[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI395336B - Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides - Google Patents

Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides Download PDF

Info

Publication number
TWI395336B
TWI395336B TW98119189A TW98119189A TWI395336B TW I395336 B TWI395336 B TW I395336B TW 98119189 A TW98119189 A TW 98119189A TW 98119189 A TW98119189 A TW 98119189A TW I395336 B TWI395336 B TW I395336B
Authority
TW
Taiwan
Prior art keywords
entropy alloy
element high
oxygen
copper
atomic percentage
Prior art date
Application number
TW98119189A
Other languages
Chinese (zh)
Other versions
TW201044597A (en
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW98119189A priority Critical patent/TWI395336B/en
Publication of TW201044597A publication Critical patent/TW201044597A/en
Application granted granted Critical
Publication of TWI395336B publication Critical patent/TWI395336B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Description

具有多元高熵合金氧化物的光電半導體、導體、絕緣體及其設計方法Photoelectric semiconductor, conductor, insulator and design method thereof with multi-element high-entropy alloy oxide

本發明是有關於一種合金氧化物,特別是指一種多元高熵合金氧化的光電半導體、導體、絕緣體,及其設計方法。The invention relates to an alloy oxide, in particular to an optoelectronic semiconductor, a conductor, an insulator oxidized by a multi-element high-entropy alloy, and a design method thereof.

多元高熵合金(Multr-element High-Entropy Alloys)是一種以多元主成份取代傳統上使用單一主成份的合金設計觀念,也就是多種主要元素構成的合金,其中,每種主要元素皆具有高但不超過35at%的原子百分比,因此,沒有任一主要元素佔有50at%而成為唯一主要元素。Multr-element High-Entropy Alloys are alloys that replace the traditional use of a single principal component with a multi-component main component, that is, an alloy composed of a variety of major elements, each of which has a high but high Not more than 35 at% of the atomic percentage, therefore, no major element occupies 50 at% and becomes the only major element.

由已往的研究中發現,多元高熵合金由於高熵效應促進各主要元素的均勻混合,因此在晶體結構上會呈現容易形成體心立方(BCC)、面心立方(FCC)結晶,或為非晶質(amorphous)等結構,並在材料性質方面,呈現具有高硬度、耐高溫軟化、耐高溫氧化、耐腐蝕等特性,此外,多元高熵合金的微結構因為多個元素的擴散與重分配而傾向奈米化,對於快速凝固或真空鍍膜過程而言,更展現非晶化傾向,因此在材料應用上具有很大的產業潛力。It has been found from previous studies that multi-enriched high-entropy alloys promote uniform mixing of major elements due to high entropy effect, so it is easy to form body-centered cubic (BCC), face-centered cubic (FCC) crystals, or Structures such as amorphous, and in terms of material properties, exhibit high hardness, high temperature softening resistance, high temperature oxidation resistance, corrosion resistance, etc. In addition, the microstructure of multi-element high-entropy alloys is diffused and redistributed due to multiple elements. The tendency to nanocrystallization, for the rapid solidification or vacuum coating process, shows a tendency to amorphization, so it has great industrial potential in material applications.

另一方面,透明導電氧化物(Transparent Conducting Oxide,TCO)是光電元件的重要關鍵材料之一,主要的應用是作為例如平面顯示器(FPD)、太陽能電池(Solar cell)、觸控式面板螢幕、電子書(e-book)等光電元件的透明電極,一般可區分為例如ITO、ZnO和SnO2 等n型的透明導電氧化物,以及例如CuAlO2 、CuCrO2 、CuFeO2 和SrCu2 O2 等p型的透明導電氧化物兩類。On the other hand, Transparent Conducting Oxide (TCO) is one of the key materials for photovoltaic components. The main applications are, for example, flat panel displays (FPD), solar cells, touch panel screens, A transparent electrode of a photovoltaic element such as an e-book can be generally classified into an n-type transparent conductive oxide such as ITO, ZnO, and SnO 2 , and, for example, CuAlO 2 , CuCrO 2 , CuFeO 2 , and SrCu 2 O 2 . Two types of p-type transparent conductive oxides.

