1362756 九、發明說明: 【發明所屬之技術領城】 本發明係關於一種染料敏化太陽能電池,尤其係關於—種具 有雙層奈米管結構的染料敏化太陽能電池。 /、 【先前技術】1362756 IX. Description of the Invention: The present invention relates to a dye-sensitized solar cell, and more particularly to a dye-sensitized solar cell having a double-layered nanotube structure. /, [Prior technology]
隨著生活品質的提昇’各國家的用電需求量亦隨之增加,且 對其發電方式也越來越嚴格。考慮的因素除了環境因素Γ經濟因 素、以及操作0素之外,尚需考慮能源獨立性等問題。'由$太陽 能發電具有上述優點,且其發電過程極為安靜,所以此種發電方 式正逐漸顯現其未來替代傳統發電方式的重要性以及潛力。近年 來’由於奈米技術與先進材料之開發,有助於提升太陽妒雷 轉換效率。 染料敏化太陽能電池(DSSC ’ Dye Sensitized Solar Cells) 或稱Gratzel電池’此種電池的結構包含陽極、陰極、以及電解 液等三部分,其中陽極為染料敏化的多孔性半導體薄膜電極,陰 極為白金薄膜電極,並且在陰極與陽極之間充塡具有氧化與還原 月b力的電解質。濕式電池的主要核心部分為陽極的多孔性半導體 溥膜電極,例如ZnO、Sn〇2、Ti〇2、Nb2〇5、SrTi〇3等氧化物,其^ 二氧化鈦(Ti〇2)具有製備方便、高效能之光催化特性、化學穩定性 咼*、價格便宜等特性,並且已被廣泛地應用於濕式染料敏化電池 之薄臈電極,其工作原理為: (1)經入射光照射後,附著於陽極之光敏染料的電子從最高電 =有執域(HOMO,highest occupied molecular orbital)躍遷 u最低無電子佔有軌域(LUMO, l〇west unoccupied m〇iecuiar orbitaH。 (3r-^^I3-+2e-) j _ (i)電子由染料分子轉移至二氧化鈦半導體材,電洞由染料分 電解液中j同時,使電解液中㈣液產生氧化 並使染料產生還原。 1362756 (3) 半導體上的電子再經由銦,氧化物(IT〇 ,祕⑽— =㈣透科電膜傳遞至外部電路,並對外部的負齡〇ad)做 (4) 電子經由外部電路回到電解液中,並還原诚液 ^3Γ) ’而完成電化學反應。 並還原#液 利以ί參ίη1戶斤ϋ料敏化太陽能電池自1988年被申請專 Ϊ、、也成本上亦待尋求下降的空間。染料敏化太陽能 _从^主要同單價材料,分別為光敏染料、陰極的白金、以及 用直处^^薄膜,喊程部分’白金薄膜與翻導電薄膜需 叙此外,如參考文獻2所述,電子傳輸層的二氧化 奈米顆粒係利用凝固~凝膠㈤—gel)法加以製作,而以旋 轉塗佈與燒縣製作奈米義。在上述製程中,吾人可將二氧化 鈦奈米顆粒塗佈於透明ά璃上,經高溫(例如45G°C)燒結後,製得 透明之染料太陽能電池元件。然而,若以娜片絲材時, ,為其不耐尚溫燒結製程,所以不易製得可撓式透明染料敏化太 電池。目前染料敏化太陽能電池的最高轉換效率約為11%,但 如多獻3所述,此仍停留於數年前的紀錄。為了提高染料敏 化;^陽施電池的轉換效率,除了基本的陽極與陰極層之外,尚需 在陽極下方鍍上散射層與抗反射層,以增 量將陽極層做成彎曲的形狀,以降低電子在x_y 外^為了降低電子與電洞再結合(charge rec〇mbinati〇n)的機率, ,需要在二氧化鈥表面鍍上隔離層,例如氧化鎂(Mg〇)。由於此種 複雜的電池製程,將降低染料敏化太陽能電池在市場上與其它型 式電池的競爭力。綜上所述,如何簡化與降低染料敏化太陽能電 池之製程與成本,並且提升光_電轉換效率,便是目前極需努力的 目標。 參考文獻 1 : Michael Gratzel, Paul Liska,With the improvement of the quality of life, the demand for electricity in various countries has also increased, and the way of generating electricity has become stricter. In addition to environmental factors, economic factors, and operational factors, factors considered must consider energy independence. 'The solar power generation has the above advantages, and its power generation process is extremely quiet, so this type of power generation is gradually showing the importance and potential of its future alternative to traditional power generation methods. In recent years, due to the development of nanotechnology and advanced materials, it has helped to improve the conversion efficiency of solar ray. A dye-sensitized solar cell (DSC 'Dye Sensitized Solar Cells) or a Gratzel battery. The structure of the battery includes an anode, a cathode, and an electrolyte. The anode is a dye-sensitized porous semiconductor film electrode, and the cathode is A platinum film electrode, and an electrolyte having an oxidation and reduction monthly b force is charged between the cathode and the anode. The main core part of the wet battery is a porous semiconductor ruthenium membrane electrode of the anode, such as ZnO, Sn〇2, Ti〇2, Nb2〇5, SrTi〇3 and the like, and the titanium dioxide (Ti〇2) has convenient preparation. High-performance photocatalytic properties, chemical stability 咼*, low