TWI389356B - Light emitting diode with a thermal sensor and manufacturing method thereof - Google Patents
Light emitting diode with a thermal sensor and manufacturing method thereof Download PDFInfo
- Publication number
- TWI389356B TWI389356B TW98106634A TW98106634A TWI389356B TW I389356 B TWI389356 B TW I389356B TW 98106634 A TW98106634 A TW 98106634A TW 98106634 A TW98106634 A TW 98106634A TW I389356 B TWI389356 B TW I389356B
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature sensing
- sensing element
- light
- emitting diode
- element according
- Prior art date
Links
Landscapes
- Led Device Packages (AREA)
Description
本發明係有關於一種具溫度感測元件之發光二極體晶片及其製造方法,尤指一種將溫度感測元件整合於發光二極體中之發光二極體晶片及其製造方法。The invention relates to a light-emitting diode chip with a temperature sensing element and a manufacturing method thereof, in particular to a light-emitting diode chip in which a temperature sensing element is integrated in a light-emitting diode and a manufacturing method thereof.
隨著半導體製程技術能力不斷向上提升,半導體晶片的功能日益強大,而電子元件體積愈來愈小,單位體積的熱量急速增加,為避免元件因熱量聚集而失效,故必須了解電子構裝之散熱能力,因此通常會應用溫度敏感參數原理來校正與量測相關之電壓降(Voltage Drop),再轉換為元件實際之熱阻,以評估其散熱的能力。As semiconductor process technology capabilities continue to rise, semiconductor wafers are becoming more powerful, and electronic components are becoming smaller and smaller, and heat per unit volume is rapidly increasing. In order to avoid component failure due to heat accumulation, it is necessary to understand the heat dissipation of electronic components. Capability, so the temperature-sensitive parameter principle is usually applied to correct the voltage drop associated with the measurement and then converted to the actual thermal resistance of the component to evaluate its ability to dissipate heat.
例如在發光二極體(LED)的產業中,熱阻的定義為在熱平衡的條件下,沿熱傳導通道上的溫度差與通道上所消耗的功率之比值,並利用熱阻表示待測發光二極體的散熱能力。而傳統上會使用外部的工具間接估算上述的溫度差,步驟如下:(A)先量測電流所對應的順向電壓與二極體介面溫度的斜率關係,通常稱為K係數(K factor);(B)階段性施加初始電流及穩定電流於二極體,並量測其中的電壓差,再藉由步驟(A)所求出的K係數與電壓差可間接求取二極體在通過初始電流與穩定電流時的溫度差。而進行上述步驟求取溫度差會有以下缺點:For example, in the industry of light-emitting diodes (LEDs), thermal resistance is defined as the ratio of the temperature difference along the heat conduction path to the power consumed on the channel under thermal equilibrium conditions, and the thermal resistance is used to indicate the light to be measured. The heat dissipation capability of the polar body. Traditionally, an external tool is used to indirectly estimate the above temperature difference. The steps are as follows: (A) The relationship between the forward voltage corresponding to the current and the slope of the diode interface temperature, commonly referred to as the K factor. (B) Applying the initial current and the steady current to the diode in stages, and measuring the voltage difference therein, and then indirectly obtaining the diode through the K-factor and the voltage difference obtained in the step (A). The temperature difference between the initial current and the steady current. Performing the above steps to obtain the temperature difference has the following disadvantages:
(1)溫度差值並非真實量測所得,而是經過多個步驟的運算、轉換才估算出來,故數值的可靠度與可信度無法加以評估;且上述方法也無法即時的量測發光二極體的介面溫度。(1) The temperature difference is not measured by real measurement, but is estimated by multiple steps of calculation and conversion. Therefore, the reliability and reliability of the value cannot be evaluated; and the above method cannot measure the light emission in real time. The interface temperature of the polar body.
(2)由於上述步驟需要施加不同的電流於發光二極體上,而在進行電流切換時會受到機台的量測速度所影響,亦即不同量測速度的機台會造成讀取數值的差異性。(2) Since the above steps require different currents to be applied to the light-emitting diodes, the current measurement is affected by the measurement speed of the machine, that is, the machine with different measurement speeds causes reading values. difference.
(3)電壓在轉換的過程中會因為外部電路的不同,如串、並聯電路的設計而因此產生誤差。(3) The voltage will be in the process of conversion due to the difference of external circuits, such as the design of series and parallel circuits.
(4)由於發光二極體粗略可分為大電流、小電流的種類,故上述初始電流的選定也會造成不同種類的發光二極體量測結果的誤差。(4) Since the light-emitting diodes can be roughly classified into large currents and small currents, the selection of the above initial currents also causes errors in measurement results of different types of light-emitting diodes.
除了以上的方法,更有文獻將發光二極體與外部的感溫元件整合一顆發光二極體的封裝內部,例如美國公開專利號US 2006/0239314揭露一種發光二極體單元,其中同時包含有獨立的兩個元件:發光二極體元件及感溫元件,該技術係利用熱傳導性佳的接合材料將兩者接合在一起,但利用此方式所量測到發光二極體介面溫度亦非相當準確,因為感溫元件係為一獨立元件,感溫元件與該發光二極體元件的PN介面之間也存在有相當的距離,或是該接合材料可能因為製程條件的差異或是材料本身之特性造成熱傳導路徑的改變,上述多種因素均會造成量測結果並非真實的PN介面溫度。In addition to the above methods, there is a literature in which a light-emitting diode is integrated with an external temperature-sensing element into a package of a light-emitting diode. For example, US Patent Publication No. US 2006/0239314 discloses a light-emitting diode unit, which includes both There are two independent components: a light-emitting diode element and a temperature-sensing element. This technology uses a bonding material with good thermal conductivity to bond the two together, but the temperature of the light-emitting diode interface is not measured by this method. Quite accurate, because the temperature sensing element is a separate component, there is also a considerable distance between the temperature sensing element and the PN interface of the LED component, or the bonding material may be due to differences in process conditions or the material itself. The characteristics cause a change in the heat conduction path, and all of the above factors cause the measurement result to be not the true PN interface temperature.
另外,也有習知技術利用紅外線量測的方式進行發光二極體的溫度量測,但此方法只適用於未封裝前的發光二極體,故其並不適合在一般生產的應用面。In addition, there are also conventional techniques for measuring the temperature of a light-emitting diode by means of infrared measurement. However, this method is only applicable to a light-emitting diode before being packaged, and thus it is not suitable for a general production application.
緣是,本發明人有感上述缺失之可改善,提出一種設計合理且有效改善上述缺失之本發明。The reason is that the inventors have felt that the above-mentioned deficiency can be improved, and proposes a present invention which is rational in design and effective in improving the above-mentioned deficiency.