但現有的n型透明導電氧化物,例如ZnO為纖鋅礦結構(Wurzite hexagonal structure),與p型的透明導電氧化物,例如CuAlO2 、CuCrO2 、CuFeO2 為黑銅鐵礦結構(Delafossite structure),根據文獻指出,黑銅鐵礦結構具有異向性,且較不易於室溫下合成。However, the existing n-type transparent conductive oxide, such as ZnO, is a wurzite hexagonal structure, and a p-type transparent conductive oxide such as CuAlO 2 , CuCrO 2 , and CuFeO 2 is a black copper iron ore structure (Delafossite structure) According to the literature, the black copper iron ore structure is anisotropic and less prone to synthesis at room temperature.

因此,倘能應用高熵合金的多樣性與優異性質,開發適用於光電技術領域的材料,將能促使光電技術往前邁進一大步。Therefore, if the diversity and superior properties of high-entropy alloys can be applied, the development of materials suitable for the field of optoelectronic technology will enable optoelectronic technology to take a big step forward.

由於目前並未有以高熵合金開發光電材料的研究,且高熵合金因為各組成元素皆是主要元素,以目前已知元素的組成而言,可開發的合金系統無以計數,因此在毫無開發基礎的前提下,發明人的研究團隊從目前已有的ITO、ZnO、SnO2 、CuAlO2 、CuCrO2 和TiO2 :Nb等現有的透明導電氧化物中,選擇鋅(Zn)、錫(Sn)、銅(Cu)、鈦(Ti),與鈮(Nb)為主要元素成高熵合金,並與氧結合成高熵合金氧化物進行研究。Since there is no research on the development of optoelectronic materials with high-entropy alloys, and high-entropy alloys are the main elements because of the composition of the elements, the alloy systems that can be developed are countless, so On the premise of no development basis, the inventor's research team selected zinc (Zn) and tin from the existing transparent conductive oxides such as ITO, ZnO, SnO 2 , CuAlO 2 , CuCrO 2 and TiO 2 :Nb. (Sn), copper (Cu), titanium (Ti), and niobium (Nb) are high-entropy alloys as main elements, and are combined with oxygen to form high-entropy alloy oxides.

而結果是令人驚喜地,當控制氧的原子百分比在佔陶瓷材料的40at%~80at%範圍中,並自40at%向上增加時,此多元高熵合金與氧有規則地結合成導體、光電半導體與透明絕緣體的特性。The result is surprising. When the atomic percentage of controlling oxygen is in the range of 40at% to 80at% of the ceramic material and increases from 40at%, the multi-element high-entropy alloy and oxygen are regularly combined into a conductor and a photoelectric Characteristics of semiconductors and transparent insulators.

於是,本發明提供具有多元高熵合金的陶瓷材料的設計方法,是選擇鋅、錫、銅、鈦,與鈮構成一多元高熵合金,其中,鋅、錫、銅、鈦,與鈮的原子百分比分別佔該多元高熵合金的3.00at%~13.00at%,再調整氧佔該多元高熵合金的51.00at%~57.00at%,使多元高熵合金與氧結合成光電半導體。Accordingly, the present invention provides a method for designing a ceramic material having a multi-element high-entropy alloy, which is selected from the group consisting of zinc, tin, copper, titanium, and tantalum to form a multi-element high-entropy alloy, wherein zinc, tin, copper, titanium, and niobium The atomic percentage accounts for 3.00at%~13.00at% of the multi-element high-entropy alloy, respectively, and the oxygen is adjusted to account for 51.00at%~57.00at% of the multi-high-entropy alloy, so that the multi-element high-entropy alloy and oxygen combine to form an optoelectronic semiconductor.

另外,再調整氧的原子百分比不大於50.5at%,可使多元高熵合金與氧結合成導體;調整氧的原子百分比大於59.00at%,則使多元高熵合金與氧結合成透明絕緣體。In addition, by adjusting the atomic percentage of oxygen to not more than 50.5 at%, the multi-element high-entropy alloy can be combined with oxygen to form a conductor; if the atomic percentage of oxygen is adjusted to be greater than 59.00 at%, the multi-element high-entropy alloy is combined with oxygen to form a transparent insulator.

