer 260 and a resistive contact layer are continuously formed on the gate insulating film 255 provided with the gate electrode 250. 265. Then, a metal layer such as tantalum (Ta), titanium (Ti), molybdenum (Mo), aluminum (Al), chromium (Cr) v copper is coated on the first insulating substrate 240 provided with the above structure. (Cu), tungsten (W), and the like. That is, the metal layer is patterned to form a source electrode 270, and a drain electrode 275 is disposed by a source line branch. Therefore, a bonding transistor 245 including the gate electrode 250, the semiconductor layer 26.0, the resistive contact layer 265, the source electrode 270, the gate electrode 275, and the like can be completed. At this time, the gate insulating film 255 is interposed between the gate line and the source line, so that the gate line can be prevented from contacting the source line. .. Then, a photoresist film will be applied by spin coating on the TFT 245. This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the notes on the back and fill in the form) This page) -, can be 丨 21 1300497 A7 _ B7______ five, invention description ( ) 19 (please read the back of the note and then fill out this page) on the first insulating substrate 245 thickness of about 1~3 μηη, and form An organic insulating film 280 completes the first substrate 210. At this time, the organic insulating film 280 can be made, for example, of an acrylic resin containing PAC (Light Acting Component). Referring to FIG. 6 , a first mask 350 is calibrated to cover the organic insulating film 280 to form a contact hole 285. The organic insulating film is patterned through an exposure and development process, and the portion is formed. The contact hole 285 of the drain electrode 275 is exposed, and a plurality of four slots and the like are exposed. A method of forming the contact hole 285 on the organic insulating film 280, and a plurality of recesses will be explained below. Figs. 7 and 7 are cross-sectional views for explaining a method of forming contact holes, grooves, and the like on the organic insulating film 280. - Referring to Figures 7 and 7, the first mask 350 is calibrated over the organic insulating film 280 and is formed into a contact hole 285. The first mask 350 has a pattern corresponding to the contact hole 285. Then, the organic insulating film 280 is subjected to a first full exposure process to expose a portion of the organic insulating film 280 on the source/drain electrode 275. That is, the exposed organic insulating film 280 is subjected to a developing process, and a contact hole 285 exposing the source/drain electrode 275 is formed in the organic insulating film as shown in Fig. 7. Then, in order to form the grooves, a second mask 355 having a pattern corresponding to a groove for forming a micro-transparent mirror is calibrated to cover the organic insulating film 280 as shown in Fig. 7. At this time, the second mask 355 has the same pattern as the reflective electrode 235 in the fifth and fifth figures. Moreover, depending on the type of photoresist used, the second mask 355 can also have the Chinese National Standard (CNS) Α4 specification (210×297 mm) -22 - 1300497 A7 ______ B7_____. Description ( ) 20 The pattern in which the electrode 235 is inverted in shape. Specifically, the second mask 355 is formed by forming a pair of mask patterns on the transparent substrate in the first region of Fig. 5A. Further, as shown in Fig. 5b, the second mask 355 may also have a central recess pattern of about 2 to 3 μm in size. Therefore, the central recesses are formed in the central portion of the organic insulating film to improve the reflection efficiency. After the second mask 355 is used to expose the portion of the organic insulating film 280 except for the contact hole 285, a development process is performed, and a plurality of regular grooves are formed on the surface of the organic insulating film 280. 281. In other words, it will form a plurality of continuous grooves 281' on the organic insulating film 280 including a first groove having a fixed width in a first direction in the horizontal direction of the unit pixel and a vertical direction along the unit pixel. The second groove or the like in which the second direction is irregularly arranged. Therefore, the surface of the organic insulating film 28A can be divided into a first portion composed of a plurality of continuous grooves, and surrounded by the boundary portion of the unit pixels and the first portion. a second portion consisting of a plurality of protruding portions. In other words, after a plurality of grooves having a fixed width are formed along the ice flat direction of the unit cell, a plurality of grooves are provided along the vertical direction of the unit cell, and the protrusion formed by the groove is formed. In part, the convex portions surrounded by the plurality of grooves m are formed on the organic insulating film 280. Preferably, the vertically disposed grooves have a hemispherical cross-sectional shape. As described above, the first groove arranged along the horizontal direction of the unit pixel, and the second groove provided in the vertical direction, etc., each having a paper size of 2 to 5 μπ1 is applicable to the Chinese National Standard (CNS). Α4 specifications (210X297 mm) .....................Γ装-·-......"------ order... .......--...Line one (please read the notes on the back and fill out this page) -23 - 1300497 A7 ______B7_ V. Invention description ( ) 21 (Please read the note on the back first) The item is filled in again. The size of the protruding portion surrounded by the grooves has a size of 4 to 2 〇 μη. Further, the number of the second grooves arranged along the vertical direction is Regarding the reflectance in the first direction in the horizontal direction and the reflectance in the second direction in the vertical direction, the number can be changed, and it is preferable to be 〇 on every single horizontal line of a pixel unit. 52~5. The shape of the second grooves will illuminate all kinds of reflectivities on the pixel except for the vertical reflectivity. Therefore, when an equal reflectance is required for all directions, it is perpendicular to a required side. It is advantageous to increase the component of the straight line in the direction. Therefore, the convex portions provided on the organic insulating film preferably have a shape such that their lengths extending in the vertical direction have different sizes, such as straight lines. Or curved. When considering the reflectivity of the pixel in a particular direction, it is preferred that the vertically disposed grooves do not intersect adjacent vertical grooves (see Figure 5). Moreover, the second recesses may also be formed to be connected to or separated from the first recesses. 'In addition' using the mask as shown in Fig. 5 at the projection of the organic insulating film 280 When the pits are formed in a pit shape, the reflectance of the reflective electrode 235 provided on the organic insulating film 28 8 can be greatly increased. Please refer to FIG. 6C, as described above, in an excellent reflectance. After the metal layer, such as sho, nickel, chrome, silver, etc., is deposited on the organic insulating film 280 having the plurality of grooves 281, the deposited metal layer is patterned into a pixel shape and shaped as a gray Reflecting electrode 23 5. Then, a photoresist is coated on the reflective electrode 235, It will be rubbed to form a first alignment film 300' which can pre-tilt liquid crystal molecules in the liquid crystal layer at a selected angle. The reflective electrode 235 will have the same paper as the surface of the organic insulating film 280. The scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) 24 1300497 A7 A ___________ B7 __ V. Invention description (). 22 (Please read the note on the back and then fill out this page) Shape. In other words, corresponding to The first region 290 of the recess 281 of the organic insulating film 280 has a structure, and a plurality of grooves or the like which are successively arranged in a first direction in a horizontal direction with a fixed width, and an irregular column in a second direction perpendicular thereto Most of the grooves are formed together. Due to the directivity of the reflective electrode 235 in the first region, the convex portion of the second region 295 can be aligned along the first direction of the vertical direction of the pixel and the second direction of the horizontal direction. The reflectance in a particular direction, such as the vertical direction, will be greatly enhanced. The reflective electrode 235 is divided into a first portion 29〇 having a plurality of recesses formed in the recess 281 of the organic insulating film, and a second portion 295 having a microlens region having a plurality of convex portions. . The first portion 290 is a continuous groove and is disposed lower than the second portion 295. Since the second portion 295 is surrounded by the first portion 29", the counter electrode 235 will have a structure formed by continuous recesses of the first portion 290. In the present invention, the grooves forming the first portion of the reflective electrode 235 have a width of about 2 to 5 μm, and the second portion 295 surrounded by the grooves has The different shapes are one, and at the same time have a size of about 4~2〇μηι: as shown in Figures 5 and 5Β. Referring to FIG. 61), a photochromic film 31, a transparent common electrode 315, and a second alignment film 32, etc., are sequentially disposed on the same material as the first insulating substrate 240. The material is 3〇5, and the second substrate 220 is completed. Then, the second substrate 220 is disposed on the first substrate 21, and is connected to each other with the spacer 335 and the like interposed therebetween, so that a gap is formed on the first substrate 210 and the second substrate. Between 220.嗣, when the liquid crystal paper size is applicable to the Chinese National Standard (CNS) Α4 specification (210X297 mm) 25 1300497 A7 ^___ B7 _ V. Invention Description ( ) 23 is injected into the first substrate 21 〇 and the second substrate by vacuum injection The liquid crystal layer 230 can be formed after the gap between the 22 turns, and the reflective LCD 200 of the present embodiment can be formed. Moreover, if necessary, a polarizing plate 33A and a phase difference plate 325 may be attached to the front surface of the second substrate 32A. Although not shown in the drawings, a black matrix may be provided between the second insulating substrate 3〇5 and the color filter film 31〇. - Embodiment 2 - Unlike Embodiment 1 described above, the present embodiment 2 can be formed on the organic insulating layer by using only one mask operation. In general, there are two methods of manufacturing the counter-radiation electrode as a reflector of an LCD. One is a method using a single-layer organic insulating film, and the other is a method using a two-layer organic insulating film. _ In the two methods, the latter uses a two-layer organic insulating film method, and the procedure of coating, exposing, and developing the organic insulating film is repeated twice. In other words, after the first applied organic insulating film is exposed to the full amount to form the convex portions, a second organic insulating film is overlaid on the first organic insulating film, and is exposed and developed again. To make a contact hole for exposing the source/drain electrode. This method can contribute to the reflectance of the reflective electrode provided on the organic insulating film, but the disadvantage is that the process is complicated and the manufacturing time and cost are increased. Due to these disadvantages, a method of using a single-layer organic insulating film is mainly used to form the reflective electrode. As shown in FIGS. 7A and 7B, after the organic insulating film 80 is overlaid on the entire surface of the first insulating substrate including the source/drain electrode 275, the paper scale is applicable to the Chinese National Standard (CNS) A4. Specifications (210X297 public) (Please read the note on the back and fill out this page). Install ', 1T—-line·* -26 - 1300497 A7 _ _ '_B7___ V. Invention description ( ) 24 (Please read the back first Note that the first mask 350 for forming the contact hole is placed in an exposure device, and then the portion of the organic insulating film 280 corresponding to the contact hole is used. Curtain 350 came first to expose. After the first exposure step is completed, a second mask 355 for forming a lens is placed in the exposure device, and a portion of the contact hole 285 other than the contact lens 285 to be formed will be exposed for the second time. Part of the first and second exposures will be imaged while the contact holes 285 and the microlens portions are formed. However, since the above method requires two masking steps, and two exposure steps to make the contact holes and the lens forming portion, the possibility of failure in unnecessary work increases, and the overall exposure time It will also increase. This embodiment provides the following manufacturing method in order to improve the efficiency in the exposure process. - Figs. 8A to 8C are cross-sectional views for explaining a method of manufacturing the reflective electrode of the present invention. Referring to Fig. 8A, an organic insulating film 370 is formed by spin coating to a thickness of about 1 to 3 μm and is provided on the entire surface of the insulating substrate 360 having the source/drain electrodes. That is, a first mask 375 having a predetermined pattern is calibrated to cover the organic insulating film 370 for making a contact hole 385. Then, the organic film 370 is subjected to partial exposure treatment. At this time, the partial exposure amount of the organic insulating film 370 passing through the first mask 375 becomes a value obtained by subtracting the lens exposure amount from the total exposure amount described in Figs. 6C and 60 >. In other words, when the partial exposure amount is "Ρ", the total exposure amount is "F", and the lens exposure amount is "R", the partial exposure amount can be obtained by the following formula (1): China National Standard (CNS) Α4 Specifications (210X297 mm) -27 - 1300497 A7 B7 V. Description of Invention ( ) 25 P=FR ...(1) (Please read the notes on the back and fill out this page) In this example Preferably, the portion of the exposure "P" is about 50% of the total exposure "F". According to the partial exposure amount, the contact hole 385 is formed in the organic insulating film 370 at a half of the target depth. As shown in Fig. 8B, in order to form a lens or the like on the top surface of the organic insulating film 370 by partial exposure, a second mask 380 having a predetermined pattern is calibrated to cover the organic insulating film 370. That is, the organic insulating film 370 is exposed through the second mask 380, and a plurality of grooves 371 are formed on the surface thereof, and a contact hole 385 of the source/drain electrode 365 is formed. Here, the second mask 380 has a pattern for exposing the contact hole portion 385 and the lenticular portion. Therefore, the portion of the organic insulating film 370 corresponding to the contact hole 385 is double-exposed, and is wider and deeper than the portion where the plurality of grooves 371 are formed, so that the grooves 371 can be combined with the exposure source. The contact holes 385 of the pole/drain electrodes 365 are simultaneously formed. In other words, according to the present invention, after the first mask 375 which can form the contact hole is covered on the insulating substrate 360, and the second mask 380 which can form the microlens, the contact of the organic insulating film 370 is: The first portion is first partially exposed by the first mask 375 to form the contact hole, and the exposure amount is subtracted from the total exposure amount suitable for forming the contact hole by a lens suitable for forming the lens. Exposure. Then, the lens forming portion and the contact hole forming portion of the organic insulating film 370 are sealed by the second mask 380 and simultaneously exposed to form the lenses, so that the organic insulating film 370 is formed with a contact hole 385. The portion will be double exposed and wider and deeper than the portion forming the grooves 371, but the groove portion. That is, the portion to be formed by the lens will be subjected to the Chinese National Standard (CNS) A4 specification (210X297 mm) -28 - 1300497 A7 ___B7_ V. The invention description ( ) 26 shallow exposure, compared with the contact hole portion. Therefore, the grooves 371 can be formed on the organic insulating film 370 simultaneously with the contact holes 385. Therefore, since one working process can be used for two processes, the insulating substrate and the mask can be set at one time, and the exposure time minus the lens exposure amount is shortened, which can save the exposure time; therefore, the implementation is performed. The time and cost of the method will be substantially reduced. In particular, since small- and medium-sized reflective LCDs, such as portable terminals or LCD television receivers, have a high number of exposures per substrate, the exposure time can be, for example, 30% less than conventional techniques. Or more, so that the total process time is significantly shortened. Referring to FIG. 8C', as previously described, a metal layer having excellent reflectivity, such as aluminum, nickel, chromium, silver, etc., is deposited on the organic insulating film 370 provided with the contact hole 385. A reflective electrode 390 is formed. In this case, the reflective electrode 390 is provided on the structure matching the structure of the underlying organic insulating film 370. Since the process after forming the reflective electrode 390 is the same as that of the first embodiment shown in Figs. 6C and 6D, the description thereof will be omitted. ~Example 3 to _ Fig. 9 is a plan view showing the pattern of the reflective electrode of the present embodiment. In the present embodiment, since the elements other than the reflective electrode 400 and the shape of the organic insulating film which determines the shape of the reflective electrode 400 are the same as those of the first embodiment, they will be omitted. Referring to Figure 9, the pattern of the reflective electrode 400 of the present embodiment includes a plurality of first region portions 410 and a plurality of second region portions 4〇5. The first portion 410 has a plurality of first recesses 410a, which are applicable to the Chinese National Standard (CNS) A4 specification (210×297 mm) along the horizontal paper scale of the pixel. l•装··.. ...."----丨#·................%# (Please read the notes on the back and fill out this page) -29 - 1300497 A7 --- _ B7___ V. INSTRUCTIONS (27) (Please read the note on the back and then fill out this page) The directions are arranged parallel to each other, and the majority of the second grooves 41〇1) are discontinuously arranged in the vertical direction of the pixel. The second portion 4〇5 includes a plurality of convex portions surrounded by the first portion 41〇 and the boundary line of the pixels. The protrusions forming the second portion 405 are formed. 4〇5a, 405b, 405c, etc., are enclosed by a plurality of grooves arranged in the horizontal direction and the vertical direction, and have an island shape. A fill groove convex body 4 will be set in each of the selected ones. Among the protruding portions 405a, 405b, and 405c, the convex portions of the second portion 405 are roughly divided into those having the groove-convex body and those having no grooved protrusions. In this embodiment The shapes of the recesses, the protruding portions 405a, 405b, and 405c, and the grooved protrusions 406 for forming the reflective electrode 4 are based on the organic insulating film provided under the reflective electrode 400. The pattern of the mask is determined. In other words, the figure 9 shows the pattern of the reflective electrode 4〇〇, but it can also be regarded as the pattern shape of the organic insulating film, or for the organic insulation. The pattern shape of the mask patterned by the film. As shown in Fig. 9, the mask also has a pattern corresponding to the grooves, and further includes an intersection between the first groove 410a and the second groove 41 Ob. Forming a groove pattern of the filling groove 406. In order to form the reflective electrode of the embodiment, a process for exposing the underlying organic insulating film according to the second embodiment will be performed, but the exposure process may also be performed. The grooves are formed by the method of the first embodiment. The grooves include a first portion 41 〇 which is a portion recessed from the second portion 405 and each has a width of about 2 to 5 μm. The continuous grooves are not fixed along the horizontal direction of the pixel It is arranged so that the groove provided in the vertical direction does not apply to the Chinese National Standard (CNS) Α4 specification (210×297 mm) -30 - 1300497 A7 ______Β7 in one of the vertical directions. OBJECT DESCRIPTION OF THE INVENTION ( ) 28 (Please read the note on the back and then fill out this page) The adjacent grooves intersect. In other words, the vertical rows of the convex portions passing through the second portion 4〇5 are arranged. The grooves are arranged such that they do not intersect in a straight line. The number of grooves passing through the convex portions of the second portion 4〇5 is related to the reflectance in the horizontal and vertical directions. Therefore, it can be changed depending on the size of the pixel, but it is preferably about 0.5 to 5 on a single horizontal line of each pixel. Further, the grooves which are arranged in the vertical direction and which pass through the convex portions are preferably in a hemispherical cross section. Since the vertically arranged grooves affect the reflectivity of the reflective electrode 400 in all directions except the vertical reflectance, it is preferably hemispherical, and the ytterbium exhibits the same reflectance in all directions. However, in order for the reflective electrode 400 to exhibit an asymmetrical high reflectance in a particular direction, the alignment component can be increased in a direction perpendicular to the desired direction. Further, the grooved projections 406 and the like which are protruded from the convex portions of the second portion 405 are provided in the vertically disposed second recesses 41〇1) and the first recesses arranged horizontally. At the junction of the groove 410a. Therefore, the cavities 4 can make the grooves provided on the organic insulating film have a uniform depth in the exposure and development process of the organic insulating film before the reflective electrode 400 is formed. In other words, since the horizontal width of the pattern is relatively larger than the other portions of the pattern at the parent fork point of the second groove 41〇b which is not aligned in the horizontally disposed first groove 410a, These intersections, under the same exposure conditions, will be etched deeper than the other portions, resulting in a flat profile that is different from the shape of the mask pattern. Therefore, when the mask pattern is manufactured, the recessed recessed portion 4〇6 and the mask pattern are formed together, and the organic insulating film is more etched at the intersection point than other portions. There is a degree of suppression to form a groove having a uniform depth on the top surface of the organic insulating film 370. In other words, the paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 public Chu) 31 A7 1300497 _B7___ V. Invention Description ( ) 29, the first part can be made to have the same (or the same) depth . The convex portions 405a, 405b, 405c and the like constituting the second partial portion have a racetrack shape (405a, 405b) or a concave lens shape (405c) and extend in the horizontal direction. However, although the projections have the same shape, they also have different sizes, and are in the range of about 4 to 20 μm; therefore, the interference of the light reflected by the reflection electrode 400 can be minimized. In this embodiment, as shown in FIG. 5, the reflectivity of the reflective electrode 400 can be increased by forming a pit-like groove in the center of each convex portion of the second portion 405. . ~ Embodiment 4 to 10th to 10D are enlarged plan views of a reflective electrode according to a fourth embodiment of the present invention, showing an enlargement of a horizontally arranged groove and a vertically arranged groove at the intersection of the pixel in the pixel. Figure. In this embodiment, the reflective electrode 420 preferably has the same shape as that of the first embodiment, but it may have a shape as in the third embodiment. Since the method of manufacturing the reflective electrode of the present embodiment is the same as that of the first or third embodiment, the description thereof will be omitted. – as shown in Figures 7 to 10D, a portion of a horizontal groove 425 intersecting a vertical groove 426 will be formed, for example, a dome (10Α), a triangle (10C), and a circle (10D). And grooving members 430, 431, 432, and 433 of inverted triangles (10 Β), etc., and 432 are disposed outside the intersection. The groove filling members 430, 431, 432, and 433 are formed by using a mask pattern which is used by the user when exposing and developing the organic insulating film, and can be used to form the reflective electrode 420. . In other words, instead of the grooved projection provided in the third embodiment, the paper size is applicable to the Chinese National Standard (CNS) Α4 specification (210X297 mm) ----------------- ( Please read the notes on the back and fill out this page.)