本發明之主要目的,在於提供一種具溫度感測元件之發光二極體晶片及其製造方法,該發光二極體晶片的結構中具有一溫度感測元件,故該溫度感測元件可以較正確的感測發光二極體的實際溫度(即半導體堆疊發光結構之介面溫度),同時可以具有即時監測溫度的功能。The main object of the present invention is to provide a light-emitting diode chip with a temperature sensing element and a manufacturing method thereof. The structure of the light-emitting diode chip has a temperature sensing component, so the temperature sensing component can be relatively correct. The actual temperature of the light-emitting diode (ie, the interface temperature of the semiconductor stacked light-emitting structure) is sensed, and at the same time, the temperature can be monitored.
為了達成上述之目的,本發明係提供一種具溫度感測元件之發光二極體晶片,包括:一基板;一溫度感測元件,其形成於該基板上面;一絕緣層,其覆蓋於該溫度感測元件,以及一半導體堆疊發光結構,形成於該基板以及該溫度感測元件之上。在一較佳實施例中,該發光二極體晶片更進一步具有一設置於該基板與該半導體堆疊發光結構之間的絕緣層,該絕緣層具有一平整面,以利上述半導體堆疊發光結構的製作。In order to achieve the above object, the present invention provides a light emitting diode chip having a temperature sensing element, comprising: a substrate; a temperature sensing element formed on the substrate; and an insulating layer covering the temperature A sensing element, and a semiconductor stacked light emitting structure, are formed over the substrate and the temperature sensing element. In a preferred embodiment, the LED chip further has an insulating layer disposed between the substrate and the semiconductor stacked light emitting structure, the insulating layer having a flat surface to facilitate the semiconductor stacked light emitting structure. Production.
本發明亦提供一種具溫度感測元件之發光二極體晶片之製造方法,包括以下步驟:(a)提供一基板;(b)製作一溫度感測元件於該基板之上表面;以及(c)製作一半導體堆疊發光結構於該溫度感測元件上方。The invention also provides a method for manufacturing a light-emitting diode chip with a temperature sensing element, comprising the steps of: (a) providing a substrate; (b) fabricating a temperature sensing element on the upper surface of the substrate; and (c) A semiconductor stacked light emitting structure is fabricated over the temperature sensing element.
本發明具有以下有益的效果:本發明提出之製造方法係將溫度感測元件製作與發光二極體的製作加以整合,使生產出的發光二極體內部即”內建”有溫度感測元件,讓使用者可以即時且準確的測知發光二極體的溫度,而上述的溫度資料可以直接用以計算熱阻,不必再經過多層的數值運算,故本製造方式所製作的發光二極體能提供更佳之溫度感知結果,更能提供較有效的熱阻計算基準。The invention has the following beneficial effects: the manufacturing method proposed by the invention integrates the fabrication of the temperature sensing element with the fabrication of the light emitting diode, so that the inside of the produced light emitting diode is "built in" with the temperature sensing element. So that the user can instantly and accurately measure the temperature of the light-emitting diode, and the above temperature data can be directly used to calculate the thermal resistance, without having to go through multiple layers of numerical calculations, so the light-emitting diode produced by the manufacturing method can Provides better temperature sensing results and provides a more efficient benchmark for thermal resistance calculations.
為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.
請參考第一圖至第四圖,本發明提出一種具溫度感測元件之發光二極體晶片1,該發光二極體晶片1的特徵在於在該晶片結構中加入一溫度感測的單元,使該發光二極體晶片1本身可進行發光溫度的量測、檢測的動作,而不需外接溫度感測裝置,更解決外接溫度感測裝置無法即時且準確的量測到發光二極體溫度的問題。Referring to the first to fourth figures, the present invention provides a light-emitting diode wafer 1 having a temperature sensing element, wherein the light-emitting diode wafer 1 is characterized in that a temperature sensing unit is added to the wafer structure. The light-emitting diode chip 1 can perform the measurement and detection of the light-emitting temperature itself, without external temperature sensing device, and further solves the problem that the external temperature sensing device cannot measure the temperature of the light-emitting diode instantaneously and accurately. The problem.
第二圖與第三圖係為本發明之第一實施例的示意圖,其顯示一種水平形式的發光二極體晶片1,該發光二極體晶片1係包括一基板10、一溫度感測元件12及一半導體堆疊發光結構14。其中該基板10主要為發光二極體基板,其可為不導電型基板。2 and 3 are schematic views of a first embodiment of the present invention, showing a horizontal form of a light-emitting diode wafer 1 including a substrate 10 and a temperature sensing element. 12 and a semiconductor stacked light emitting structure 14. The substrate 10 is mainly a light-emitting diode substrate, which may be a non-conductive substrate.
在該基板10上係成型有一溫度感測元件12,該溫度感測元件12即為本發明的主要特徵,亦即本發明直接以磊晶或是其他半導體製程的方法將溫度感測元件12製作於該基板10上方,接著再製作一半導體堆疊發光結構14,例如磊晶方法:加熱蒸鍍物使其蒸發的分子以極高的熱速率在超高真空的環境下到達基板以進行磊晶成長,並精準控制奈米等級之異質結構的成分、厚度及層數等,而成型上述之半導體堆疊發光結構14,使得最終成型的發光二極體晶片1就包括有上述的溫度感測元件12。該半導體堆疊發光結構14係包括一n型半導體層141與一p型半導體層143,以及一設於該n型半導體層141與該p型半導體層143之間之半導體活性層145;而n型半導體層141上方更具有一n型層電極142,該p型半導體層143則具有一p型層電極144。但本發明並不以此為限,而可在半導體堆疊發光結構14之一側至少有一溫度感測元件12。在後述之具體實施例中,係將溫度感測元件12直接採用磊晶的製作方式,進而將基板10與半導體堆疊發光結構14整合在一起,一方面可直接測得半導體堆疊發光結構14的實際溫度,另一方面更可將溫度感測元件12搭配外部其他的檢測模組讓後續量測發光二極體的介面溫度(junction temperature)的作業更為準確且即時。該溫度感測元件12的兩端係延伸形成有兩端電極121,該溫度感測元件12與該兩端電極121之間具有引線122,該兩端電極121主要係輸出溫度感測的訊號,以讓使用者即時而準確的檢測到該發光二極體晶片1的實際溫度。而該溫度感測元件12可為蛇型或矩陣形式佈線,因而增加溫度感測的敏感度,如第三B圖所示。A temperature sensing component 12 is formed on the substrate 10, and the temperature sensing component 12 is a main feature of the present invention, that is, the invention directly fabricates the temperature sensing component 12 by epitaxial or other semiconductor processing methods. Above the substrate 10, a semiconductor stacked light-emitting structure 14 is subsequently fabricated, such as an epitaxial method: heating the vapor-deposited material to evaporate molecules to reach the substrate in an ultra-high vacuum environment for epitaxial growth at an extremely high thermal rate. The semiconductor stacked light-emitting structure 14 is formed by precisely controlling the composition, thickness, number of layers, and the like of the nano-scale heterostructure, so that the finally formed light-emitting diode wafer 1 includes the above-described temperature sensing element 12. The semiconductor stacked light emitting structure 14 includes an n-type semiconductor layer 141 and a p-type semiconductor layer 143, and a semiconductor active layer 145 disposed between the n-type semiconductor layer 141 and the p-type semiconductor layer 143; Above the semiconductor layer 141, there is further provided an n-type layer electrode 142, and the p-type semiconductor layer 143 has a p-type layer electrode 144. However, the present invention is not limited thereto, and at least one temperature sensing element 12 may be disposed on one side of the semiconductor stacked light emitting structure 14. In a specific embodiment to be described later, the temperature sensing element 12 is directly formed by epitaxy, and the substrate 10 and the semiconductor stacked light emitting structure 14 are integrated together. On the one hand, the actual operation of the semiconductor stacked light emitting structure 14 can be directly measured. Temperature, on the other hand, the temperature sensing component 12 can be combined with other external detection modules to make the operation of measuring the junction temperature of the LEDs more accurate and instantaneous. The two ends of the temperature sensing element 12 are formed with two ends of the electrode 121. The temperature sensing element 12 and the two end electrodes 121 have a lead 122. The two end electrodes 121 mainly output a temperature sensing signal. In order to allow the user to instantly and accurately detect the actual temperature of the LED chip 1. The temperature sensing element 12 can be serpentine or matrix-formed, thereby increasing the sensitivity of temperature sensing, as shown in FIG.