本發明之功效在於:提供一種新的、由鋅、錫、銅、鈦,與鈮構成的多元高熵合金與氧所成的光電半導體、導體,及透明絕緣體,除了可以豐富目前的合金氧化物的系統之外,還可以供光電元件應用而促進光電元件的技術發展。The utility model has the advantages of providing a novel photoelectric semiconductor, a conductor and a transparent insulator composed of a plurality of high-entropy alloys composed of zinc, tin, copper, titanium and bismuth and oxygen, in addition to enriching the current alloy oxide In addition to the system, it is also possible to promote the technological development of photovoltaic elements for the application of photovoltaic elements.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.

發明人以Zn0.2 Sn0.2 Cu0.2 Ti0.2 Nb0.2 靶材,配合基礎真空(Base pressure)3.0×10-6 Torr、工作壓力(Working pressure)3.0×10-3 Torr、射頻功率(RF Power)200W,並分別在氧氣/氧氣+氬氣的通入氣氛比(O2 /O2 +Ar ratio)是4.4%、4.7%、5.0%、5.3%下,以靶材與基材間距70mm濺鍍(sputtering)沉積20分鐘,分別於玻璃基材上得到(Zn8.2 Sn10.3 Cu11.3 Ti8.7 Nb11.2 )49.7 O50.3 (以下簡稱第一合金氧化物)、(Zn12.8 Sn5.4 Cu12.1 Ti7.9 Nb10.1 )48.4 O51.6 (以下簡稱第二合金氧化物)(Zn11.7 Sn7.3 Cu8.5 Ti7.1 Nb9.4 )44.0 O56.0 (以下簡稱第三合金氧化物)(Zn12.23 Sn10.2 Cu9.1 Ti3.5 Nb5.6 )40.8 O59.2 (以下簡稱第四合金氧化物)。The inventors used a Zn 0.2 Sn 0.2 Cu 0.2 Ti 0.2 Nb 0.2 target with a base pressure of 3.0 × 10 -6 Torr, a working pressure of 3.0 × 10 -3 Torr, and an RF power of 200 W. And the oxygen/oxygen + argon atmosphere ratio (O 2 /O 2 +Ar ratio) is 4.4%, 4.7%, 5.0%, 5.3%, and the target-substrate spacing is 70mm. Sputtering for 20 minutes, respectively, on a glass substrate (Zn 8.2 Sn 10.3 Cu 11.3 Ti 8.7 Nb 11.2 ) 49.7 O 50.3 (hereinafter referred to as the first alloy oxide), (Zn 12.8 Sn 5.4 Cu 12.1 Ti 7.9 Nb 10.1 ) 48.4 O 51.6 (hereinafter referred to as the second alloy oxide) (Zn 11.7 Sn 7.3 Cu 8.5 Ti 7.1 Nb 9.4 ) 44.0 O 56.0 (hereinafter referred to as the third alloy oxide) (Zn 12.23 Sn 10.2 Cu 9.1 Ti 3.5 Nb 5.6 ) 40.8 O 59.2 (hereinafter referred to as the fourth alloy oxide).

參閱圖1,圖1是第一、二、三、四合金氧化物的X-ray繞射圖,由圖中結果可知第一、二、三、四合金氧化物均是非晶態結構。Referring to Fig. 1, Fig. 1 is an X-ray diffraction pattern of first, second, third and fourth alloy oxides. It can be seen from the results of the figures that the first, second, third and fourth alloy oxides are all amorphous structures.