price, etc., and have been widely used in thin tantalum electrodes of wet dye-sensitized batteries. The working principle is as follows: (1) After being irradiated by incident light The electrons of the photosensitizing dye attached to the anode are transitioned from the highest occupied molecular orbital (HOMO, highest occupied molecular orbital) to the lowest electron-free occupied orbital domain (LUMO, l〇west unoccupied m〇iecuiar orbitaH. (3r-^^I3) -+2e-) j _ (i) The electrons are transferred from the dye molecules to the titanium dioxide semiconductor material, and the holes are separated from the dye by the dye, so that the (four) liquid in the electrolyte is oxidized and the dye is reduced. 1362756 (3) Semiconductor The electrons on the electrons are then transferred to the external circuit via an indium, oxide (IT〇, secret (10)—=(4) through the external circuit, and the external negative electrode 〇ad) (4) electrons return to the electrolyte via an external circuit, And restore the liquid ^ 3 Γ) 'and complete the electrification Reaction. And the reduction of liquid liquefied ί ί η η η 户 户 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏 敏Dye-sensitized solar energy_from the main monovalent material, respectively, photosensitive dye, platinum in the cathode, and the use of straight film, the part of the 'platinum film and turned conductive film needs to be described, as described in Reference 2. The N2 nanoparticles of the electron transport layer were produced by the coagulation-gel (five)-gel method, and the nanometers were produced by spin coating and burning. In the above process, the titanium dioxide nanoparticles can be coated on transparent glass and sintered at a high temperature (e.g., 45 G ° C) to obtain a transparent dye solar cell element. However, if the film is made of Na, it is not easy to produce a flexible transparent dye-sensitized battery. At present, the maximum conversion efficiency of dye-sensitized solar cells is about 11%, but as stated in more than 3, this is still a record of several years ago. In order to improve the dye sensitization; in addition to the basic anode and cathode layers, it is necessary to plate a scattering layer and an anti-reflection layer under the anode to incrementally shape the anode layer into a curved shape. In order to reduce the probability of electrons re-combining with x_y, it is necessary to plate a surface of the ceria with a barrier layer such as magnesium oxide (Mg〇). Due to this complex battery process, dye-sensitized solar cells will be less competitive in the market with other types of batteries. In summary, how to simplify and reduce the process and cost of dye-sensitized solar cells and improve the efficiency of light-to-electrical conversion is the goal that is currently in great demand. References 1 : Michael Gratzel, Paul Liska,
Photo-electrochemical cells and Process of Making Same, U. S. 6 1362756 patent: 5084365. 參考文獻 2 : Greg Smestad, Carlo Bignozzi,Roberto Argazzi, Testing of dye sensitized Ti〇2 solar cells I: Experimental photocurrent output and conversion efficiencies, Solar Energy Materials and Solar Cells 32 (1994) 259-272. 參考文獻 3 : M. Gratzel, Photoelectrochemicai cells, Nature, 414 (2001) 338.Photo-electrochemical cells and Process of Making Same, US 6 1362756 patent: 5084365. Reference 2: Greg Smestad, Carlo Bignozzi, Roberto Argazzi, Testing of dye sensitized Ti〇2 solar cells I: Experimental photocurrent output and conversion efficiencies, Solar Energy Materials and Solar Cells 32 (1994) 259-272. Reference 3: M. Gratzel, Photoelectrochemicai cells, Nature, 414 (2001) 338.
【發明内容】 針對上述問題,本發明之目的在於提供一種新結構與製造方 法,可製得大面積、可撓式、與透明之染料敏化太陽能電池。其 係以^化鋁(A12〇3)奈米管陣列作為染料敏化太陽能電池的陽極模 板1模板内再吸附其銳鈦相(anatase)之二氧化鈦奈米管,此氧化 鋁模板使得二氧化鈦奈米顆粒的排列規則化,進而改良半導體層 =結構以增加電子的傳輸效率以及陽極材單位面積㈣料的吸& 里〇 的氧他(Al2()3)奈米管而形成,並且在氧化銘奈 ,作為 =二奈 之染法提有雙】奈米管結構 在氧化銘奈米米管,形成奈米模板; 光敏染料吸附於二氧化鈦;米以。==形; 1362756 i屬基材上形成透明導電膜,以作為電池的陰 極,以及將電解液封裝在陽極與陰極之間。 請專及優賴町詳細說似及隨附之申 【實施方式】 祕顯示依照本發明之—實施例之染機化太陽能電池1 陽能電池1包含奈米模板16其二 1通的減魏絲米管所構成。這錢化絲米管係藉 極處理法成長在紹板(無圖示)上。將模板16浸潰在含有 奈米,粒的溶液t,並且在模板16之氧她奈米管的内管表面吸 附二乳化鈦奈米顆粒之後,進行燒結,以在氧她奈来管的内管 表面巧成具銳鈦相(anatase)之二氧化鈦半導體薄膜,即二 奈米官20,以作為電池1的陽極。二氧化鈦奈米管2〇可作子 傳輸層。然後’在二氧化鈦奈米管2〇的表面吸附一層光敏 圖示),而此光敏祕層可作為電子產生層。電池丨包含透明電才亟 10 ’以作為電池1的陰極。透明電極(陰極部分)1〇係相對於模 (陽極部分)16而設置’並且在陽極與陰極之間封裝有電解液15。 此外,透明電極10係由透明基材12以及透明導電膜(TC〇, transparent conducting oxide)13 所構成。透明基材 12 可為 質的玻璃或隔水阻氣性佳之軟質的聚二甲酸乙二醇酯(pEN, polyethylene naphthalate),而透明導電膜13可為銦錫氧化物 (IT0,indium tin oxide)、銻錫氧化物(AT〇,antim 如 oxide)、氟錫氧化物(FTO,flU0rine tin 〇xide)、鋁鋅氧化物 (AZO,aluminum zinc oxide)、或銦鋅氧化物(IZ〇,indium zinc oxide)的透明導電薄膜。此外,透明電極1〇的透明導電膜i3可 作為由外部電路回傳電子的接收層。 ' 在另一實施例中,鋁板能夠以鋁合金板加以代替,而此鋁合 1362756 =可為5052紹合金或_銘合金。在又另一實施例中,將銘 在—基材上,以取代齡屬板雜合金板,鎌藉由陽極 处法在鍍有鋁層的基材上成長氧化鋁奈米管。 然而,本發明之電池麟僅限於類奈綺結構,其可具有 上的奈米f結構。此外,位於氧化ls奈米管_二氧化鈦 ^ & 20可由下列材料加以取代:三氧化鶴(w〇〇、二氧化錫 1Ϊ7、Ι化鋅(ZnG)、二氧錄⑽2)、三氧化二銦(滅)、硫 化,(ZnS)、硫化铜(in2s3)、硫化錦(⑽)、石申化錄(GaAs) 、♦申 、魏鑛(CdSe)、氮化姻(InN)、碳化石夕(SiC)、或碲 化鑛(CdTe)。 在本實施例中,透明電極1Q更包含白金奈米顆粒催化層14, 電=15在透明電極10上進行氧化-還原反應。白金 催化層14可具有從約1 nm至約1〇〇 nm的厚度。 外甘ί池i Ϊ包含:金射極薄膜18,形成在奈米模板16 的下方,J以傳遞電子而使電子輸出對外做功;以及絕緣層(益 圖不)’設置在陽極與陰極之間。為了防止二氧化鈦奈米管2〇内 陰:陽極短路,較佳係在奈米模板16與金屬電極 4Μ之間β又置一氣化鈦薄膜17。在本發明之另一實施例中,金 屬電,薄膜18可被透明導電薄膜⑽)所取代。此外,在圖 為了間 >糸目的,所以沒有顯示絕緣層。 在另一實施例中,陰極更包含條狀或網狀 可為不與電縁15產生反應的低電崎金屬或透明導電膜,此 屬為銀、金、鉑、或鎳,而此透明導電膜為 、 化物、氟錫氧化物、鱗氧化物、或_氧化物。在維實施 例^此輔助電極係由銀所製成,並且在此輔 ^ 護層,以避免輔助電極受到電解液15的侵姓。 麟保 如圖1與圖2所*,入射光π進入透明基材 明導電膜13以及白金催化層14,然後照射位於才二 1362756 20表面上的光敏染料。由於光敏染料受到光的照射,所以可與電 解,15產生電化學反應。此時,光敏染料會產生電子,電子經由 一氧化鈦奈米管20、二氧化鈦薄膜17、以及金屬電極薄膜18,而 傳遞至外部電路並對外部的負載(1〇ad)做功。 、 在本Ίχ明十,核板或稱為陽極乳化紹(AAO,anodic aluminum oxide)模板係由複數氧化鋁奈米管所構成,其孔徑尺寸可利用外 加電壓、電解液種類與擴孔(p0re widening)時間等製程條件加以 =制。圖3A至3H係分別顯示利用依照本發明之陽極處理技術製 得具々有約 10nm、20nm、40nm、50nm、70 nm、90 nm、250 nm、400 nm等不同孔徑的陽極氧化鋁模板。當陽極氧化鋁模板經過1〇 vol. %硫酸溶液、18V、以及25°C的陽極處理之後,可獲得約1〇 nm 的孔控(圖3A)、或經過5 vol.% HaPO4擴孔1〇 min之後,可獲得 約20 nm的孔徑(圖3B);當陽極氧化鋁模板經過3 wt. %草酸溶 液、40V、以及25°C的陽極處理之後,可獲得約4〇 nm的孔徑(圖 3C)或經過 5 vol. % H3PO4擴孔 30 min、60 min、以及 90 min 之 後,可分別獲得約50 nm(圖3D)、70 nm(圖3E)、以及90 nm(圖 3F)的孔徑;以及當陽極氧化鋁模板經過丨v〇1%磷酸溶液、 200V、以及1 C的陽極處理之後,可獲得約250 nm的孔徑.(圖3G)、 或經過5 vol.% H3P〇4擴孔120 min之後,可獲得約400 nm的孔 徑(圖3H)。 然後,將孔徑為250 nm的陽極氧化鋁模板浸潰在濃度約 〇· 02M的氟化鈦(Tih)水溶液(PH = 3)中,經過120 min之後,如 圖4Α/斤示,可在陽極氧化鋁模板的氧化鋁奈米管内形成二氧化鈦 奈,官。此外’若將70 nm的陽極氧化鋁模板浸潰在濃度約〇 〇〇4M 的氟化鈦(T1F4)水溶液(pH = 3)中,經過6〇min之後,如圖4B所 示,可在氧化鋁奈米管内形成二氧化鈦奈米顆粒。以上所得的樣 品可作為染料敏化太陽能電池的:l作電極(陽極),工作電極經似 柒料/¾:泡並封裝為染料敏化太陽能電池元件後,可測得光電轉換 效率(7?)為0. 32%、開路電壓(v〇c)為〇. 57 v、短路電流(Isc)為 1362756 〇甘36 mA、以及填充率⑽為〇 43的染料敏化太陽能電池元件, 其電流-電壓曲線(ί-v curve)如圖5所示。 依照本發明之另一實施例,提供本發明之染料敏化太陽能電 池的製造方法,其包含下列步驟。 首先,姻陽極處理法,在純上成以構颜板的氧化 銘不米t ’然後將由氧化結奈米管所構成的模板自純取下,並 ,移除ΐ板,的氧化_膜(阻障膜),以形成兩端貫通的氧化 ’不米官。這些氧化鋁奈米管的管長與管徑大小可經由陽極處理 時間、電解液種類、以及外加電壓值加以控制。 心接著’在氧化紹奈米管的一端鑛上二氧化欽薄膜0然後,將 才、板浸潰在含有二氧化鈦奈米顆粒的溶液中,待二氧化鈦 粒附著於氧減奈米管_管表面後進行燒結,以增加其附著性 ,且形成二氧化鈦奈米管。這些二氧化鈦奈米管可作為電子 層0 ,^然後,將模板浸潰在含有光敏染料的溶液中,使二氧化鈦齐 ^管的表面魏綠轉。接著,在二氧化鈦薄_表面形成金 屬電極薄膜’而完成電池陽極的製備。在另一實施例 電極薄膜能夠以透明導電_⑽,transparent eGnducti〇n oxide)加以取代。 接著’利用雜法,在聚二甲酸乙二醇s|透明基 上一層透明導電膜,而完成電池陰極的製備。 不]衣曲鍍 θ最後,將電解㈣裝在陽極與陰極之間,以形成染料敏化太 陽能電池。 在-實施财’事先在氧化絲米管⑽積導電薄膜,缺後 在導電膜上形f氧化鈦奈米管,以提升電子在氧灿奈米;^内 的傳輸速率。氧化銘奈米管内的導電薄膜,係以益電解^法 (electroless deposition)所形成的金屬層,而此金屬層^電 鑛錄、銅、或銀。 曰…… 綜上所述’依照本發明之染料敏化太陽能電池:其二氧化欽 1362756 奈米管係附著在氧化鋁奈米管内,由於此結合兩奈米管的特性(氧 化鋁奈米管具有較佳的機械強度與可撓性,二氧化鈦奈米管具有 傳導電子的能力),故可增加染料敏化太陽能電池之陽極吸附^料 的,面積,並且強化陽極膜的結構強度。此外,由於二氧化3太奈 米皆不會形成交錯的網狀堆積,所以可縮短電子由光敏染料傳^ 至導電層的路徑,因而降低電子與電洞再結合的機率。/、 / β依,本發明之染料敏化太陽能電池的製造方法:其製程係利 ,%極氧化銘作為模板,以使二氧化鈦奈米顆粒吸附於其上,然 ,形成—氧化叙奈米管。由於陽極氧化銘模板的尺寸 ’ a此可_地控制二氧化鈦奈米管在轉敏化太陽能電 極朗畴量以及對純的有效吸附表面積,此將有助於 辣对電子在陽極上的傳遞行為。 ^本發明之染料敏化太陽能電池係一種結合二氧化鈦奈米管、 ^化銘奈米模板'以及導電轉膜的純敏化太陽能電池元件, if ϊ池具有可透光性、可撓性、近細式、以及輕量化等特性。 供、;奈雜粒與奈米f的特性,所以可達到製作成本大幅降 低、轉換效率提升、以及高製程良率等優點。 然本發日犯參考其稍實侧進行特定顯示以及說明,但 不限於這些實施例。具有此技術領域之通常知識者可瞭 開如本發明之請求項所界定之精神與範圍的情形下,可 進仃各種不同形式與細節的變化。 【圖式簡單說明】 結構=音顯示依照本發明之—實施例之染料敏化太陽能電池的 圖2係圖1之陽極部分的局部放大示意圖; f 3A至3H係分別顯示利用依照本發明之陽極處理技術而製 侍具有不同孔徑的陽極氧化鋁模板; 圖4A與4B係分別顯示以不同孔徑之奈米模板配合不同條件 1362756 所形成的雙層奈米管結構;及 圖5係顯示依照本發明之利用雙層奈米管所製得之染料敏化 太陽能電池的電流-電壓(I-V)曲線。 【主要元件符號說明】. 1染料敏化太陽能電池 10透明電極 11入射光 12透明基材 13透明導電膜 14白金奈米顆粒催化層 15 電解液 16奈米模板 17二氧化鈦薄膜 18金屬電極薄膜 20 二氧化鈦奈米管SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a novel structure and manufacturing method for producing a large-area, flexible, and transparent dye-sensitized solar cell. The aluminum oxide (A12〇3) nanotube array is used as the anode template 1 of the dye-sensitized solar cell to adsorb the anatase titanium dioxide nanotube. The alumina template makes the titanium dioxide nanometer. The arrangement of the particles is regularized, and the semiconductor layer = structure is improved to increase the electron transport efficiency and the anode material per unit area (four) of the material is absorbed and the oxygen (Al2()3) nanotubes are formed, and in the oxidation Nai, as the dyeing method of = two nai has a double] nano tube structure in the oxidation of the nanometer tube, forming a nano template; photosensitive dye adsorption on titanium dioxide; rice. == shape; 1362756 i is a transparent conductive film formed on the substrate to serve as the cathode of the battery, and to encapsulate the electrolyte between the anode and the cathode. Please refer to the detailed description and accompanying application of You Lai-cho. [Embodiment] The display of the dyed solar cell according to the embodiment of the present invention 1 The solar cell 1 contains the nano template 16 and the second pass It is composed of silk rice tubes. This money-based silk rice tube was grown on the plate (not shown) by the pole treatment method. The template 16 is immersed in a solution t containing nanoparticles, granules, and after adsorbing the second emulsified titanium nanoparticles on the inner tube surface of the oxygen nanotubes of the template 16, sintering is performed in the oxygen O. The surface of the tube is a titanium dioxide semiconductor film having an anatase phase, that is, a nanometer 20, as the anode of the battery 1. Titanium dioxide nanotubes can be used as a transport layer. Then, a photosensitive image is adsorbed on the surface of the titanium dioxide nanotube 2, and this photosensitive layer can serve as an electron generating layer. The battery pack contains a transparent electrode 10' to serve as the cathode of the battery 1. The transparent electrode (cathode portion) 1 is disposed with respect to the mold (anode portion) 16 and the electrolyte 15 is encapsulated between the anode and the cathode. Further, the transparent electrode 10 is composed of a transparent substrate 12 and a transparent conducting oxide (TC) 13. The transparent substrate 12 may be a quality glass or a soft polyethylene terephthalate (pEN, polyethylene naphthalate), and the transparent conductive film 13 may be an indium tin oxide (IT0). , antimony tin oxide (AT〇, antim such as oxide), fluorine tin oxide (FTO, flU0rine tin 〇xide), aluminum zinc oxide (AZO, aluminum zinc oxide), or indium zinc oxide (IZ〇, indium zinc Oxide) transparent conductive film. Further, the transparent conductive film i3 of the transparent electrode 1 可 can serve as a receiving layer for returning electrons from an external circuit. In another embodiment, the aluminum plate can be replaced with an aluminum alloy plate, and the aluminum alloy 1362756 = can be a 5052 alloy or a metal alloy. In yet another embodiment, an alumina nanotube can be grown on a substrate coated with an aluminum layer by an anode method in place of the substrate. However, the battery lining of the present invention is limited to the ruthenium-like structure, which may have a nano-f structure. In addition, the oxidized ls nanotube tube _ TiO 2 & 20 can be replaced by the following materials: trioxide crane (w 〇〇, tin dioxide 1 Ϊ 7, zinc telluride (ZnG), dioxo (10) 2), indium trioxide (extinguish), vulcanization, (ZnS), copper sulfide (in2s3), vulcanized brocade ((10)), Shi Shenhua Lu (GaAs), ♦ Shen, Wei mine (CdSe), nitriding (InN), carbonized stone eve ( SiC), or bismuth ore (CdTe). In the present embodiment, the transparent electrode 1Q further includes a platinum nanoparticle particle catalytic layer 14, and an electric=15 is subjected to an oxidation-reduction reaction on the transparent electrode 10. The platinum catalyst layer 14 can have a thickness from about 1 nm to about 1 〇〇 nm. The outer ganchi i Ϊ comprises: a gold emitter film 18 formed below the nano template 16, J to transfer electrons to make the electron output work externally; and an insulating layer (not shown) disposed between the anode and the cathode . In order to prevent the titanium dioxide nanotube 2 inner cathode: anode short circuit, it is preferable to place a vaporized titanium film 17 between the nano template 16 and the metal electrode 4?. In another embodiment of the invention, the metal is electrically replaced and the film 18 is replaced by a transparent conductive film (10). In addition, in the figure for the sake of >, the insulating layer is not shown. In another embodiment, the cathode further comprises a strip or mesh which may be a low electric metal or transparent conductive film which does not react with the electric cymbal 15, and the genus is silver, gold, platinum, or nickel, and the transparent conductive The film is a compound, a fluorine tin oxide, a scale oxide, or an oxide. In the embodiment, the auxiliary electrode is made of silver and is additionally provided here to prevent the auxiliary electrode from being invaded by the electrolyte 15. Lin Bao As shown in Fig. 1 and Fig. 2, the incident light π enters the transparent substrate, the conductive film 13 and the platinum catalyst layer 14, and then the photosensitive dye located on the surface of the No. 1362756 20 is irradiated. Since the photosensitizing dye is irradiated with light, it can react with electrolysis, 15 to produce an electrochemical reaction. At this time, the photosensitive dye generates electrons, and the electrons are transmitted to the external circuit via the titanium oxide nanotube 20, the titanium oxide film 17, and the metal electrode film 18, and work on the external load (1〇ad). In Ben 10, the nuclear plate or the anodic aluminum oxide template is composed of a plurality of alumina tubes, and the pore size can be increased by the applied voltage, electrolyte type and reaming (p0re). Widening) Time and other process conditions are adjusted. 3A to 3H show, respectively, an anodized aluminum template having different pore diameters of about 10 nm, 20 nm, 40 nm, 50 nm, 70 nm, 90 nm, 250 nm, 400 nm, etc., produced by the anode treatment technique according to the present invention. When the anodized aluminum template is subjected to anodization of 1 〇 vol. % sulfuric acid solution, 18 V, and 25 ° C, pore control of about 1 〇 nm (Fig. 3A) or reaming by 5 vol.% HaPO4 can be obtained. After min, a pore size of about 20 nm is obtained (Fig. 3B); when the anodized aluminum template is subjected to anodization of 3 wt.% oxalic acid solution, 40 V, and 25 ° C, a pore diameter of about 4 〇 nm can be obtained (Fig. 3C). Or after 5 min, 60 min, and 90 min reaming of 5 vol. % H3PO4, apertures of approximately 50 nm (Fig. 3D), 70 nm (Fig. 3E), and 90 nm (Fig. 3F) are obtained, respectively; When the anodized aluminum template is treated with 丨v〇1% phosphoric acid solution, 200V, and 1 C anode, a pore size of about 250 nm can be obtained (Fig. 3G), or after 5 vol.% H3P〇4 reaming 120 min. Thereafter, an aperture of about 400 nm is obtained (Fig. 3H). Then, the anodized aluminum template with a pore size of 250 nm is immersed in a titanium fluoride (Tih) aqueous solution (pH = 3) with a concentration of about 〇·02M. After 120 minutes, as shown in Fig. 4, it can be at the anode. Alumina nanotubes are formed in the alumina template of the alumina template. In addition, if a 70 nm anodized aluminum template is immersed in a titanium fluoride (T1F4) aqueous solution (pH = 3) with a concentration of about 4 M, after 6 〇 min, as shown in Fig. 4B, it can be oxidized. Titanium dioxide nanoparticles are formed in the aluminum nanotubes. The sample obtained above can be used as a dye-sensitized solar cell: as an electrode (anode), and the working electrode can be measured as a dye-sensitized solar cell element after being dyed and packaged as a dye-sensitized solar cell element (7? ) is a dye-sensitized solar cell element with 0.32% open circuit voltage (v〇c) of 〇. 57 v, short circuit current (Isc) of 1362756 〇 36 36 mA, and filling rate (10) of 〇43, its current - The voltage curve (ί-v curve) is shown in Figure 5. According to another embodiment of the present invention, there is provided a method of producing a dye-sensitized solar cell of the present invention comprising the following steps. First of all, the marriage anode treatment method, in purely formed into the oxidized surface of the slab, is not removed, and then the template formed by the oxidized tube is removed from the pure, and the yttrium plate is removed. The barrier film) is formed to form an oxidation of the ends of the two. The tube length and diameter of these alumina nanotubes can be controlled by the anode treatment time, the type of electrolyte, and the applied voltage value. The heart then 'mines the oxidized film on the end of the oxidation of the Schneider tube. Then, the plate is immersed in the solution containing the titanium dioxide nanoparticles, and the titanium dioxide particles are attached to the surface of the oxygen-reduced tube. Sintering is performed to increase the adhesion and form a titanium dioxide nanotube. These titanium dioxide nanotubes can be used as an electron layer 0, and then the template is immersed in a solution containing a photosensitizing dye to rotate the surface of the titanium dioxide tube. Next, a metal electrode film ' is formed on the thin surface of the titanium oxide to complete the preparation of the battery anode. In another embodiment, the electrode film can be replaced by a transparent conductive layer (10), transparent eGnducti〇n oxide. Then, a transparent conductive film was formed on the polyethylene terephthalate s|transparent substrate by a heterogeneous method to complete the preparation of the battery cathode. No] coating plating θ Finally, electrolysis (4) is placed between the anode and the cathode to form a dye-sensitized solar cell. In the - implementation of the financial sector in advance of the oxidation of the rice tube (10) accumulated conductive film, after the absence of a shape of titanium oxide nanotubes on the conductive film to enhance the electron transfer rate in the oxygen can be; The conductive film in the oxidized Mingmi tube is a metal layer formed by electroless deposition, which is recorded in copper, copper or silver.曰... In summary, the dye-sensitized solar cell according to the present invention has its disulfide 1362756 nanotube attached to the alumina nanotube, due to the characteristics of the two nanotubes (alumina nanotubes) It has better mechanical strength and flexibility, and the titanium dioxide nanotube has the ability to conduct electrons, so it can increase the anode adsorption area of the dye-sensitized solar cell and strengthen the structural strength of the anode film. In addition, since the dioxane 3 does not form interlaced network deposits, the path of electrons from the photosensitive dye to the conductive layer can be shortened, thereby reducing the probability of recombination of electrons and holes. /, / β, according to the method for producing a dye-sensitized solar cell of the present invention: the process is profitable, and the % oxidized salt is used as a template to adsorb the titanium dioxide nanoparticle thereon, and then, the oxidized Senna tube is formed. . Due to the size of the anodized template, this can control the amount of TiO2 nanotubes in the sensitized solar cell and the effective surface area for pure adsorption, which will contribute to the transfer of electrons on the anode. The dye-sensitized solar cell of the present invention is a pure sensitized solar cell element combining a titanium dioxide nanotube, a crystallization template, and a conductive film, if the Dianchi is permeable, flexible, and nearly Fine, and lightweight features. The characteristics of the gas, nanoparticle and nano-f, can achieve the advantages of greatly reduced production cost, improved conversion efficiency, and high process yield. However, the present invention is specifically shown and described with reference to its slightly side, but is not limited to these embodiments. Variations in the various forms and details may be made without departing from the spirit and scope of the invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a partially enlarged schematic view showing the anode portion of the dye-sensitized solar cell according to the present invention; FIG. 2 is a view showing the anode according to the present invention, respectively. Processing technology to prepare anodized aluminum oxide templates having different pore sizes; Figures 4A and 4B show double-layered nanotube structures formed by different templates of different pore sizes with different conditions 1362756; and Figure 5 shows the invention according to the present invention. A current-voltage (IV) curve of a dye-sensitized solar cell produced using a double-layered nanotube. [Main component symbol description]. 1 Dye-sensitized solar cell 10 transparent electrode 11 incident light 12 transparent substrate 13 transparent conductive film 14 platinum nanoparticle particle catalytic layer 15 electrolyte 16 nano template 17 titanium dioxide film 18 metal electrode film 20 titanium dioxide Nanotube
1313