另一方面,該半導體堆疊發光結構14即為元件中的主要發光區域,即指接受電壓激發後,上述的半導體堆疊發光結構14即可發出光線。而該溫度感測元件12即可以相當靠近該PN介面的位置上量測到該半導體堆疊發光結構之PN介面的溫度,亦即該發光二極體晶片1的實際溫度。該半導體堆疊發光結構14亦包括正電極及負電極(即n型層電極142與p型層電極144),該正負兩電極係為連接外部電源,以施加電壓而驅動該發光二極體晶片1。On the other hand, the semiconductor stacked light-emitting structure 14 is the main light-emitting area in the element, that is, after the voltage is excited, the semiconductor stacked light-emitting structure 14 can emit light. The temperature sensing element 12 can measure the temperature of the PN interface of the semiconductor stacked light emitting structure, that is, the actual temperature of the light emitting diode chip 1, at a position relatively close to the PN interface. The semiconductor stacked light-emitting structure 14 also includes a positive electrode and a negative electrode (ie, an n-type layer electrode 142 and a p-type layer electrode 144). The positive and negative electrodes are connected to an external power source to drive the light-emitting diode wafer 1 by applying a voltage. .
然而,為了使該半導體堆疊發光結構14與溫度感測元件12之間的磊晶缺陷較少,該發光二極體晶片1更進一步包括一形成於該基板10與該半導體堆疊發光結構14之間的絕緣層13,該絕緣層13係設置於該溫度感測元件12之上,且該絕緣層13具有一平整的上表面,以成型較佳晶格匹配的半導體堆疊發光結構14,也使得整個發光二極體晶片1形成結構性較強的元件。而該絕緣層13的組成可根據不同的二極體應用而加以調整,例如該絕緣層13可為氮化鋯(ZrN)或/及氮化鋁(AlN)所形成的絕緣層體,且利用該絕緣層13的填補作用以形成一平整的上表面,進而使在該絕緣層13之上的半導體堆疊發光結構14具有更佳的特性。However, in order to reduce the epitaxial defects between the semiconductor stacked light-emitting structure 14 and the temperature sensing element 12, the light-emitting diode wafer 1 further includes a film formed between the substrate 10 and the semiconductor stacked light-emitting structure 14. The insulating layer 13 is disposed on the temperature sensing element 12, and the insulating layer 13 has a flat upper surface to form a preferred lattice-matched semiconductor stacked light-emitting structure 14, which also makes the whole The light-emitting diode wafer 1 forms a structurally strong element. The composition of the insulating layer 13 can be adjusted according to different diode applications. For example, the insulating layer 13 can be an insulating layer formed of zirconium nitride (ZrN) or/and aluminum nitride (AlN), and utilizes The filling of the insulating layer 13 serves to form a flat upper surface, thereby providing the semiconductor stacked light-emitting structure 14 over the insulating layer 13 with better characteristics.
以下將說明製作上述該發光二極體晶片1的步驟。The step of fabricating the above-described light-emitting diode wafer 1 will be described below.
步驟(a)提供一基板10,以藍寶石基板(Sapphire)為例,該基板10上方可進一步含有一緩衝材料層以利上方材料堆疊。Step (a) provides a substrate 10, exemplified by a sapphire substrate. The substrate 10 may further comprise a buffer material layer to facilitate stacking of the upper materials.
步驟(b)製作一溫度感測元件12於該基板10上。值得注意的是,若該基板10本身為一導電型的材質,則必須先於該基板10上製作一輔助性質的絕緣層,以避免該溫度感測元件12與該基板10電性導通。Step (b) is to form a temperature sensing element 12 on the substrate 10. It should be noted that if the substrate 10 itself is of a conductive type, an auxiliary insulating layer must be formed on the substrate 10 to prevent the temperature sensing element 12 from being electrically connected to the substrate 10.
在本具體實施例中,該溫度感測元件12係為一電阻溫度計(resistance temperature detector,RTD),其主要為金屬薄膜,利用金屬薄膜之電阻值隨溫度變化改變的特性來達到溫度量測目的;故以下將以電阻溫度計的製作流程作一說明。首先在該基板10上製作一氮化鋁(AlN)層,再利用蒸鍍(evaporating)先後形成鉻(Cr)層或鎳層(Ni)及金(Au)層於該氮化鋁層之上;再進行黃光步驟;接著進行鉻層或鎳層(Ni)與金層的蝕刻步驟;最後再沈積一氮化鋁層以包覆該鉻層或鎳層(Ni)與金層,即可形成一種典型的電阻溫度計層;再利用黃光微影、蝕刻等技術形成有特定圖案之線路於該基板10的表面,以及與外部線路電性連接的兩端電極121(導接墊),而形成該溫度感測元件12而使該溫度感測元件12形成兩端電極121於該溫度感測元件12的兩側。而在本具體實施例中,係沈積約0.2μm厚的金(Au)層或鎳層(Ni),並圖案化上述之金屬薄膜以建構成該溫度感測元件12,亦即利用圖案化之步驟,於該金屬薄膜上形成蛇型或矩陣形式佈線以建構成該溫度感測元件12,使得該溫度感測元件12可以為矩陣或蛇型陣列形式佈線,而該溫度感測元件12之佈線線寬必須遠小於引線122之線寬,以提高感測元件精確性。上述有關溫度感測元件12的製程說明僅為舉例之用,並非用以限制本發明。In the embodiment, the temperature sensing element 12 is a resistance temperature detector (RTD), which is mainly a metal film, and the temperature measurement is achieved by using the resistance value of the metal film to change with temperature. Therefore, the following will be explained in the production process of the resistance thermometer. First, an aluminum nitride (AlN) layer is formed on the substrate 10, and then a chromium (Cr) layer or a nickel layer (Ni) and a gold (Au) layer are formed on the aluminum nitride layer by evaporation. And then performing a yellow light step; then performing an etching step of a chromium layer or a nickel layer (Ni) and a gold layer; finally depositing an aluminum nitride layer to coat the chromium layer or the nickel layer (Ni) and the gold layer, Forming a typical resistance thermometer layer; forming a pattern with a specific pattern on the surface of the substrate 10 and a two-terminal electrode 121 (a conductive pad) electrically connected to the external line by using a technique such as yellow lithography or etching, thereby forming the The temperature sensing element 12 causes the temperature sensing element 12 to form two end electrodes 121 on both sides of the temperature sensing element 12. In this embodiment, a gold (Au) layer or a nickel layer (Ni) is deposited to a thickness of about 0.2 μm, and the metal film is patterned to form the temperature sensing element 12, that is, by using a patterning layer. a step of forming a serpentine or matrix form wiring on the metal film to form the temperature sensing element 12, such that the temperature sensing element 12 can be wired in a matrix or a snake array, and the temperature sensing element 12 is wired. The line width must be much smaller than the line width of the leads 122 to improve the accuracy of the sensing element. The above description of the process of the temperature sensing element 12 is for illustrative purposes only and is not intended to limit the invention.
步驟(c),堆疊形成一絕緣層13於該溫度感測元件12的上方。此步驟主要目的係利用該絕緣層13分離該溫度感測元件12與後續的半導體堆疊發光結構14間的電性關係,也就是說,避免二者間的電性相互影響,並藉由該絕緣層13填平該溫度感測元件12所形成的高低差及填補結構上的孔隙,以形成一平整的表面,以使後續的半導體堆疊發光結構14之磊晶作業得以順利進行。在本具體實施例中,係利用0.35μm厚的氮化鋁(AlN)層作為上述之絕緣層13,且該絕緣層13的寬度會略小於該溫度感測元件12的寬度,以使該溫度感測元件12之兩端電極121得以裸露,使其可以將溫度感測訊號傳送至該發光二極體晶片1以外的讀取模組。在一具體實施方式中,可在形成該絕緣層13之步驟前,先以一遮罩(mask)遮檔於該溫度感測元件12之兩端電極121上,使得在形成該絕緣層13之步驟後,該溫度感測元件12之兩端電極121係可裸露於外,以形成與外部電性連接之端點。或者,在形成該絕緣層之13步驟後,利用一微影顯影製程,定義出該溫度感測元件12與外部電性連接的兩端電極121。In step (c), an insulating layer 13 is formed on top of the temperature sensing element 12. The main purpose of this step is to separate the electrical relationship between the temperature sensing element 12 and the subsequent semiconductor stacked light-emitting structure 14 by using the insulating layer 13, that is, to avoid electrical interaction between the two, and by the insulation. The layer 13 fills in the height difference formed by the temperature sensing element 12 and fills the pores in the structure to form a flat surface, so that the epitaxial operation of the subsequent semiconductor stacked light-emitting structure 14 can be smoothly performed. In the present embodiment, a 0.35 μm thick aluminum nitride (AlN) layer is used as the insulating layer 13 described above, and the width of the insulating layer 13 is slightly smaller than the width of the temperature sensing element 12 to make the temperature The electrodes 121 at both ends of the sensing element 12 are exposed so that the temperature sensing signal can be transmitted to the reading module other than the LED chip 1. In a specific embodiment, a mask may be masked on the two end electrodes 121 of the temperature sensing element 12 before the step of forming the insulating layer 13, so that the insulating layer 13 is formed. After the step, the two ends 121 of the temperature sensing element 12 can be exposed to form an end point electrically connected to the outside. Alternatively, after the step of forming the insulating layer, a two-electrode electrode 121 electrically connected to the external temperature sensing element 12 is defined by a lithography developing process.
步驟(d)製作該半導體堆疊發光結構14。在本具體實施例中,係以磊晶的方式製作上述之半導體堆疊發光結構14於該絕緣層13的平整表面上,其中包括形成一n型半導體層141、一p型半導體層143、一介於n型半導體層141與p型半導體層143之間的半導體活性層145以及一n型層電極142與一p型層電極144,此一PN結構即可受電壓的驅動而發光。此外,在形成該n型層電極142與該p型層電極144前,更包含一微影顯影製程,使得部份該n型半導體層141與該溫度感測元件12與外部電性連接的兩端電極121裸露出。該半導體堆疊發光結構14的n型層電極142與p型層電極144則可於後續製程同時形成於該二半導體層上,而得以與外部電源形成電性連接。另外,上述n型半導體層141與p型半導體層143的製作步驟可以根據實際的製程加以調整。故在本步驟中該發光二極體晶片1已被製作完成,且該晶片中更具有一可感測PN介面溫度的溫度感測元件12,該溫度感測元件12係鄰接於該半導體堆疊發光結構14,故該溫度感測元件12所量測的溫度可較無誤差地對應該半導體堆疊發光結構14的溫度,且此一直接量測的方式具有較佳的穩定度。另一方面,該溫度感測元件12的位置與該半導體堆疊發光結構14係位於不同平面,且該溫度感測元件12係位於該半導體堆疊發光結構14下方,故該溫度感測元件12並不會影響到該半導體堆疊發光結構14的有效發光面積,亦即該溫度感測元件12與該半導體堆疊發光結構係位於不同平面上,該半導體堆疊發光結構14的出光面積之出光率並不會受到影響。Step (d) fabricating the semiconductor stacked light emitting structure 14. In this embodiment, the semiconductor stacked light-emitting structure 14 is formed on the flat surface of the insulating layer 13 in an epitaxial manner, including forming an n-type semiconductor layer 141, a p-type semiconductor layer 143, and an The semiconductor active layer 145 between the n-type semiconductor layer 141 and the p-type semiconductor layer 143 and an n-type layer electrode 142 and a p-type layer electrode 144, which can be driven by a voltage to emit light. In addition, before forming the n-type layer electrode 142 and the p-type layer electrode 144, a lithography process is further included, so that a part of the n-type semiconductor layer 141 and the temperature sensing element 12 are electrically connected to the outside. The terminal electrode 121 is exposed. The n-type layer electrode 142 and the p-type layer electrode 144 of the semiconductor stacked light-emitting structure 14 can be simultaneously formed on the two semiconductor layers in a subsequent process to form an electrical connection with an external power source. Further, the steps of fabricating the n-type semiconductor layer 141 and the p-type semiconductor layer 143 can be adjusted according to an actual process. Therefore, in this step, the LED chip 1 has been fabricated, and the wafer further has a temperature sensing component 12 that senses the temperature of the PN interface, and the temperature sensing component 12 is adjacent to the semiconductor stack. The structure 14 is such that the temperature measured by the temperature sensing element 12 can correspond to the temperature of the semiconductor stacked light-emitting structure 14 with no error, and the direct measurement method has better stability. On the other hand, the position of the temperature sensing element 12 is in a different plane from the semiconductor stacked light emitting structure 14 , and the temperature sensing element 12 is located below the semiconductor stacked light emitting structure 14 , so the temperature sensing element 12 is not The effective light-emitting area of the semiconductor stacked light-emitting structure 14 is affected, that is, the temperature sensing element 12 and the semiconductor stacked light-emitting structure are located on different planes, and the light-emitting area of the semiconductor stacked light-emitting structure 14 is not affected by the light-emitting area. influences.
接著在上述步驟之後,該發光二極體晶片1經由封裝處理形成一發光二極體元件之中,例如第四圖所示,該發光二極體晶片1係容置於一發光二極體的封裝結構20之中,且其上包覆有一封裝樹脂22,以達光學及保護的作用,其中,該半導體堆疊發光結構14的n型層電極142及p型層電極144分別藉由導線(第一組導線)與外部電源連接;另外,該溫度感測元件12的兩端電極121亦藉由另一組導線(第二組導線)輸出溫度感測訊號,故該半導體堆疊發光結構與該溫度感測元件12的導線係獨立不互相干涉。值得注意的是,第四圖中該半導體堆疊發光結構14與該溫度感測元件12的導線均連接至該發光二極體之封裝結構20,其僅為示意之用;實際上,上述導線的連接位置可根據外部電源的正負端及接收溫度訊號模組的端子位置而進行調整,以使在該發光二極體晶片1發光的同時,可量測到該半導體堆疊發光結構14的介面溫度。After the above steps, the LED chip 1 is formed into a light-emitting diode element by a packaging process. For example, as shown in the fourth figure, the LED chip 1 is mounted on a light-emitting diode. The package structure 20 is coated with an encapsulating resin 22 for optical and protective functions. The n-type layer electrode 142 and the p-type layer electrode 144 of the semiconductor stacked light-emitting structure 14 are respectively connected by wires. a set of wires is connected to the external power source; in addition, the two ends of the temperature sensing element 12 also output temperature sensing signals by another set of wires (the second group of wires), so the semiconductor stacked light emitting structure and the temperature The wires of the sensing element 12 are independent of each other and do not interfere with each other. It should be noted that, in the fourth figure, the semiconductor stacked light-emitting structure 14 and the wires of the temperature sensing element 12 are both connected to the package structure 20 of the light-emitting diode, which is only for illustrative purposes; The connection position can be adjusted according to the positive and negative ends of the external power source and the terminal position of the receiving temperature signal module, so that the interface temperature of the semiconductor stacked light-emitting structure 14 can be measured while the light-emitting diode wafer 1 emits light.
請參考第五圖及第六圖,其為本發明之第二實施例,顯示一種垂直式的發光二極體晶片1,其製作流程如下:提供一基板10;製作一半導體堆疊發光結構14於該基板10上,在此製程中係依序製作一n型半導體層141、一半導體活性層145、及一p型半導體層143;製作一溫度感測元件12與一第一電極(即為第一實施例中之p型層電極144)於該半導體堆疊發光結構14上,此步驟係利用成長的方式或是mount的方式將該第一電極電性連接於該半導體堆疊發光結構14之p型半導體層143,且該溫度感測元件12係設置於該第一電極之中。另外,上述方法更包括製作一輔助絕緣層123於該溫度感測元件12與該第一電極之間的步驟;另外,在該第一電極形成之後,更包括一移除該基板10的步驟,且將移除該基板10後之結構予以反轉;接著,製作一第二電極(即為第一實施例中之n型層電極142)於該半導體堆疊發光結構14與被移除之基板10相接的表面(即上述結構反轉後的上表面)。Please refer to FIG. 5 and FIG. 6 , which are a second embodiment of the present invention, showing a vertical LED chip 1 , which is prepared as follows: a substrate 10 is provided; and a semiconductor stacked light-emitting structure 14 is fabricated. On the substrate 10, an n-type semiconductor layer 141, a semiconductor active layer 145, and a p-type semiconductor layer 143 are sequentially formed in the process; a temperature sensing element 12 and a first electrode are formed (ie, In one embodiment, the p-type layer electrode 144 is on the semiconductor stacked light-emitting structure 14, and the step is to electrically connect the first electrode to the p-type of the semiconductor stacked light-emitting structure 14 by means of growth or mounting. The semiconductor layer 143, and the temperature sensing element 12 is disposed in the first electrode. In addition, the method further includes the steps of: forming an auxiliary insulating layer 123 between the temperature sensing element 12 and the first electrode; further, after the forming the first electrode, further comprising the step of removing the substrate 10, And the structure after the substrate 10 is removed is reversed; then, a second electrode (ie, the n-type layer electrode 142 in the first embodiment) is fabricated on the semiconductor stacked light-emitting structure 14 and the removed substrate 10 The surface that is in contact (ie, the upper surface after the above structure is reversed).
再者,請參考第一實施例之說明,本實施例中同樣利用微影顯影等製程,定義出該溫度感測元件12與外部電性連接的兩端電極121之步驟,亦即利用圖案化之步驟,於金屬薄膜(如第一實施例中所述的金層或鎳層)上形成蛇型或矩陣形式佈線以建構成該溫度感測元件12;與製作一絕緣層13於該溫度感測元件12與該半導體堆疊發光結構14之間的步驟。另一方面,本實施例中之溫度感測元件12的特徵與製程均同於第一實施例,故在此不再贅述。藉由上述製程後,由於該基板10被移除,且結構體經過反轉,故本實施例之垂直式的發光二極體晶片1係以該p型層電極144為承載體,故第五圖中所示之導電基板10′即為p型層電極144(導電形式的金屬基板),故在結構上該垂直式的發光二極體晶片1具有利用該p型層電極144所形成之導電基板10′,該溫度感測元件12係設置於該導電基板10′中,且該導電基板10′與該溫度感測元件12之間設有一輔助絕緣層123,而該半導體堆疊發光結構14則位於該導電基板10′上達成電性連接,而n型層電極142則設置於該半導體堆疊發光結構14上。In addition, referring to the description of the first embodiment, in the embodiment, the process of lithographic development or the like is also used to define the steps of the two ends of the temperature sensing element 12 electrically connected to the external electrodes 121, that is, using the patterning. a step of forming a serpentine or matrix form wiring on the metal film (such as the gold layer or the nickel layer described in the first embodiment) to construct the temperature sensing element 12; and forming an insulating layer 13 at the temperature The step between the measuring element 12 and the semiconductor stacked light emitting structure 14. On the other hand, the features and processes of the temperature sensing component 12 in this embodiment are the same as those in the first embodiment, and thus are not described herein again. After the above process, since the substrate 10 is removed and the structure is reversed, the vertical LED chip 1 of the present embodiment has the p-type layer electrode 144 as a carrier, so the fifth The conductive substrate 10' shown in the drawing is a p-type layer electrode 144 (a metal substrate in a conductive form), so that the vertical light-emitting diode wafer 1 has a conductive structure formed by the p-type layer electrode 144. The substrate 10' is disposed in the conductive substrate 10', and an auxiliary insulating layer 123 is disposed between the conductive substrate 10' and the temperature sensing element 12, and the semiconductor stacked light emitting structure 14 is An electrical connection is made on the conductive substrate 10', and an n-type layer electrode 142 is disposed on the semiconductor stacked light-emitting structure 14.
此外,該垂直式的發光二極體晶片1亦可包含一絕緣層13,該絕緣層13位於該溫度感測元件12與該半導體堆疊發光結構14之間。也就是說,位於該導電基板10′與該半導體堆疊發光結構14之間的該溫度感測元件12為絕緣層組合(輔助絕緣層123與絕緣層13)所包圍,與該半導體堆疊發光結構14電性絕緣。更進一步的說,該導電基板10′係包圍該溫度感測元件12與該絕緣層組合,而直接接觸該半導體堆疊發光結構14;換言之導電基板10′與輔助絕緣層123提供一平整表面於該半導體堆疊發光結構14之間;且該第一電極提供一平整上表面,以利後續的封裝製程。In addition, the vertical LED chip 1 may also include an insulating layer 13 between the temperature sensing element 12 and the semiconductor stacked light emitting structure 14. That is, the temperature sensing element 12 between the conductive substrate 10' and the semiconductor stacked light emitting structure 14 is surrounded by an insulating layer combination (the auxiliary insulating layer 123 and the insulating layer 13), and the semiconductor stacked light emitting structure 14 Electrical insulation. More specifically, the conductive substrate 10' surrounds the temperature sensing element 12 in combination with the insulating layer, and directly contacts the semiconductor stacked light emitting structure 14; in other words, the conductive substrate 10' and the auxiliary insulating layer 123 provide a flat surface. The semiconductor stacks between the light emitting structures 14; and the first electrode provides a flat upper surface for subsequent packaging processes.
請參考第七圖及第八圖,其顯示本發明之發光二極體晶片1應用於覆晶形式(flip-chip type)之封裝態樣,與第一、第二實施例不同的是,該發光二極體晶片1係採用覆晶的方式封裝,第八圖即顯示該發光二極體晶片1被倒置以進行封裝,且該n型層電極142及p型層電極144直接與該封裝結構20上的相對應的導電結構(或迴路)電性連接,故不需要藉由導線的連接;且為了不阻擋該半導體堆疊發光結構14的發光面積,該溫度感測元件12係成型於該半導體堆疊發光結構14的上方,因此,在該發光二極體晶片1被倒置之後,該溫度感測元件12即不會影響該半導體堆疊發光結構14的發光效率。Referring to the seventh and eighth figures, the LED body 1 of the present invention is applied to a package form of a flip-chip type, which is different from the first and second embodiments. The LED chip 1 is packaged in a flip chip manner, and the eighth figure shows that the LED chip 1 is inverted for packaging, and the n-type layer electrode 142 and the p-type layer electrode 144 are directly connected to the package structure. Corresponding conductive structures (or loops) on 20 are electrically connected, so that no connection by wires is required; and in order not to block the light-emitting area of the semiconductor stacked light-emitting structure 14, the temperature sensing element 12 is molded on the semiconductor The light-emitting structure 14 is stacked above, and therefore, the temperature sensing element 12 does not affect the luminous efficiency of the semiconductor stacked light-emitting structure 14 after the light-emitting diode wafer 1 is inverted.
而覆晶形式之發光二極體晶片1可依照以下步驟製成:提供一基板10;製作一半導體堆疊發光結構14於該基板10上;製作一溫度感測元件12與一第一電極(即為第一實施例中之p型層電極144)於該半導體堆疊發光結構14上,其中該溫度感測元件12與該第一電極係藉由同一顯影蝕刻製程而定義出來,且該顯影蝕刻製程更定義出一第二電極(即n型層電極142)於該半導體堆疊發光結構14上,其中該第二電極之高度與該第一電極之高度相近,較佳的為同一水平面高。再者,上述製程中更包括製作一絕緣層13於該溫度感測元件12與該半導體堆疊發光結構14之間的步驟。另一方面,由於該溫度感測元件12與該第一電極係藉由同一顯影蝕刻製程而定義出來,因此,該溫度感測元件12與該第一電極可藉由第一實施例所述之圖案化一金屬薄膜的方式加以成型,且該溫度感測元件12係為利用圖案化步驟於該金屬薄膜上所形成的蛇型或矩陣形式佈線結構。而在另一製程當中,該顯影蝕刻製程同時定義出該溫度感測元件12、該第一電極以及該第二電極,則該溫度感測元件12、該第一電極以及該第二電極可藉由第一實施例所述之圖案化一金屬薄膜的方式加以成型,且該溫度感測元件12同樣具有蛇型或矩陣形式佈線之結構。The flip-chip form of the LED chip 1 can be formed by: providing a substrate 10; fabricating a semiconductor stacked light-emitting structure 14 on the substrate 10; and fabricating a temperature sensing element 12 and a first electrode (ie, The p-type layer electrode 144 in the first embodiment is mounted on the semiconductor stacked light-emitting structure 14, wherein the temperature sensing element 12 and the first electrode are defined by the same development etching process, and the development etching process is Further, a second electrode (ie, the n-type layer electrode 142) is defined on the semiconductor stacked light-emitting structure 14, wherein the height of the second electrode is close to the height of the first electrode, preferably the same horizontal plane. Furthermore, the above process further includes the step of fabricating an insulating layer 13 between the temperature sensing element 12 and the semiconductor stacked light emitting structure 14. On the other hand, since the temperature sensing element 12 and the first electrode are defined by the same development etching process, the temperature sensing element 12 and the first electrode can be described by the first embodiment. The metal film is patterned in such a manner that the temperature sensing element 12 is a serpentine or matrix form wiring structure formed on the metal film by a patterning step. In another process, the development etch process simultaneously defines the temperature sensing component 12, the first electrode, and the second electrode, and the temperature sensing component 12, the first electrode, and the second electrode can be borrowed. It is formed by patterning a metal film as described in the first embodiment, and the temperature sensing element 12 also has a structure of a serpentine or matrix form wiring.
因此,本發明提出一種具溫度感測元件之覆晶式發光二極體晶片1,其包括:一基板10;一位於該基板10上之半導體堆疊發光結構14,其中該半導體堆疊發光結構14包括:一n型半導體層141、半導體活性層143以及p型半導體層144;以及一溫度感測元件12,其設置於該半導體堆疊發光結構14上。而該發光二極體晶片1更包括一設置於該溫度感測元件12與該半導體堆疊發光結構14之間的絕緣層13;且一第一電極(即p型層電極144)及一第二電極(n型層電極142)設置於該半導體堆疊發光結構14上,而該第一電極係電性連接於該p型半導體層,該第二電極則電性連接於該n型半導體層。Therefore, the present invention provides a flip-chip light-emitting diode wafer 1 having a temperature sensing element, comprising: a substrate 10; a semiconductor stacked light-emitting structure 14 on the substrate 10, wherein the semiconductor stacked light-emitting structure 14 comprises An n-type semiconductor layer 141, a semiconductor active layer 143, and a p-type semiconductor layer 144; and a temperature sensing element 12 disposed on the semiconductor stacked light-emitting structure 14. The LED chip 1 further includes an insulating layer 13 disposed between the temperature sensing element 12 and the semiconductor stacked light emitting structure 14; and a first electrode (ie, a p-type layer electrode 144) and a second The electrode (n-type layer electrode 142) is disposed on the semiconductor stacked light-emitting structure 14, and the first electrode is electrically connected to the p-type semiconductor layer, and the second electrode is electrically connected to the n-type semiconductor layer.
此外,如第七圖所示,為利後續的覆晶流程,第一電極由基板10之底部起算之高度H1與第二電極由基板10之底部起算之高度H2近乎相同,也可以說提供同一水平面高度之兩電極;然而更進一步的說,該溫度感測元件12由基板10之底部起算的高度H3亦與上述之高度H1、高度H2近乎相同,同理,三者可視為同一水平面高度。In addition, as shown in the seventh figure, in order to facilitate the subsequent flip chip process, the height H1 of the first electrode from the bottom of the substrate 10 and the height H2 of the second electrode from the bottom of the substrate 10 are nearly the same, and it can be said that the same is provided. The two electrodes of the height of the horizontal plane; however, the height H3 of the temperature sensing element 12 from the bottom of the substrate 10 is also nearly the same as the height H1 and height H2 described above. Similarly, the three can be regarded as the same horizontal height.
再者,同於其他實施例,該溫度感測元件12具有兩端電極121,使得該溫度感測元件12可藉由該兩端電極121電性耦接至具溫度控制之電子處理單元,俾使經處理後之訊號可直接控制其他散熱裝置;且該溫度感測元件12係藉由一引線122與該兩端電極121連接,而該溫度感測元件12之佈線線寬須小於該引線122的線寬。另外,該溫度感測元件12具有蛇型或矩陣形式佈線之結構。Furthermore, in other embodiments, the temperature sensing component 12 has two end electrodes 121, such that the temperature sensing component 12 can be electrically coupled to the temperature-controlled electronic processing unit by the two-terminal electrode 121. The processed signal can directly control other heat dissipating devices; and the temperature sensing component 12 is connected to the two end electrodes 121 by a lead 122, and the temperature sensing component 12 has a wiring line width smaller than the lead 122. Line width. In addition, the temperature sensing element 12 has a structure of a serpentine or matrix form wiring.
是故,本發明之溫度感測元件12可應用於多種封裝態樣的發光二極體晶片1,並不限定於上述的實施態樣,換言之,該溫度感測元件12係位於位於鄰近該封裝結構20的晶片1下表面,其目的在於封裝後不會造成該半導體堆疊發光結構14的發光損失,而上述的製程步驟可隨著溫度感測元件12的位置進行相對應的調整。另外,不論是何者封裝態樣,該溫度感測元件12可將訊號電性耦接至具溫度控制之電子處理單元,俾使經處理後之訊號可直接控制風扇或其他散熱裝置,以直接控制該散熱裝置進行溫度控制的功能。Therefore, the temperature sensing component 12 of the present invention can be applied to the LED body 1 of various package states, and is not limited to the above embodiment. In other words, the temperature sensing component 12 is located adjacent to the package. The lower surface of the wafer 1 of the structure 20 is intended to not cause luminescence loss of the semiconductor stacked light-emitting structure 14 after packaging, and the above-described process steps can be adjusted correspondingly with the position of the temperature sensing element 12. In addition, the temperature sensing component 12 can electrically couple the signal to the temperature-controlled electronic processing unit, so that the processed signal can directly control the fan or other heat sink for direct control. The heat sink performs the function of temperature control.
綜上所述,本發明具有下列諸項優點:In summary, the present invention has the following advantages:
1、溫度量測結果具有較高的可信度。本發明係將溫度感測元件12”內建”於發光二極體晶片1之中,故該溫度感測元件12的位置相當靠近發光二極體晶片1中的PN介面,進而可以得到穩定度高且誤差較小的溫度量測值。藉此,可以解決習知利用外加的感測元件所量測的不準確的發光二極體溫度之問題(不論是利用設置於發光二極體封裝內部或是封裝外部的感測元件都會有量測值不準確的問題)。1. The temperature measurement results have high reliability. In the present invention, the temperature sensing element 12 is built in the light-emitting diode chip 1. Therefore, the temperature sensing element 12 is located relatively close to the PN interface in the LED chip 1, and thus the stability can be obtained. High and small error temperature measurement. Therefore, the problem of the inaccurate light-emitting diode temperature measured by the external sensing element can be solved (whether using the sensing element disposed inside the light-emitting diode package or outside the package) The problem of inaccurate measurement).
2、本發明所提出之發光二極體晶片1本身即具有溫度感測的功能,故使用者可以即時地監控發光二極體的實際溫度,以精準的掌握發光二極體的可靠度,故本發明可直接應用在產品上,可配合電路設計而達成晶片溫度監控及警示的目的。2. The light-emitting diode chip 1 of the present invention has the function of temperature sensing, so that the user can monitor the actual temperature of the light-emitting diode in real time, so as to accurately grasp the reliability of the light-emitting diode, The invention can be directly applied to the product, and can achieve the purpose of wafer temperature monitoring and warning with the circuit design.
3、本發明係將具有溫度感測功能的金屬薄膜(如電阻溫度計)沈積於PN發光結構之下,故不會影響到PN發光結構的有效出光面積;另外,該半導體堆疊發光結構14的材料、結構不因該溫度感測元件12而需要大幅調整,故現有的封裝製程仍可應用於本發明的發光二極體晶片1,且本發明可應用在各種不同的發光二極體封裝態樣,故具有相當優秀的實用價值。3. The present invention deposits a metal film (such as a resistance thermometer) having a temperature sensing function under the PN light emitting structure, so that the effective light emitting area of the PN light emitting structure is not affected; and the material of the semiconductor stacked light emitting structure 14 The structure does not need to be greatly adjusted due to the temperature sensing component 12, so the existing packaging process can still be applied to the LED array 1 of the present invention, and the invention can be applied to various different LED packages. Therefore, it has quite good practical value.
惟以上所述僅為本發明之較佳實施例,非意欲侷限本發明之專利保護範圍,故舉凡運用本發明說明書及圖式內容所為之等效變化,均同理皆包含於本發明之權利保護範圍內,合予陳明。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, the equivalents of the present invention and the equivalents of the drawings are all included in the present invention. Within the scope of protection, it is given to Chen Ming.
1...發光二極體晶片1. . . Light-emitting diode chip
10...基板10. . . Substrate
10′...導電基板10'. . . Conductive substrate
12...溫度感測元件12. . . Temperature sensing element
121...端電極121. . . Terminal electrode
122...引線122. . . lead
123...輔助絕緣層123. . . Auxiliary insulation
13...絕緣層13. . . Insulation
14...半導體堆疊發光結構14. . . Semiconductor stacked light emitting structure
141...n型半導體層141. . . N-type semiconductor layer
142...n型層電極142. . . N-type layer electrode
143...p型半導體層143. . . P-type semiconductor layer
144...p型層電極144. . . P-type layer electrode
145...半導體活性層145. . . Semiconductor active layer
20...封裝結構20. . . Package structure
22...封裝樹脂twenty two. . . Encapsulation resin
第一圖係本發明之具溫度感測元件之發光二極體晶片之製造方法的流程圖。The first figure is a flow chart of a method of manufacturing a light-emitting diode wafer with a temperature sensing element of the present invention.
第二圖係本發明之溫度感測元件成型於基板上之示意圖。The second figure is a schematic view of the temperature sensing element of the present invention formed on a substrate.
第三圖係本發明之具溫度感測元件之發光二極體晶片的第一實施例之示意圖。The third figure is a schematic view of a first embodiment of a light-emitting diode wafer having a temperature sensing element of the present invention.
第三A圖係第三圖中3A-3A的剖視圖。The third A is a cross-sectional view of 3A-3A in the third figure.
第三B圖係為蛇型佈線之溫度感測元件的示意圖。The third B diagram is a schematic diagram of the temperature sensing element of the serpentine wiring.
第四圖係本發明之發光二極體晶片經封裝後之示意圖。The fourth figure is a schematic view of the light-emitting diode wafer of the present invention after being packaged.
第五圖係本發明之具溫度感測元件之發光二極體晶片的第二實施例之示意圖。Figure 5 is a schematic illustration of a second embodiment of a light emitting diode wafer having a temperature sensing element of the present invention.
第六圖係第五圖的剖視圖。The sixth drawing is a cross-sectional view of the fifth figure.
第七圖係本發明之具溫度感測元件之發光二極體晶片的第三實施例之示意圖。Figure 7 is a schematic view of a third embodiment of a light-emitting diode wafer having a temperature sensing element of the present invention.
第八圖係本發明之具溫度感測元件之發光二極體晶片的覆晶封裝示意圖。The eighth figure is a flip-chip package diagram of a light-emitting diode wafer with a temperature sensing element of the present invention.
1...發光二極體晶片1. . . Light-emitting diode chip
10...基板10. . . Substrate
121...端電極121. . . Terminal electrode
13...絕緣層13. . . Insulation
14...半導體堆疊發光結構14. . . Semiconductor stacked light emitting structure
141...n型半導體層141. . . N-type semiconductor layer
142...n型層電極142. . . N-type layer electrode
143...p型半導體層143. . . P-type semiconductor layer
144...p型層電極144. . . P-type layer electrode
145...半導體活性層145. . . Semiconductor active layer
Claims (58)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98106634A TWI389356B (en) | 2009-03-02 | 2009-03-02 | Light emitting diode with a thermal sensor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98106634A TWI389356B (en) | 2009-03-02 | 2009-03-02 | Light emitting diode with a thermal sensor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201034253A TW201034253A (en) | 2010-09-16 |
TWI389356B true TWI389356B (en) | 2013-03-11 |
Family
ID=44855439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98106634A TWI389356B (en) | 2009-03-02 | 2009-03-02 | Light emitting diode with a thermal sensor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI389356B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023108487A1 (en) * | 2021-12-15 | 2023-06-22 | 联嘉光电股份有限公司 | Temperature-measurable vertical light-emitting diode grain structure and temperature measurement correction method therefor |
-
2009
- 2009-03-02 TW TW98106634A patent/TWI389356B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201034253A (en) | 2010-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101499511B (en) | LED chip with temperature sensing component and manufacturing method thereof | |
US8319331B2 (en) | Semiconductor device | |
TWI441305B (en) | Semiconductor device | |
US9054119B2 (en) | Dual compartment semiconductor package | |
US9153745B2 (en) | Light-emitting diode package and method of fabricating the same | |
WO2018054101A1 (en) | Wafer level package-based mems wind speed and direction sensor structure and packaging method | |
US9823279B2 (en) | Current sensing using a metal-on-passivation layer on an integrated circuit die | |
US10529885B2 (en) | Optical device and method for manufacturing the same | |
CN105023858A (en) | An LED device integrating graphene temperature sensing and a manufacturing method thereof | |
TWI389356B (en) | Light emitting diode with a thermal sensor and manufacturing method thereof | |
Chang et al. | A novel silicon-based LED packaging module with an integrated temperature sensor | |
TWI585870B (en) | Chip package and manufacturing method thereof | |
Xu et al. | Reduction of structural thermal resistance for deep ultraviolet light-emitting diodes fabricated on AlN ceramic substrate via copper-filled thermal holes | |
JPH0472656A (en) | Semiconductor integrated circuit device and manufacture thereof | |
CN112345111A (en) | High-power heat source chip and preparation method thereof | |
TWI482310B (en) | Light emitting diode structure, light emitting diode package and method of measuring temperature of light emitting diode structure | |
US20060156080A1 (en) | Method for the thermal testing of a thermal path to an integrated circuit | |
CN203503689U (en) | Flip-chip-type LED chip | |
KR100821127B1 (en) | Thermocouple embedded high power device and the method for manufacturing the same | |
Chen et al. | Thermal resistance investigation of ceramic substrates for high-power light-emitting diodes packaging | |
TWI817280B (en) | Vertical light-emitting diode grain structure capable of temperature measurement and its temperature measurement correction method | |
WO2023108487A1 (en) | Temperature-measurable vertical light-emitting diode grain structure and temperature measurement correction method therefor | |
JPH0290646A (en) | Semiconductor element for test | |
TWI442496B (en) | Light engine and method for manufacturing the same | |
TWI418055B (en) | Operating system and method of light emitting device |