參閱圖2、圖3、圖4、圖5,圖2、3、4、5分別是以鋅、銅、鈦、鈮的光電子強度(intensity(a.u.))為縱座標,束縛能(binding energy(eV))為橫座標得到的第一、二、三、四合金氧化物的X-ray光電能譜圖(X-ray photoelectronic spectroscopy),綜合四圖可以驗證第一、二、三、四合金氧化物隨著氧原子百分比的增加,第一、二、三、四合金氧化物的束縛能增加,亦即,價電子被移離或氧化態增加,也就是說多元高熵合金氧化物會依氧原子百分比的增加而光學能隙增加,導電性漸減;換句話說,本發明確實在預定的氧原子百分比範圍中調整氧原子百分比而成導體、半導體與絕緣體。Referring to Figures 2, 3, 4, and 5, Figures 2, 3, 4, and 5 are the ordinates of the intensity (au) of zinc, copper, titanium, and tantalum, respectively. eV)) X-ray photoelectron spectroscopy of the first, second, third and fourth alloy oxides obtained from the abscissa, and the four graphs can verify the oxidation of the first, second, third and fourth alloys. As the percentage of oxygen atoms increases, the binding energy of the first, second, third, and fourth alloy oxides increases, that is, the valence electrons are removed or the oxidation state increases, that is, the multi-element high-energy alloy oxides are oxygen-dependent. The atomic percentage increases while the optical energy gap increases, and the conductivity decreases. In other words, the present invention does adjust the percentage of oxygen atoms in a predetermined range of oxygen atomic percentages to form conductors, semiconductors, and insulators.

參閱圖6,圖6是第一、二、三、四合金氧化物分別在厚度是364nm、292nm、277nm、209nm時對全波域光的穿透率表現,由量測結果可以知道,保守而言當第二、三、四合金氧化物的膜厚不大於300nm時對可見光具有一定程度的穿透率,且膜厚愈薄、穿透率愈高,但是,主因還是高熵合金合金氧化物會隨著氧原子百分比的增加而光學能隙增加,也就是說,第二、三合金氧化物非但是半導體,而且是對可見光具有一定程度穿透率的光電半導體。Referring to FIG. 6, FIG. 6 is a graph showing the transmittance of the first, second, third, and fourth alloy oxides to the full-wavelength light at thicknesses of 364 nm, 292 nm, 277 nm, and 209 nm, respectively, and the measurement results are known to be conservative. When the film thickness of the second, third and fourth alloy oxides is not more than 300 nm, the visible light has a certain degree of transmittance, and the thinner the film thickness, the higher the transmittance, but the main cause is the high-entropy alloy oxide. The optical energy gap increases as the percentage of oxygen atoms increases, that is, the second and third alloy oxides are not semiconductors, but are optoelectronic semiconductors having a certain degree of transmittance for visible light.

配合參閱圖7、圖8與圖9,圖7、圖8、圖9分別是第二、三、四合金氧化物的非直接能隙,在此要說明的是,由於第一合金氧化物為不透光的導體故不具有能隙,由圖7、圖8與圖9可間接驗證在氧原子百分比的含量漸增下,非直接能隙由1.69eV增加至2.66eV,第二、三合金氧化物是半導體,第四合金氧化物是絕緣體。Referring to FIG. 7, FIG. 8 and FIG. 9, FIG. 7, FIG. 8, and FIG. 9 are respectively the indirect energy gaps of the second, third, and fourth alloy oxides, and the first alloy oxide is The opaque conductor does not have an energy gap. It can be indirectly verified from Fig. 7, Fig. 8 and Fig. 9 that the indirect energy gap increases from 1.69eV to 2.66eV, and the second and third alloys are gradually increased. The oxide is a semiconductor and the fourth alloy oxide is an insulator.

再將第一、二、三、四合金氧化物的材料特性整理如下表,可更進一步地驗證本發明。Further, the material properties of the first, second, third, and fourth alloy oxides are organized as follows, and the present invention can be further verified.

綜上所述,本發明主要是提供一種新的、由多元高熵合金與氧結合成光電半導體、導體、透明絕緣體以及此些生成物的設計方法,確實可在氧的原子百分比在40at%~80at%的範圍下,再精確氧與多元高熵合金的組份關係而分別得到透明絕緣體、光電半導體,與導體等光電材料,除了可以豐富目前的合金氧化物的系統之外,還可以供光電元件應用而促進光電元件的技術發展,確實達到本發明之目的。In summary, the present invention mainly provides a novel design method for combining a multi-element high-entropy alloy and oxygen into an optoelectronic semiconductor, a conductor, a transparent insulator, and the like, and the atomic percentage of oxygen can be 40 at%. In the range of 80at%, the composition of the precise oxygen and the multi-entropy alloy is obtained as a transparent insulator, an optoelectronic semiconductor, and a photoelectric material such as a conductor, in addition to a system that can enrich the current alloy oxide, and can also be used for optoelectronics. The application of components to promote the technical development of photovoltaic elements has indeed achieved the object of the present invention.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