•、可I - 32 _ 1300497 Α7 Β7 五、發明説明( ) 30 406 ’ 一罩幕圖案會被設在该罩幕上,如第1QA至i〇D圖所 示。 該等設在第一水平凹槽425與第二垂向凹槽426之相交 部份的填槽件430、431、432、433等,乃可在該有機絕緣 膜被曝光顯像來製成該反射電極420之後,因該等填槽件 430〜43 3佈設在該像元的整個表面上,而使該等凹槽被製 成相同的深度。一般而言,由該有機絕緣膜所形成之該等 第一與第二凹槽425與426的深度,係在相同的曝光量及相 同的顯像條件下來形成,故會有關於該等凹槽425與426之 寬度。假使該荨第一與第一凹槽425與426的寬度為大約5 μηι或者更小,則其深度與寬度的關係將更為密切。在一大 約3700 ms的曝光量下,其深度與寬度關係之實驗結果乃如 下列表1所示: 表1• I can be I - 32 _ 1300497 Α 7 Β 7 5. Inventive Note ( ) 30 406 ’ A mask pattern will be placed on the mask as shown in Figures 1QA to i〇D. The grooved members 430, 431, 432, 433 and the like disposed at the intersection of the first horizontal groove 425 and the second vertical groove 426 may be formed by exposing the organic insulating film to the image. After the reflective electrode 420, the grooves are laid on the entire surface of the pixel, so that the grooves are made to have the same depth. Generally, the depths of the first and second grooves 425 and 426 formed by the organic insulating film are formed under the same exposure amount and the same developing condition, so that there are Width of 425 and 426. If the width of the first and first grooves 425 and 426 is about 5 μm or less, the depth and width will be more closely related. The experimental results of the relationship between depth and width at a large exposure of approximately 3700 ms are shown in Table 1 below: Table 1

凹槽寬度 2 μιη 3 μιη 4 μιη 凹槽深度 2100 A 8700 A 10600 A 請參閑表1,當該等第一與第二凹槽425與426之寬度分 別為2 μιη、3 μηι、4 μηι時,則其深度會急遽地改變。其中, 該第一水平凹槽425與第二垂向凹槽426之相交部份會比其 它部份更深,且該設在有機絕緣膜上之反射電極42 0亦會有 與該有機絕緣臈相同的問題。故,在該相交部份的液晶材 料之定向會扭曲,而產生一特異區域,同時由於液晶材料 的偏轉將會發生光漏覌象。又,因在該等部份光的偏振會 Κ紙張尺度適用中國國家標準(⑽)Α4規格(210X297公爱) ----------------、:裝-·.......「……訂……---------r4# (請先閲讀背面之注意事項再填寫本頁) 33 1300497 A7 _B7___ 五、發明説明( ) 31 (請先閱讀背面之注意事項再填寫本頁) 變異相當程度,液晶本身的光特性亦會改變,故而不僅會 發生該反射電極的反射率降低的問題,而且其影像的對比 及品質亦會大程度地減降。但是,本實施例經由一罩幕圖 案的修正,而在該反射電極420之第一水平凹槽425及第二 垂向凹槽426之相交部份,形成具有各種不同形狀及1〜3 μηι大小之填槽件430、431、432、433等,乃能解決上述問 題。 〜實施例5〜 ’ 第11圖為本發明第五實施例之反射式LCD的剖視圖。 在本實施例中,除了 一設在第一絕緣基材525上之TFT 560,以及製造該TFT的方法之外,該反射電極之其它元 件,以及本實施例的方法等,皆相同於第一實施例。 請參閱第4*11圖,有一本實施例之反射式LCD 500乃 包含一第一基板505,一第二基板510對向該第一基板,一 液晶層515介設於第一基板505與第二基板510之間,及一反 射電極設在第一基板505與液晶層515之間。 該第一基板505乃包含一第二絕緣基材525,及一 TFT 560設在該第一絕緣基材525上。該TFT 560包含一閘極電 極540,一源極與汲極區545、550設在閘極電極540下方, 一閘極絕緣膜535設在閘極電極540與源極及汲極545、550 之間,一氧化物層555設在閘極電極540上,一源極電極570 連接於該源極區545,及一汲極電極575連接於汲極區550。 一有機絕緣膜580被設在其上具有該T.FT的第一基板 505之整個表面上,然後有一反射電極520具有多數凹槽及 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 34 1300497 A7 __B7_ 五、發明説明( ) 32 凸出部份而被設在該有機絕緣膜580上。本發明之反射電極 520乃可具有與第一、三、四實施例相同的造型,耑視所用 之罩幕圖案而定。在該反射電極520上設有一定向膜590。 該第二基板510乃包含一第二絕緣基材600。在該第二 絕緣基材600底下則依序設有一濾色膜605,一透明共同電 極610,及第二定向膜615等,而在該第二絕緣基材600上係 依序設有一相差板620及一偏光板625。該液晶層515係被設 在第一基板505上的第一定向膜590與第二基板510下方的 第二定向膜615之間。由於該等構件皆與第一實施例中相 同,故其細節不#冗述。 第12A至12C圖為供說明第11圖中之反射式LCD的製 造方法之剖視圖。 - 請參閱第12ABI,多晶矽會被以低壓化學氣相沈積法 沈積在一玻璃或陶瓷的絕緣基材5 2 5上,嗣會被圖樣化而在 該絕緣基材525上形成一多晶矽層530。 然後,氮化矽會被以電漿化學氣相沈積法來沈積在已 設有多晶矽層530的絕緣基材525Ji,而形成一閘極絕緣膜 535 〇 然後,在·該閘極絕緣膜535上會被沈積一金屬層,例如 鈕、鈦、鉬、鋁、鉻、銅、鎢等。該沈積的金屬層嗣會被 圖樣化,而形成由一閘極線分支出來的閘極電極540。 然後,P型離子會以一離子植入法摻入該多晶矽層530 中,而形成一薄膜電晶體560之源極.區.545及汲極區 辽。在該離子植入過程中,閘極電極540會形如一罩幕。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -----------------:Λ_裝…玎…........……線 (請先閲讀背面之注意事項再填寫本頁) -35 - 1300497 A7 _____B7______ 五、發明説明() 33 請參閱第12&圖’有一氧化物膜5 5 5會被沈積在設有閘 極電極540的絕緣基材525上,而該氧化物膜555與底下的閘 極絕緣膜535會被部份蝕刻,來形成曝現出TFT 560之源極 區545及汲極區550的開孔546及551等。 雖第12A與12B圖係示出製造該N通道TFT的方法,但 顯然P通道TFT亦可被以相同的方法來製成。又,一pM〇s 電晶體亦可被以下列步驟來製成於一基材上:使用LOCOS (矽的局部氧化)方法在一P型矽晶圓之基材上,製成一可供 界定主動區與場區的隔離膜;在該主動區上製成一例如摻 雜多晶矽等導電材料的閘極區;及製成一P+源極區及沒極 '區。 如第12C圖所示,在該等開孔546、551及氧化物膜555 上會被沈積一金屬層,例如鈕、鈦、鉬、鋁、鉻、銅、嫣 等。嗣該金屬層會被圖樣化來形成一閘極電極540而由一問 極線分支設置。然後該金屬層又會被圖樣化,而形成由一 垂直於閘極線之源極線分支出來的源極電極570與沒極電 極575。然後,一有機絕緣膜58CL會被以光敏性阻抗劑用旋 塗法來覆:設在該基材的整個表面上,至約有1〜3 μηι的厚 度。由於製造該反射式LCD 500之方法,包括該有機絕緣 膜580之後續的曝光及顯像製程,以及形成一反射電極52〇 之方法等,係與第一實施例相同,故其說明將予省略。 〜實施例ό〜 如前所述,依據本發明所提供之LCD的反射板構造, 雖藉形成以相同深度來包圍第二區部份的第一區部份,而 本紙張尺度適用中國國家標準(口^) 規格(210X297公爱) (請先閱讀背面之注意事項再填寫本頁) •裝丄 、一叮丨 :線丨·▲ -36 - 1300497Groove width 2 μηη 3 μιη 4 μιη groove depth 2100 A 8700 A 10600 A Please refer to Table 1, when the widths of the first and second grooves 425 and 426 are 2 μηη, 3 μηι, 4 μηι, respectively , its depth will change eagerly. The intersection of the first horizontal groove 425 and the second vertical groove 426 may be deeper than other portions, and the reflective electrode 42 0 disposed on the organic insulating film may also be the same as the organic insulating layer. The problem. Therefore, the orientation of the liquid crystal material at the intersection portion is distorted to produce a specific region, and at the same time, light leakage occurs due to deflection of the liquid crystal material. Also, because the polarization of these parts of light will be applied to the Chinese national standard ((10)) Α 4 specifications (210X297 public). ....... "...Booking...---------r4# (Please read the notes on the back and fill out this page) 33 1300497 A7 _B7___ V. Inventions ( ) 31 (Please Read the back of the precautions and fill in this page. The variation of the brightness of the liquid crystal itself will change. Therefore, not only the reflection rate of the reflective electrode will decrease, but also the contrast and quality of the image will be largely However, in this embodiment, the correction of a mask pattern is performed at the intersection of the first horizontal groove 425 and the second vertical groove 426 of the reflective electrode 420 to form various shapes and 1~ The above-mentioned problem can be solved by the 3 μηι size of the grooving members 430, 431, 432, 433, etc. - Embodiment 5 to '11 is a cross-sectional view of a reflective LCD according to a fifth embodiment of the present invention. In addition to a TFT 560 disposed on the first insulating substrate 525, and a method of fabricating the TFT, the reflective electrode The other components, the method of the present embodiment, and the like are the same as the first embodiment. Referring to FIG. 4*11, a reflective LCD 500 of the present embodiment includes a first substrate 505 and a second substrate 510. To the first substrate, a liquid crystal layer 515 is disposed between the first substrate 505 and the second substrate 510, and a reflective electrode is disposed between the first substrate 505 and the liquid crystal layer 515. The first substrate 505 includes a first substrate 505. A second insulating substrate 525, and a TFT 560 are disposed on the first insulating substrate 525. The TFT 560 includes a gate electrode 540, and a source and drain regions 545, 550 are disposed under the gate electrode 540. A gate insulating film 535 is disposed between the gate electrode 540 and the source and drain electrodes 545, 550. An oxide layer 555 is disposed on the gate electrode 540, and a source electrode 570 is connected to the source region 545. And a drain electrode 575 is connected to the drain region 550. An organic insulating film 580 is disposed on the entire surface of the first substrate 505 having the T.FT thereon, and then a reflective electrode 520 has a plurality of grooves and the paper. The scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) 34 1300497 A7 __B7_ The invention is provided on the organic insulating film 580. The reflective electrode 520 of the present invention can have the same shape as the first, third, and fourth embodiments, and the mask pattern used for squinting The second substrate 510 is provided with a second insulating substrate 600. A color filter film 605 is sequentially disposed under the second insulating substrate 600. A transparent common electrode 610, a second alignment film 615, and the like are disposed on the second insulating substrate 600, and a phase difference plate 620 and a polarizing plate 625 are sequentially disposed. The liquid crystal layer 515 is disposed between the first alignment film 590 on the first substrate 505 and the second alignment film 615 under the second substrate 510. Since the components are the same as in the first embodiment, the details are not redundant. 12A to 12C are cross-sectional views for explaining a method of manufacturing the reflective LCD in Fig. 11. - Referring to the 12th ABI, the polysilicon is deposited on a glass or ceramic insulating substrate 5 25 by low pressure chemical vapor deposition, and a polycrystalline germanium layer 530 is formed on the insulating substrate 525 by patterning. Then, tantalum nitride is deposited by plasma chemical vapor deposition on the insulating substrate 525Ji in which the polysilicon layer 530 is provided to form a gate insulating film 535, and then on the gate insulating film 535. A metal layer, such as a button, titanium, molybdenum, aluminum, chromium, copper, tungsten, etc., is deposited. The deposited metal layer 图 is patterned to form a gate electrode 540 branched from a gate line. Then, P-type ions are doped into the polysilicon layer 530 by an ion implantation method to form a source region 545 and a drain region of a thin film transistor 560. During the ion implantation process, the gate electrode 540 will be shaped like a mask. This paper scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -----------------:Λ_装...玎.............. ... line (please read the note on the back and then fill out this page) -35 - 1300497 A7 _____B7______ V. Description of invention () 33 See page 12 & Figure 'An oxide film 5 5 5 will be deposited with a gate The insulating substrate 525 of the electrode 540 is partially etched to form the opening 546 of the source region 545 and the drain region 550 of the exposed TFT 560. And 551 and so on. Although Figs. 12A and 12B show a method of manufacturing the N-channel TFT, it is apparent that the P-channel TFT can also be fabricated in the same manner. Moreover, a pM〇s transistor can also be fabricated on a substrate by using a LOCOS (local oxidation of tantalum) method on a substrate of a P-type wafer to define a An isolation film between the active region and the field region; a gate region of a conductive material such as doped polysilicon or the like is formed on the active region; and a P+ source region and a gateless region are formed. As shown in Fig. 12C, a metal layer such as a button, titanium, molybdenum, aluminum, chromium, copper, tantalum or the like is deposited on the openings 546, 551 and the oxide film 555. The metal layer is patterned to form a gate electrode 540 and is disposed by a question line branch. The metal layer is then patterned to form a source electrode 570 and a electrodeless electrode 575 branched from a source line perpendicular to the gate line. Then, an organic insulating film 58CL is coated by a photosensitive resist by spin coating: on the entire surface of the substrate to a thickness of about 1 to 3 μm. Since the method of manufacturing the reflective LCD 500, the subsequent exposure and development process including the organic insulating film 580, and the method of forming a reflective electrode 52A are the same as those of the first embodiment, the description thereof will be omitted. . - Embodiment ό ~ As described above, the reflector structure of the LCD according to the present invention is formed by enclosing the first portion of the second portion at the same depth, and the paper scale is applicable to the Chinese national standard. (口^) Specifications (210X297 public) (Please read the notes on the back and fill out this page) • 丄, 一叮丨:丨 ▲·▲ -36 - 1300497

、發明說明 34 之間的其反射效率’但在一像元與另一相鄰像元的分界線 、區域,則會形成未被明確界定的狀態。 暖具體而言’請參閱㈣圖,當使用該罩幕355來進行 「時’該像元區域會接受曝光處理,但在各像元之間的 -域則不會受到曝光處理。目此,其底下时機絕緣膜 80 ’將會於像㈣域(Pin)與像元外部區域(p。之間 古 i£e j 回展差。 此高度差的存在,將不能使其在摩擦處理時得到一致 =摩擦效果’而在製成_LCD面板之後,保持液晶分子的 疋向特I·生於-固水準。尤其是,由於超出該像元邊界的 外$區域會形成較高,而在該摩擦處理開始時係會以較弱 程度來進行,因此可能發生光漏之殘留影像,或者液晶定 向的扭曲。 又’饭使在注入液晶之前的墊隔物散佈步驟中,該等 塾隔物被置於超出像元邊界的外部而形成較高的地方處, 則該第一與第二基板之間的間隔將會不固定,因而難以製 成一穩定的LCD。 — 此外:,在形成該有機絕緣膜之第一區部份與第二區部 份的顯像製程中,由於在像元之間存在具有大高度差的邊 界壁,其將難以一致地形成該等第一區部份及第二區部份。 又且,假使_在該有機絕緣膜與反射板之間,或一頂板 與底板之間,發生校準失誤時,其反射率的變化會變大, 故將難以獲得均一的影像品質。 因此’本實施例乃被提供來解決上述缺點。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 丨裝丄 •訂丨 :¾ 37 1300497 A7 __B7___ 五、發明説明( ) 35 (請先閲讀背面之注意事項再填寫本頁) 第13A圖為具有本發明第六實施例之反射電極的反射 式LCD之平面布局,第13B圖為沿A-A’線所採之截面示意 圖。 請參閱第13A與13B圖,一反射式LCD 700乃包含一第 一基板710,其上設有一像元陣列,一第二基板720與該第 一基板710對向設置,一液晶層730設在第一基板710與第二 基板720之間,及一作為像元電極的反射電極735,設在第 一基板710與液晶層730之間、 該第一基板710包含一作為切換裝置的TFT 745,被設 在第一絕緣基材740上。 該第一絕緣基材740係為非導電材料,例如玻璃或陶兗 等。該TFT 745包含一閘極電極750由一閘極線750a分支設 置,一閘極絕緣膜755, 一半導體層760, 一電阻接觸層765, 一源極電極770,及一汲極電極775。又,在該汲極電極775 底下’同時在第一絕緣基材740上,乃設有一儲存電極750b 其乃平行於閘極線750a。 該閘極電極750係由一第一jg緣基材740上的閘極線 (未不於圖中)分支設置’而具有一雙層結構,包含下層的 鉻以及上層的鋁。 該氮化矽的閘極絕緣膜係疊覆在設有閘極電極750的 第一絕緣基材74_0之整個表面上。在底下設有閘極電極750 的閘極絕緣膜755上,乃依序設有該非結晶矽的半導體層以 及n+非結晶矽的電阻接觸層。 該等源極電極7 7 0與汲極電極7 7 5係被設於位在閘極電 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 38 1300497 A7 B7 五、發明説明 36 極中央的電阻接觸層765及閘極絕緣膜755上,而完成兮 TFT 745。該源極電極770與汲極電極775係由例如鈕、銷 鈦、鉻等金屬製成。 在設有該TFT 745的第一絕緣基材740上,乃設有 例 如為光阻材料的有機絕緣膜780。有許多的第一區部份(气 凹槽)及與該等第一區部份具有高度差的第二區部份(或凸 出部份),乃被設在該有機絕緣膜780的像元區域處, 區部 (請先閲讀背面之注意事項再填窝本頁) 光散射。又,設在該像元區域等之第一區部份與第二 份,將會伸出各像元區域之間的外部區域(Pout)。該有機^ 絕緣膜780包含一接觸孔785,會曝現出該TFT 745的部 沒極電極775 〇 在該接觸孔785與有機絕緣膜780上乃設有該反射電极 735。該反射電極735係經由該接觸孔785來連接於該沒极電 極775,因此該TFT 745會與反射電極735電連接。、 在該反射電極735上乃疊設一第一定向膜800。 該對向第一基板710的第二基板720乃包含一第二绝缘 基材805,一濾色膜810,一共風電極815,一第二定向 820,一相差板825,及一偏光板830。 該第二絕緣基材805係由與第一絕緣基材740相同坡 璃或陶瓷材料所製成。該相差板825與偏光板830乃依序& 在第二絕緣基# 805上。該濾色膜810係設在絕緣基材8〇5 底下。該共同電極815與第二定向膜820則依序設在該據色 膜810下方,而完成該第二基板720。該第二定向膜820會與 第一定向膜800—起以一所擇角度來預斜該液晶層730的液 本紙張尺度適用中國國家標準(™s) A4規格(210X297公爱) 39 1300497 A7 _BT_____ 五、發明説明( ) 37 晶分子。 (請先閱讀背面之注意事項再填寫本頁) 在該第一基板710與第二基板720之間乃夾設墊隔物 835、836等,而在其間形成一空隙。該液晶層730即被設於 該空隙中,而完成本實施例的反射式LCD。 於下,一本實施例之反射式LCD的製造方法將配合圖 式來詳細說明。 第14A至14D圖為供說明第13A與13B圖中之反射式 LCD的製造方法之剖視圖。在該各圖中,相同的元件係以 相同標號來表示。 請參閱第14A圖,在一玻璃或陶瓷的第一絕緣基材740 上,乃被沈積一金屬層,例如Ta、Ti、Mo、A卜Cr、Cu、 W等。嗣該金屬層會被圖樣化來形成一閘極線750a,一閘 極電極750由該閘極線750a分支製成,及一含有儲存電極 750b的儲存電極線750c。於此時,該閘極電極750與閘極線 750a係可由Al-Cu或Al-Si-Cu的合金製成。然後,氮化矽會 被以電漿化學氣相沈積法來沈積在包含該閘極電極750的 第一絕緣基材740上,而製成一闡極絕緣膜755。 在該:閘極絕緣膜755上亦以電漿化學氣相沈積法來按 序設有一非結晶矽膜及原位摻雜的n+非結晶矽膜。然後, 該等非結晶矽膜與原位摻雜的n+非結晶矽膜會被圖樣 化,而在該設有_閘極電極750之閘極絕緣膜755上來形成一 半導體層760及一電阻接觸層765。 然後,在設有上述結構之第一絕緣基材740上,會設有 一例如Ta、Ti、Mo、入1、(^、(1;11、\¥等金屬之金屬層。嗣, 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -40 - 1300497 A7 _B7__ 五、發明説明( ) 38 (請先閲讀背面之注意事項再填寫本頁) 該金屬層會被圖樣化,而來形成一垂直於閘極線的源極線 (未示出),及一由該源極線分支的源級電極770與一汲極電 極775。故,一包,含該閘極電極750、半導體層760、電阻接 觸層765、源極電極770、及汲極電極775的TFT 745乃被完 成。於此時,該閘極絕緣膜755係被介設於閘極線與源極線 之間,故可阻止該閘極線與源極線接觸。 然後,有一光阻膜會被以旋塗法沈積在設有該TFT 745 的第一絕緣基材740上約1〜3 μηι的厚度,來形成一有機絕 緣膜780,而完成該第一基板710。於此時,該有機絕緣膜 780係_由例如含有PAC(光作用成分)的丙烯酸樹脂等所製 成。 請參閱第14Β圖,有一第“罩幕850會被校準覆蓋該有 機絕緣膜780,來製成一接觸孔785 ;嗣該有機絕緣膜會經 由曝光顯像處理來圖樣化,而得製成部份曝現該汲極電極 775的接觸孔785,及多數的凹槽等。 以下,將詳細說明在該有機絕緣膜780的頂面製成接觸 孔785及多數凹槽的方法。 _ 第15Α與15Β圖為剖視圖,乃示出在該有機絕緣膜頂面 製成該接觸孔與多數凹檜的過程。 請參閱第15Α及15Β圖,一第一罩幕850會被校準覆蓋 該有機絕緣膜7έ〇,而在光阻製成的有機絕緣膜780上製成 該接觸孔785。該第一罩幕850乃具有對應於接觸孔785的圖 案。然後,該有機絕緣膜780會接受第一次全量曝光處理, 而將該有機絕緣膜780位於該源極/汲極電極775上的一部 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 41 1300497 A7 ___ΒΊ __ 五、發明説明( ) 39 份曝光。 嗣,為在該有機絕緣膜780上形成多數的凹槽781,有 一具有對應於凹槽781之圖案而可製成微透鏡的第二罩幕 855會被校準覆蓋在該有機絕緣膜780上。 第16圖係為一平面圖示出該第二罩幕855上之圖案的 布局。 在第16圖所示的第二罩幕855中,一可供形成該等第二 區部份的圖案,會延伸至超出一單位像元之邊線691的像元 間之外部區域處。 更特別的是,請參閱第16圖,該供製成反射電極之第 二罩幕855的圖案,在該像元中將會被分成第一區部份693 及與第一區部份693具有高度差的第二區部份695,而位於 該像元之邊旅691内部。該第一區部份693係被製成,能以 封閉環圈來圍繞該第二區部份695。其中,該第一區部份693 乃具有固定的寬度。該第一區部份693係被製成凹槽的形 狀’而具有比第二區部份695更低的高度,該第二區部份69 5 則被製成凸塊的造型,而具有比第一區部份693更高的高 度,因此該等第二區部份695會形如微透鏡。故,由於該第 一區部份被以固定寬度製成,使其反射效率會提升,該LCD 的影像品質將會改善。 如第16圖所示,該第二罩幕855係被製成具有一圖案對 應於一透明基材上的第一區部份。 如前所述,該對應於第一區部份的圖案係被設在該像 元的内部區域(Pin)中,且被設計成可界定該反射電極的第 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) •裝丨▲ •、可| :線, -42 - 1300497 A7 • _B7__ 五、發明説明( ) 40 (請先閲讀背面之注意事項再填寫本頁) 一區與第二區部份。而在本實施例中,該對應於第一區的 罩幕圖案係被設成,會由該像元的内部區域(Pin)延伸至介 於各像元之間的外部區域(Pout)處。 依據所使用之光阻劑的種類,該第二罩幕855亦可具有 一倒反於所示圖案的圖案造型。 利用該第二罩幕855,該有機絕緣膜780上除了接觸孔 785部份以外之其餘部份,將會經由一第二次的透鏡曝光製 程來被曝光。 然後,該有機絕緣膜780會受到顯像處理,而在該有機 絕緣膜780中製成曝露出源極/汲極释》775的捲觸孔78 5,且 有多數不規則的凹槽781等會形成於該有機絕緣膜780的表 面上。 _ 如第15B圖所示,形成於該像元内部區域中的不規則 凹槽781等,亦會同樣地形成於各像元之間的外部區域 (Pout)處。 請回參第14C圖,在諸如A卜Ni、Cr、Ag等之具有良 好反射率的金屬層被沈積之後,j亥金屬層會被圖樣化成一 預定的像沅形式,來製成該反射電極735。然後,有一光阻 會被覆設在該反射電極735上,並被摩擦處理來製成該第一 定向膜800,俾能以一預定角度來預斜液晶層的液晶分子。 該反射電極將具有與該有機絕緣膜780之頂面相同 的造型。 該反射電極^»73 5儀被分成第一區部份790與第二區 部份795。該等第一區部份790含有多數的凹槽設在該有機 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 43 1300497 A7 _ B7 __ 五、發明説明( ) 41 絕緣膜780的凹槽781中,而該等第二區部份795含有多數的 凸出部份,其係為微透鏡區域。在此時,該等第一區部份 790含有連續的凹槽,而係被凹入於比該等對應於凸出部份 的第二區部份795更低的位置,且該等第二區部份795會被 第一區部份790所包圍,因此該反射電極735會具有一由連 續凹槽之第一區部份790所圍限的結構。 於本實施例中,該反射電極735之第一區部份790的該 等凹槽乃具有2〜5 μιη的寬度,而第二區部份795的該等凸 出部份係具有約4〜20 μηι的大小。 請參閱第14D圖,在與第一絕緣基材740相同材料製成 的第二絕緣基材805上,乃按序設有該濾色膜810,透明共 同電極815,及第二定向膜820,-而完成該第二基板720。嗣, 該第二基板720會對向於第一基板710而互相接合,並有墊 隔物置設於其間,而使第一基板710與第二基板720之間形 成一固定間隙。然後,一液晶材料會被以真空注入法來注 入該間隙中,而形成該液晶層730,遂完成本實施例之反射 式LCD 700。又,若有需要,貝i該偏光板830與相差板825 乃可被設在該第二基板720的整個表面上,且雖未示於圖式 中,黑色基質亦可被設於第二絕緣基材805與濾色膜810之 間。 第17A至17¾圖為平面圖,乃示出供形成本發明另一實 施例之反射電極的罩幕圖案。 首先,第17A圖所示的罩幕圖案係類似.於第5A圖所示 者,惟除其供形成第二區部份的圖案係延伸超出像元邊界 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -----------------------裝-------「··訂................線I (請先閲讀背面之注意事項再填寫本頁) 44 1300497 A7 _— —____B7_ 五、發明説明() 42 的外部區域。 第17A圖的罩幕圖案係為形成該反射電極,而被設計 •成於一所擇方向具有比其它方向更高的反射率。利用第 17A圖之罩幕圖案來製成的反射電極,乃包含多數的第一 區部份790及多數的第二區部份795具有相對於第一區部份 79〇的高度差。該等第二區部份795的特徵係在於:沿著垂 直於第一方向(或垂直方向)之第二方向(或水平方向)排列 的第一長度分量之第一總和,係比沿著垂直於該第二方向 之第一方向排列的第二長度分量之第二總和更大,而使該 等第二區於該第一方向會具有比第二方向更高的反射率。 例如,該等第一區部份79〇係呈凹槽造型,而具有比第二區 部份795更低的高度,該等第二區部份乃5則呈凸塊造型, 而具有比第一區部份790更高的高度。相反地,其亦可能使 該等第一區部份790呈凸出造型,而具有比第二區部份795 更高的高度,且該等第二區部份795呈凹下造型,而具有比 第一區部份更低的高度。 该等第一區部份790乃包含彡數的第一凹槽79如沿著 水平方向連續延設。有多數的第二凹槽79〇b會沿著垂直方 向而被不連續地設在相鄰的第一凹槽79〇&之間。於圖式 中,雖然該等第二凹槽乃仉係被設成弧狀形式,俾使光能 被反射至第一與第二方向以外的方向;但它們亦可被製成 任意形狀,例如一直線狀,或環狀等等。 最好是,該等第二凹槽7901)乃被製成,使該等第二凹 槽790b中之任何凹槽,不會與一沿垂直方向列設的相鄰凹 本紙張尺度適用中國國家標準(⑶幻A4規格(21〇χ297公爱) …:Γ裝-·:------…:訂…….......::40 (請先閲讀背面之注意事項再填寫本頁) -45 - 1300497 A7 P-— ___B7 _ 五、發明説明() 43 槽交會在一直線上。最好是,沿該垂直方向列設之第二凹 槽的數目,在各單位像元的每一水平線中為約0.5至5。 該等第二區部份795乃包含許多形如微透鏡的凸出部 份。換言之,該等由反射電極735中之連續凹槽所組成的第 一區部份790,會被沈降至一比凸出的第二區部份795更低 一定深度的較低位置。同樣地,該等第二區部份795乃含有 多數比該等第一區部份79〇凸出的部份,而被設於該第一基 板710上的一定高度^該等形如微透鏡而可提供反射率之第 二區部份795,乃被含有第一凹槽790a及第二凹槽790b的第 一區部份790,以及單位像元的邊界等所包圍。換言之,位 於一單位像元中央部位之一第二區部份795,會被二相鄰的 第一凹槽790a與第二凹槽79〇b等所圍限。而靠近該單位像 元之邊界區域的第二區部份795,則會被二相鄰的第一凹槽 790a,一第二凹槽790b,及該單位像元的一部份邊界等所 圍限。 由於該等第一區部份790之方向性,故該等第二區部份 795的凸出部份將會沿著一單位像元之水平方向的第一方 向’及該單位像元之垂直方向的第二方向來定向。因此, 依據本實施例的LCD,乃可應用於要求沿一特定方向具有 高反射率的顯示器。 該等構成第二區部份795的凸出部份,乃具有各種不同 的形狀,例如橢圓形795a,漸虧彎月形795b ,凹透鏡之截 面造型795c,跑道形795d,半跑道形795_e等等。又,雖該 等第二區部份795的凸出部份具有相同形狀,但具有不同大 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 丨裝' 丨:訂· •線丨*▲ 46 1300497 A7 ^__B7_ 五、發明説明( ) 44 小。 在第一區部份790中之各第一與第二凹槽79〇a、79〇b 乃具有約2〜5 μπι的寬度。而第二區部份795的凸出部份則 具有4〜20 μηι範圍内的不同大小。沿水平方向互相平行設 置之第一凹槽790a之中心線的間隔,乃被設為5〜2〇μηι, 而平均約為8·5 μηι。第二區部份795之凸出部份的凸脊之間 距乃被設為12〜22 μιη,而平均約為17 μηι。故,該等第二 區部份795之凸出部份的形狀及大小乃可不同地改變,因此 被該反射電極所反射之光的干涉現象將能減至最少。 第'17Β圖所示的罩幕圖案係類似於第17Α圖,惟除有一 可形成相同深度之第一區部份的填槽凸體圖案,乃被設在 該反射電極中之第一區部份的交叉點(連接點)處。又,該 第17Β圖中所示的罩幕圖案亦類似於第9圖中所示者,惟除 其供形成第二區部份的圖案會延伸至超出一單位像元之邊 線791而位於各像元之間的外部區域。 利用第17Β圖之罩幕圖案所形成的反射電極,會被分 成多數的第一區部份410及多數的第二區部份4〇5。該等第 一區部份410具有多數沿該像元之水平方向平行設置的第 一凹槽410a,.及沿垂直方·向不連續地設置之多數第二凹槽 410b等。該第二區部份4〇5具有許多被第一區部份41〇以及 该像元之邊線791所包圍的凸出部份4〇5a、405b、405c等。 該等構成第二區部份405的凸出部份4〇5a、405b、405c等, 將會被沿著水平及垂直方向列設之該等第一及第二凹槽 410a、41 Ob所圍限,故而具有島狀造型。填槽凸體4〇6則設 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) .....裝· ......1----··1#----- ------------% (請先閲讀背面之注意事項再填寫本頁) 47 1300497 A7 ____ B7 _ 五、發明説明(μ ) 45 在所擇之各凸出部份405a、405b、405c上。 該等填槽凸體406可使凹部具有固定的深度,該等凹部 係在將有機絕緣膜曝光及顯像以製成反射電極4〇〇的製程 中’被設在該有機絕緣膜上者。換言之,由於在水平列設 的第一凹槽410a與垂直列設的第二凹槽41〇b之交會點處的 圖案,係比其它部份的圖案之直線寬度更大,故在相同的 曝光條件下,在交叉點處會比其它部份被蝕刻得較深,而 可獲付一不似在该罩幕圖案中所形成的平直廉形。因此, 藉著在製造該罩幕圖案時,將填槽凸體406的凹狀一起製 成,則该有機絕緣膜在交又點處比其它部份更超量的钕 刻,乃可被消滅至某一程度,而能在該有機絕緣膜37〇的頂 面上製成具有相同深度的凹槽-。換言之,該等第一區部份 乃可被製成具有相同深度。 第17C至17E圖係示出本發明另一實施例的罩幕圖 案。第17C圖中所示的罩幕圖案係類似於第17A圖者,惟除 其在該反射電極的圖案中,並未設有可供形成第一區部份 790之第二凹槽790b的垂向圖案丄又,在第17D圖中所示的 罩幕圖案:亦類似於第17A圖者,惟在該反射電極的圖案 中,每一像兀僅有一供形成第一區部份79〇之第二凹槽79叽 的垂向圖案,被設在相鄰的第一區部份之第一凹槽之間。 而第17E圖所不的罩幕圖案亦類似於第17A圖所示者,惟除 其在該反射電極的圖案中,每一像元僅有〇5個供形成第一 ㉟部份79G之第二凹槽79Gb的垂向圖案,被蘇在相鄰的第一 區部份之第一凹槽之間。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) -------------------V:裝-·.......「----丨、可…............丨-線1· (請先閲讀背面之注意事項再填寫本頁) -48 - 1300497 A7 ________·_B7____ 五、發明説明( ) 46 依據前述實施例,當在製成一反射電極之前先製成一 有機絕緣膜時,一凹槽會被以如同在像元區域内的方式, 來被設在位於各像元之間的外部區域。結果,在該像元區 域的内部與外部區域之間,將不會產生高度差。因此,其 乃可消除液晶定向時因光漏所生的殘留影像以失真現象。 而且,在佈設墊隔物之後,將可在第一與第二基板之間保 持一致的間隙。 再者,本發明之LCD乃具有多數沿水平方向連績列設 的第一凹槽,及多數沿垂直方向不連續地列設之第二凹槽 等,而一微透鏡式的反射電極將由該等第一與第二凹槽等 來形成及定向,故其較諸習用的反射式LCD,能沿一特定 方向具有提高甚大的反射效率_。因此,在本發明之反射式 LCD所造成之影像對比及品質,將可顯著地改善。 〜反射率測試〜 - 第18A至18C圖係為供製成本發明實施例的反射電極 之對應於一單位像元的反射電極(或罩幕圖案)之平面圖。 利用第18A至18C圖及第9圖之罩幕圖案,乃可製成具 有第二實施例之反射電極的LCD。 第18A圖·係示出一罩幕圖案,其中有單一的第二凹槽 被。又於&水平方向延伸的第一凹槽之間丨第1 圖則示出 一罩幕圖案,其-中僅設有第一凹槽;第i8c圖乃示出一罩 幕圖案,其中在一單位像元之每一水平長皮上僅有0·5個第 二凹槽設於第一凹槽之間。 以下之表2乃表示使用含有第18A至18C圖及第9圖之 本紙張尺度適用中國國家標準(CNS) A4規格(21〇χ297公釐) -----------------卜裝·· (請先閲讀背面之注意事項再填寫本頁) -、可1 :線!«.▲ 49 1300497 A7 B7 五、發明説明( 47 反射電極的LCD面板所測得的反射率值。 在測量水平方向的反射率時,光會被以朝上30度的入 射角來射入;而在測量垂直方向的反射率時,光會以向左 或向右30度的入射角來射入。於此時,其反射率將可由下 列公式(2)來獲得.: /該LCD面板所測得之反射專' R(反射率):The reflection efficiency between the 34 and the boundary line and region between one pixel and another adjacent pixel form a state that is not clearly defined. In particular, please refer to the (4) diagram. When using the mask 355 to perform the "time" area, the pixel area will be exposed, but the - field between the pixels will not be exposed. The underlying insulating film 80' will be in the vicinity of the image area (Pin) and the external area of the pixel (p.). The existence of this height difference will not be obtained during the rubbing process. Consistent = friction effect', after the _LCD panel is made, the liquid crystal molecules are kept at the level of the solid state. In particular, since the outer region beyond the boundary of the cell is formed higher, At the beginning of the rubbing treatment, the rubbing treatment is performed to a weaker degree, so that residual images of the light leakage or distortion of the liquid crystal orientation may occur. Further, the rice is placed in the mat spacer scattering step before the liquid crystal is injected, and the spacers are If it is placed outside the boundary of the cell to form a higher place, the interval between the first and second substrates will not be fixed, so that it is difficult to form a stable LCD. The first portion of the insulating film and the portion of the second portion In the developing process, since there are boundary walls having a large height difference between the pixels, it will be difficult to uniformly form the first portion and the second portion. Further, if the organic insulating film is used When a calibration error occurs between the reflector and the top plate and the bottom plate, the change in reflectance becomes large, so that it is difficult to obtain uniform image quality. Therefore, the present embodiment is provided to solve the above disadvantages. This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) (please read the note on the back and fill out this page) 丨 丄 丨 丨 丨 丨 丨 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Please read the precautions on the back side and fill in this page. Fig. 13A is a plan layout of a reflective LCD having a reflective electrode according to a sixth embodiment of the present invention, and Fig. 13B is a schematic cross-sectional view taken along line A-A'. Referring to FIGS. 13A and 13B, a reflective LCD 700 includes a first substrate 710 having an array of pixels disposed thereon, a second substrate 720 disposed opposite the first substrate 710, and a liquid crystal layer 730 disposed on the substrate. First substrate 710 and second Between the substrates 720, and a reflective electrode 735 as a pixel electrode, disposed between the first substrate 710 and the liquid crystal layer 730, the first substrate 710 includes a TFT 745 as a switching device, and is disposed on the first insulating substrate. The first insulating substrate 740 is a non-conductive material, such as glass or ceramic, etc. The TFT 745 includes a gate electrode 750 branched from a gate line 750a, and a gate insulating film 755, a semiconductor layer 760, a resistive contact layer 765, a source electrode 770, and a drain electrode 775. Further, under the drain electrode 775, a storage electrode 750b is disposed on the first insulating substrate 740. It is parallel to the gate line 750a. The gate electrode 750 has a two-layer structure consisting of a gate line (not shown in the figure) on a first jg edge substrate 740, and includes a lower layer of chromium and an upper layer of aluminum. The gate insulating film of tantalum nitride is overlaid on the entire surface of the first insulating substrate 74_0 provided with the gate electrode 750. The gate insulating film 755 provided with the gate electrode 750 is provided with the amorphous germanium semiconductor layer and the n + amorphous germanium resistive contact layer. The source electrode 7 7 0 and the drain electrode 7 7 5 are set at the gate of the paper. The Chinese National Standard (CNS) A4 specification (210×297 mm) is applied. 38 1300497 A7 B7 5. Inventive Note 36 The central portion of the resistive contact layer 765 and the gate insulating film 755 complete the germanium TFT 745. The source electrode 770 and the drain electrode 775 are made of a metal such as a button, a titanium alloy, or a chromium. On the first insulating substrate 740 provided with the TFT 745, an organic insulating film 780 such as a photoresist material is provided. There are a plurality of first portion portions (air grooves) and second portion portions (or protruding portions) having a height difference from the first portion portions, which are provided on the organic insulating film 780 At the meta-area, the district (please read the notes on the back and fill in the nest). Light scattering. Further, the first portion and the second portion of the pixel region or the like are extended to extend the outer region (Pout) between the pixel regions. The organic insulating film 780 includes a contact hole 785, and a portion of the electrode 775 of the TFT 745 is exposed. The reflective electrode 735 is disposed on the contact hole 785 and the organic insulating film 780. The reflective electrode 735 is connected to the small electrode 775 via the contact hole 785, so that the TFT 745 is electrically connected to the reflective electrode 735. A first alignment film 800 is stacked on the reflective electrode 735. The second substrate 720 of the first substrate 710 includes a second insulating substrate 805, a color filter 810, a common electrode 815, a second orientation 820, a phase difference plate 825, and a polarizing plate 830. The second insulating substrate 805 is made of the same slope or ceramic material as the first insulating substrate 740. The phase difference plate 825 and the polarizing plate 830 are sequentially & on the second insulating base #805. The color filter film 810 is provided under the insulating substrate 8〇5. The common electrode 815 and the second alignment film 820 are sequentially disposed under the color film 810 to complete the second substrate 720. The second alignment film 820 is pre-tilted with the first alignment film 800 at a selected angle. The liquid paper size of the liquid crystal layer 730 is applicable to the Chinese National Standard (TMs) A4 specification (210X297 public) 39 1300497 A7 _BT_____ V. Description of the invention ( ) 37 crystal molecules. (Please read the precautions on the back side and fill in this page.) The spacers 835, 836 and the like are interposed between the first substrate 710 and the second substrate 720, and a gap is formed therebetween. The liquid crystal layer 730 is disposed in the gap to complete the reflective LCD of the present embodiment. Hereinafter, a method of manufacturing a reflective LCD of an embodiment will be described in detail in conjunction with the drawings. 14A to 14D are cross-sectional views for explaining a method of manufacturing the reflective LCD of Figs. 13A and 13B. In the respective drawings, the same elements are denoted by the same reference numerals. Referring to Figure 14A, a metal layer, such as Ta, Ti, Mo, A, Cr, Cu, W, etc., is deposited on a glass or ceramic first insulating substrate 740. The metal layer is patterned to form a gate line 750a, a gate electrode 750 is branched from the gate line 750a, and a storage electrode line 750c is provided with the storage electrode 750b. At this time, the gate electrode 750 and the gate line 750a may be made of an alloy of Al-Cu or Al-Si-Cu. Then, tantalum nitride is deposited on the first insulating substrate 740 including the gate electrode 750 by plasma chemical vapor deposition to form an electrode insulating film 755. On the gate insulating film 755, an amorphous germanium film and an in-situ doped n+ amorphous germanium film are also sequentially provided by plasma chemical vapor deposition. Then, the amorphous ruthenium film and the in-situ doped n+ amorphous ruthenium film are patterned, and a semiconductor layer 760 and a resistive contact are formed on the gate insulating film 755 provided with the _ gate electrode 750. Layer 765. Then, on the first insulating substrate 740 having the above structure, a metal layer such as Ta, Ti, Mo, or 1, (^, (1; 11, ?, etc.) is provided. Applicable to China National Standard (CNS) A4 Specification (210X297 mm) -40 - 1300497 A7 _B7__ V. Invention Description ( ) 38 (Please read the note on the back and fill out this page) The metal layer will be patterned. Forming a source line (not shown) perpendicular to the gate line, and a source electrode 770 and a drain electrode 775 branched from the source line. Therefore, a package including the gate electrode 750 and the semiconductor The layer 760, the resistive contact layer 765, the source electrode 770, and the TFT 745 of the drain electrode 775 are completed. At this time, the gate insulating film 755 is interposed between the gate line and the source line. Therefore, the gate line can be prevented from contacting the source line. Then, a photoresist film is deposited by spin coating on the first insulating substrate 740 provided with the TFT 745 to a thickness of about 1 to 3 μm. An organic insulating film 780 is completed to complete the first substrate 710. At this time, the organic insulating film 780 is made of, for example, a PAC. (Photo-acting component) made of acrylic resin, etc. Please refer to Figure 14 for a "mask 850 will be calibrated to cover the organic insulating film 780 to form a contact hole 785; the organic insulating film will pass through The exposure development process is patterned to form a contact hole 785 partially exposed to the drain electrode 775, and a plurality of grooves, etc. Hereinafter, the contact on the top surface of the organic insulating film 780 will be described in detail. Hole 785 and a method of a plurality of grooves. _ 15th and 15th are cross-sectional views showing the process of making the contact hole and the plurality of recesses on the top surface of the organic insulating film. Please refer to pages 15 and 15 and A mask 850 is calibrated to cover the organic insulating film 7'', and the contact hole 785 is formed on the photoresist-made organic insulating film 780. The first mask 850 has a pattern corresponding to the contact hole 785. Then, the organic insulating film 780 receives the first full exposure process, and the paper size of the organic insulating film 780 on the source/drain electrode 775 is applicable to the Chinese National Standard (CNS) Α4 specification (210X297). Mm) 41 1300497 A7 ___ΒΊ __ 5. Description of the Invention ( ) 39 parts of exposure. In order to form a plurality of grooves 781 on the organic insulating film 780, a second mask 855 having a pattern corresponding to the groove 781 to be made into a microlens is to be The calibration is overlaid on the organic insulating film 780. Fig. 16 is a plan view showing the layout of the pattern on the second mask 855. In the second mask 855 shown in Fig. 16, one can be formed. The pattern of the second portion of the pattern extends to an outer region between pixels beyond the edge 691 of a unit cell. More specifically, referring to FIG. 16, the pattern of the second mask 855 for the reflective electrode is divided into a first portion 693 and a first portion 693 in the pixel. The second zone portion 695 of the height difference is located inside the side of the cell 691. The first zone portion 693 is formed to surround the second zone portion 695 with a closed loop. Wherein, the first zone portion 693 has a fixed width. The first portion 693 is formed into the shape of the groove and has a lower height than the second portion 695. The second portion 69 5 is formed into a convex shape and has a ratio The first zone portion 693 is of a higher height so that the second zone portion 695 will be shaped like a microlens. Therefore, since the first portion is made of a fixed width, the reflection efficiency is improved, and the image quality of the LCD is improved. As shown in Fig. 16, the second mask 855 is formed to have a pattern corresponding to the first portion of a transparent substrate. As described above, the pattern corresponding to the first portion is disposed in the inner region (Pin) of the pixel, and is designed to define the first paper scale of the reflective electrode to be applicable to the Chinese national standard (CNS). A4 size (210X297 mm) (Please read the note on the back and fill out this page) • Install ▲ ▲, can | | line, -42 - 1300497 A7 • _B7__ V. Invention description ( ) 40 (Read first Note on the back side of this page) Section 1 and Zone 2 sections. In the present embodiment, the mask pattern corresponding to the first region is set to extend from the inner region (Pin) of the pixel to the outer region (Pout) between the pixels. Depending on the type of photoresist used, the second mask 855 can also have a pattern that is inverted against the pattern shown. With the second mask 855, the portion of the organic insulating film 780 except the portion of the contact hole 785 will be exposed through a second lens exposure process. Then, the organic insulating film 780 is subjected to development processing, and a coil contact hole 78 5 exposing the source/drain discharge 775 is formed in the organic insulating film 780, and a plurality of irregular grooves 781 are formed. It is formed on the surface of the organic insulating film 780. _ As shown in Fig. 15B, the irregular grooves 781 and the like formed in the inner region of the pixel are similarly formed at the outer region (Pout) between the respective pixels. Referring back to Figure 14C, after a metal layer having good reflectivity such as A, Ni, Cr, Ag, etc. is deposited, the jhai metal layer is patterned into a predetermined image form to form the reflective electrode. 735. Then, a photoresist is coated on the reflective electrode 735 and rubbed to form the first alignment film 800, and the liquid crystal molecules of the liquid crystal layer can be pre-tilted at a predetermined angle. The reflective electrode will have the same shape as the top surface of the organic insulating film 780. The reflective electrode is divided into a first zone portion 790 and a second zone portion 795. The first zone portion 790 contains a plurality of grooves provided on the organic paper scale for the Chinese National Standard (CNS) Α 4 specification (210X297 mm) 43 1300497 A7 _ B7 __ V. Invention Description ( ) 41 Insulation film 780 In the groove 781, the second portion 795 has a plurality of convex portions which are microlens regions. At this time, the first zone portions 790 have continuous grooves which are recessed to a lower position than the second zone portions 795 corresponding to the projections, and the second The region portion 795 is surrounded by the first region portion 790, so that the reflective electrode 735 will have a structure surrounded by the first region portion 790 of the continuous groove. In this embodiment, the grooves of the first portion 790 of the reflective electrode 735 have a width of 2 to 5 μm, and the protruding portions of the second portion 795 have a thickness of about 4 to 20 μηι size. Referring to FIG. 14D, the color filter film 810, the transparent common electrode 815, and the second alignment film 820 are sequentially disposed on the second insulating substrate 805 made of the same material as the first insulating substrate 740. - completing the second substrate 720. The second substrate 720 is bonded to the first substrate 710 and has a spacer disposed therebetween to form a fixed gap between the first substrate 710 and the second substrate 720. Then, a liquid crystal material is injected into the gap by vacuum injection to form the liquid crystal layer 730, and the reflective LCD 700 of this embodiment is completed. Moreover, if necessary, the polarizing plate 830 and the phase difference plate 825 may be disposed on the entire surface of the second substrate 720, and although not shown in the drawings, the black matrix may be disposed on the second insulation. The substrate 805 is interposed between the color filter film 810. Figs. 17A to 173⁄4 are plan views showing a mask pattern for forming a reflective electrode of another embodiment of the present invention. First, the mask pattern shown in Figure 17A is similar. As shown in Figure 5A, except that the pattern for forming the second portion extends beyond the boundary of the pixel. The paper size applies to the Chinese National Standard (CNS). A4 size (210X297 mm) -----------------------Installation-------"··........ ........Line I (please read the note on the back and then fill out this page) 44 1300497 A7 _———____B7_ V. Inventive Note () External area of 42. The mask pattern of Figure 17A is The reflective electrode is formed and designed to have a higher reflectance than the other directions in a selected direction. The reflective electrode formed by the mask pattern of FIG. 17A includes a plurality of first partial portions 790 And a plurality of second zone portions 795 have a height difference with respect to the first zone portion 79. The second zone portions 795 are characterized by: along a direction perpendicular to the first direction (or vertical direction) a first sum of first length components arranged in two directions (or horizontal directions) is greater than a second sum of second length components arranged along a first direction perpendicular to the second direction, The second regions are caused to have a higher reflectivity in the first direction than in the second direction. For example, the first portion 79 has a groove shape and has a second portion 795 At a low height, the second portion is 5 in the shape of a bump and has a higher height than the first portion 790. Conversely, it can also make the first portion 790 convex. The styling has a higher height than the second zone portion 795, and the second zone portions 795 have a concave shape and a lower height than the first zone portion. The portion 790 is a first groove 79 including a number of turns, such as continuously extending in the horizontal direction. A plurality of second grooves 79 〇 b are discontinuously disposed in the adjacent first groove along the vertical direction. Between 79 〇 & In the drawing, although the second grooves are arranged in an arc form, the light energy is reflected to a direction other than the first and second directions; It is made into any shape, such as a straight line, or a ring, etc. Preferably, the second grooves 7901 are made in the second grooves 790b. Any groove that does not conform to the Chinese standard in the size of an adjacent concave paper set in the vertical direction ((3) Magic A4 specification (21〇χ297 公爱)...:Γ装-·:------ ...: order.............::40 (please read the notes on the back and fill out this page) -45 - 1300497 A7 P-— ___B7 _ V. Invention description () 43 slot intersection in a straight line Preferably, the number of second grooves arranged in the vertical direction is about 0.5 to 5 in each horizontal line of each unit pixel. The second portion 795 includes a plurality of shapes such as microlenses. The protruding part. In other words, the first portion 790 of the continuous grooves in the reflective electrode 735 is settled to a lower position at a lower depth than the projected second portion 795. Similarly, the second portion 795 has a portion that is more convex than the first portion 79, and is disposed on the first substrate 710 at a certain height. The second portion 795, which provides the reflectivity, is surrounded by the first portion 790 containing the first recess 790a and the second recess 790b, and the boundary of the unit pixel. In other words, the second portion 795, which is located at one of the central portions of a unit cell, is confined by the two adjacent first grooves 790a and second grooves 79B and the like. The second portion 795 adjacent to the boundary region of the unit pixel is surrounded by two adjacent first grooves 790a, a second groove 790b, and a part of the boundary of the unit pixel. limit. Due to the directivity of the first portion 790, the convex portions of the second portion 795 will be along the first direction 'the horizontal direction of a unit pixel' and the vertical of the unit pixel The second direction of the direction is oriented. Therefore, the LCD according to the present embodiment can be applied to a display which requires high reflectance in a specific direction. The convex portions constituting the second portion 795 have various shapes, such as an elliptical shape 795a, a tapered meniscus 795b, a concave lens sectional shape 795c, a racetrack shape 795d, a half runway shape 795_e, and the like. . Moreover, although the convex portions of the second portion 795 have the same shape, they have different paper sizes and are applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the cautions on the back first) Fill in this page) 丨 ' 订 订 订 订 • • • ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ Each of the first and second recesses 79A, 79B in the first zone portion 790 has a width of about 2 to 5 μm. The convex portion of the second portion 795 has a different size in the range of 4 to 20 μm. The interval between the center lines of the first grooves 790a disposed in parallel with each other in the horizontal direction is set to 5 to 2 〇 μηι, and the average is about 8·5 μη. The ridge pitch of the convex portion of the second portion 795 is set to 12 to 22 μm, and the average is about 17 μm. Therefore, the shape and size of the convex portions of the second portion 795 can be changed differently, so that the interference of the light reflected by the reflective electrode can be minimized. The mask pattern shown in the '17th drawing is similar to the 17th drawing except that a grooved convex pattern which can form the first portion of the same depth is provided in the first portion of the reflective electrode. The intersection (connection point) of the share. Moreover, the mask pattern shown in the 17th drawing is similar to that shown in Fig. 9, except that the pattern for forming the second portion extends to the side line 791 beyond one unit pixel. The outer area between the pixels. The reflective electrode formed by the mask pattern of Fig. 17 is divided into a plurality of first portion 410 and a plurality of second portions 4〇5. The first section 410 has a plurality of first recesses 410a disposed in parallel along the horizontal direction of the pixels, and a plurality of second recesses 410b disposed discontinuously in the vertical direction. The second portion 4〇5 has a plurality of convex portions 4〇5a, 405b, 405c and the like surrounded by the first portion 41〇 and the edge 791 of the pixel. The convex portions 4〇5a, 405b, 405c and the like constituting the second portion 405 are surrounded by the first and second grooves 410a and 41 Ob arranged in the horizontal and vertical directions. Limited, it has an island shape. The grooved projection 4〇6 is set to the Chinese National Standard (CNS) A4 specification (210X297 mm) for this paper size. .................1----··1#-- --- ------------% (Please read the notes on the back and fill out this page) 47 1300497 A7 ____ B7 _ V. Invention Description (μ) 45 In each of the selected projections Portions 405a, 405b, 405c. The cavities 406 may have a recess having a fixed depth which is disposed on the organic insulating film in a process of exposing and developing the organic insulating film to form the reflective electrode 4A. In other words, since the pattern at the intersection of the horizontally arranged first groove 410a and the vertically arranged second groove 41〇b is larger than the line width of the other portions of the pattern, the same exposure is obtained. Under the condition, it will be etched deeper at the intersection than other parts, and a flat shape which is not formed in the mask pattern can be obtained. Therefore, by making the concave pattern of the filling groove 406 together when the mask pattern is manufactured, the organic insulating film is more excessively engraved at the intersection point than other parts, and can be eliminated. To a certain extent, grooves having the same depth can be formed on the top surface of the organic insulating film 37A. In other words, the first zone portions can be made to have the same depth. 17C to 17E are views showing a mask pattern of another embodiment of the present invention. The mask pattern shown in Fig. 17C is similar to that of Fig. 17A except that in the pattern of the reflective electrode, there is no vertical groove 790b for forming the first portion 790. To the pattern, again, the mask pattern shown in Fig. 17D is also similar to that of Fig. 17A, except that in the pattern of the reflective electrode, only one image of each of the image regions is formed to form the first portion 79. The vertical pattern of the second recess 79 is disposed between the first recesses of the adjacent first portion. The mask pattern not shown in Fig. 17E is similar to that shown in Fig. 17A, except that in the pattern of the reflective electrode, each pixel has only 个5 for forming the first 35 part of the 79G. The vertical pattern of the two grooves 79Gb is sandwiched between the first grooves of the adjacent first zone portions. This paper scale applies to China National Standard (CNS) A4 specification (210X297 public) -------------------V: Install-·......."- ---丨, 可..................丨-线1· (Please read the notes on the back and fill out this page) -48 - 1300497 A7 ________·_B7____ V. Description of the invention ( According to the foregoing embodiment, when an organic insulating film is formed before forming a reflective electrode, a groove is provided between the pixels as in the pixel region. The outer region. As a result, no height difference will occur between the inner and outer regions of the cell region. Therefore, it can eliminate the distortion of the residual image due to light leakage when the liquid crystal is oriented. After the spacers, a uniform gap can be maintained between the first and second substrates. Furthermore, the LCD of the present invention has a plurality of first grooves arranged in the horizontal direction, and most of the vertical directions are not a second groove or the like is continuously arranged, and a microlens-type reflective electrode is formed and oriented by the first and second grooves, etc., so that it is more conventional The radiation type LCD can have a very high reflection efficiency in a specific direction. Therefore, the image contrast and quality caused by the reflective LCD of the present invention can be remarkably improved. ~ Reflectance Test ~ - 18A to 18C The figure is a plan view of a reflective electrode (or a mask pattern) corresponding to one unit pixel for forming a reflective electrode of an embodiment of the present invention. The mask pattern of FIGS. 18A to 18C and FIG. 9 can be used. The LCD having the reflective electrode of the second embodiment. Fig. 18A is a mask pattern in which a single second groove is formed, and the first groove between the & horizontal direction is the first. The figure shows a mask pattern in which only the first groove is provided; the i8c diagram shows a mask pattern in which only 0.5 of each horizontal length of a unit pixel is present. The second groove is disposed between the first grooves. Table 2 below shows the use of the Chinese National Standard (CNS) A4 specification (21〇χ297 mm) using the paper size of Figures 18A to 18C and Figure 9. -----------------Buy·· (Please read the notes on the back and fill out this page) -, can be 1: line! «.▲ 49 1300497 A7 B7 V. Description of invention (47 reflectance value measured by the LCD panel of the reflective electrode. When measuring the reflectance in the horizontal direction, the light will be upwards 30 degrees The incident angle is incident; when measuring the reflectance in the vertical direction, the light is incident at an incident angle of 30 degrees to the left or right. At this time, the reflectance can be obtained by the following formula (2) .: / The reflection measured by the LCD panel is 'R (reflectance):

xlOO 、一標準反射板(BaS04)之反射率^ 由其正面所測得之反射率乃示於以下表2中 表2 …⑺ 罩幕種類 垂直方向之反射率 水平方向之反射率 W/D反射率 C/R W/D反射率 C/R 第18A圖 78.5/2.81 27.93 12.1/0.55 22 第18B圖 232.8/11.4 20.42 0.35/0.17 2 第18C圖 153/5.16 29.65 5.1/0.3 17 第9圖 35.4/1.03 34.36 14/0.38 36.84 註1): W/D反射率代表白反射率/黑反射率。白反射率為在 LCD面板未被驅動的狀態所測得之,值,而黑反射率為在LCD面 板被驅動取態時所測得之值。 註2) : C/R代表對比率。 又,該反射率會使用含有第18A至18C圖及第9圖之反 射電極的LCD面板,由其正面朝垂直方向或水平方向改變 視角而來測出。 於該面板正面由朝上30度之一點將光射入,且該反射 光的反射率將會被測出,並改變角度至朝上50度,或沿著 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 50 1300497 A7 _ B7__ 五、發明説明( ) 48 正面的左邊方向等來測試、最後的反射率將可由上述公式 (2)來獲得。 第19A與19B圖乃示出使用具有第18A圖之反射電極 的LCD所測得之反射率的變化曲線。尤其是,第μα圖係 示出由該LCD面板正面朝上改變反射角度所測得之反射率 的變化,而第19B圖則示出由該Lcd面板正面沿薯左邊方 向改變反射角度所測得之反射率的變化。 第20A與20B圖則示出使用具有葶18B圖之反射電極的 LCD所測得之反射率的變化曲線。尤其是,第2〇a圖乃示 出由該LCD面板正面朝上改變反射角度所測得之反射率的 變化,而第20B圖係示出由該LCD面板正面沿著左邊方向 改變反射角度所測得之反射率的變化。 第21A與21B圖係示出使用具有第18C圖之反射電極的 LCD所測得之反射率的變化曲線。尤其是,第21 a圖乃示 出由該LCD面板正面朝上改變反射角度所測得之反射率的 變化,而第21B®乃示出由該LCD面板正面沿著左邊方向 改變反射角度所測得之反射率的廣化。 第22A與22B圖係示出使用具有第9圖之反射電極的 LC^D所測得之反射率的變化曲線。尤其是,第22A圖乃示 出由該LCD面板正面朝上改變反射角度所測得之反射率的 變化,而第22Bffl乃示出由該LCD面板正面沿著左邊方向 改變反射角度所測得之反射率的變化。 於第19A至22B圖中,其垂向軸代表所測得的反射率, 而水平軸代表在該LCD面板正面的角度。又,於該各圖中, 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 袭丄 -51 - 1300497 A7 厂 _ B7__ 五、發明説明( ) 49 ♦符號代表該LCD面板未被驅動時之白色狀態的測量值, 符號代表該LCD面板在被驅動時之黑色狀態的測量值, 而▲符號代表對比率。 如於表2及第19A至22B圖中所示,該具有本發明之反 射電極的LCD面板,乃顯示在水平方向的反射率會比垂直 方向的反射率更高。因此,當該等LCD被應用於垂直方向 之反射率特別重要的裝置時,其光效率乃可增強。 此外’當該等第二凹槽未被設置,即如第18B圖所示 者時,其在垂直方向的反射率將會太高,而在水平方向的 反射率則會太低。因此,可以得知該等第二凹槽在每一單 位像元中最好至少有0.5個。 若為手持終端機’乃建議其垂直方向之反射率對水平 方向之反射率最好為2:1至3:1,而對比率最好係為30:;[至 40:1 〇 如上所述’本發明之反射式LCd乃包含多數沿水平方 向連續列設的第一凹槽,與多數沿垂直方向不連續地列設 之第二凹槽,及一由第一凹槽與—第二凹槽等所形成之定向 微透鏡反射電極,而相較於習知的反射式更能針對一 特疋方向具有增強的反射效率。因此,其對比及影像品質 乃可被顯著地改善; 又’由於該等微透鏡係沿該像元之水平或垂直方向來 定向,其乃適用於針對一特定方向須有高及射率的電子顯 示器。 此外’由於具有各種形狀的填槽件可被設於該反射電 本紙張尺度適用中國國家標準(CNS) A4規格(21〇χ297公釐)~~ 一 卜·………·……卜攀·!…「……訂」........…… (請先閲讀背面之注意事項再填寫本頁) . -52 - 1300497 A7 B7 五、發明説明( 50 極之凹槽交叉點處,故該反射電極的反射率乃可更為提 高,而大大地改良其對比及影像品質。 又,當在製成該反射電極之前先製成該有機絕緣膜 時’該等凹槽會以如同在該像元内部區域的方式地被設在 像元之間的外部區域處。故,將不會於像元區域與該等外 部區域之間產生高度差。因此,在液晶定向時之光漏所形 成的殘留影像或失真現象將可被消除。而且,在該第一基 板與第一基板之間,即使在佈設墊隔物之後,亦可獲得均 一的間隙。 雖上述各實施例乃示出並說明一具有反射電極之LCd 的範例,但顯然本發明之反射電極可被使用於須要該等反 射電極的電子顯示器。在該各例中,乃可藉控制反射率來 加強光效率,而使其在垂直方向的反射率與在水平方向 反射率不同。 ' 雖本發明已被詳細說明,但應可瞭解不同的變化、㈡ 代與修正等將可被實施,而不超出本發明於所附申請專利 範圍中所界定的範疇及精神。— ▲例如:,若為背光式LCD,該等凹凸構造則不被設在保 濩層上,而有.一透明的導電材料如ITO及IZO等會被作為 反射電極與接墊材料。 的 替 該The reflectance of xlOO and a standard reflector (BaS04) ^ The reflectance measured by the front side is shown in Table 2 in Table 2 below. (7) Reflectance W/D reflection in the horizontal direction of the vertical direction of the mask type Rate C/RW/D reflectance C/R Figure 18A Figure 78.5/2.81 27.93 12.1/0.55 22 Figure 18B Figure 232.8/11.4 20.42 0.35/0.17 2 Figure 18C Figure 153/5.16 29.65 5.1/0.3 17 Figure 9 Figure 35.4/1.03 34.36 14/0.38 36.84 Note 1): W/D reflectivity represents white reflectance / black reflectivity. The white reflectance is a value measured in a state in which the LCD panel is not driven, and the black reflectance is a value measured when the LCD panel is driven. Note 2): C/R stands for the contrast ratio. Further, the reflectance is measured by using an LCD panel including the reflecting electrodes of Figs. 18A to 18C and Fig. 9 and changing the viewing angle from the front side in the vertical direction or in the horizontal direction. The light is incident on the front side of the panel from a point of 30 degrees upward, and the reflectivity of the reflected light will be measured, and the angle is changed to 50 degrees upward, or the Chinese national standard (CNS) is applied along the paper scale. A4 size (210X297 mm) (Please read the note on the back and fill out this page) 50 1300497 A7 _ B7__ V. Invention description ( ) 48 The left side of the front side is tested, and the final reflectance will be determined by the above formula ( 2) Come and get. Figs. 19A and 19B are graphs showing changes in reflectance measured using an LCD having a reflective electrode of Fig. 18A. In particular, the μα map shows the change in reflectance measured by changing the reflection angle of the LCD panel face up, and the 19B graph shows the change of the reflection angle from the front side of the Lcd panel along the left side of the potato. The change in reflectivity. Figures 20A and 20B show the change in reflectance measured using an LCD having a reflective electrode of Figure 18B. In particular, FIG. 2A is a view showing a change in reflectance measured by changing the reflection angle of the LCD panel face up, and FIG. 20B is a view showing a change of the reflection angle from the front side of the LCD panel in the left direction. The measured change in reflectivity. 21A and 21B are graphs showing changes in reflectance measured using an LCD having a reflective electrode of Fig. 18C. In particular, Figure 21a shows the change in reflectance measured by changing the angle of reflection of the LCD panel face up, and 21B® shows the change in the angle of reflection from the front of the LCD panel along the left side. The widening of the reflectivity. 22A and 22B are graphs showing changes in reflectance measured using LC^D having the reflective electrode of Fig. 9. In particular, FIG. 22A shows a change in reflectance measured by changing the reflection angle of the LCD panel face up, and FIG. 22Bff shows the change of the reflection angle by the front side of the LCD panel in the left direction. The change in reflectivity. In Figs. 19A to 22B, the vertical axis represents the measured reflectance, and the horizontal axis represents the angle at the front of the LCD panel. Also, in each of the figures, the paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the note on the back and fill out this page). Attack -51 - 1300497 A7 Factory _ B7__ V. DESCRIPTION OF THE INVENTION ( ) 49 ♦ The symbol represents a measurement of the white state when the LCD panel is not driven, the symbol represents the measured value of the black state of the LCD panel when it is driven, and the ▲ symbol represents the contrast ratio. As shown in Table 2 and Figs. 19A to 22B, the LCD panel having the reflective electrode of the present invention shows that the reflectance in the horizontal direction is higher than that in the vertical direction. Therefore, when such LCDs are applied to devices in which the reflectance in the vertical direction is particularly important, the light efficiency can be enhanced. Further, when the second grooves are not provided, i.e., as shown in Fig. 18B, the reflectance in the vertical direction will be too high, and the reflectance in the horizontal direction will be too low. Therefore, it can be known that the second grooves preferably have at least 0.5 in each unit cell. For a handheld terminal, it is recommended that the reflectance in the vertical direction is preferably 2:1 to 3:1 in the horizontal direction, and the contrast ratio is preferably 30:; [to 40:1 〇 as described above The reflective LCd of the present invention comprises a plurality of first grooves continuously arranged in the horizontal direction, a plurality of second grooves arranged discontinuously in the vertical direction, and a first groove and a second concave The directional microlens reflective electrode formed by the groove or the like has an enhanced reflection efficiency for a characteristic direction compared to the conventional reflection type. Therefore, the contrast and image quality can be significantly improved; and 'because the microlenses are oriented along the horizontal or vertical direction of the pixel, they are suitable for electrons that have high and high transmittance for a particular direction. monitor. In addition, because the grooved parts with various shapes can be set on the reflective paper size, the Chinese National Standard (CNS) A4 specification (21〇χ297 mm)~~一卜·..................... !..."...Booking".............. (Please read the notes on the back and fill out this page.) -52 - 1300497 A7 B7 V. INSTRUCTIONS (50-pole groove intersection) Therefore, the reflectance of the reflective electrode can be further improved, and the contrast and image quality are greatly improved. Moreover, when the organic insulating film is formed before the reflective electrode is formed, the grooves will be like The inner region of the pixel is disposed at an outer region between the pixels. Therefore, a height difference is not generated between the pixel region and the external regions. Therefore, light leakage when the liquid crystal is oriented The residual image or distortion phenomenon formed can be eliminated. Moreover, a uniform gap can be obtained between the first substrate and the first substrate even after the spacer is disposed. Although the above embodiments show And an example of an LCd having a reflective electrode, but the invention is apparent The reflective electrode can be used for an electronic display that requires the reflective electrodes. In each of these examples, the light efficiency can be enhanced by controlling the reflectance so that the reflectance in the vertical direction is different from the reflectance in the horizontal direction. Although the present invention has been described in detail, it should be understood that various changes, (s), and modifications may be implemented without departing from the scope and spirit of the invention as defined in the appended claims. In the case of a backlit LCD, the embossed structures are not provided on the protective layer, and a transparent conductive material such as ITO and IZO may be used as the reflective electrode and the pad material.

(請先閲讀背面之注意事項再填寫本頁) 幸< 訂— 53 1300497 A7 ___ _B7 五、發明説明(5i ) 元件標號對照 10 、 210 ' 505 \ 710 …第一基板 15 - 220 ^ 510 - 720 …第二基板 20···液晶層 25…閘極匯流線 30 、 240 、 525 、 740 · .·第一_絕緣基材 35 、 250 、 540 、 750 ...閘極電極 40…源極匯流線 45 、 270 、 365 、 570 、 770 ...源極電極 50、235、390、400、420、 520、735…反射電極 55...TFT 裝置 60 、 275 、 575 、 775 …汲極電極 65、285、385、_785 …接觸孔 70、71···凹痕 75 、 255 、 535 、 755 …閘極絕緣膜 80、260、760··.半導體層 85、90...接觸層 95 、 280 、 370 、 580 、 780 …有機絕緣膜 100.. .光阻膜 105···透光區 106.. .遮光區 110…罩幕 115.. .凸體 120 、 300 、 590 、 800 ...第一定向膜 125 、 310 、 605 、 810 ...濾色膜 110、315、610、815 ...共同電極 135 、 320 、 615 、 820 ...第二定向膜 140 、 305 、 600 、 805 ...第二絕緣基材 200 > 500 > 700(Please read the notes on the back and then fill out this page) Fortunately < Order - 53 1300497 A7 ___ _B7 V. Invention Description (5i) Component Label Control 10, 210 ' 505 \ 710 ... First Substrate 15 - 220 ^ 510 - 720 ... second substrate 20 · liquid crystal layer 25 ... gate bus line 30 , 240 , 525 , 740 · · first insulating substrate 35 , 250 , 540 , 750 ... gate electrode 40 ... source Bus lines 45, 270, 365, 570, 770 ... source electrodes 50, 235, 390, 400, 420, 520, 735... reflective electrodes 55... TFT devices 60, 275, 575, 775 ... drain electrodes 65, 285, 385, _785 ... contact holes 70, 71 · · dent 75, 255, 535, 755 ... gate insulating film 80, 260, 760 · · semiconductor layer 85, 90 ... contact layer 95, 280, 370, 580, 780 ... organic insulating film 100.. photoresist film 105 · · · light transmissive area 106.. shading area 110 ... mask 115.. convex ... 120, 300, 590, 800 .. First alignment film 125, 310, 605, 810 ... color filter film 110, 315, 610, 815 ... common electrode 135, 320, 615, 820 ... second alignment film 140, 30 5, 600, 805 ... second insulating substrate 200 > 500 > 700

…反射式LCD 攀· (請先閲讀背面之注意事項再填寫本頁) .、可| 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 54 1300497 A7 B7 五、發明説明( ) 52 230、515、730···液晶層 245、560、745…薄膜電晶體 265、765…電阻接觸層 281、371、781 …凹槽 290 、 410 、 790 、 693 …第一區部份 295 、 405 、 695 、 795 …第二區部份 290a、410a、790a …第一凹槽 290b 、 410b 、 790b …第二凹槽 297…散射凹槽 325、620、825···相差板 330、625、830···偏光板 335 、 336 ' 835 、 836 …墊隔物 350、375、850··.第一罩幕 355、380、855.··第二罩幕 360…絕緣基材 406…填槽凸體 425···水平凹槽 426···垂向凹槽 430 、 431 、 432 、 433 …填槽件 530…多晶.矽層 5 4 5...源極區 546、551…開孔 550...汲極區 5 5 5…氧化物層 691、791…邊線 750a…閘極線 750b···儲存電極 7S0c···儲存電極線 (請先閲讀背面之注意事項再填寫本頁) .裝' .、可| 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 55...Reflective LCD Pan · (Please read the note on the back and fill out this page) ., Yes | This paper scale applies to China National Standard (CNS) A4 Specification (210X297 mm) 54 1300497 A7 B7 V. Invention Description ( ) 52 230, 515, 730············ 405, 695, 795 ... second zone portion 290a, 410a, 790a ... first groove 290b, 410b, 790b ... second groove 297 ... scattering groove 325, 620, 825 ... phase difference plates 330, 625, 830···polarizer 335, 336′835, 836...pad spacers 350, 375, 850··. first mask 355, 380, 855.·second mask 360...insulating substrate 406...filling groove Protrusion 425···horizontal groove 426···vertical groove 430, 431, 432, 433 ... filling groove 530... polycrystalline. 矽 layer 5 4 5... source region 546, 551... opening 550...thorium region 5 5 5...oxide layer 691,791...edge line 750a...gate line 750b···storage electrode 7S0c···storage electrode line (please read the back side first) Note: Please fill in this page). Install ' ., can | This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) 55

Claims (1)

56 1300497 六、申請專利範圍 之單一水平線在0.5至5之間變化。 8·如申請專利範圍第5項之液晶顯示器裝置,其中該反射 電極在該等第一凹槽與第二凹槽的相交部份形成有一 填槽物。 9·如申請專利範圍第8項之液晶顯示器裝置,其中該填槽 物係為一由該第二區伸出的凸體,且該填槽物係為擇自56 1300497 6. The single horizontal line of the patent application scope varies between 0.5 and 5. 8. The liquid crystal display device of claim 5, wherein the reflective electrode forms a sump at the intersection of the first recess and the second recess. 9. The liquid crystal display device of claim 8, wherein the sump is a protrusion extending from the second region, and the sump is selected from 下列組群之至少其一形狀者:凸字形、三角形、倒三角 形、及圓形。 10.如申請專利範圍第1項之液晶顯示器裝置,其中該第一 及第二凹槽具有在2〜5 μηι之範圍内的寬度。 U·如申請專利範圍第1項之液晶顯示器裝置,其中由該第 及苐一凹槽所圍繞的區域具有至少二選自下列組群 的形狀··橢圓形、漸盈新月形、漸虧彎月形、跑道形、 半跑道形、及一伸長凹透鏡形。At least one of the following groups is shaped: a chevron, a triangle, an inverted triangle, and a circle. 10. The liquid crystal display device of claim 1, wherein the first and second grooves have a width in the range of 2 to 5 μη. The liquid crystal display device of claim 1, wherein the region surrounded by the first and second grooves has at least two shapes selected from the group consisting of: elliptical shape, progressively crescent moon shape, and progressive loss Meniscus, racetrack shape, half runway shape, and an elongated concave lens shape. 12.如申請專利範圍第11項之液晶顯示器裝置,其中介於相 鄰之第一凹槽間的距離,以及介於相鄰之第二凹槽間的 距離係在4μηι〜20 μηι之間變化。 13·如申請專利範圍第1項之液晶顯示器裝置,其中一由第 及苐一凹槽所圍繞的區域’含有一形成在中央部位之 散射凹部。 14·如申請專利範圍第1項之液晶顯示器裝置,更包含有一 做為切換元件的薄膜電晶體,該薄膜電晶體含有一閘極 電極、一閘極絕緣膜、一半導體層、一電阻接觸層、一 源極電極、及一汲極電極等乃依序形成在該第一基板12. The liquid crystal display device of claim 11, wherein the distance between the adjacent first grooves and the distance between the adjacent second grooves vary between 4 μηι and 20 μηι . 13. The liquid crystal display device of claim 1, wherein a region surrounded by the first and second grooves includes a scattering recess formed at a central portion. 14. The liquid crystal display device of claim 1, further comprising a thin film transistor as a switching element, the thin film transistor comprising a gate electrode, a gate insulating film, a semiconductor layer, and a resistive contact layer a source electrode, a drain electrode, etc. are sequentially formed on the first substrate 57 130049757 1300497 六、申請專利範圍 上。 15.如申請專利範圍第1項之液晶顯示器裝置,更包含有-做為切換元件的薄膜電晶體,該薄膜電晶體乃含有一閘 極電極、一設在該閘極電極底下之源極及汲極區,一設 於該閘極電極與源極及汲極區之間的閘極絕緣膜,一設 在該閘極電極上之氧化物層,一連接於該源極區之源極 電極,及一連接於該汲極區之汲極電極。 16·如申請專利範圍第1項之液晶顯示器裝置,更包含一形 成於第一基板與反射電極之間的有機絕緣膜,而使該有 機絕緣膜與該反射電極具有相同的表面結構。 17· 一種製造液晶顯示器裝置的方法,包含以下步驟: 在一苐一基板上形成一像元陣列; 在。亥第基板所开> 成的結構上形成一有機絕緣膜; 在該有機絕緣膜的表面部份形成多數的第一區,及 夕數與第—區具有高度差的第二區,纟中該第一區包含 有複數條第一凹槽與複數條第二凹槽,該等第—凹槽於 H向延伸,以令該反射電極於_實質正交於』第 厂方向之第二方向上有較高反射性,並且該等第二凹槽 連結該等彼此相鄰的第一凹槽; 曰 在該有機絕緣膜上形成一反射電極; 形成一對向該第一基板之第二基板;及 在該第-基板與第二基板之間形成一液晶居 μ.如申請專利範圍第17項之方法,其中該 β 旋塗法來被开彡忐约〗. 、、緣膜係以 凌不被形成約1〜3 μηι的厚度範圍。 58 1300497 六 '申請專利範圍 I9·如申請專利範圍第18項之方法,其中該有機絕緣膜之第 —區及第二區等,係使用一具有對應於該等第一區與第 二區之罩幕圖案的罩幕來曝光該有機絕緣膜,再將該有 機絕緣膜顯像而來形成者。 20·如申請專利範圍第19項之方法,其中該罩幕圖案乃對應 於第一區,且該罩幕圖案包含一散射凹部圖案,能在= 等第二區的中央部位形成一散射凹部。 21.如申請專利範圍第19項之方法,其中該罩幕圖案乃包含 一填槽圖案,可使一填槽物形成於該等第一凹槽與第二 凹槽的交叉部份,該填槽物能令第一區的凹槽具有一致 的深度。 、 22·如申請專利範圍第19項之方法,其中在該有機絕緣膜的 表面部份形成該等第一區與第二區的步驟,乃包含下 步驟: 膜上=具有第-圖案的第-軍幕定位在該有機絕緣 —利用該第-罩幕來全量曝光該有機絕緣膜,而形成 =接觸孔以連接該反射電極與設在該基板上的像元陣 將一具有第二圖案的第二罩幕定 膜上方;及 ♦心以有機絕緣 利用該第二罩幕來透鏡曝光該有機 有機絕緣膜上形成該等第一區域與第二區=膜而在该 23.如申請專利範圍第22項之方法,其中該第_圖案乃具有 59 1300497 六 、申請專利範圍 於雜觸孔的形狀,而該第二圖案係具有對應於該 f罘一區或弟二區的形狀。 24·如中請專利範圍第19項之古 矣 τ在该有機絕緣膜的 :面=等第一區與第二區的步驟,係藉由沿該 =方向製成該等互相平行並具有一所擇寬度 凹槽,及沿該第二方向於唁犛笛 亥4第一凹槽之間製成之該等 不連續地列設之第二凹槽,而來完成者。 25·=申請專利範圍第19項之方法,其中製成該等第-區與 一區的步驟乃包含下列步驟: 膜上=具有一第一圖案的第一罩幕定位在該有機絕緣 /利用,亥第-單幕來部份曝光該有機絕緣膜,而部份 也心成彳連接該反射電極與設在該基板上之像元 列的接觸孔; 將具有-第二圖案的第二罩幕定位在該 膜上方;及 ' 利用该第二罩幕來透鏡曝光該有機絕緣膜,而在該 有機絕緣膜上形成該等第一區與第二區,並同時完成該 接觸孔。 Λ 26·如申咕專利範圍第25項之方法,其中該部份曝光步驟係 以一曝光4來進行,該曝光量係次曝光程序來 製成該接觸孔的全曝光量,減去供進行透鏡曝光的透鏡 曝光量所得之曝光量。 27·—種液晶顯示器裝置,包含: 60 1300497 六、申請專利範圍 一絕緣基材,於其上形成有一像元陣列;及 反射器,其電氣地連接於該像元陣列,而包含複 數個第-凹槽,該等第一凹槽係沿一第一方向延伸,以 令該反射器於-實質正交於該第一方向之第二方向上 有李乂同反射性’且介於該等第一凹槽間的一距離係不規 則的。 2 8 ·如申請專利範圍第2 7項之液晶顯#器裝置,t包含有一 做為一切換元件的薄膜電晶體,該薄膜電晶體乃包含一 間極電極、-閘極絕緣層、一半導體層、一電阻接觸層、 及一源極與汲極電極;或包含一閘極電極,一設在該閘 極電極底下之源極與汲極區,_設在該閘極電極與源極 及汲極區之間的閘極絕緣膜,一設在該閘極電極上之氧 化物層,一連接於該源極區之源極電極,及一連接於該 沒極區之沒極電極。 29.-種製造液晶顯示器裝置的方法,包含以下步驟: 在一絕緣基材上形成一像元陣列;及 在該絕緣基材上形成_反射器,該反射器係電氣地 連接於該像元陣列,且該反射器包含多數的第一區,及 夕數與”亥等第一區具有高度差的第二區,·其中該第一區 包含有複數條第一凹槽與複數條第二凹槽,該等第一凹 槽於一第一方向延伸,以令該反射器於一實質正交於該 第一方向之第二方向上有較高反射性,並且該等第二凹 槽連結該等彼此相鄰的第一凹槽。 3〇·如申請專利範圍第29項之方法,其中製成該反射器的步 1300497 六、申請專利範圍 驟係在-於該絕緣基材上形成一光阻膜的步驟之後才 來進行。 31.如申請專利範圍第3〇項之方法,其中形成該光阻膜 驟乃包含: 將具有第-圖案之第一罩幕定位在該光阻膜上方; 利用該第一罩幕來全量曝光該光阻膜,而形成一接 觸孔以電氣地連接該像元陣列之切換元件與該反㈣; 將具有第二圖案之第二罩定位在該光阻膜上方;及 Μ㈣^罩幕來透鏡曝光該綠膜,而在該光阻 膜的表面部份形成具有與該等第一區及第二區表面結 構相同的區域。 32·如申請專利範圍第30項之方法,其中形成該光阻膜的步 驟乃包含: 將具有第—圖案的第-罩幕定位在該光阻膜上方; 供 觸 利用違第-罩幕來部份曝光該光阻膜,而形成一 電孔地連接該像元陣列之切換元件與該反射器的接 ; 將/、有第一圖案的第二罩幕置定位在該光阻膜上 方;及 ' 利用该第二罩幕來透鏡曝光該光阻膜,而在該光阻 膜的表面#形成該等第_區與第二區,並同時完成該 接觸孔。 33·如中哨專利範圍第29項之方法’其中該方法更包含以下 ν驟·在该絕緣基材上形成一有機絕緣膜;利用一具有 62 1300497Sixth, the scope of application for patents. 15. The liquid crystal display device of claim 1, further comprising a thin film transistor as a switching element, the thin film transistor comprising a gate electrode, a source disposed under the gate electrode, and a drain region, a gate insulating film disposed between the gate electrode and the source and drain regions, an oxide layer disposed on the gate electrode, and a source electrode connected to the source region And a drain electrode connected to the drain region. The liquid crystal display device of claim 1, further comprising an organic insulating film formed between the first substrate and the reflective electrode, wherein the organic insulating film has the same surface structure as the reflective electrode. 17. A method of fabricating a liquid crystal display device comprising the steps of: forming an array of pixels on a substrate; An organic insulating film is formed on the structure of the substrate; a plurality of first regions are formed on a surface portion of the organic insulating film, and a second region having a height difference between the imaginary and the first regions is formed. The first region includes a plurality of first grooves and a plurality of second grooves extending in the H direction such that the reflective electrode is substantially orthogonal to the second direction of the factory direction The second recess is coupled to the first recesses adjacent to each other; 曰 forming a reflective electrode on the organic insulating film; forming a pair of second substrates facing the first substrate And forming a liquid crystal between the first substrate and the second substrate, as in the method of claim 17, wherein the β spin coating method is opened 彡忐. It is not formed in a thickness range of about 1 to 3 μηι. The method of claim 18, wherein the first region and the second region of the organic insulating film are used to have a corresponding one of the first region and the second region. The mask of the mask pattern exposes the organic insulating film, and the organic insulating film is developed to form the film. The method of claim 19, wherein the mask pattern corresponds to the first region, and the mask pattern comprises a scattering recess pattern, and a scattering recess can be formed at a central portion of the second region such as =. The method of claim 19, wherein the mask pattern comprises a groove pattern, wherein a groove is formed at an intersection of the first groove and the second groove, the filling The grooves enable the grooves of the first zone to have a uniform depth. The method of claim 19, wherein the step of forming the first region and the second region on the surface portion of the organic insulating film comprises the following steps: on the film = having the first pattern - the military screen is positioned in the organic insulation - the first mask is used to fully expose the organic insulating film, and the = contact hole is formed to connect the reflective electrode and the pixel array disposed on the substrate to have a second pattern a second mask is fixed over the film; and ♦ the core is organically insulated by the second mask to expose the organic organic insulating film to form the first region and the second region=film. The method of item 22, wherein the _th pattern has a shape of 59 1300497, the patent application is in the shape of a hetero-contact hole, and the second pattern has a shape corresponding to the area of the area or the second area. 24. The step of claim 19 of the patent scope is in the step of: the first region and the second region of the organic insulating film, which are made parallel to each other along the = direction and have one The width groove is selected, and the second grooves are formed discontinuously between the first grooves of the whirlpool 4 along the second direction. 25. The method of claim 19, wherein the step of forming the first region and the region comprises the steps of: forming a first mask having a first pattern on the film and positioning the organic insulation/utilization , the haidi-single screen partially exposes the organic insulating film, and the portion is also a contact hole connecting the reflective electrode and the pixel column disposed on the substrate; the second cover having the second pattern The screen is positioned above the film; and 'the second mask is used to expose the organic insulating film by lens, and the first and second regions are formed on the organic insulating film, and the contact hole is completed at the same time. The method of claim 25, wherein the partial exposure step is performed by an exposure 4, the exposure amount is a sub-exposure procedure to make a full exposure amount of the contact hole, minus for performing The amount of exposure resulting from the lens exposure of the lens exposure. 27. A liquid crystal display device comprising: 60 1300497. A patented invention-insulating substrate having an array of pixels formed thereon; and a reflector electrically coupled to the array of pixels and including a plurality of a recess extending in a first direction such that the reflector has a Lee's reflectivity in a second direction substantially orthogonal to the first direction and is between the first A distance between the grooves is irregular. 2 8 · The liquid crystal display device of claim 27, t includes a thin film transistor as a switching element, the thin film transistor comprising a pole electrode, a gate insulating layer, a semiconductor a layer, a resistive contact layer, and a source and drain electrode; or a gate electrode, a source and a drain region disposed under the gate electrode, _ disposed at the gate electrode and the source A gate insulating film between the drain regions, an oxide layer disposed on the gate electrode, a source electrode connected to the source region, and a gate electrode connected to the gate region. 29. A method of fabricating a liquid crystal display device comprising the steps of: forming an array of pixels on an insulative substrate; and forming a reflector on the insulative substrate, the reflector being electrically connected to the pixel An array, wherein the reflector comprises a plurality of first regions, and a second region having a height difference with the first region such as "Hai", wherein the first region includes a plurality of first grooves and a plurality of second portions a groove extending in a first direction to make the reflector highly reflective in a second direction substantially orthogonal to the first direction, and the second groove is coupled The first groove adjacent to each other. 3. The method of claim 29, wherein the step of making the reflector is 1300497. The scope of the patent application is formed on the insulating substrate. 31. The method of claim 3, wherein the method of forming the photoresist film comprises: positioning a first mask having a first pattern over the photoresist film Using the first mask to fully expose the photoresist film Forming a contact hole to electrically connect the switching element of the pixel array with the reverse (four); positioning a second cover having a second pattern over the photoresist film; and Μ (4) masking the lens to expose the green film, And forming a region having the same surface structure as the first region and the second region in the surface portion of the photoresist film. 32. The method of claim 30, wherein the step of forming the photoresist film comprises : positioning a first mask having a first pattern over the photoresist film; and partially exposing the photoresist film by using a mask to form an electrical connection to the switching element of the pixel array Connecting the reflector; positioning a second mask having a first pattern over the photoresist film; and 'using the second mask to expose the photoresist film to the lens, and the photoresist film The surface # forms the first and second regions, and simultaneously completes the contact hole. 33. The method of claim 29, wherein the method further comprises the following steps: forming on the insulating substrate An organic insulating film; utilizing one having 62 1300497 63 灣49763 Bay 497 6464
TW90120365A 2001-08-20 2001-08-20 Reflection type liquid crystal display and method of manufacturing the same TWI300497B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90120365A TWI300497B (en) 2001-08-20 2001-08-20 Reflection type liquid crystal display and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90120365A TWI300497B (en) 2001-08-20 2001-08-20 Reflection type liquid crystal display and method of manufacturing the same

Publications (1)

Publication Number Publication Date
TWI300497B true TWI300497B (en) 2008-09-01

Family

ID=45069981

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90120365A TWI300497B (en) 2001-08-20 2001-08-20 Reflection type liquid crystal display and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI300497B (en)

Similar Documents

Publication Publication Date Title
US7440055B2 (en) Transflective liquid crystal display device and fabricating method thereof
US6342935B1 (en) Reflection type liquid crystal display and a method for fabricating the same
JP4993830B2 (en) Reflective liquid crystal display device and manufacturing method thereof
JP3714244B2 (en) Transflective / reflective electro-optical device manufacturing method, transflective / reflective electro-optical device, and electronic apparatus
JP4798822B2 (en) Reflective liquid crystal display device and manufacturing method thereof
JP2007292930A (en) Liquid crystal display device and its manufacturing method
JP2007212969A (en) Reflection plate, liquid crystal display device provided with the reflection plate, and method of manufacturing the same
JP5523654B2 (en) Transflective liquid crystal display device
KR100737895B1 (en) Reflective type liquid crystal display and transmissive and reflective type liquid crystal display and method of manufacturing the same
JP2006323385A (en) Transflective liquid crystal display device, display panel therefor, and method of manufacturing the panel
JP2000284272A (en) Liquid crystal display device and its production
US6919943B2 (en) Substrate for a liquid crystal device, method of manufacturing a substrate for a liquid crystal device, a liquid crystal device, a method of manufacturing a liquid crystal device, and an electronic apparatus
JP3722116B2 (en) Reflective electro-optical device and electronic apparatus
TWI375839B (en) Liquid crystal panel and method of making the same
KR100757789B1 (en) Reflective type liquid crystal device
TWI300497B (en) Reflection type liquid crystal display and method of manufacturing the same
KR100731309B1 (en) Reflective-type Liquid Crystal Display
US7929107B2 (en) Exposure chuck comprising a surface of a lift bar having a concavo-convex structure
KR20070042615A (en) Array substrate and method of manufacturing the same
JP2007133373A (en) Display substrate, method of manufacturing the same, and display device having the same
KR100821525B1 (en) Liquid crystal device having reflective electrode and method of manufacturing the same
JP3979077B2 (en) Electro-optical device and electronic apparatus
KR100731337B1 (en) Liquid Crystal Display and method for manufacturing the same
TWI303002B (en) Methods for forming photosensitive insulating film pattern and reflection electrode each having irregular upper surface and method for manufacturing lcd having reflection electrode using the same
TW591570B (en) Reflection type liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees