TWI358893B - Quarter-rate clock recovery circuit and clock reco - Google Patents
Quarter-rate clock recovery circuit and clock reco Download PDFInfo
- Publication number
- TWI358893B TWI358893B TW094126168A TW94126168A TWI358893B TW I358893 B TWI358893 B TW I358893B TW 094126168 A TW094126168 A TW 094126168A TW 94126168 A TW94126168 A TW 94126168A TW I358893 B TWI358893 B TW I358893B
- Authority
- TW
- Taiwan
- Prior art keywords
- phase
- clock
- clocks
- control
- signal
- Prior art date
Links
- 238000011084 recovery Methods 0.000 title claims description 60
- 238000003780 insertion Methods 0.000 claims description 58
- 230000037431 insertion Effects 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 7
- 230000008901 benefit Effects 0.000 claims description 4
- 241000282376 Panthera tigris Species 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 14
- 102100040577 Dermatan-sulfate epimerase-like protein Human genes 0.000 description 9
- 101000816741 Homo sapiens Dermatan-sulfate epimerase-like protein Proteins 0.000 description 9
- 101100015484 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GPA1 gene Proteins 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000872 buffer Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100067427 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FUS3 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0016—Arrangements for synchronising receiver with transmitter correction of synchronization errors
- H04L7/002—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
- H04L7/0025—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of clock signal
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Description
1358893 17621pif.doc 九、發明說明: .组山::請案主張於2004年8月4號向韓國智慧財 .&出中1月之韓國專利申請案第2_-61262號的優先座局 . 專利申凊案所揭露之内容完整結合於本說明書中。°亥 【發明所屬之技術領域】 树明是有關於—種時脈回復電路,且特別 種四分之-速率時脈回復電路以及使用此 j 料回復方法。 j崎脈貢 • 【先前技術】 概括地5兒,並列電路(parallel circuit)比串列電 (—it)設計起來更困難。因此,為了節省線路和 相互連接的成本和/或避免雜訊(例如,㈣電路的串音雜 =(cross-talknoise),以串列方式而不是以並列方式二遠 端設備(remote device)之間傳輸數位資料已成為最新的 趨勢 在串列資料傳輸中,資料藉由(例如)單光學纖維 φ (optlcal flber)、同軸或雙絞線電纜進行高速串列傳輸。 在並列資料傳輸中’使用多條線同時傳輸幾個資料流(data stream)。 為了減少成本,接收器可使用時脈回復電路(cl〇ck recovery circuit’ CRC)來回復接收到的高速數位資料之一 位元流的時脈,取代了分別傳輸與串列高速數位資料同步 的時脈到遠端接收器。傳統的時脈回復電路(Crc)可使 用一鎖相回路(phase locked loop,pll)或延遲鎖定回路 6 1358893 17621pif.doc (delay locked loop » DLL)。 圖l中的方塊圖繪示了-種使用鎖相回路(p 傳統時脈回復電路。 的 从^工器(multiplexe〇 12G可接收—參考頻率時脈⑴ 作為輸入。此參考頻率時脈11G可藉由_晶體振 (crystal oscillator)而產生。此晶體振盪器可產生一較 的頻率時脈以提供給多工器120。 _ 〇 參考頻率時脈11Q可經過__反饋回路產生一高頻時 脈。此反饋回路可包括一頻率相位㈣器(咖此 deteCt〇r) Π0、一回路濾波器(loop filter) 140、一壓控振 盪=(voltage-controlled oscillator,簡稱 VCO) 150 和./或 一分頻器(frequency divider) 160。 當振堡高頻時脈達到翻頻率時,串列輸入資料100 而不是參考頻率時脈no可藉由多工器12〇輸入到鎖相回 路(PLL)中。 〇 與串列輸入資料100同步的時脈180可從vc〇 150輸 •出。時脈18〇可與串列輸入資料1〇〇共同應用於觸發器(帥 flop) 170 ’而一時脈資料19〇可從觸發器17〇輸出。 概括地說’如果一高速串列輸入資料相位被輸入到鎖 相回路(PLL)巾,且此高速串列輸入資料有抖動現象 (jitter) ’那麼PLL必須適於在短時間内提供與高速串列 輸入資料同步的時脈。 β時脈回復電路的性能取決於鎖相回路(PLL)的性能。 但疋’设計具有較高性能的PLL可能比較困難,因為這可 7 1358893 17621pif.doc 能需要大量的功率損耗和/或較大的晶片面積,因而增大雜 訊。 曰’、 解決上述難題可以採用相位插入法(phase interpolation)。 相位插入技術是一種相位介於兩輸入時脈之第一與第 一相位之間的時脈產生方法。例如,具有〇度到9〇度相位 的時脈可根據具有〇度相位之第一時脈和具有9〇度相位之 第二時脈而產生。 • 特別是,使用四個時脈來執行相位插入的半速率 〇 (half-rate )時脈回復電路是一種傳統的時脈回復電路。 四個時脈回復電路可包括一具有輸入資料之半頻率的 參考時脈和三個相對於此參考時脈分別具有90度、180度 和270度相位差(ρΐ^% difference)的時脈。 半速率時脈回復電路可解決電路設計中的一個或多個 難題’其藉由降低其操作頻率而提高其操作速度。 傳統上’至少有兩種類型的半速率時脈回復電路,第 φ 種半速率犄脈回復電路使用至少兩個鎖相回路(PLL), 〇 而第二種半速率時脈回復電路使用單個鎖相回路(PLL·), 其產生四個具有90度相位差的半速率時脈I、Q、Ib和Qb。 為了私大資料帶寬(bandwidth )’這種傳統的半速率 時脈回復電路可使用多通道結構而不是訊號通道(signal channel)結構。 、多通道結構的半速率時脈回復電路可具有並列結構的 發送/接收通4 ’例如4路、8路、16路料的並列通道。 8 丄观893 17621pif.doc 使用至少兩個鎖相回路(PLL)的半速率時脈回復電 路可能需要大量的功率損耗和/或較大的晶片面積。比較起 來,使用單個鎖相回路(PLL)的半速率時脈回復電路— ,可包括一壓控振盪器(VCO),其能夠產生對應於增大 資料傳輸速度和增加通道數量的高頻率以產生四個相2間 具有90度相位差的時脈,以將這四個時脈傳輸到每條通 道。 圖2中的方塊圖繪示了一先前技術或先前技術公佈曰 • 期為I"9年U月Η日的時脈回復電路。 〇 串列輸入資料201和具有此串列輸入資料2〇1之半速 率的回復時脈202可被提供到相位偵測器(phase deted〇i〇 210。 相位偵測器210可比較兩輸入訊號2〇1與202之間的 相位差,並根據比較結果輸出上行/下行訊號(up/d〇wn signal) 215。 上行/下行訊號215可被提供到訊號分離器220,訊號 φ分離器220可輸出低速率上行/下行訊號225,此訊號可用 〇 於數位至類比轉換器(digital-to-analog converter,簡稱 DAC)控制邏輯230。 DAC控制邏輯230可根據訊號分離器220輸出的上行 /下行訊號225而輸出數位控制代碼235,以執行回復時脈 202的相位插入。 數位控制代碼235可經由多個數位至類比轉換器 (DAC)提供到相位插入單元250。 9 17621pif.doc 多個DAC 240可包括_非線性DAC,其具有非線性 轉換特性’當DAC控制邏輯23G輸出的數位控制代碼235 不進行線性變化時可補償此數位控制代碼235的非線性特 性。 相位插入單元250可根據DAC 240輸出的加權 (weight \控制訊號245對時脈發生器26〇輸出的四個時 脈265執仃相位插入’並可將輸出時脈搬輸出以跟跟串 列輸入資料201的相位。 相位插入單元250輸出的輸出時脈2〇2可被回饋到相 位偵測器210。半速率時脈回復電路可對具有串列輸入資 料201之半頻率的時脈執行相位插入。 及 例如,。當串列輸入資料201之速率約為8 5Gbps時, 相位插入單元250對具有此串列輸入資料之半頻率 (4.25GHz)的帛-、帛二、第三及第四時脈執行相位插 第二時脈相對於第一時脈之相位具有9〇度的相位差, 第=時脈相對於第一時脈之相位具有18〇度的相位差,以 及第四時脈相對於第一時脈之相位具有270度的相位差。 相位偵測器210偵測8.5Gbps串列輸入資料2〇1與相 位插入單元250提供的第一/第二時脈之間的相位差。 雖然圖2中未顯示,但是另一種情況是,相位偵測器 210可將串列輸入資料流2〇1多工分離成具有此串列輸入 資料机201之半頻率的兩束資料流270,以使用相對於第 一%脈之相位具有90度相位差之第二時脈和相對於第一 時脈之相位具有270度相位差之第四時脈來回復資料。 1358893 17621pif.doc 但是’當資料速率(或資料傳輸速率)增大時,傳统 的半速率時脈回復電路可能就有問題了。 至少有兩種方法可產生具有串列輸入資料2〇 1之半頻 率(4.25GHz)且相互間具有90度相位差的四個時脈,以 提供此四個時脈到每條通道中,如下所述。 應當注意的是,產生3GHz到4GHz之間的頻率不可 使用環形振盈器(ring 〇scillat〇r )。 在第一種方法中,當資料傳輸速率為8.5GHz時,可 • 執行8.5GHz本地壓控振盪器(VCO)。此8.5GHz振堡頻 率可分為兩半,四個具有4.25GHz頻率且相互間具有9〇 度相位差的時脈例如使用一觸發器而產生。 y 在第二種方法中,當資料傳輸速率為8.5GHz時,四 個具有4.25GHz頻率且相互間具有9〇度相位差的時脈例 如使用一 4.25GHz本地壓控振盪器(VC0)和一多相濾波 器(poly-phase filter )而產生。 在這兩種方法中,相互間具有9〇度相位差的四個 φ 都被傳輸到每條通道。 但是,以對應於所需資料傳輸速度之較高頻率進行操 作和/或具有預期抖動特性的鎖相回路(pLL)執行起來 能比較困難。 而且,將四個時脈傳輸到每條通道可能導致大量功率 損耗、線間的不匹配、和/或搞接影響,因為功率損耗、線 間的不匹配、和/或耗接影響可能增大頻率的比例。這樣, 如果不使用時脈緩衝n (clockbuffer)的話,就可能要限 1762Ipif.doc 制傳輸距離。 耗而衝义器^用的增加會導致晶片面積和/或功率損 耗曰大k而必須使用較大的封農 片的平面圖中安排一電源電 而二:二考慮在曰曰 【發明内容】 ϋ接點和-接地電壓接點。 in實_中’—種時脈回復電路包括:一時 脈發生益,其適於產生第_ 、唑一 脈具有輸入資料之資料速;的=二:脈且Ϊ ^ ; 第二、第三及第四時脈執行相位 ί資:==分之一頻率的第五、第六、第七】第八時 45^90^135 :第五b j位偵測态’其適於輸出對應於輸入資料 二二甘七及第八時脈之間相位差的訊號;以及 心控制==偵測器輸出的訊號,並產生控 時脈,、-. /、迥於產生第一、第二、第三及第四 ^脈且^四個,具有輸入資料之資料速率的四分之一頻 具有90 及第四時脈相對於第一時脈之相位分別 其轉接到日_1生差;至少—個時脈回復電路, 么生益,適於接收第一、第二、第三及第四 12 1358893 17621pif.doc 時脈,並適於使用回復時脈訊號減小輸入資料的資料速率 以提供多工分離(de-multiplexed)資料到多通道;以及一 控制器,其根據相位偵測器輸出的訊號對相位插入單元進 行控制。時脈回復電路包括一相位插入單元,其具有:第 一相位插入器(interp〇iator),適於接收第―、第二、第 三及第四時脈以產生第五時脈,此第五時脈跟縱輸入資料 之相位且具有輸入資料之資料速率的四分之—頻率;第二 ’適於產生第六時脈’其相對於第五時脈之相 /、有5度相位差;第三相位插人器,適於產生第七 脈’其相對於第五時脈之相位具有9G度相位差. 四 相=入器’適於產生第八時脈,其相對於第五時脈避相1358893 17621pif.doc IX. Invention Description: . Group Mountain:: The case is claimed to be the priority seat of the Korean Patent Application No. 2_-61262 of the Korean Intellectual Property on August 4, 2004. The contents disclosed in the patent application are fully incorporated in the present specification. °Hai [Technical Field of the Invention] Shuming is a kind of clock recovery circuit, and special kind of quarter-rate clock recovery circuit and using this j material recovery method. j 崎脉贡 • [Prior Art] In general, the parallel circuit is more difficult to design than the serial power (-it). Therefore, in order to save the cost of wiring and interconnection and/or to avoid noise (for example, cross-talk noise of (4) circuits, in parallel, rather than in parallel, two remote devices Inter-transmission digital data has become the latest trend in serial data transmission, where data is transmitted at high speed by, for example, single optical fiber φ (optlcal flber), coaxial or twisted-pair cable. Multiple lines simultaneously transmit several data streams. To reduce cost, the receiver can use the clock recovery circuit (CRC) to reply to one bit stream of the received high-speed digital data. Pulse, instead of transmitting the clock to the remote receiver synchronized with the serial high-speed digital data. The traditional clock recovery circuit (Crc) can use a phase locked loop (pll) or delay locked loop 6 1358893 17621pif.doc (delay locked loop » DLL) The block diagram in Figure 1 shows the use of a phase-locked loop (p traditional clock recovery circuit. The slave device (multiplexe〇12G) The receive-reference frequency clock (1) is used as an input. The reference frequency clock 11G can be generated by a crystal oscillator which can generate a relatively frequency clock to provide to the multiplexer 120. 〇The reference frequency clock 11Q can generate a high frequency clock through the __ feedback loop. The feedback loop can include a frequency phase (four) device (Calta deteCt〇r) Π0, loop filter 140, a voltage Controlled oscillation = (VCO) 150 and / or a frequency divider 160. When the high frequency clock reaches the frequency, the serial input data 100 instead of the reference frequency clock No can be input to the phase-locked loop (PLL) by the multiplexer 12〇. 时 The clock 180 synchronized with the serial input data 100 can be input and output from the vc〇150. The clock can be input with the serial data. 1〇〇 is commonly applied to the trigger (handsome flop) 170' and a clock data 19〇 can be output from the flip-flop 17〇. In a nutshell, 'If a high-speed serial input data phase is input to the phase-locked loop (PLL) towel And the high speed serial input data has jitter Phenomenon (jitter) 'The PLL must be adapted to provide a clock synchronized with the high-speed serial input data in a short time. The performance of the beta clock recovery circuit depends on the performance of the phase-locked loop (PLL). Higher performance PLLs can be difficult because this can require a large amount of power loss and/or a large die area, thus increasing noise.曰', to solve the above problems can use phase interpolation. The phase insertion technique is a clock generation method in which the phase is between the first and first phases of the two input clocks. For example, a clock having a phase of 〇 to 9 可 degrees may be generated based on a first clock having a twist phase and a second clock having a phase of 9 degrees. • In particular, the half-rate clock recovery circuit that uses four clocks to perform phase insertion is a traditional clock recovery circuit. The four clock recovery circuits may include a reference clock having a half frequency of the input data and three clocks having a phase difference of 90 degrees, 180 degrees, and 270 degrees with respect to the reference clock, respectively. The half rate clock recovery circuit can solve one or more of the problems in circuit design. It increases its operating speed by reducing its operating frequency. Traditionally, there are at least two types of half-rate clock recovery circuits, the φth half-rate pulse recovery circuit uses at least two phase-locked loops (PLLs), and the second half-rate clock recovery circuit uses a single lock. Phase loop (PLL·), which produces four half rate clocks I, Q, Ib, and Qb with a 90 degree phase difference. The traditional half rate clock recovery circuit for private data bandwidth can use a multi-channel structure instead of a signal channel structure. The multi-rate structured half rate clock recovery circuit may have a parallel arrangement of transmit/receive channels 4' such as 4-way, 8-way, 16-way parallel channels. 8 893 893 17621pif.doc A half-rate clock recovery circuit using at least two phase-locked loops (PLLs) may require significant power loss and/or large die area. In comparison, a half-rate clock recovery circuit using a single phase-locked loop (PLL) can include a voltage controlled oscillator (VCO) that is capable of generating a high frequency corresponding to increasing the data transmission speed and increasing the number of channels to produce The four phases have a 90 degree phase difference clock to transmit these four clocks to each channel. The block diagram of Figure 2 illustrates a prior art or prior art publication of a clock recovery circuit for the period of 9 years U. The serial input data 201 and the reply clock 202 having the half rate of the serial input data 2〇1 can be supplied to the phase detector (phase deted〇210). The phase detector 210 can compare the two input signals. The phase difference between 2〇1 and 202, and outputting an up/down signal 215 according to the comparison result. The uplink/downlink signal 215 can be provided to the signal separator 220, and the signal φ separator 220 can be The low-rate uplink/downlink signal 225 is output, and the signal can be used in a digital-to-analog converter (DAC) control logic 230. The DAC control logic 230 can be based on the uplink/downlink signal output by the signal separator 220. The digital control code 235 is output 225 to perform phase insertion of the reply clock 202. The digital control code 235 can be provided to the phase insertion unit 250 via a plurality of digital to analog converters (DACs). 9 17621pif.doc Multiple DACs 240 A non-linear DAC is included, which has a non-linear conversion characteristic 'compensable for nonlinear characteristics of the digital control code 235 when the digital control code 235 output by the DAC control logic 23G does not vary linearly The phase insertion unit 250 can perform the phase insertion according to the weight of the output of the DAC 240 (the weight \ control signal 245 is applied to the four clocks 265 outputted by the clock generator 26〇) and can output the output clock to follow the sequence. The phase of the input data 201. The output clock 2 〇 2 output by the phase insertion unit 250 can be fed back to the phase detector 210. The half rate clock recovery circuit can perform phase on the clock having the half frequency of the serial input data 201. And, for example, when the rate of the serial input data 201 is about 85 Gbps, the phase insertion unit 250 pairs 帛-, 帛2, 3, and 4 with the half-frequency (4.25 GHz) of the serial input data. The clock execution phase insertion second clock has a phase difference of 9 degrees with respect to the phase of the first clock, the first clock has a phase difference of 18 degrees with respect to the phase of the first clock, and the fourth clock The phase difference with respect to the phase of the first clock has a phase difference of 270. The phase detector 210 detects the phase difference between the 8.5 Gbps serial input data 2〇1 and the first/second clock provided by the phase insertion unit 250. Although not shown in Figure 2, another situation Yes, the phase detector 210 can multiplex the serial input data stream 2〇1 into two data streams 270 having half the frequency of the serial input data unit 201 to have a phase relative to the first % pulse. The second clock of the 90 degree phase difference and the fourth clock having a phase difference of 270 degrees with respect to the phase of the first clock are used to reply to the data. 1358893 17621pif.doc But when the data rate (or data transmission rate) increases The traditional half-rate clock recovery circuit may have problems. There are at least two ways to generate four clocks with a half-frequency (4.25 GHz) of serial input data 2 〇 1 and a phase difference of 90 degrees from each other to provide the four clocks to each channel, as follows Said. It should be noted that a ring oscillator (ring 〇scillat〇r) cannot be used to generate frequencies between 3 GHz and 4 GHz. In the first method, an 8.5 GHz local voltage controlled oscillator (VCO) can be implemented when the data transfer rate is 8.5 GHz. This 8.5 GHz seismic frequency can be divided into two halves, four clocks having a frequency of 4.25 GHz and having a phase difference of 9 相互 between each other, for example, using a flip-flop. y In the second method, when the data transmission rate is 8.5 GHz, four clocks having a frequency of 4.25 GHz and having a phase difference of 9 相互 are used, for example, a 4.25 GHz local voltage controlled oscillator (VC0) and a Produced by a poly-phase filter. In both methods, four φ having a phase difference of 9 degrees from each other are transmitted to each channel. However, it is more difficult to perform a phase-locked loop (pLL) operating at a higher frequency corresponding to the required data transmission speed and/or having the desired jitter characteristics. Moreover, transmitting four clocks to each channel may result in significant power loss, line mismatch, and/or tie-in effects, as power loss, line mismatch, and/or loss effects may increase. The ratio of frequencies. Thus, if you do not use clock buffer n (clockbuffer), you may limit the transmission distance of 1762Ipif.doc. The increase in the consumption of the stimulator will result in a wafer area and/or power loss that is large, and a power supply must be arranged in the plan view of the larger green sheet. Two: two considerations 发明 [Summary] ϋ Contact and ground voltage contacts. In real_中的—the clock recovery circuit includes: a clock generation benefit, which is suitable for generating the data speed of the input data of the first and third azoles; the second=pulse and Ϊ^; the second and third The fourth clock executes the phase ί: == fifth, sixth, seventh of the frequency, the eighth time 45^90^135: the fifth bj bit detection state 'its suitable for output corresponding to the input data The signal of the phase difference between the 22nd and the 8th clock; and the signal of the heart control == detector output, and generate the control clock, -. /, 迥 to produce the first, second, third And the fourth pulse and four, the data rate of the input data has a quarter frequency of 90 and the phase of the fourth clock relative to the first clock is respectively transferred to the day_1 difference; at least - A clock recovery circuit, which is suitable for receiving the first, second, third and fourth 12 1358893 17621 pif.doc clocks, and is adapted to reduce the data rate of the input data by using a reply clock signal to provide more De-multiplexing data to multiple channels; and a controller that inserts a phase based on the signal output from the phase detector Line control. The clock recovery circuit includes a phase insertion unit having a first phase interpolator adapted to receive the first, second, third, and fourth clocks to generate a fifth clock, the fifth The phase of the clock and the longitudinal input data and having a quarter-frequency of the data rate of the input data; the second 'suitable for generating the sixth clock' having a phase difference of 5 degrees with respect to the phase of the fifth clock; a third phase interpolator adapted to generate a seventh pulse 'having a phase difference of 9G degrees with respect to a phase of the fifth clock. The four phase = input 'is adapted to generate an eighth clock relative to the fifth clock Avoid phase
Si上2 135度相位差。時脈回復電路還包括-相位 ’其適於接收輸人資料與第五、第六 日:脈’以輸出對應於輸人資料 / 時脈之間她差的訊號。 I #七及弟八 包括本露了-種輕_方法的實_,此方法 -、第二第資t之資料速率的四分之-頻率的第 相對於第一主—四時脈’其中第二、第三及第四時脈 差;產和270度的相位 五、第六頻率的第 工r/r時脈^ 第六、第七及第·二=== 13 1358893 17621pif.doc 町脈執行相位插入 第八時脈 為讓本發明之上述和其他目的、特徵和優點能更明顯 下下文特舉較佳實施例,並配合所附圖式,作詳細★兒 【實施方式】 本說明書揭露了本發明之詳細說明實施例曰 ,明書中所揭露之特殊結構與功能細節 生 之實施例。而本發明還可:= 八1』局限於本說明書中所列舉的實施例。 他形式的影響實施!到各種改進與其 中,並將在二明2_藉由範崎示於圖示槽 發明並 "奇中進行詳細描述。但是應當理解,本 脫離其範圍的條件’本發明要在不 式。整篇圖式的Π”所有的改進、等效形式及其他形 廊H式 相同的標號表示相同的元件。 f ΐίϋ _ ’雖然第一、第二等術語在本說明書中用以 ^ 是這些元件不應局限於使用= 範圍的條件τ 件。麻’在不麟本發明之 件也可稱稱為第二元件,同樣,第二元 一個戋多钿4 70 本5兒明書中所用的術語“和/或,,包括 個^個相關列舉項的任意和全部姓人。 理解,當提到—元 一 件時,此云处π 士从、± 仪崎镬或耦接到另一兀 〇 、接或耦接到另一元件或者也可能存 1358893 17621pif.doc “入元件(interveningelement)。相反,當提到—元 被“直接連接,,或“直接耦接,,到另一元件時,則不存在插入 兀件。用以描述元件之間相互關係的其他詞語也應當以 同方式進行解釋(即,“之間,,對“直接之間” :目 接相鄰,,,等等)。 1州蚵直 、本D兒明書中使用的術語只是為了描述特殊實施例,其 2局限於本發_典型實關。本朗#巾使用的單數 ^‘一種”、“一個,,及“此,,也包括複數形式,除非文中明 =曰Λί他形式。應當進—辣解,當本朗書中使用術 =匕3、包括”和/或“具有”時,是表示存在所述的特徵、 ^步驟、操作、元件、和/或構件,但不排除存在或與 口―個或多個其他特徵、整體、步驟、操作、元件、構件曰、 和/或其組群。 除非另外規疋,否則本說明書中使用的全部術語(包 、技術和科學術語)的含義都與熟悉本發明所屬之技藝者 ,常理解的相同。可以進—步理解’如—般用於字典^的 $语所定義的,術語的意義應與相關技#之上下文中的意 f 一致,而不應轉得太理想化或過於正式,除非本說明 書中有明確規定。 遇應纽意,在某些其他執行方法卜方塊⑽成) 」己錄的魏/動作可按流㈣中記錄次序的顛倒順序進 =例如’連續顯㈣兩個方塊實際上可幾乎同時執行, 塊有時可按相反的次序執行,這取決於有關的功能/ 15 1358893 17621pif.doc ,3中的方塊圖繪示了依據本發明—實施例的四分之 一迷率時脈回復電路。 ㈣^脈發生器例如產生四個具有接收資料301之資 料速率的四分之一頻率的時脈。 笛一 ^個時脈可包括:第—時脈365a,其具有〇度相位; 笛ri ^ 365b’其相對於第一時脈之相位具#90度相位; ^ & 365C,其相對於第—時脈之相位具有180度相 〇 =立及第四時脈365d,其相對於第一時脈之相位具有27〇 完全=料W的相位多大,這四個時脈均可具有 身料的資料速率較低時,日夺脈發生器3料使 種振盪器在内的延遲鎖定回路(DLL)。另— 速率較w,Β±ΗΛ .再—種情況是,當接收資料的 (vom 36G可使用—本地壓控振後器 LVCO)和一觸發器。 〇 四個時脈365a 5,丨 35〇。此相位插入可被提供到相位插入單元 執行相繪入、早疋350可對這四個時脈365a到365d 分之—fm、’以輸出具有接收資料301之資料速率的四 302a μ頻率並同步於接收資料3G1的第五時脈 ==於第五時脈搬a之相位具有45度相位差的; 差的第七時脈302 ; 4 f a之相位具有9〇度相位 c、以及相對於第五時脈3〇2a之相位具 16 1358893 17621pif.doc 有135度相位差的第八時脈3〇2d。 包括在相位插入單元35〇中的相位插入器3M、3S2、 .353及354可產生四個時脈,其具有接收資料301之資稱 . ^率的四*之—料,且這四個時脈之間具有45度的相位2 135 degrees phase difference on Si. The clock recovery circuit further includes a phase 'which is adapted to receive the input data and the fifth and sixth day: pulse' to output a signal corresponding to her difference between the input data/time. I #七和弟八 includes this dew - a light _ method of the real _, this method - the second rate t of the data rate of the quarter - the frequency of the first relative to the first main - four clocks Second, third, and fourth time difference; phase of production and 270 degrees, fifth stage, r/r clock of sixth frequency ^ sixth, seventh, and second === 13 1358893 17621pif.doc The above-described and other objects, features and advantages of the present invention will be apparent from the following description of the preferred embodiments of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The detailed description of the embodiments of the present invention, the specific structural and functional details disclosed in the specification are disclosed. However, the present invention can also be: = 8.1 is limited to the embodiments listed in the present specification. His form of influence is implemented! To various improvements and to it, and in the second Ming 2_ by Fan Qi shown in the illustration slot invention and " odd detailed description. However, it should be understood that the present invention is out of scope. The entire description of the drawings "all modifications, equivalent forms and other shapes of the same type H designate the same elements. f ΐίϋ _ 'Although the first and second terms are used in this specification ^ are these components It should not be limited to the use of the condition of the range τ. Ma's in the invention may also be referred to as the second element, and the second element is a term used in the book. "and/or, including any and all surnames of the relevant enumerated items. Understand that when referring to a - element, this cloud is π 士 从 , ± 仪 镬 镬 镬 镬 镬 镬 ± ± ± ± ± ± ± 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 (interveningelement). Conversely, when it is mentioned that the element is "directly connected," or "directly coupled, to another element, there is no insertion element. Other words used to describe the relationship between the elements should also be Interpret in the same way (ie, "between," "directly between": contiguous,,, etc.). The terminology used in the 1st state of the United States and the text of this book is only for the purpose of describing a particular embodiment, and 2 is limited to the present invention. The singularity of the use of the singularity of the singularity of the singularity of the book, the singularity of the book, the singularity of the book, the singularity of the singularity of the book 3. Including "and/or" having "the" is intended to mean the presence of the features, steps, operations, components, and/or components, but does not exclude the presence or the , operations, components, components, and/or groups thereof. Unless otherwise stated, all terms (including, technical and scientific terms) used in the specification are the same as those of those skilled in the art. It can be further understood that 'as defined by the $ language used in the dictionary ^, the meaning of the term should be consistent with the meaning of the context of the related technology #, and should not be too idealized or too formal, unless It is clearly stated in the manual. In the case of some other implementation methods, the recorded Wei/Action can be entered in the reverse order of the recording order in the stream (4) = for example, 'continuous display (four) two blocks can actually be executed almost simultaneously, The blocks may sometimes be executed in the reverse order, depending on the function/15 1358893 17621pif.doc, and the block diagram in 3 depicts a quarter-rate clock recovery circuit in accordance with the present invention. (d) The pulse generator, for example, generates four clocks having a quarter frequency of the data rate of the received data 301. The flute can include: a first time clock 365a having a twist phase; a flute ri ^ 365b' having a phase of 90 degrees with respect to the phase of the first clock; ^ & 365C, which is relative to the first - the phase of the clock has 180 degrees phase 〇 = vertical and fourth clock 365d, which has a phase of 27 〇 complete = material W with respect to the phase of the first clock, and these four clocks can have a body When the data rate is low, the daily pulse generator 3 causes a delay locked loop (DLL) including the oscillator. Another - the rate is w, Β ± ΗΛ. In another case, when receiving data (vom 36G can be used - local pressure controlled oscillator LVCO) and a trigger.四个 Four clocks 365a 5, 丨 35〇. This phase insertion can be provided to the phase insertion unit to perform phase mapping, which can be divided by the four clocks 365a to 365d - fm, 'to output the four 302a μ frequencies having the data rate of the received data 301 and synchronized The fifth clock of the received data 3G1 == the phase of the fifth clock shift a has a phase difference of 45 degrees; the seventh phase of the difference of the second clock 302; the phase of the 4 fa has a phase of 9 degrees c, and relative to the The phase of the fifth clock 3〇2a has 16 1358893 17621pif.doc The eighth clock with a phase difference of 135 degrees is 3〇2d. The phase inserters 3M, 3S2, .353, and 354 included in the phase inserting unit 35A can generate four clocks having the four data of the received data 301, and the four times. 45 degree phase between veins
田控制第五時脈3〇2a之相位的控制訊號確定後, 々八時脈鳩、第七時脈3〇2c和第八時脈302d的其 制訊號可根據這四個時脈施到3〇2d相互間具有4 = 位差這依據而得以確定。這樣,四個相位插入器扣、 352 353及354可藉由根據上述之典型方法產生控 而得以簡單控制。 j札就 .*» 相位插入控制益320可確定相位插入單元35〇中 括之相位插入器351到354的控制方法。 〇After the control signal of the phase of the fifth clock 3〇2a is determined, the signal signals of the eight clocks, the seventh clocks 3〇2c, and the eighth clocks 302d can be applied to the three clocks according to the four clocks. 〇2d is determined by the basis of 4 = position difference. Thus, the four phase inserter detents, 352 353 and 354 can be easily controlled by generating control in accordance with the typical method described above. The phase insertion control benefit 320 determines the control method of the phase inserters 351 to 354 included in the phase insertion unit 35A. 〇
相位插入單元350輸出的第五時脈302a到第八時脈 302^可被提供到相位偵測器31(),此相位制器將接 收貧料301之相位與四個時脈施到删中的每個相位 做比較:並藉由對接收資料3〇1執行^ (例如,η為4) 夕工为離操作以輸出η條回復資料流37〇而減小接收 301的資料速率。 、 〇The fifth clock 302a to the eighth clock 302^ output by the phase insertion unit 350 can be supplied to the phase detector 31(), and the phase controller applies the phase of receiving the poor material 301 and the four clocks to the middle. Each phase of the comparison is compared: and the data rate of the reception 301 is reduced by performing ^ (e.g., η is 4) for the received data 3〇1 to output the n reply data streams 37〇. 〇
在另一實施例中,η可以是二十或四十,使得輸入資 料可根據乡JL分轉倾乡工分_二十或四十條資料 流0 相,偵測器310可藉由比較接收資料3〇1之相位與相 位插入單兀350輸出之四個時脈302a到302d中的每個相 17 1358893 J7621pif.doc 而確定這四個時脈施到侧中的每個相位是超 雨於接收資料的相位還是落後於接收資料則的相位。 虽=時脈施到则中的每個相位都超前於接收 時,相位躺器31G可輸出—纽下行訊 固時脈302ai"02d中的每個相 接收貧料3〇1的相位時,相位铺測器31〇可輸出一有效上 行訊號。 ,另-實施例中’術語“上行訊號,,與“下行訊號,,的定 相二°此外,可對繪示於圖3中的單電路塊執行In another embodiment, η may be twenty or forty, so that the input data can be converted according to the township JL to twenty or forty data streams, and the detector 310 can compare the received data. The phase and phase of 3〇1 are inserted into each of the four phases 302a to 302d of the single-turn 350 output, 17 1358893 J7621pif.doc, and it is determined that each of the four clocks applied to the side is super rainy to receive. The phase of the data is still behind the phase of the received data. Although each phase in the application of the clock is ahead of the reception, the phased device 31G can output the phase of each of the phases in the negative downlink signal 302ai"02d receiving the lean 3〇1 phase. The tester 31 can output a valid uplink signal. In the other embodiment, the term "uplink signal" is compared with the "downlink signal," and the phase can be performed on the single circuit block shown in FIG.
Si : 離功能。或者,可對分散的電路塊 刀別執行相位偵測功能和多工分離功能。 名 相位插入控制器320可以不同的結構執行操作,盘相 位偵測器310和相位插入單元35G共同構成一回饋電路。 入控=^的方塊圖緣示了依據本發明一實施例的相位插 在另-實施例中,與圖4所示之數位控制方法相比, 目=入控制器32〇可使用-麵比控制方法來執行操作 以,高操作速度。例如,此相位插人控制器細可利用一 電荷泵(charge pump)來執行操作。 參照圖4 ’相位插入控制器32〇可包括一訊號 、-數位至類比轉換器(DAC)㈣邏輯42〇、和^ 夕個數位至類比轉換器(DAC) 430。 相位翻器310輸出的上行訊號和下行訊號可 到訊號分離器410。 Ϊ358893 1762lpif.(joc 此訊號分離器.410可降低相.位偵測器31 〇所提供之上 行/下行訊號的頻率。 例如,當頻率約為2.125GHz的上行/下行訊贫祐摇徂 到訊號分離器410時,訊號分離器41〇可將此丄行下行訊 號轉換成具有大約425MHz之較低頻率的訊號。 為了將相位偵測器310輸出的上行/下行訊號之速率 轉換成可用於DAC控制邏輯420的速率,可執行降低此 上行/下行訊號之頻率的程式,其中,DAC控制邏輯420 鲁藉由互補型金屬氧化物半導體(complementary metal oxide semiconductor ’ CMOS)邏輯執行操作。 DAC控制邏輯420和多個DAC 430可使用訊號分離 器410輸出的上行/下行訊號來控制相位插入單元35〇。 DAC控制邏輯420可輸出控制代碼425到多個DA(: 43〇 中。此控制代碼425可經由多個DAC 43〇轉換成類比控制 訊號,並可用來控制包括在相位插入單元35〇中的四個相 位插入器351到354。Si : Off function. Alternatively, phase detection and multiplex separation can be performed on discrete circuit blocks. The phase insertion controller 320 can perform operations in different configurations, and the disk phase detector 310 and the phase insertion unit 35G together form a feedback circuit. The block diagram of the input control = ^ indicates that the phase is inserted in another embodiment according to an embodiment of the present invention. Compared with the digital control method shown in FIG. 4, the target = controller 32 can use the - plane ratio. Control methods to perform operations at high operating speeds. For example, the phase insertion controller can perform operations using a charge pump. Referring to Figure 4, the phase insertion controller 32A can include a signal, a digital to analog converter (DAC) (4) logic 42, and a digital to analog converter (DAC) 430. The up signal and the down signal output by the phase flipper 310 can be sent to the signal splitter 410. Ϊ358893 1762lpif.(joc This signal splitter .410 can reduce the frequency of the uplink/downlink signal provided by the phase detector 31. For example, when the frequency is about 2.125GHz, the uplink/downlink is poorly shaken to the signal. In the splitter 410, the signal splitter 41 can convert the downlink signal into a signal having a lower frequency of about 425 MHz. In order to convert the rate of the uplink/downlink signal output by the phase detector 310 into a DAC control The rate of logic 420 can be programmed to reduce the frequency of the upstream/downlink signals, wherein the DAC control logic 420 is operated by complementary metal oxide semiconductor (CMOS) logic. DAC control logic 420 and The plurality of DACs 430 can control the phase insertion unit 35 using the uplink/downlink signals output by the signal separator 410. The DAC control logic 420 can output the control code 425 to a plurality of DAs (: 43 。. This control code 425 can be The DACs 43 are converted into analog control signals and can be used to control the four phase interpolators 351 to 354 included in the phase insertion unit 35A.
φ 在本發明一實施例中,多個DAC可包括八個DAC (DAC1到DAC8)。也就是說,DAC1到DAC4可輸出 控制訊號以控制相位插入器351、353,其分別產生第五時 脈302a和第七時脈302c。DAC5到DAC8可輸出控制訊 號以控制相位插入器352、354,其分別產生第六時脈3〇2b 和第八時脈302d。 為了減少相位插入器的數量,DAC控制邏輯42〇可藉 由根據產生第五時脈之控制代碼計算偏移量(Qffset)而得 19 1358893 17621pif.doc 到產生第六時脈到第八時脈之控制代碼。 時脈之控制代碼可使用產生第五時脈之控錢碼:: DAC控制邏輯42〇可包括一 k位雙向⑴咖咖 移位暫存器(Shiftregister)可根據解析能力 power )的變化而變化。 s 例如,-32位元移位暫存器可藉由將對應於9〇度相 位的象限(quadrant)分解成32個部分(步驟) 脈相位。據此,此32位元移位暫存器可藉由將36〇 ^相位 为解成128步驟而控制時脈相位。 包括在DAC控制邏輯420 t的移位暫存哭可㈣却 號分離器410提供的上行/下行訊號來執行移位°操作:° 如果說控㈣輯包括—32位元移位暫存卷, 則在初始化階段’ & 32位元移位暫存 找 “OOOOOOOOh”。 阻」《又疋馬 當此32位元移位暫存器接_來自_分_㈣ =效切”訊號時,此移位暫存器可向右移位,且最高 有效位(most significant bit,MSB)設定為“Γ,。 據32位元移位暫存器可接收來自訊號分離器4ι〇 固有^“上打,,訊號,當此移位暫存器的位元都設定為 ...η11 ’時’此移位暫存器可倒轉移位方向,開始向左 私位,隶低有效位(least significant bit,⑽)設定為“〇”。 4 “ j位疋移位暫存器接收到來自訊號分離器410的有 $下行”訊號時’此移位暫存器可向左移位,且最低有效 1358893 17621pif.doc 位(least significant bit,LSB)設定為“〇,,。 據此32位元移位暫存器可接收來自訊號分離器4i〇 的多個有效“下行”訊號,當此移位暫存器的位元都設定為 “000…000”時,此移位暫存器可倒轉移位方向,開始向右 移位,最高有效位(most significant bit,MSB )設定為“1,,〇 32位元控制代碼可使用32位元移位暫存器如同打丘 兵球-樣根據上行/下行訊號執行雙向移位操作而產生,其φ In an embodiment of the invention, a plurality of DACs may include eight DACs (DAC1 to DAC8). That is, DAC1 through DAC4 can output control signals to control phase interpolators 351, 353 which generate a fifth clock 302a and a seventh clock 302c, respectively. The DACs 5 through DAC 8 can output control signals to control the phase inserters 352, 354 which generate the sixth clock 3〇2b and the eighth clock 302d, respectively. In order to reduce the number of phase interpolators, the DAC control logic 42 can obtain 19 1358893 17621 pif.doc by generating an offset (Qffset) according to the control code for generating the fifth clock to generate the sixth clock to the eighth clock. Control code. The clock control code can use the control code that generates the fifth clock: The DAC control logic 42 can include a k-bit bidirectional (1) coffee shift shift register (Shiftregister) can vary according to the resolution power) . s For example, a -32-bit shift register can be decomposed into 32 partial (step) pulse phases by a quadrant corresponding to the 9-degree phase. Accordingly, the 32-bit shift register can control the clock phase by decomposing the 36 〇 ^ phase into 128 steps. The shifting buffer included in the DAC control logic 420 t can be used to perform the shifting operation of the up/down signal provided by the number separator 410: ° If the control (4) series includes a 32-bit shift scratch volume, Then in the initialization phase '& 32-bit shift staging to find "OOOOOOOOh". "Resist" "When the 32-bit shift register is connected to the _ minute_(four) = effect" signal, the shift register can be shifted to the right, and the most significant bit , MSB) is set to "Γ,. According to the 32-bit shift register, it can receive the signal from the signal separator 4ι〇, "on, the signal, when the bit of the shift register is set to ... η11 '' this shift is temporarily The memory can reverse the transfer bit direction and start to the left private bit, and the least significant bit (10) is set to “〇”. 4 “The j-bit shift register receives the signal from the signal separator 410. When the $down "signal" signal, the shift register can be shifted to the left, and the least significant 1358893 17621pif.doc bit (LSB) is set to "〇,,. According to the 32-bit shift register, a plurality of valid "downlink" signals from the signal separator 4i can be received. When the bit of the shift register is set to "000...000", the shift The scratchpad can reverse the bit direction and start shifting to the right. The most significant bit (MSB) is set to "1." The 32-bit control code can use the 32-bit shift register as a hill. The ball-like sample is generated according to the uplink/downlink signal performing a two-way shift operation, and
中此32位元控制代碼被用來根據第—到第四時脈365產生 第五時脈。 圖5A中的表格繪示了依據本發明一實施例之數位至 類比轉㈣(DAC)控觸輯對圖4_之相储 進行控制的操作。 在圖5A所示之表格中,第一列表示“上行,,訊號,第 一列表示“下行”訊號。The 32-bit control code is used to generate a fifth clock based on the first to fourth clocks 365. The table in Figure 5A illustrates the operation of controlling the phase storage of Figure 4_ in accordance with a digital to analog to four (DAC) controlled touch in accordance with an embodiment of the present invention. In the table shown in Figure 5A, the first column indicates "upstream, signal, and the first column indicates "downstream" signal.
t^DSEL表示-暫存器數值,此暫存器絲在產 =第五時脈之相位插入器351的第一時脈到第四時脈中選 擇相互間具有90度相位差的兩個時脈。DSEL暫存哭可由 :::元構成,且此狐暫存器可包括在DAc控制邏輯 控制邏輯420可使用DSEL暫存器和32位元移 :暫存器來確定.對應於第—DAc i到第四Dac4的控制代 存器的高位元(叩卿池)可用來選擇具有 度相位之苐二時脈365b或具有謂度相位之第四時脈 21 1358893 17621pif.doc 365d 〇 例如,當DSEL暫存器的高位元為“〇’,時,選擇第二時 脈365b,當DSEL暫存器的高位元為“i,,時,選擇第四時 脈 365d。 DSEL暫存器的低位元(1〇而他)可用來選擇具有〇 度相位之第-時脈365a或具有⑽度相位之第三時脈 365c。 例如’當DSEL暫存器的低位元為‘‘〇,,時,選擇第一時 脈365a,* DSEL暫存器的低位元為“1”時,選擇第三時 脈 365c。 一無。:私位暫存$的移位方向什麼時候改變以回應上行 行afl?虎DSEL暫存為數值都可發生改變以便在第一到 Π365中選擇兩個時脈以產生第五時脈。也就是 f D二時脈之相位什麼時候從一象限變到另一象 限,Γ暫存器數值都可發生改變以便指示新的象限。 iA中的第四列表示移位暫存器的狀態,而第五到 ί 四個 DAC (即 DAC卜 DAC2、爾3 -、楚-^控制代碼以分別輸出—加權控制訊號給第 弟一、弟二及第四時脈365。t^DSEL denotes a register value which is selected from the first clock to the fourth clock of the phase inserter 351 of the fifth clock when the two phases have a phase difference of 90 degrees from each other. pulse. The DSEL temporary cry can consist of ::: meta, and the fox register can be included in the DAc control logic control logic 420 can be determined using the DSEL register and the 32 bit shift: register. Corresponds to the -DAc i The high-order cell of the control register to the fourth Dac4 can be used to select the second clock with the degree phase 365b or the fourth clock with the phase of the phase 21 1358893 17621pif.doc 365d 〇 For example, when DSEL When the high bit of the scratchpad is "〇", the second clock 365b is selected. When the high bit of the DSEL register is "i,", the fourth clock 365d is selected. The lower bits of the DSEL register (1 〇) can be used to select the first-clock 365a with a phase of 〇 or the third clock 365c with a phase of (10) degrees. For example, when the lower bit of the DSEL register is ‘‘,, when the first clock 365a is selected, and the lower bit of the DSEL register is “1”, the third clock 365c is selected. Nothing. : When does the shift direction of the private temporary storage $ change in response to the upstream line afl? The tiger DSEL temporary value can be changed to select two clocks in the first to 365 to generate the fifth clock. That is, when the phase of the f D two clocks changes from one quadrant to another, the register value can be changed to indicate a new quadrant. The fourth column in iA represents the state of the shift register, and the fifth to ί four DACs (ie DAC DAC2, er 3 -, _ ^ control code to output separately - weight control signal to the first brother, Brother 2 and the fourth clock 365.
如圖5A之表格所示,應用於四個D 產生存瞻和DSEL輪數值進行設定 五時脈3。2叫目位|有舒相產生相對於第 /、有Μ度相位差的第七時脈302c。在 22 1358893 1762Jpjf.doc 產生第七時脈耻之相位插入器353可被設計 入ί ,此時脈相對於產生第五時脈302a之相位插 入态351所輪出之時脈具有9〇度相位差。 入施例中’可執行具有相縣構的四個相位插 54。而且,可使用16個DAC而不是8個DAC。 =’相對於第五時脈施之相 ==㈣可藉由將對應於45度之繼應 3〇2c之相2 Ϊ控制代碼上而得到;相對於第七時脈 應於45度之的第八時脈_可藉由將對 碼上而得到 用到產生此第七時脈職之控制代 類比;換:繪不了依據本發明-實施例之數位至 進行控制控制邏輯對圖4所咖 第七= 偏移量可用來根據產生第五時脈咖和 ί 脈 _相_第Γ Γ八時脈 相位具有45度相位差。咖之相位和苐七時脈302c之 =’當相對於第—時脈船之相 =時脈3〇2a產生時,第六時脈_可:二= 脈365a之相位具有45声 、 第一時 位16位(或步),零位元與圖5A所示之產生第五時I: 23 1762ipif.doc 和第七時脈302c的控制将证 -象限可被分為32個部分。對應於9G度相位之 刀(或步驟)0 也就是說’當第五時脈如 相Mi古πV ¥ &相對於第一時脈365a之 相位具有〇度相位差時, -FFFFFFFFh- ΠΔ〇η DAC1的控制代碼可以是 2的控制代碼可以是“__00h”。 DAC3和獄4的㈣代科以是“___,,。 由於第六時脈302b才目對於第五時脈施之相位 45度相位差,故產生第六眛矿 八令 I王^、時脈3G2b之DAC5的控制代碼As shown in the table in Figure 5A, the four D generations are generated and the DSEL wheel values are set to set the five clocks. 3. The position of the target is the seventh phase when there is a phase difference with respect to the /, and the phase difference. Pulse 302c. The phase inserter 353 which produces the seventh clock shame at 22 1358893 1762Jpjf.doc can be designed to be ί, and the pulse has a phase of 9 degrees with respect to the clock pulsed by the phase insertion state 351 which produces the fifth clock 302a. difference. In the example, four phase interpolations 54 having phase structures can be executed. Moreover, 16 DACs can be used instead of 8 DACs. = 'relative to the fifth clock phase == (d) can be obtained by the phase 2 Ϊ control code corresponding to the 45 degree relay 3〇2c; relative to the seventh clock should be 45 degrees The eighth clock_ can be obtained by using the pair of codes to generate the control analogy of the seventh time; instead of drawing the digital control according to the present invention to the control logic for the control The seventh = offset can be used to have a 45 degree phase difference based on the generation of the fifth clock and the phase _ phase Γ Γ eight clock phase. The phase of the coffee and the seven clocks 302c = 'When the phase relative to the first - clock ship = the clock 3 〇 2a is generated, the sixth clock _ can be: two = the phase of the pulse 365a has 45 sounds, the first The time-bit 16 bits (or steps), the zero-bit and the fifth-time I: 23 1762ipif.doc and the seventh clock 302c shown in FIG. 5A can be divided into 32 parts. Corresponding to the 9G degree phase knife (or step) 0 means that when the fifth clock phase has a phase difference with respect to the phase of the first clock 365a, -FFFFFFFFh- ΠΔ〇 The control code of η DAC1 whose control code can be 2 can be "__00h". The DAC3 and the 4th generation of the prison 4 are "___,,. Since the sixth clock 302b is applied to the fifth phase, the phase difference is 45 degrees, so the sixth antimony is produced. 3G2b DAC5 control code
可以是“_0聊h”,* DAC6的控制代碼可以是 “OOOOFFFFh”以使其相對於第一時脈之相位具有45度相位 差° DAC7和DAC8的控制代碼為“麵咖隱”。 DAC控制邏輯420產生的控制代碼可經過多個dac 430 ’可轉換成類比控制訊號,並可被提供到相位插入單元 350。 如上所述,多個DAC 420可包括一具有非線性轉換特 性的非線性DAC。 圖6中的方塊圖繪示了依據本發明一實施例之相位插 入單元與多個數位至類比轉換器DAC之間的連接關係。 相位插入單元350可包括四個相位插入器351、352、 353及354。多個DAC可包括八個DAC (DAC1到DAC4 以及DAC5到DAC8),並接收來自DAC控制邏輯420 的控制代碼 520a、530a、540a、550a、520b、530b、540b 及550b以輸出八個類比控制訊號720a、730a、740a、750a、 720b、730b、740b及750b到相位插入單元350中。 24 1358893 17621pif.doc 相位插入單元350的第一相位插入器351可接收時脈 發生器360提供的四個時脈365a到365d以及DAC1到 DAC4輸出的控制訊號72〇a、730a、740a及750a。 相位插入單元350的第二相位插入器352可接收時脈 發生器360提供的四個時脈365a到365d以及DAC5到 DAC8輸出的控制訊號720b、730b、740b及750b。 相位插入單元350的第三相位插入器353可接收時脈 發生器360提供的四個時脈365a到365d以及DAC1到 • DAC4輸出的控制訊號72〇a、73〇a、74〇a和750a。 相位插入單元350的第四相位插入器354可接收時脈 發生盗360提供的四個時脈365a到365d以及DAC5到 DAC8輸出的控制訊號72〇b、73〇b、74%和75〇t)。 圖7中的電路圖繪示了包括在依據本發明一實施例之 相位插入單元中的相位插入器。 相位插入單元350可包括四個相位插入器351、352、 353 及 354。It can be "_0 chath", * The control code of DAC6 can be "OOOOFFFFh" so that it has a phase difference of 45 degrees with respect to the phase of the first clock. The control codes of DAC7 and DAC8 are "face-to-face". The control code generated by DAC control logic 420 can be converted to analog control signals via a plurality of dac 430' and can be provided to phase insertion unit 350. As noted above, the plurality of DACs 420 can include a non-linear DAC having non-linear switching characteristics. The block diagram of Figure 6 illustrates the connection between a phase insertion unit and a plurality of digital to analog converter DACs in accordance with an embodiment of the present invention. Phase insertion unit 350 can include four phase interposers 351, 352, 353, and 354. Multiple DACs may include eight DACs (DAC1 to DAC4 and DAC5 to DAC8) and receive control codes 520a, 530a, 540a, 550a, 520b, 530b, 540b, and 550b from DAC control logic 420 to output eight analog control signals 720a, 730a, 740a, 750a, 720b, 730b, 740b, and 750b are incorporated into phase insertion unit 350. 24 1358893 17621pif.doc The first phase inserter 351 of the phase insertion unit 350 can receive the four clocks 365a to 365d provided by the clock generator 360 and the control signals 72A, 730a, 740a and 750a output by the DAC1 to the DAC4. The second phase interpolator 352 of the phase insertion unit 350 can receive the four clocks 365a through 365d provided by the clock generator 360 and the control signals 720b, 730b, 740b, and 750b output by the DACs 5 through DAC8. The third phase inserter 353 of the phase insertion unit 350 can receive the four clocks 365a to 365d provided by the clock generator 360 and the control signals 72A, 73A, 74A and 750a output by the DAC1 to DAC4. The fourth phase inserter 354 of the phase insertion unit 350 can receive the four clocks 365a to 365d provided by the clock generation 360 and the control signals 72〇b, 73〇b, 74%, and 75〇t output by the DAC5 to the DAC8. . The circuit diagram in Figure 7 illustrates a phase interpolator included in a phase insertion unit in accordance with an embodiment of the present invention. Phase insertion unit 350 can include four phase interposers 351, 352, 353, and 354.
φ DAC控制邏輯420輸出的控制代碼可經過多個DAC 430 了轉換成類比控制訊號,且此類比控制訊號可被提供 到相位插入單元350中。 第一相位插入器351可產生第五時脈3〇2a,其跟蹤輸 入負料301的相位。第二相位插入器352可產生第六時脈 302b,其相對於第五時脈3〇2a之相位具有扑度相位差, 以及第二相位插入器353可產生第七時脈3〇2c,其相對於 第五時脈302a之相位具有90度相位差。帛四相位插入器 25 1358893 17621pif.doc 354可產生第八時脈3G2d,其相對於第五時脈搬&之相位 具有135度相位差。 如上所述,由於產生第五時脈施和第七時脈皿c 的控制訊號相同,故輸出產生第五時脈·之控制訊號的 四個DAC (DAC1到DAC4)可重複利用以 302c。 如:示’產生第五時脈3〇2a之相位插入器35i 與產生第七時脈302c之相位插入器353可具有不同的社 構,以使其產生的時脈相互間具有9〇度的相位差。 同樣,由於產生第六時脈3〇2b和第八時脈3咖的控 輸出產生第六時脈3〇2b之控制訊號的四個 i ==dac8 )可動咖以產生“時脈搬d。 彻if r時脈雇之相位插入器352與纽第八時脈 302d之相位插入器354可具有不同 脈相互間具有90纟的相位差。 從,、座生的時 相位插入單7C 350輸出的第五時脈3〇2a到第八時脈 3〇2d可被提供到相位偵測器31()以構成一回饋電路。 士圖8中的方塊圖繪示了—種使驗據本發明-實施例 之%脈回復電路的高速資料接收器。 貫也幻 這,使驗據本發明實施例之時脈回復電路的 料接收存800可包括多個時脈回復電路·!到'里 接收對應於此時脈回復電$ n ’八 8〇卜 ¥路之料的㊣速串列資料流 時脈發生器820可輪φ mγ 出四個時脈830,這四個時脈83〇 26 1358893 17621pif.doc 相互間具有90度的相位差’且具有接收到的高速串列 之資料速率的四分之一頻率。 ^個時脈回復電路MOq到81〇_n通常可耦接到時脈 發生器820,並可接收此時脈發生$ 82〇輸出的四個時脈 830。 多個時脈回復電路81G.1到81G_n可使射目互間具有 衫度相位差的四個回復時脈將高速串列資料流801多工分 離成四條資料流840-1到84〇-n。The control code output by the φ DAC control logic 420 can be converted to analog control signals by a plurality of DACs 430, and such ratio control signals can be supplied to the phase insertion unit 350. The first phase inserter 351 can generate a fifth clock 3〇2a that tracks the phase of the input negative material 301. The second phase inserter 352 can generate a sixth clock 302b having a phase difference with respect to the phase of the fifth clock 3〇2a, and the second phase inserter 353 can generate a seventh clock 3〇2c, which The phase with respect to the fifth clock 302a has a phase difference of 90 degrees. The quad phase interpolator 25 1358893 17621pif.doc 354 can generate an eighth clock 3G2d having a phase difference of 135 degrees with respect to the phase of the fifth clock shift & As described above, since the control signals for generating the fifth clock and the seventh clock c are the same, the four DACs (DAC1 to DAC4) outputting the control signal for generating the fifth clock can be reused to 302c. For example, the phase inserter 35i that produces the fifth clock 3〇2a and the phase inserter 353 that generates the seventh clock 302c may have different structures such that the clocks generated by them have 9 degrees of mutual Phase difference. Similarly, since the control outputs of the sixth clock 3〇2b and the eighth clock 3 generate the four i==dac8 of the control signals of the sixth clock 3〇2b, the mobile coffee can be used to generate the “clock shift d”. The phase interpolator 354 of the phase inserter 352 and the eighth pulse 302d of the New Zealand clock may have a phase difference of 90 相互 between the different pulses. The phase of the seat is inserted into the single 7C 350 output. The fifth clock 3〇2a to the eighth clock 3〇2d may be supplied to the phase detector 31() to form a feedback circuit. The block diagram in FIG. 8 illustrates the invention of the invention- In the high-speed data receiver of the %-pulse recovery circuit of the embodiment, the material receiving memory 800 of the clock recovery circuit of the embodiment of the present invention may include a plurality of clock recovery circuits. At this time, the pulse recovery power $n 'eight 8 〇 ¥ 之 的 的 的 串 串 串 资料 发生器 发生器 820 820 φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ .doc has a phase difference of 90 degrees with each other and has a quarter frequency of the data rate of the received high speed serial. ^ Clock The complex circuits MOq through 81〇_n can typically be coupled to the clock generator 820 and can receive four clocks 830 that are output at a time when the pulse occurs. The plurality of clock recovery circuits 81G.1 through 81G_n can The four recovery clocks with the phase difference between the shots and the eyes separate the high-speed serial data stream 801 into four data streams 840-1 to 84〇-n.
這四個回復時脈可藉由時脈回復電路810-1到8l〇-n 使用,脈發生$ 82〇輸出的四個時脈而產生。 84〇/=脈回復電路81〇_1到81〇-n可將多工資料流 U 4〇-n輸出到一内部電路85〇中。 夕工=内部電路850可將多工分離的資料流840-1到84〇_n =工刀離成頻率低於資料流840-1到840-n之頻率的資料 四八依?本發明實補之四分之—速率時脈回復電路,此 個二:2!時脈回復電路可使用四個相位插入器。這四 速率且相/可根據四個具有接收資料之資料速率的1/4 個時脈跟有9G度相位差㈣脈產生四辦脈,這四 1/4㈣ 接收㈣料,具有所接收資料之資料迷率的 、’且相互間具有45度的相位差。 數量Si?互間具有45度相位差的時脈是使用最少 (叫二I,器而產生的’故可減少例如鎖相回路 k樣蛉脈源的設計費用。舉例來說,與半逑率時 27 1358893 17621pif.doc 脈回復電路相比較,時脈發生器(例如是vco)的操作頻 率可減小一半,以及/或具有預期抖動特徵的時脈源設計起 來可能容易些。 另外,功率損耗、線間的不匹配、和/或耦接影響可藉 由降低時脈發生器的操作頻率而減小,從而可產生高品 的時脈。 °σ、These four reply clocks can be generated by the clock recovery circuits 810-1 to 8l 〇-n, which generate four clocks of the output of $82 。. The 84〇/= pulse recovery circuits 81〇_1 to 81〇-n can output the multiplexed data stream U 4〇-n into an internal circuit 85A. Xigong = internal circuit 850 can divide the multiplexed data stream 840-1 to 84 〇 _n = the tool is separated into a frequency lower than the frequency of the data stream 840-1 to 840-n. Complement the quarter-rate clock recovery circuit, this two: 2! clock recovery circuit can use four phase inserters. The four rates and phases can be generated according to four 1/4 clocks with the data rate of the received data and the phase difference (four) of the 9G degrees. The four 1/4 (four) receiving (four) materials have the received data. The data rate is 'and has a phase difference of 45 degrees from each other. The number of clocks with a phase difference of 45 degrees between each other is the least used (called two I, the device is generated), so the design cost of the phase-locked loop, such as the phase-locked loop, can be reduced. For example, with half-turn rate When the pulse recovery circuit is compared, the operating frequency of the clock generator (eg, vco) can be reduced by half, and/or the clock source with the expected jitter characteristics may be easier to design. The mismatch between lines, and/or the coupling effect can be reduced by reducing the operating frequency of the clock generator, thereby producing a high-quality clock.
而且,使用多通道結構的四分之一速率時脈回復電 路、插入各通道之間並提供時脈給各通道的緩衝器執行方 便,以及/或緩衝器的功率損耗可減少,因為緩衝器的數量 了減y。此外,總晶片面積也可減小。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限J本發明,任何熟習此技藝者,在不脫離本發明之精神 =範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1中的方塊圖繪示了一種使用鎖相回路(PLl )之 先,技術或先前技術公佈日期為1999年12年14日的時脈 回復電路。 ,2中的方塊圖緣示了—種先前技術或先前技術公佈 ,為1999年12年14日的半速率時脈回復電路。 圖3中的方塊圖繪示了依據本發明一實施例的四 一時脈回復電路。 —實施例的相位插 圖4中的方塊圖繪示了依據本發明 入控制器。 28 1358893 17621pif.doc 圖5A與5B中的表格繪示了依據本發明一實施例之數 位至類比轉換器(DAC)控制邏輯對圖4所示之相位插入 單元進行控制的操作。 圖6中的方塊圖繪示了依據本發明一實施例之相位插 入單兀與多個數位至類比轉換n DAC之間的連接關係。 圖7中的電路圖繪示了包括在依據本發明一實施例之 相位插入單元中的相位插入器。 圖8中的方塊圖繪示了—種使用依據本發明一 實施例 φ 之時脈回復電路的高速資料接收器。 【主要元件符號說明】 100、201 :串列輸入資料 110 :參考頻率時脈 120 :多工器 130 :頻率相位債測器 140 :回路濾波器 150 :壓控振盈器(vc〇) 160 :分頻器 馨 170:觸發器 180、190 :時脈 202 :回復時脈 210 :相位偵測器 215 .上行/下行訊號 220 :訊號分離器 225 :低速率上行/下行訊號 29 1358893 17621pif.doc 230 :數位至類比轉換器(DAC)控制邏輯 235 :數位控制代碼 240 :數位至類比轉換器(DAC) 245 :加權控制訊號 250:相位插入單元 260 :時脈發生器 270 :資料流 301 :接收資料 310 :相位偵測器 320 :相位插入控制器 350 :相位插入單元 351、352、353及354 :相位插入器 360 :時脈發生器 265、365、365a、365b、365c、365d、302、302a、302b、 302c、302d :時脈 370 :回復資料流 UP、DOWN、315、345 :訊號 410 :訊號分離器 420 :數位至類比轉換器(DAC)控制邏輯 430 :數位至類比轉換器(DAC) 415 :訊號 425 :控制代碼 520a、530a、540a、550a、520b、530b、540b、550b : 控制代碼 30 1358893 17621pif.doc 720a、730a、740a、750a、720b、730b、740b、750b : 類比控制訊號 800 :高速資料接收器 8 01 . tfj速串列貧料流 810-1、…、810-n :時脈回復電路 820 :時脈發生器 830 :時脈 840-1、...、840-n :資料流 850 :内部電路Moreover, the use of a multi-channel structure of the quarter rate clock recovery circuit, insertion between the channels and providing clocks to the buffers of each channel is facilitated, and/or the power loss of the buffer can be reduced because of the buffer The number is reduced by y. In addition, the total wafer area can also be reduced. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and it is intended that the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The block diagram in Fig. 1 illustrates a clock recovery circuit using a phase-locked loop (PL1), prior art or prior art publication dated December 14, 1999. The block diagram in 2 shows a prior art or prior art publication, a half rate clock recovery circuit on December 14, 1999. The block diagram of Figure 3 illustrates a four-one clock recovery circuit in accordance with an embodiment of the present invention. - Phase Interpolation of Embodiments The block diagram of Figure 4 illustrates the controller in accordance with the present invention. 28 1358893 17621pif.doc The tables in Figures 5A and 5B illustrate the operation of the digital insertion to analog converter (DAC) control logic to control the phase insertion unit of Figure 4 in accordance with an embodiment of the present invention. The block diagram of Figure 6 illustrates the connection between a phase insertion unit and a plurality of digit to analog conversion n DACs in accordance with an embodiment of the present invention. The circuit diagram in Figure 7 illustrates a phase interpolator included in a phase insertion unit in accordance with an embodiment of the present invention. The block diagram of Figure 8 illustrates a high speed data receiver using a clock recovery circuit in accordance with an embodiment of the present invention. [Main component symbol description] 100, 201: serial input data 110: reference frequency clock 120: multiplexer 130: frequency phase debt detector 140: loop filter 150: voltage controlled oscillator (vc〇) 160: Divider Xin 170: Trigger 180, 190: Clock 202: Reply Clock 210: Phase Detector 215. Up/down Signal 220: Signal Splitter 225: Low Rate Up/Down Signal 29 1358893 17621pif.doc 230 : Digital to Analog Converter (DAC) Control Logic 235: Digital Control Code 240: Digital to Analog Converter (DAC) 245: Weighted Control Signal 250: Phase Insertion Unit 260: Clock Generator 270: Data Stream 301: Receive Data 310: phase detector 320: phase insertion controller 350: phase insertion units 351, 352, 353, and 354: phase interpolator 360: clock generators 265, 365, 365a, 365b, 365c, 365d, 302, 302a, 302b, 302c, 302d: clock 370: reply data stream UP, DOWN, 315, 345: signal 410: signal splitter 420: digital to analog converter (DAC) control logic 430: digital to analog converter (DAC) 415 : Signal 425: Control Codes 520a, 530a, 54 0a, 550a, 520b, 530b, 540b, 550b: control code 30 1358893 17621pif.doc 720a, 730a, 740a, 750a, 720b, 730b, 740b, 750b: analog control signal 800: high speed data receiver 8 01 . tfj speed string Column lean stream 810-1, ..., 810-n: clock recovery circuit 820: clock generator 830: clocks 840-1, ..., 840-n: data stream 850: internal circuit
3131
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040061262A KR100574619B1 (en) | 2004-08-04 | 2004-08-04 | Quarter-rate clock data recovery circuit and clock data recoverying method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200614655A TW200614655A (en) | 2006-05-01 |
TWI358893B true TWI358893B (en) | 2012-02-21 |
Family
ID=35757389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094126168A TWI358893B (en) | 2004-08-04 | 2005-08-02 | Quarter-rate clock recovery circuit and clock reco |
Country Status (4)
Country | Link |
---|---|
US (1) | US7580491B2 (en) |
JP (1) | JP4809011B2 (en) |
KR (1) | KR100574619B1 (en) |
TW (1) | TWI358893B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070177663A1 (en) * | 2006-01-31 | 2007-08-02 | Ibm Corporation | Data-dependent jitter pre-emphasis for high-speed serial link transmitters |
KR100844313B1 (en) * | 2006-12-06 | 2008-07-07 | 한국전자통신연구원 | High-Speed Clock and Data Recovery Circuit using quarter rate clock |
US7778371B2 (en) * | 2007-03-12 | 2010-08-17 | Applied Micro Circuits Corporation | Digitally clock with selectable frequency and duty cycle |
JP2008228083A (en) * | 2007-03-14 | 2008-09-25 | Toshiba Corp | Semiconductor integrated circuit |
US8004335B2 (en) * | 2008-02-11 | 2011-08-23 | International Business Machines Corporation | Phase interpolator system and associated methods |
WO2009110629A1 (en) * | 2008-03-04 | 2009-09-11 | 日本電気株式会社 | Signal multiplexing method, signal demultiplexing method, digital signal reference frequency correction method, multiplexer, demultiplexer, wireless communication system, and digital signal referency frequency corrector |
US8363773B2 (en) | 2008-10-20 | 2013-01-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Digital phase interpolation control for clock and data recovery circuit |
KR101545645B1 (en) | 2009-03-20 | 2015-08-20 | 삼성디스플레이 주식회사 | Method for modulating and demodulating a signal signal modulation and demodulatin apparatus for performing the method and display apparatus having the apparatus |
US8638896B2 (en) * | 2010-03-19 | 2014-01-28 | Netlogic Microsystems, Inc. | Repeate architecture with single clock multiplier unit |
KR101002242B1 (en) | 2010-04-11 | 2010-12-20 | 인하대학교 산학협력단 | Dual-rate clock and data recovery circuit using quarter-rate linear phase detector |
US8666013B1 (en) * | 2011-03-22 | 2014-03-04 | Altera Corporation | Techniques for clock data recovery |
US8497708B2 (en) * | 2011-05-06 | 2013-07-30 | National Semiconductor Corporation | Fractional-rate phase frequency detector |
US8847691B2 (en) | 2011-11-16 | 2014-09-30 | Qualcomm Incorporated | Apparatus and method for recovering burst-mode pulse width modulation (PWM) and non-return-to-zero (NRZ) data |
US9100167B2 (en) * | 2012-11-30 | 2015-08-04 | Broadcom Corporation | Multilane SERDES clock and data skew alignment for multi-standard support |
US20160140821A1 (en) * | 2014-11-12 | 2016-05-19 | Peyman Moeini | System and method for real-time asset localization |
US10153775B1 (en) * | 2017-09-12 | 2018-12-11 | Micron Technology, Inc. | Phase interpolator |
CN107689792B (en) * | 2017-09-15 | 2020-04-07 | 北京华大九天软件有限公司 | High-linearity low-voltage phase interpolation circuit |
US11387841B2 (en) * | 2017-12-15 | 2022-07-12 | Intel Corporation | Apparatus and method for interpolating between a first signal and a second signal |
KR20210141813A (en) * | 2020-05-13 | 2021-11-23 | 삼성디스플레이 주식회사 | Clock data recovery circuit, display device, and method of operating a clock data recovery circuit |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5301196A (en) * | 1992-03-16 | 1994-04-05 | International Business Machines Corporation | Half-speed clock recovery and demultiplexer circuit |
US6122336A (en) | 1997-09-11 | 2000-09-19 | Lsi Logic Corporation | Digital clock recovery circuit with phase interpolation |
US6002279A (en) | 1997-10-24 | 1999-12-14 | G2 Networks, Inc. | Clock recovery circuit |
EP1183781B1 (en) | 2000-03-07 | 2006-08-09 | Koninklijke Philips Electronics N.V. | Data clock recovery circuit |
JP3636657B2 (en) | 2000-12-21 | 2005-04-06 | Necエレクトロニクス株式会社 | Clock and data recovery circuit and clock control method thereof |
TW579498B (en) | 2001-12-19 | 2004-03-11 | Via Tech Inc | Method for data recovery with lower sampling frequency and related apparatus |
US6597212B1 (en) * | 2002-03-12 | 2003-07-22 | Neoaxiom Corporation | Divide-by-N differential phase interpolator |
JP3660638B2 (en) * | 2002-03-27 | 2005-06-15 | 株式会社東芝 | Clock extraction circuit |
US7397848B2 (en) * | 2003-04-09 | 2008-07-08 | Rambus Inc. | Partial response receiver |
US7315596B2 (en) * | 2004-02-17 | 2008-01-01 | Texas Instruments Incorporated | Interpolator based clock and data recovery (CDR) circuit with digitally programmable BW and tracking capability |
US7894563B2 (en) * | 2004-05-27 | 2011-02-22 | Virtensys Limited | Clock recovery circuit and a method of generating a recovered clock signal |
-
2004
- 2004-08-04 KR KR1020040061262A patent/KR100574619B1/en active IP Right Grant
-
2005
- 2005-07-26 JP JP2005215862A patent/JP4809011B2/en not_active Expired - Fee Related
- 2005-08-01 US US11/193,329 patent/US7580491B2/en active Active
- 2005-08-02 TW TW094126168A patent/TWI358893B/en active
Also Published As
Publication number | Publication date |
---|---|
KR100574619B1 (en) | 2006-04-27 |
US20060029160A1 (en) | 2006-02-09 |
KR20060012679A (en) | 2006-02-09 |
JP4809011B2 (en) | 2011-11-02 |
JP2006050607A (en) | 2006-02-16 |
US7580491B2 (en) | 2009-08-25 |
TW200614655A (en) | 2006-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI358893B (en) | Quarter-rate clock recovery circuit and clock reco | |
JP5191231B2 (en) | Wide range clock generator | |
US6121808A (en) | DLL calibrated phase multiplexer and interpolator | |
US7941686B2 (en) | Phase controllable multichannel signal generator having interleaved digital to analog converters | |
US6441667B1 (en) | Multiphase clock generator | |
US7548127B2 (en) | Digitally controlled ring oscillator | |
JP2005223829A (en) | Fractional frequency divider circuit and data transmission apparatus using the same | |
JP4846788B2 (en) | Data signal generator | |
US8471607B1 (en) | High-speed frequency divider architecture | |
EP2617135A1 (en) | Techniques for varying a periodic signal based on changes in a data rate | |
JPH1198132A (en) | Clock recovery circuit | |
US20060232315A1 (en) | Variable delay line with multiple hierarchy | |
US6243784B1 (en) | Method and apparatus for providing precise circuit delays | |
US5546434A (en) | Dual edge adjusting digital phase-locked loop having one-half reference clock jitter | |
WO2002011278A1 (en) | Frequency synthesizer | |
CN109787619B (en) | Multi-phase clock generation circuit | |
KR100769690B1 (en) | Apparatus for generating clock based on frequency-to-voltage converter and interfacing with clock generator based on frequency-to-voltage converter | |
JP2003308133A (en) | Multi-phase clock transmission circuit and method | |
Benyahia et al. | A digitally controlled 5GHz analog phase interpolator with 10GHz LC PLL | |
WO2016071813A2 (en) | Digitally controlled oscillator (dco) architecture | |
Kim et al. | A low-power 3.52 Gbps SerDes with a MDLL frequency multiplier for high-speed on-chip networks | |
US11265009B2 (en) | Waveform synthesizer using multiple digital-to-analog converters | |
Shan et al. | An all digital phase-locked loop based on double edge triggered flip-flop | |
Khalirbaginov | A Fully Synthesizable All-Digital Phase-Locked Loop with Parametrized and Portable Architecture | |
US12136927B2 (en) | Synchronous alignment of multiple high-speed dividers |