圖1是一X-ray繞射圖,說明驗證本發明之實驗所製作的四合金氧化物是非晶態結構;1 is an X-ray diffraction diagram illustrating the verification of the four alloy oxide produced by the experiment of the present invention as an amorphous structure;

圖2是一光電光譜圖,說明驗證本發明之實驗所製作的四合金氧化物中,鋅光電子吸收強度與束縛能的關係;2 is a photoelectric spectrum diagram illustrating the relationship between the absorption intensity of zinc photoelectron and the binding energy in the four-alloy oxide produced by the experiment of the present invention;

圖3是一光電光譜圖,說明驗證本發明之實驗所製作的四合金氧化物中,銅光電子吸收強度與束縛能的關係;3 is a photoelectric spectrum diagram illustrating the relationship between the absorption intensity of copper photoelectron and the binding energy in the four-alloy oxide produced by the experiment of the present invention;

圖4是一光電光譜圖,說明驗證本發明之實驗所製作的四合金氧化物中,鈦光電子吸收強度與束縛能的關係;Figure 4 is a photoelectric spectrum diagram illustrating the relationship between the absorption intensity of titanium photoelectron and the binding energy in the four-alloy oxide produced by the experiment of the present invention;

圖5是一光電光譜圖,說明驗證本發明之實驗所製作的四合金氧化物中,鈮光電子吸收強度與束縛能的關係;Figure 5 is a photoelectric spectrum diagram illustrating the relationship between the absorption intensity of the photoelectron and the binding energy in the four-alloy oxide produced by the experiment of the present invention;

圖6是一光穿透率曲線圖,說明驗證本發明之實驗所製作的四合金氧化物對200-1000nm波長的光穿透率;Figure 6 is a graph of light transmittance, illustrating the light transmittance of a four-alloy oxide produced by the experiment of the present invention for a wavelength of 200-1000 nm;

圖7是一非直接能隙圖,說明本發明之實驗所製作的一第二合金氧化物的非直接能隙;Figure 7 is an indirect energy gap diagram illustrating the indirect energy gap of a second alloy oxide produced by the experiment of the present invention;

圖8是一非直接能隙圖,說明本發明之實驗所製作的一第三合金氧化物的非直接能隙;及Figure 8 is a non-direct energy gap diagram illustrating the indirect energy gap of a third alloy oxide produced by the experiment of the present invention;

圖9是一非直接能隙圖,說明本發明之實驗所製作的一第四合金氧化物的非直接能隙。Figure 9 is a non-direct energy gap diagram illustrating the indirect energy gap of a fourth alloy oxide produced by the experiment of the present invention.

Claims (6)

一種具有多元高熵合金氧化物的光電半導體的設計方法,包含:(a)選擇鋅、錫、銅、鈦,與鈮構成多元高熵合金,其中,鋅、錫、銅、鈦,與鈮占該多元高熵合金的原子百分比是3.00at%~13.00at%;及(b)調整氧佔光電半導體的原子百分比是51.00at%~57.00at%的範圍,使多元高熵合金與氧結合成光電半導體。 A method for designing an optoelectronic semiconductor having a multi-element high-entropy alloy oxide, comprising: (a) selecting zinc, tin, copper, titanium, and tantalum to form a multi-element high-entropy alloy, wherein zinc, tin, copper, titanium, and niobium account for The atomic percentage of the multi-element high-entropy alloy is 3.00at% to 13.00at%; and (b) the oxygen percentage of the optoelectronic semiconductor is adjusted to be 51.00at% to 57.00at%, and the multi-element high-entropy alloy is combined with oxygen to form a photoelectric semiconductor. 依據申請專利範圍第1項所述的具有多元高熵合金氧化物的光電半導體的設計方法,其中,該步驟(b)再調整氧的原子百分比不大於50.5at%,使多元高熵合金與氧結合成導體。 The method for designing an optoelectronic semiconductor having a multi-element high-entropy alloy oxide according to claim 1, wherein the step (b) re-adjusts the atomic percentage of oxygen to not more than 50.5 at% to make the multi-element high-entropy alloy and oxygen Combined into a conductor. 依據申請專利範圍第1項所述的具有多元高熵合金氧化物的光電半導體的設計方法,其中,該步驟(b)再調整氧的原子百分比大於59.00at%,使該多元高熵合金與氧結合成透明絕緣體。 The method for designing an optoelectronic semiconductor having a multi-element high-entropy alloy oxide according to claim 1, wherein the step (b) further adjusts the atomic percentage of oxygen to be greater than 59.00 at% to make the multi-element high-entropy alloy and oxygen Combined into a transparent insulator. 一種多元高熵合金氧化物的光電半導體,包含:原子百分比佔51.00at%~57.00at%的氧,與佔剩餘原子百分比組份的多元高熵合金,且該多元高熵合金是鋅、錫、銅、鈦,與鈮構成,其中,鋅、錫、銅、鈦,與鈮分別佔光電半導體總原子百分比是3.00at%~13.00at%。 An optoelectronic semiconductor of a multi-element high-entropy alloy oxide, comprising: an atomic percentage of 51.00 at% to 57.00 at% of oxygen, and a multi-element high-entropy alloy occupying a remaining atomic percentage component, and the multi-element high-entropy alloy is zinc, tin, Copper, titanium, and niobium are formed, wherein zinc, tin, copper, titanium, and niobium respectively account for 3.10at% to 13.00at% of the total atomic percentage of the optoelectronic semiconductor. 一種多元高熵合金氧化物的導體,包含:原子百分比不大於50.50at%的氧,與佔剩餘原子百分比的多元高熵合金,且該多元高熵合金是鋅、錫、銅、鈦,與鈮構成,其中,鋅、錫、銅、鈦,與鈮分別佔多元高熵合金氧化物的導體總原子百分比3.00at%~13.00at%。A multi-element high-entropy alloy oxide conductor comprising: oxygen having an atomic percentage of not more than 50.50 at%, and a multi-element high-entropy alloy accounting for a percentage of residual atoms, and the multi-element high-entropy alloy is zinc, tin, copper, titanium, and tantalum The composition, wherein zinc, tin, copper, titanium, and yttrium respectively account for 3.10 at% to 13.00 at% of the total atomic percentage of the conductor of the multi-element high-entropy alloy oxide. 一種多元高熵合金氧化物的透明絕緣體,包含:原子百分比大於59.00at%且不超過80.00at%的氧,與佔剩餘原子百分比的多元高熵合金,且該多元高熵合金是鋅、錫、銅、鈦,與鈮構成,其中,鋅、錫、銅、鈦,與鈮分別佔多元高熵合金氧化物的導體總原子百分比3.00at%~13.00at%。A transparent insulator of a multi-element high-entropy alloy oxide comprising: oxygen having an atomic percentage greater than 59.00 at% and not exceeding 80.00 at%, and a multi-element high-entropy alloy occupying a percentage of residual atoms, and the multi-element high-entropy alloy is zinc, tin, Copper, titanium, and niobium, wherein zinc, tin, copper, titanium, and niobium respectively account for 3.10at% to 13.00at% of the total atomic percentage of the conductor of the multi-element high-entropy alloy oxide.
TW98119189A 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides TWI395336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98119189A TWI395336B (en) 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98119189A TWI395336B (en) 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides

Publications (2)

Publication Number Publication Date
TW201044597A TW201044597A (en) 2010-12-16
TWI395336B true TWI395336B (en) 2013-05-01

Family

ID=45001369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98119189A TWI395336B (en) 2009-06-09 2009-06-09 Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides

Country Status (1)

Country Link
TW (1) TWI395336B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710607B (en) * 2013-12-16 2016-01-06 北京科技大学 TiZrNbHfO high-entropy alloy of a kind of oxygen strengthening and preparation method thereof
CN109987935B (en) * 2019-03-20 2021-02-26 太原理工大学 (ZrHfCeTiZn) O having fluorite structure2Preparation method of-delta high-entropy oxide ceramic powder and block

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200632946A (en) * 2004-12-28 2006-09-16 Idemitsu Kosan Co Conductive film, conductive base material, and organic electro-luminescence device
TW200723954A (en) * 2005-09-12 2007-06-16 Idemitsu Kosan Co Conductive laminate and organic el device
TW200722542A (en) * 2005-09-01 2007-06-16 Idemitsu Kosan Co Sputtering target, transparent conductive film and transparent electrode
TW200833632A (en) * 2006-10-06 2008-08-16 Sumitomo Metal Mining Co Oxide sintering body, method for producing the same, transparency conductive film and solar battery obtained by using it
TW200909380A (en) * 2007-07-06 2009-03-01 Sumitomo Metal Mining Co Oxide sintered compact and method of manufacturing the same, target, transparent conductive film obtained by using the same, and transparent conductive substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200632946A (en) * 2004-12-28 2006-09-16 Idemitsu Kosan Co Conductive film, conductive base material, and organic electro-luminescence device
TW200722542A (en) * 2005-09-01 2007-06-16 Idemitsu Kosan Co Sputtering target, transparent conductive film and transparent electrode
TW200723954A (en) * 2005-09-12 2007-06-16 Idemitsu Kosan Co Conductive laminate and organic el device
TW200833632A (en) * 2006-10-06 2008-08-16 Sumitomo Metal Mining Co Oxide sintering body, method for producing the same, transparency conductive film and solar battery obtained by using it
TW200909380A (en) * 2007-07-06 2009-03-01 Sumitomo Metal Mining Co Oxide sintered compact and method of manufacturing the same, target, transparent conductive film obtained by using the same, and transparent conductive substrate

Also Published As

Publication number Publication date
TW201044597A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
Sharma et al. High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode
Wang et al. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering
TWI417905B (en) A transparent conductive film and a method for manufacturing the same, and a transparent conductive substrate and a light-emitting device
KR101789347B1 (en) Transparent conductive films
Wang et al. Investigation of the optical and electrical properties of ZnO/Cu/ZnO multilayers grown by atomic layer deposition
KR20150097478A (en) Zinc oxide-based transparent conductive film
Liu et al. Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin films
Bhoomanee et al. Diffusion-induced doping effects of Ga in ZnO/Ga/ZnO and AZO/Ga/AZO multilayer thin films
TW201118184A (en) CU-IN-GA-SE quaternary alloy sputtering target
Lennon et al. Effects of annealing in a partially reducing atmosphere on sputtered Al-doped ZnO thin films
Kang et al. Characteristics of an oxide/metal/oxide transparent conducting electrode fabricated with an intermediate Cu–Mo metal composite layer for application in efficient CIGS solar cell
Barman et al. Thin and flexible transparent conductors with superior bendability having Al-doped ZnO layers with embedded Ag nanoparticles prepared by magnetron sputtering
Sun et al. Synthesis and characterization of n-type NiO: Al thin films for fabrication of pn NiO homojunctions
Peksu et al. Doping and annealing effects on structural, electrical and optical properties of tin-doped zinc-oxide thin films
Singh et al. NTO/Ag/NTO multilayer transparent conducting electrodes for photovoltaic applications tuned by low energy ion implantation
TW201243869A (en) Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same
JP5348394B2 (en) (Zn, Al) O-based transparent electrode layer for solar cell and ZnO-Al2O3-based sputtering target used for forming the same
TWI395336B (en) Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides
JP2014109071A (en) Sputtering target
JP2012134434A (en) Transparent electrode film for solar cell, and solar cell using the same
Huh et al. Improving the morphological and optical properties of sputtered indium tin oxide thin films by adopting ultralow-pressure sputtering
EP2696371A2 (en) Solar cell and manufacturing method thereof
Li et al. Enhanced photoelectric properties in flexible CZTS solar cells using O/M/O structure
JP2012195501A (en) Thin film photoelectric conversion element and solar cell
TWI378899B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees