1356396 「____, • 100年.11月16日按正替換頁 六、發明說明: 【發明所屬之技術領威】 [咖1]本發明涉及一種發聲裝置,尤其涉及—種基於奈米碳管 的發聲裝置。 【先前技術】 [0002] 發聲裝置一般由信號輸入裝置和發聲元件組成。通過信 號輸入裝置輸入電信號給發聲元件,進而發出聲音《先 前技術中的發聲元件一般爲一揚聲器。該揚聲器爲一種 把電信號轉換成聲音信號的電聲器件。具體地,揚聲器 可將一定範圍内的音頻電功率信號通過換能方式轉變爲 — 失真小並具有足夠聲壓級的可聽聲音。揚聲器的種類很 " 多,雖然它們的工作方式不同,但一般岣爲通過產生機 械振動推動周圍的空氣’使空氣介質産生波動從而實現 “電-力-聲”之轉換。 [0003] 請參閱圖1,先前的電動式揚聲器1〇〇通常由三部分組成 :音圈102、磁鐵104及振膜1〇6。音圈102通常採用一導 體’當音圈102中輸入一個音頻電流信號時,音圈1〇2相 當於一個載流導體《若將其放在固定磁場裏,根據载流 導體在磁場中會受到洛倫兹力作用,音圈1〇2會受到一個 大小與音頻電流成正比、方向隨音頻電流方向變化而變 化的力。故,音圈1〇2就會在場場作用下産生振動,並帶 動振膜106振動,振膜1〇6前德沾… 更的空氣亦隨之振動,將電 信號轉換成聲波向四周輻射。紗、 *、Λ而,該電動式揚聲器100 的結構較爲複雜,且其必須a古 、在有礤的條件下工作》 進一步地,先前技術中的發聲盤 I裝置的發聲原理爲“電-力 097124108 表軍編號A0101 第3頁/共27頁 1003423463-0 [0004] 1356396 _ 100年11月,16日梭正替換k -聲”之轉換原理,即發聲的最基本條件爲電信號的輸入 。在極端環境,如無電環境下,則無法應用上述發聲裝 置進行發聲。 [0005] 光聲效應指當物質受到周期性強度調製的光照射時,會 産生聲信號的現象。當物質受到光照射時,物質因吸收 光能而受激發,並通過非輻射躍遷使吸收的光能全部或 部分轉變爲熱。如果照射的光束經過周期性的強度調製 ,則在物質内産生周期性的溫度變化,使這部分物質及 其鄰近的媒質熱脹冷縮而産生應力(或壓力)的周期性 變化,因而産生聲信號,此種信號稱光聲信號。光聲信 號的頻率與光調製頻率相同,其強度和相位則决定於物 質的光學、熱學、彈性和幾何的特性。目前,利用光聲 效應製造的光聲譜儀及光聲顯微鏡已經被廣泛應用於物 質組分分析檢測領域。例如,先前技術中的光聲譜儀一 般包括一光源、一樣品室及一信號檢測器。該光源一般 爲一調製的脈衝雷射源或連續雷射源。該信號檢測器一 般爲一麥克風。該樣品室中放置有待測的樣品*該樣品 材料不限,可爲氣體、液體或固體材料,如一固體粉末 或一生物樣品等。該雷射源發射雷射照射到樣品室中的 樣品上,由於光聲效應中産生的聲能直接正比於物質吸 收的光能,而不同成分的物質在不同光波的波長處出現 吸收峰值,故當具有多譜線或連續光譜的光源以不同波 長的光束相繼照射樣品時,樣品内不同成分的物質將在 與各自的吸收峰相對應的光波波長處産生光聲信號極大 值。該信號檢測器通過檢測該光聲信號的極大值,從而 097124108 表單编號A0101 第4頁/共27頁 1003423463-0 100年.11.月16日修正替换頁 1,356396 判斷待測樣品的材料種類。 [0006] 然而,一般材料受到光吸收能力的限制,產生的光聲信 , 號強度較弱,且頻率範圍在兆赫茲以上,只能通過麥克 風或壓電傳感器等換能裝置接收,故,先前技術中還沒 有利用光聲效應製造的發聲裝置使其産生的聲音信號能 直接被人耳感知。另,先前技術中也沒有將廣義的電磁 波應用光聲效應製造的發聲裝置。 [0007] 自九十年代初以來,以奈米碳管(請參見Helical microtubules of graphitic carbon, Nature, Sura-io Iijiraa, vol 354,p56( 1 991 ))爲代表的奈米材料 以其獨特的結構和性質引起了人們極大的關注。近幾年 來,隨著奈米碳管及奈米材料研究的不斷深入,其廣闊 的應用前景不斷顯現出來。例如,由於奈米碳管所具有 的獨特的電磁學、光學、力學、化學等性能,大量有關 其在場發射電子源、傳感器、新型光學材料、軟鐵磁材 料等領域的應用研究不斷被報道。然而,先前技術中卻 尚未發現奈米碳管作爲發聲元件用於聲學領域。 [0008] 有鑒於此,提供一種結構簡單,可在無磁、無電的條件 下直接發出能夠被人耳感知的聲音的發聲裝置實為必要 〇 【發明内容】 [0009] —種發聲裝置,其包括一電磁波信號輸入裝置及一發聲 元件。該發聲元件與該電磁波信號輸入裝置間隔設置。 其中,該發/聲元件包括至少一層奈米碳管薄膜,該奈米 碳管薄膜包括多個擇優取向排列的奈米碳管,該電磁波 097124108 表單编號 A0101 第 5 頁/共 27 頁 1003423463-0 1356396 __ 100年.11.月· 16日核正替換k 信號輸入裝置傳遞電磁波信號至該奈米碳管薄膜,使該 奈米碳管薄膜通過吸收該電磁波信號發熱,從而加熱氣 體介質發出聲波。 [0010] 相較於先前技術,所述發聲裝置具有以下優點:其一, 由於所述發聲裝置中的發聲元件僅由奈米碳管薄膜組成 ,無需磁鐵等其它複雜結構,故該發聲裝置的結構較爲 簡單,有利於降低該發聲裝置的成本。其二,該發聲裝 置利用輸入信號造成該奈米碳管薄膜溫度變化,從而使 其周圍氣體介質迅速膨脹和收縮,進而發出聲波,故該 奈米碳管薄膜組成的發聲裝置可在無磁的條件下工作。 其三,由於該奈米碳管薄膜具有較小的熱容和大的比表 面積,故該奈米碳管薄膜具有升溫迅速、熱滯後小、熱 交換速度快的特點,故該奈米碳管薄膜組成的發聲裝置 可發出很寬頻譜範圍内的聲音(ΙΗζ-lOOkHz),且具有 較好的發聲效果。其四,由於奈米碳管通過凡德瓦爾力 首尾相連,故由奈米碳管組成的奈米碳管薄膜具有較好 的機械強度和韌性,並且首尾相連的奈米碳管沿排列方 向具有較好的導熱性能,從而使發聲元件具有較好的發 聲效果。其五,由於奈米碳管具有極大的比表面積,在 凡德瓦爾力的作用下,奈米碳管薄膜本身有很好的黏附 性,故奈米碳管薄膜可方便地直接黏附於支撐結構表面 。其六,由於所述奈米碳管薄膜爲從奈米碳管陣列中直 接拉取獲得,其寬度及長度均不限,故可容易地製備較 大面積的發聲元件。 【實施方式】 097124108 表單编號A0101 第6頁/共27頁 1003423463-0 1,356396 [0011] [0012] [0013] 100年11月16日俊正 以下將結合附圖詳細說明本技術方索實施例的發聲裝置 〇 凊參閱圖2,本技術方案第一實施例提供一種發聲裝置1〇 ’該發聲裝置ίο包括-電磁波信號輸入裝置112,一發聲 兀件114,一支撐結構116及一調製裝置118。該發聲元 件114設置於該支撐結構116上β該支撐結構116爲一可 選擇結構’用於支撐和固定該發聲元件114。該電磁波信 號輸入裝置112與該發聲元件114對應且間隔設置,用於 提供-電磁波信號120。該調製裝置118設置於該電磁波 信號輸入裝置112與發聲元件114之間,用於對所述電磁 波4號120進行強度或頻率的調製從該電磁波信號輸入 裝置112發出的電磁波信號12〇通過該調製裝置118進行 強度和頻率的調製後傳遞至該發聲元件U4表面。 所述發聲元件114包括-奈米碳管層。該奈米碳管層具有 較大的比表面積,且包括均勻分佈的奈米碳管。該奈米 碳管層包括至少-層奈米碳管薄膜。該奈米碳管.薄膜包 括多個擇優取向排列的奈米碳管所述奈米碳管薄膜爲 通過從奈米碳管陣列中直接拉取獲得,並具有自支撐結 構。進一步地,該奈米碳管薄膜包括多個奈米碳管束, 所述奈米碳管束之間通過凡德瓦爾力首尾相連,每個奈 米碳營束具有大致相等的長度且每個奈米碳管束由多個 相互平行的奈米碳管構成。該奈米♦管可爲單壁奈来破 管、雙壁奈米碳管及多壁奈米碳管中的一種或多 述單壁奈米碳管的直徑爲0.5奈米〜5〇奈米,所述雙壁夺 米碳管的直徑爲1.0奈米,奈来,所述多壁奈来碳= 097124108 表單編號Α0101 第7頁/共27頁 1003423463-0 1356396 _ 100年11月· 16日梭正替换★ 直徑爲1.5奈米~50奈米。所述奈米碳管薄膜的厚度爲 0. 5奈米〜100微米。所述奈米碳管薄膜的長度及寬度不限 ,可根據實際需求製備。 [0014] 進一步地,所述奈米碳管層可包括至少兩層重疊設置的 奈米碳管薄膜,相鄰的奈米碳管薄膜之間通過凡德瓦爾 力緊密結合。該奈米碳管薄膜包括多個擇優取向排列的 奈米碳管。該奈米碳管層中的奈米碳管薄膜的層數不限 ,且相鄰兩層奈米碳管薄膜中的奈米碳管之間具有一交 叉角度a,0°SaS90°,具體可依據實際需求製備。當 相鄰兩層奈米碳管薄膜中的奈米碳管之間的夾角α大於0 。時,在奈米碳管薄膜結構中的多個奈米碳管形成一網狀 結構,且該網狀結構包括多個均勻分佈的微孔,其孔徑 小於5微米。 [0015] 可以理解,所述奈米碳管層的厚度不能太厚,太厚則影 響奈米碳管與周圍氣體介質進行熱交換,從而影響該發 聲元件114的發聲效果。另,該奈米碳管層的厚度不能太 薄,太薄則該奈米碳管層強度較差,在發聲過程中容易 損壞。當所述奈米碳管層的厚度比較小時,例如小於1 0 微米,該奈米碳管層具有較高的透明度,故採用該奈米 碳管層的發聲元件114爲透明發聲元件114,此時,可將 該發聲元件114直接設置在各種顯示裝置、手機顯示屏或 油畫的上表面,從而達到節省空間的目的。優選地,所 述奈米碳管層的厚度爲0. 5奈米〜1毫米。本技術方案實施 例中,所述奈米碳管層的長度爲3厘米,寬度爲3厘米, 厚度爲50奈米。 097124108 表單编號Α0101 第8頁/共27頁 1003423463-0 1.356396 100年.11.月16日梭正替換頁 [0016] 由於奈米碳管具有極大的比表面積,在凡德瓦爾力的作 用下,該奈米碳管層中的奈米碳管薄膜本身有很好的黏 附性,故採用該奈米碳管層作發聲元件114時,可將奈米 碳管層直接黏附於支撐結構116表面。進一步地,所述支 撐結構116與所述發聲元件114之間還可通過黏結劑相互 黏結,從而使所述發聲元件114更好地固定在支撐結構 11 6上。所述黏結劑可爲一耐高溫的矽膠。 [0017] 所述支撐結構116主要起支撐作用,其形狀不限,任何具 有確定形狀的物體,如一牆壁或桌面,均可作爲本技術 方案第一實施例中的支撐結構116。具體地,該支撐結構 116可爲一平面或曲面結構,並具有一表面。此時,該發 聲元件114直接設置並貼合於該支撐結構116的表面上。 由於該發聲元件114整體通過支撐結構116支撐,故該發 聲元件114可承受強度較高的電磁波信號120輸入,從而 具有較高的發聲強度。另,該支撐結構11 6也可爲一框架 結構、桿狀結構或不規則形狀結構。此時,該發聲元件 114部分與該支撐結構116相接觸,其餘部分懸空設置。 此種設置方式可使該發聲元件114與空氣或周圍介質更好 地進行熱交換。該發聲元件114與空氣或周圍介質接觸面 積更大,熱交換速度更快,故具有更好的發聲效率。 [0018] 該支撐結構116的材料不限,可爲一硬性材料,如金剛石 、木質材料、玻璃或石英。另,所述支撐結構11 6還可爲 一柔性材料,如紙質材料、塑膠或樹脂^優選地,該支 撐結構116的材料應具有較好的絕熱性能,從而防止該發 聲元件114産生的熱量過度的被該支撐結構11 6吸收,無 097124108 表單編號A0101 第9頁/共27頁 1003423463-0 1356396 [0019] [0020] 法達到加Μ氣發—目的ϋ切纟〜 具有一較爲粗糙的表面,從而可使設置於上述支撐結構 116表面的發聲元件ι14與空氣或其他外界介質具有更大 的接觸面積。 可以理解,由於上述發聲元件114中的奈米碳管層爲一自 支撐結構’故該支撐結構116爲一可選擇結構。 所述電磁波信號輸入裝置112包括一電磁波信號源,該電 磁波信號源可發出強度或頻率可變的電磁波,形成一電 磁波信號120。該電磁波信號120的強度或頻率可不斷變 化’從而能夠使作爲發聲元件114的奈米碳管層吸收該電 磁波信號120間歇加熱空氣,使空氣不斷膨脹收縮,進而 持續發出聲音。該電磁波信號120的頻率範圍包括無線電. 波、紅外線、可見光、紫外線、微波、X射線及r射線等 。優選的’该電磁波信號源爲一光信號源,所發出的電 磁波信號12 0可爲一光信號’該光信號的波長包括從紫外 至遠紅外波長的各種光波》該電磁波信號120的平均功率 密度在1 /zW/mra2~20W/mm2範圍内。可以理解,該電磁波 4s被>120的強度不能太弱’太弱則無法使奈米碳管層充分 加熱周圍空氣發出聲音,並且,該電磁波信號12〇的強度 不能太強,太強使奈米碳管層與空氣中的氧發生反應, 從而破壞該奈米碳管層。優選地,該電磁波信號源爲-一 脈衝雷射發生器。 該電磁波信號輸入裝置112發出的電磁波信號120在發聲 元件114上的入射角度與位置不限》另,該電磁波信號輸 入裝置112與發聲元件114之間的距離不限,但應確保從 097124108 表單编號A0101 第10頁/共27頁 1003423463-0 [0021] 1.356396 100年11月16日修正替換頁 該電磁波信號輸入裝置112發出的電磁波能夠傳遞至該發 聲元件114表面。優選地,當該電磁波信號爲一光信號, 且該電磁波信號輸入裝置112與該發聲元件114距離較遠 時,該電磁波信號輸入裝置112可以進一步包括一光纖, 該光纖一端與所述光信號源連接,另一端延伸至所述奈 米碳管薄膜附近,從而使通過上述雷射發生器發出的電 磁波信號120通過光纖遠距離傳遞至發聲元件114表面。 [0022] 所述調製裝置118爲一可選擇結構,設置於該電磁波信號 120的傳輸路徑上,包括強度調製器、頻率調製器或兩者 的結合。所述發聲裝置10通過調製裝置11 8對電磁波信號 120的強度及頻率進行調製,從而實現使發聲元件114所 發出的聲音的強度及頻率的改變。具體地,可以通過以 不同頻率開關電磁波信號120調製電磁波信號120的強弱 ,或者以不同頻率變化電磁波信號120的強度調製電磁波 信號120的強弱。電磁波信號120強弱的變化影響發聲元 件114發聲頻率的變化。通過對該電磁波信號120進行調 製,可以使該發聲元件114發出不同頻率的聲音。可以理 解,該調製裝置118可以與所述電磁波信號輸入裝置112 集成或間隔設置。當所述電磁波信號輸入裝置112包括一 光纖時,該調製裝置118可設置於光纖的起始端或結束端 上。本實施例中,該調製裝置118爲一電光晶體。 [0023] 本技術方案第一實施例中奈米碳管薄膜的製備方法主要 包括以下步驟: [0024] 步驟一:提供一奈米碳管陣列,優選地,該陣列爲超順 排奈米碳管陣列。 097124108 表單編號A0101 第11頁/共27頁 1003423463-0 1356396 100年.11.月'16日核正替換亩 [0025] 本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳管 陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種 或多種。本實施例中,該超順排奈米碳管陣列的製備方 法採用化學氣相沈積法,其具體步驟包括:(a)提供一 平整基底,該基底可選用P型或N型矽基底,或選用形成 有氧化層的矽基底,本實施例優選爲採用4英寸的矽基底 ;(b)在基底表面均勻形成一催化劑層,該催化劑層材 料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合 的合金之一;(C)將上述形成有催化劑層的基底在 700〜900°C的空氣_退火約30分鐘〜90分鐘;(d)將處 理過的基底置於反應爐中,在保護氣體環境下加熱到 500〜740°C,然後通入碳源氣體反應約5〜30分鐘,生長 得到超順排奈米碳管陣列,其高度爲200〜400微米。該超 順排奈米碳管陣列爲多個彼此平行且垂直於基底生長的 奈米碳管形成的純奈米碳管陣列。通過上述控制生長條 件,該超順排奈米碳管陣列中基本不含有雜質,如無定 型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的 奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該奈 米碳管陣列與上述基底面積基本相同。 [0026] 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質’ 較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體 爲氬氣。 [0027] 可以理解,本實施例提供的奈米碳管陣列不限於上述製 備方法。也可爲石墨電極恒流電弧放電沈積法、雷射蒸 097124108 表單编號A0101 第12頁/共27頁 1003423463-0 1.356396 [0028] [0029] [0030] 100年.11月16日修正替換頁 發沈積法等。 步驟二:採用一拉伸工具從奈米碳管陣列中拉取獲得一 奈米碳管薄膜。其具體包括以下步驟:(a)從上述奈米 碳管陣列中選定一定寬度的多個奈米碳管片段,本實施 例優選爲採用具有一定寬度的膠帶接觸奈米碳管陣列以 選定一定寬度的多個奈米碳管片段;(b)以一定速度沿 基本垂直於奈米碳管陣列生長方向拉伸該多個奈米碳管 片段,以形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管片段在拉力作用下 沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用 ,該選定的多個奈米碳管片段分別與其它奈米碳管片段 首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。 請參閱圖3及圖4,該奈米碳管薄膜141包括多個擇優取向 排列的奈米碳管145。進一步地,所述奈米碳管薄膜141 包括多個首尾相連且定向排列的奈米碳管束143,每個奈 米碳管束143具有大致相等的長度,且奈米碳管束143兩 端通過凡德瓦爾力相互連接。該奈米碳管束143包括多個 長度相等且相互平行排列的奈米碳管145。該直接拉伸獲 得的擇優取向的奈米碳管薄膜141比無序的奈米碳管薄膜 具有更好的均勻性。同時該直接拉伸獲得奈米碳管薄膜 141的方法簡單快速,適宜進行工業化應用。 本實施例中,該奈米碳管薄膜141的寬度與奈米碳管陣列 所生長的基底的尺寸及選定的奈米碳管陣列的寬度有關 ,該奈米碳管薄膜141的長度不限,可根據實際需求制得 。該奈米碳管薄膜141的厚度爲0. 5奈米~100微米。該奈 097124108 表單编號A0101 第13頁/共27頁 1003423463-0 1356396 [ϊ〇〇年.11月· 16日梭正替4¼ 米碳管薄膜⑷中的奈米碳管145可爲單壁奈米碳管145 、雙壁奈米碳管145及多壁奈米破管145中的一種或多種 。所述單壁奈米碳管145的直徑爲m5G奈米。所 述雙壁奈来碳管145的直徑爲!.〇奈米〜5〇奈米。所述多 壁奈米碳管145的直徑爲1.5奈米〜5〇奈米。 [0031] 可以理解’由於本實施例超順排奈米碳管陣列t的奈米 碳管145非常純淨’且由於奈米碳管145本身的比表面積 非常大,故該奈米碳管薄膜141本身具有較強的黏性。故 ,該奈米碳管薄臈141作爲發聲元件114時,可以直接黏 附於所述支撐結構Π6表面。 [0032] 另,可使用有機溶劑處理上述奈米碳管薄膜141 ◊具體地 ,可通過試管將有機溶劑滴落在奈米碳管薄膜141表面浸 潤整個奈米碳管薄膜141。該有機溶劑爲揮發性有機溶劑 ,如乙醇、甲醇、丙酮、二氯乙烷或氣仿,本實施例中 採用乙醇。該奈米碳管薄膜141經有機溶劑浸潤處理後, 在揮發性有機溶劑的表面張力的作用下,該奈米碳管薄 膜141可牢固地貼附在支撐結構116表面,且表面體積比 减小’黏性降低,具有良好的機械強度及韌性。 [0033] 本技術方案實施例發聲裝置中採用奈米碳管薄膜141作爲 發聲元件’由於奈米碳管145對電域波的吸收接近絕對黑 體’從而使發聲裝置對於各種波長的電磁波具有均一的 吸收特性。另’奈米碳管145具有較小的熱容和較大的散 熱面積。故,當發聲元件114中的奈米碳管145受到如雷 射等電磁波的照射時,奈米碳管145因吸收光能而受激發 ’並通過非輻射使吸收的光能全部或部分轉變爲熱。奈 097124108 表單编號A0101 第14頁/共27頁 1003423463-0 1.356396 100年.11月16日修正替換頁 米碳管145溫度迅速升高,並和周圍的空氣或其他介質進 行迅速的熱交換。如果照射的電磁波經過周期性的強度 調製,則在奈米碳管145内產生周期性的溫度變化,從而 使其周圍的氣體介質也產生周期性的溫度變化,造成周 圍空氣或其他介質迅速的膨脹和收縮,從而發出聲音。 進一步地,本實施例中,所述發聲元件114包括由大量首 尾相連的奈米碳管145組成的奈米碳管薄膜141,故當電 磁波信號輸入裝置112發出的電磁波信號120的頻率合適 ,且發聲元件114周圍介質爲空氣時,發聲元件114發出 的聲音可以直接被人耳感知。可以理解,當電磁波信號 120的頻率增高時,該發聲元件114可以發出超聲波。 [0034] 請參閱圖5,本技術方案第二實施例提供一種發聲裝置20 ,該發聲裝置20包括一電磁波信號輸入裝置212、一發聲 元件214、一支撐結構21 6及一調製裝置218。 [0035] 該支撐結構21 6爲一框架結構、桿狀結構或不規則形狀結 構。該發聲元件214部分與該支撐結構216相接觸,其餘 部分懸空設置,從而使聲音能夠透過該發聲元件214傳遞 。該電磁波信號輸入裝置212與該發聲元件214對應且間 隔設置。該調製裝置218設置於該電磁波信號輸入裝置 212與發聲元件214之間。 [0036] 該發聲裝置20與第一實施例中的發聲裝置10的結構基本 相似,與第一實施例中的發聲裝置1〇的區別在於,該發 聲裝置20進一步包括一攏音結構222,該攏音結構222間 隔設置在所述發聲元件214遠離電磁波信號220輸入的一 側。該攏音結構222與該發聲元件214相隔設置,從而使 097124108 表單編號A0101 第15頁/共27頁 1003423463-0 1356396 100年.11.月’16曰按正替換食 發聲元件214發出的聲波通過攏音結構222反射,增強該 發聲裝置20的發聲效果。根據發聲元件214的大小,該距 離可以爲1厘米〜1米。可以理解,該攏音結構222可以爲 具有一較大表面的各種結構,如一平面結構或一曲面結 構。本實施例中,該攏音結構222爲一平板。該攏音結構 222可以通過支架與該發聲元件214間隔。另,該攏音結 構222與該支撐結構216也可爲一集成設置的整體,如一 具有狹窄開口的腔體,該發聲元件214平鋪於該腔體的開 口上,從而形成一亥姆霍茲共振腔》該攏音結構222的材 料爲木質、塑膠、金屬或玻璃等。 [0037] 本技術方案實施例中,所述發聲元件發聲的頻率範圍爲1 赫茲至10萬赫茲。當發聲元件中的奈米碳管層爲單層奈 米碳管薄膜時,發聲強度就可以達到70分貝聲壓級 (dBSPL)。當該奈米碳管層中奈米碳管薄膜的層數增加時 ,該發聲元件的發聲強度可以進一步增強。另,本技術 方案實施例十的奈米碳管層具有較好的韌性和機械強度 ,利用所述奈米碳管層可方便地製成各種形狀和尺寸的 發聲裝置,該發聲裝置可方便地應用於各種音樂設備中 ,如音響、手機、MP3、MP4、電視、計算機等電子領域 及其它發聲裝置中。另,由於電磁波,尤其係雷射,可 以在真空中遠距離傳播,該發聲裝置可以用於遠距離信 號傳輸領域,如將聲音信號通過電磁波的形式遠距離傳 輸。進一步地,由於上述發聲元件通過電磁波照射即可 發聲,故,當該電磁波爲紅外線、可見光、紫外線、微 波、X射線及T射線時,該發聲元件可以在一無電、無磁 097124108 表單编號A0101 第16頁/共27頁 1003423463-0 1.356396 的極端環境下工作。 年11月16日接正替換頁 [0038] [0039] 本技術方案實施例提供的發•置具有以下優點: 其-,由於所述發聲裝置中的發聲 :組成,無需磁鐵等其它複雜結構,故該發二= 構較爲簡單,有利於降低該發縣置的成本I : 於所述由奈米碳管_組成的發聲㈣可㈣過:入: 電磁波信號發聲,故,該發錾_ ° ^ # 凡件可以在一無電環境下 1二,該發聲裝置利用輸人信號造成_碳管 薄膜溫度變化’從錢其周圍氣體介質迅物脹和收縮 ,進而發出聲波,故該奈来碳管薄膜組成的發聲裝置可 在無磁的條件下工作。其四,由於該奈米喊管薄膜具有 較小的熱容和大㈣表面積’㈣奈米碳”膜具有升 溫迅速、熱滯後小、熱交換速度快的特點,故該奈米碳 管薄膜組成的發聲裝置可以發出很寬頻譜範圍内 聲音 (lHz-lOOkHz),且具有較好的發聲效果。其五,由於 奈米碳管通過凡德瓦爾力首尾相連’故由奈米碳管組成 的奈米碳管薄膜具有較好的機械強度和勤性,並且首尾 相連的奈米碳管沿排列方向具有較好的導熱#,能^充^ 分發揮奈米碳管的特性,從而使發聲元件具有較好的發 聲效果。其六,由於奈米碳管具有極大的比表面積,在 凡德瓦爾力的作用下,奈米碳管薄膜本身有很好的黏附 性,故奈米碳管薄膜可方便地直接黏附於支擇結構表面 。其七,由於所述奈米碳管薄膜爲從奈米碳管陣列中直 接拉取獲得,其寬度及長度均不限,故可以容易地製備 較大面積的發聲元件。其八’當該發聲元件厚度比較小 097124108 表單編號A0101 第17買/共27頁 1003423463-0 1356396 __ 100年.11月· 16曰梭正替换k 時,例如小於10微米,該發聲元件具有較高的透明度, 此時,可以將該發聲元件直接設置在各種顯示裝置、手 機顯示屏的顯示表面或油畫的上表面,從而達到節省空 間的目的。其九,所述發聲裝置可進一步包括支撐結構 及攏音結構,該支撐結構可以提高發聲裝置的發聲強度 ,該攏音結構可以反射發聲元件發出的聲波,增強所述 發聲裝置的發聲效果。 [0040] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0041] 圖1係先前技術中揚聲器的結構示意圖。 [0042] 圖2係本技術方案第一實施例發聲裝置的結構示意圖。 [0043] 圖3係本技術方案第一實施例發聲裝置中奈米碳管薄膜的 結構示意圖。 [0044] 圖4係本技術方案第一實施例發聲裝置中奈米碳管薄膜的 掃描電鏡照片。 [0045] 圖5係本技術方案第二實施例發聲裝置的結構示意圖。 【主要元件符號說明】 [0046] 揚聲器:100 [0047] 音圈:102 097124108 表單编號A0101 第18頁/共27頁 1003423463-0 1.356396 100年.11月16日核正替換頁 [0048] 磁鐵:1 0 4 [0049] 振膜:106 [0050] 發聲裝置:10,20 [0051] 電磁波信號輸入裝置:112,212 [0052] 發聲元件:114,214 [0053] 支撐結構:116,216 [0054] 調製裝置:118,218 [0055] 奈米碳管薄膜:141 [0056] 奈米碳管束:143 . [0057] 奈米碳管:145 [0058] 電磁波信號:120,220 [0059] 攏音結構:222 097124108 表單编號A0101 第19頁/共27頁 1003423463-01356396 "____, • 100 years. November 16th, according to the replacement page 6. Description of the invention: [Technical leadership of the invention] [Caf 1] The present invention relates to a sounding device, and more particularly to a carbon nanotube-based Sounding device [Prior Art] [0002] A sounding device generally consists of a signal input device and a sounding element. An electrical signal is input to a sounding element through a signal input device to emit a sound. "The sounding element of the prior art is generally a speaker. An electroacoustic device for converting an electrical signal into a sound signal. Specifically, the speaker can convert a range of audio electric power signals into a audible sound with a small distortion and sufficient sound pressure level by means of a transducing mode. Very, many, although they work in different ways, but generally promote the "electric-force-acoustic" conversion by generating mechanical vibration to push the surrounding air to make the air medium fluctuate. [0003] See Figure 1, The previous electric speaker 1〇〇 usually consists of three parts: the voice coil 102, the magnet 104 and the diaphragm 1〇6. The voice coil 102 is usually used. When a conductor is used to input an audio current signal, the voice coil 1〇2 is equivalent to a current-carrying conductor. If it is placed in a fixed magnetic field, it will be subjected to Lorentz force in the magnetic field according to the current-carrying conductor. Function, the voice coil 1〇2 will be subjected to a force whose magnitude is proportional to the audio current and the direction changes with the direction of the audio current. Therefore, the voice coil 1〇2 will vibrate under the action of the field field and drive the diaphragm 106. Vibration, the diaphragm 1〇6 front dew... The more air also vibrates, converting the electrical signal into sound waves radiating around. Yarn, *, Λ, the structure of the electric speaker 100 is more complicated, and it must be a ancient, working under the conditions of 》 进一步 Further, the sounding principle of the sounding disk I device in the prior art is "electricity - force 097124108 garrison number A0101 page 3 / total 27 pages 1003423463-0 [0004] 1356396 _ In November, 100, the shuttle was replacing the k-sound conversion principle, that is, the most basic condition for sounding is the input of electrical signals. In extreme environments, such as in an unpowered environment, the above-mentioned sounding device cannot be used for sounding. Photoacoustic effect refers to the object When irradiated with light of periodic intensity modulation, an acoustic signal is generated. When a substance is irradiated with light, the substance is excited by absorbing light energy, and the absorbed light energy is converted into heat in whole or in part by non-radiative transition. If the irradiated beam undergoes periodic intensity modulation, a periodic temperature change is generated within the substance, causing the material and its adjacent medium to expand and contract, causing periodic changes in stress (or pressure), thereby producing sound. A signal, which is called a photoacoustic signal. The frequency of the photoacoustic signal is the same as the frequency of the optical modulation, and its intensity and phase are determined by the optical, thermal, elastic, and geometric properties of the material. At present, photoacoustic spectrometers and photoacoustic microscopes fabricated using photoacoustic effects have been widely used in the field of physical component analysis and detection. For example, prior art photoacoustic spectrometers typically include a light source, a sample chamber, and a signal detector. The source is typically a modulated pulsed laser source or a continuous source of laser light. The signal detector is typically a microphone. The sample to be tested is placed in the sample chamber. The sample material is not limited and may be a gas, a liquid or a solid material such as a solid powder or a biological sample. The laser source emits a laser to the sample in the sample chamber, and the sound energy generated by the photoacoustic effect is directly proportional to the light energy absorbed by the substance, and the substances of different compositions have absorption peaks at different wavelengths of the light wave, so When a light source having a multi-spectrum or continuous spectrum sequentially illuminates a sample with beams of different wavelengths, substances of different compositions within the sample will produce photoacoustic signal maxima at wavelengths of light waves corresponding to respective absorption peaks. The signal detector detects the maximum value of the photoacoustic signal, thereby 097124108 Form No. A0101 Page 4 / Total 27 Page 1003423463-0 100 years. 11. Month 16 Correction Replacement Page 1,356396 Judging the material of the sample to be tested kind. [0006] However, the general material is limited by the light absorbing ability, and the generated optical sound signal has a weak intensity and a frequency range of more than megahertz, and can only be received by a transducer such as a microphone or a piezoelectric sensor. In the technology, the sounding device manufactured by the photoacoustic effect is not used to directly sense the sound signal generated by the human ear. Further, in the prior art, there is no sound generating device which is manufactured by applying a photoacoustic effect to a generalized electromagnetic wave. [0007] Since the early 1990s, nanomaterials represented by carbon nanotubes (see Helical microtubules of graphitic carbon, Nature, Sura-io Iijiraa, vol 354, p56 (1 991 )) have their unique The structure and nature have caused great concern. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials have been reported. . However, carbon nanotubes have not been found in the prior art as sounding elements for use in the field of acoustics. [0008] In view of the above, it is necessary to provide a sounding device that can directly emit a sound that can be perceived by the human ear under the condition of no magnetism and no electricity. [0009] A sounding device is provided. The utility model comprises an electromagnetic wave signal input device and a sound emitting component. The sound emitting element is spaced apart from the electromagnetic wave signal input device. Wherein, the sounding element comprises at least one layer of carbon nanotube film comprising a plurality of carbon nanotubes arranged in a preferred orientation, the electromagnetic wave 097124108 Form No. A0101 Page 5 of 27 1003423463- 0 1356396 __ 100 years.11.month·16th nuclear replacement k signal input device transmits electromagnetic wave signals to the carbon nanotube film, so that the carbon nanotube film generates heat by absorbing the electromagnetic wave signal, thereby heating the gas medium to emit sound waves . [0010] Compared with the prior art, the sounding device has the following advantages: First, since the sounding element in the sounding device is composed only of a carbon nanotube film, and no other complicated structure such as a magnet is needed, the structure of the sounding device is It is relatively simple and is beneficial to reduce the cost of the sounding device. Secondly, the sound generating device uses the input signal to cause the temperature change of the carbon nanotube film, so that the surrounding gas medium rapidly expands and contracts, and then emits sound waves, so the sound generating device composed of the carbon nanotube film can be non-magnetic. Work under conditions. Third, since the carbon nanotube film has a small heat capacity and a large specific surface area, the carbon nanotube film has the characteristics of rapid temperature rise, small heat lag, and high heat exchange rate, so the carbon nanotube The sounding device composed of a thin film can emit sound in a wide spectral range (ΙΗζ-lOOkHz) and has a good sounding effect. Fourth, since the carbon nanotubes are connected end to end by van der Waals force, the carbon nanotube film composed of carbon nanotubes has good mechanical strength and toughness, and the end-to-end carbon nanotubes are arranged along the alignment direction. Good thermal conductivity, so that the sounding component has a good sounding effect. Fifth, because the carbon nanotubes have a very large specific surface area, the carbon nanotube film itself has good adhesion under the action of van der Waals force, so the carbon nanotube film can be easily adhered directly to the support structure. surface. Sixth, since the carbon nanotube film is obtained by directly drawing from the carbon nanotube array, the width and length thereof are not limited, so that a relatively large-area sounding element can be easily prepared. [Embodiment] 097124108 Form No. A0101 Page 6 / Total 27 Page 1003423463-0 1,356396 [0011] [0013] [0013] On November 16, 100, the following will be described in detail with reference to the accompanying drawings. Example of sounding device 〇凊 Referring to FIG. 2, a first embodiment of the present technical solution provides a sounding device 1 ′′ the sounding device ίο includes an electromagnetic wave signal input device 112, a sounding device 114, a supporting structure 116 and a modulating device. 118. The sounding element 114 is disposed on the support structure 116. The support structure 116 is an optional structure for supporting and fixing the sounding element 114. The electromagnetic wave signal input device 112 is provided corresponding to the sound emitting element 114 and spaced apart to provide an electromagnetic wave signal 120. The modulating device 118 is disposed between the electromagnetic wave signal input device 112 and the sound emitting element 114 for modulating the intensity or frequency of the electromagnetic wave No. 4 120. The electromagnetic wave signal 12 发出 emitted from the electromagnetic wave signal input device 112 passes the modulation. The device 118 is modulated in intensity and frequency and transmitted to the surface of the sounding element U4. The sounding element 114 includes a layer of carbon nanotubes. The carbon nanotube layer has a large specific surface area and includes a uniformly distributed carbon nanotube. The carbon nanotube layer comprises at least a layer of carbon nanotube film. The carbon nanotube film comprises a plurality of preferred orientations of carbon nanotubes. The carbon nanotube film is obtained by direct drawing from a carbon nanotube array and has a self-supporting structure. Further, the carbon nanotube film comprises a plurality of carbon nanotube bundles, the bundles of carbon nanotubes being connected end to end by a van der Waals force, each nano carbon camp bundle having substantially equal lengths and each nanometer The carbon tube bundle is composed of a plurality of mutually parallel carbon nanotubes. The nano ♦ tube can be one-walled Nylon, double-walled carbon nanotubes and multi-walled carbon nanotubes, one or more single-walled carbon nanotubes having a diameter of 0.5 nm to 5 〇 nanometers. The double-walled carbon nanotube has a diameter of 1.0 nm, and the multi-walled Nylon carbon = 097124108 Form No. 101 0101 Page 7 / Total 27 pages 1003423463-0 1356396 _ 100 November 16 · Shuttle is being replaced ★ diameter is 1.5 nm ~ 50 nm. The thickness of the carbon nanotube film is from 0.5 nm to 100 μm. The length and width of the carbon nanotube film are not limited and can be prepared according to actual needs. [0014] Further, the carbon nanotube layer may include at least two layers of carbon nanotube films arranged in an overlapping manner, and the adjacent carbon nanotube films are tightly bonded by van der Waals force. The carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation. The number of layers of the carbon nanotube film in the carbon nanotube layer is not limited, and the carbon nanotubes in the adjacent two layers of carbon nanotube film have a crossing angle a, 0°SaS90°, specifically Prepared according to actual needs. When the angle between the carbon nanotubes in the adjacent two layers of carbon nanotube film is greater than 0. At the time, a plurality of carbon nanotubes in the structure of the carbon nanotube film form a network structure, and the network structure includes a plurality of uniformly distributed micropores having a pore diameter of less than 5 μm. [0015] It can be understood that the thickness of the carbon nanotube layer cannot be too thick, and if it is too thick, it affects the heat exchange between the carbon nanotube and the surrounding gaseous medium, thereby affecting the sounding effect of the sound emitting element 114. In addition, the thickness of the carbon nanotube layer should not be too thin, and if it is too thin, the carbon nanotube layer is inferior in strength and is easily damaged during the sounding process. When the thickness of the carbon nanotube layer is relatively small, for example, less than 10 μm, the carbon nanotube layer has a high transparency, so that the sound generating element 114 using the carbon nanotube layer is the transparent sounding element 114. In this case, the sound emitting element 114 can be directly disposed on the upper surface of various display devices, mobile phone display screens or oil paintings, thereby achieving the purpose of saving space. 5纳米〜1毫米。 The thickness of the carbon nanotube layer is 0. 5 nanometers ~ 1 mm. In the embodiment of the technical solution, the carbon nanotube layer has a length of 3 cm, a width of 3 cm, and a thickness of 50 nm. 097124108 Form No. Α0101 Page 8/Total 27 Page 1003423463-0 1.356396 100 years. 11. The 16th day of the shuttle is replacing the page [0016] Because the carbon nanotube has a very large specific surface area, under the action of Van der Valli The carbon nanotube film in the carbon nanotube layer itself has good adhesion, so when the carbon nanotube layer is used as the sounding element 114, the carbon nanotube layer can be directly adhered to the surface of the support structure 116. . Further, the supporting structure 116 and the sound emitting element 114 may also be bonded to each other by a bonding agent, so that the sounding element 114 is better fixed on the supporting structure 116. The binder may be a high temperature resistant silicone. [0017] The support structure 116 mainly serves as a support, and its shape is not limited. Any object having a certain shape, such as a wall or a table top, can be used as the support structure 116 in the first embodiment of the present technical solution. Specifically, the support structure 116 can be a planar or curved structure and has a surface. At this time, the sounding element 114 is directly disposed and attached to the surface of the support structure 116. Since the sound emitting element 114 is entirely supported by the support structure 116, the sound emitting element 114 can withstand the input of the electromagnetic wave signal 120 having a high intensity, thereby having a high sounding intensity. Alternatively, the support structure 116 may be a frame structure, a rod structure or an irregular shape structure. At this time, the sound emitting element 114 is partially in contact with the support structure 116, and the remaining portion is suspended. This arrangement provides for better heat exchange of the sound producing element 114 with air or surrounding medium. The sound emitting element 114 has a larger contact area with air or surrounding medium, and has a faster heat exchange rate, so that it has better sound generation efficiency. [0018] The material of the support structure 116 is not limited and may be a hard material such as diamond, wood material, glass or quartz. In addition, the support structure 116 can also be a flexible material, such as paper material, plastic or resin. Preferably, the material of the support structure 116 should have better thermal insulation properties, thereby preventing excessive heat generated by the sound emitting element 114. Absorbed by the support structure 116, no 097124108 Form No. A0101 Page 9 / Total 27 pages 1003423463-0 1356396 [0020] [0020] The method achieves the twisting of the air - the purpose of cutting the 纟 ~ has a rough surface Therefore, the sound emitting element ι14 disposed on the surface of the support structure 116 can have a larger contact area with air or other external medium. It will be appreciated that the support structure 116 is an optional structure since the carbon nanotube layer in the sounding element 114 is a self-supporting structure. The electromagnetic wave signal input device 112 includes an electromagnetic wave signal source that emits an electromagnetic wave of variable intensity or frequency to form an electromagnetic wave signal 120. The intensity or frequency of the electromagnetic wave signal 120 can be constantly changed, so that the carbon nanotube layer as the sounding element 114 can absorb the electromagnetic wave signal 120 to intermittently heat the air, so that the air continuously expands and contracts, thereby continuously emitting sound. The frequency range of the electromagnetic wave signal 120 includes radio waves, infrared rays, visible light, ultraviolet rays, microwaves, X rays, and r rays. Preferably, the electromagnetic wave signal source is an optical signal source, and the emitted electromagnetic wave signal 120 can be an optical signal. The wavelength of the optical signal includes various optical waves from ultraviolet to far infrared wavelengths. The average power density of the electromagnetic wave signal 120. In the range of 1 /zW / mra2 ~ 20W / mm2. It can be understood that the electromagnetic wave 4s is not too weak by the intensity of >120. Too weak can not make the carbon nanotube layer sufficiently heat the surrounding air to emit sound, and the intensity of the electromagnetic wave signal 12〇 cannot be too strong, too strong The carbon nanotube layer reacts with oxygen in the air to destroy the carbon nanotube layer. Preferably, the electromagnetic wave signal source is a -pulse laser generator. The incident angle and position of the electromagnetic wave signal 120 emitted from the electromagnetic wave signal input device 112 on the sound emitting element 114 are not limited. The distance between the electromagnetic wave signal input device 112 and the sound emitting element 114 is not limited, but it should be ensured from the form of 097124108. No. A0101 Page 10 of 27 1003423463-0 [3561] 1.356396 Revised replacement page of November 16, 100 The electromagnetic wave emitted from the electromagnetic wave signal input device 112 can be transmitted to the surface of the sound emitting element 114. Preferably, when the electromagnetic wave signal is an optical signal, and the electromagnetic wave signal input device 112 is far away from the sound emitting element 114, the electromagnetic wave signal input device 112 may further include an optical fiber, one end of the optical fiber and the optical signal source. The other end extends to the vicinity of the carbon nanotube film, so that the electromagnetic wave signal 120 emitted by the above-mentioned laser generator is transmitted to the surface of the sound emitting element 114 through the optical fiber. [0022] The modulating device 118 is an optional structure disposed on the transmission path of the electromagnetic wave signal 120, and includes an intensity modulator, a frequency modulator, or a combination of the two. The sounding device 10 modulates the intensity and frequency of the electromagnetic wave signal 120 by the modulating device 118, thereby realizing the change in the intensity and frequency of the sound emitted by the sound generating element 114. Specifically, the strength of the electromagnetic wave signal 120 can be modulated by switching the electromagnetic wave signal 120 at different frequencies, or the intensity of the electromagnetic wave signal 120 can be modulated by varying the intensity of the electromagnetic wave signal 120 at different frequencies. The change in the intensity of the electromagnetic wave signal 120 affects the change in the sounding frequency of the sounding element 114. By modulating the electromagnetic wave signal 120, the sound producing element 114 can be made to emit sound of different frequencies. It will be appreciated that the modulation device 118 can be integrated or spaced apart from the electromagnetic wave signal input device 112. When the electromagnetic wave signal input device 112 includes an optical fiber, the modulation device 118 can be disposed at the beginning or end of the optical fiber. In this embodiment, the modulating device 118 is an electro-optic crystal. [0023] The preparation method of the carbon nanotube film in the first embodiment of the present technical solution mainly includes the following steps: [0024] Step 1: providing a carbon nanotube array, preferably, the array is super-sequential nanocarbon Tube array. 097124108 Form No. A0101 Page 11 / Total 27 Page 1003423463-0 1356396 100 years. 11. Month's 16th Nuclear Replacement Mu [0025] The carbon nanotube array provided by the embodiment of the present technical solution is a single-walled carbon nanotube One or more of an array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or The germanium substrate formed with the oxide layer is selected, and the present embodiment preferably uses a 4-inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co) or nickel. (Ni) one of alloys of any combination thereof; (C) annealing the substrate on which the catalyst layer is formed at 700 to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate In the reaction furnace, it is heated to 500 to 740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to obtain a super-aligned carbon nanotube array having a height of 200 to 400 μm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of a plurality of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. By controlling the growth conditions as described above, the super-aligned carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array is substantially the same area as the above substrate. [0026] In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas. A preferred shielding gas is argon. [0027] It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method, laser evaporation 097124108 Form No. A0101 Page 12 / Total 27 pages 1003423463-0 1.356396 [0028] [0030] [0030] 100 years. November 16 revised replacement page Hair deposition method, etc. Step 2: A carbon nanotube film is obtained by drawing from a carbon nanotube array using a stretching tool. Specifically, the method comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array; in this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a certain width. a plurality of carbon nanotube segments; (b) stretching the plurality of carbon nanotube segments at a rate substantially perpendicular to the growth direction of the nanotube array to form a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube fragments are continuously pulled out end to end to form a carbon nanotube film. Referring to Figures 3 and 4, the carbon nanotube film 141 comprises a plurality of preferred orientations of carbon nanotubes 145. Further, the carbon nanotube film 141 comprises a plurality of end-to-end and aligned carbon nanotube bundles 143, each of the carbon nanotube bundles 143 having substantially the same length, and the carbon nanotube bundles 143 are flanked by van der Waals Valli is connected to each other. The carbon nanotube bundle 143 includes a plurality of carbon nanotubes 145 of equal length and arranged in parallel with each other. The preferentially oriented carbon nanotube film 141 obtained by direct stretching has better uniformity than the disordered carbon nanotube film. At the same time, the direct stretching method for obtaining the carbon nanotube film 141 is simple and rapid, and is suitable for industrial application. In this embodiment, the width of the carbon nanotube film 141 is related to the size of the substrate on which the carbon nanotube array is grown and the width of the selected carbon nanotube array, and the length of the carbon nanotube film 141 is not limited. Can be made according to actual needs. The thickness of the carbon nanotube film 141 is 0.5 nm to 100 μm. The Nai 097124108 Form No. A0101 Page 13 / Total 27 Page 1003423463-0 1356396 [Year of the Year, November 16th, 16th, the negative carbon tube 145 in the 41⁄4 meter carbon tube film (4) can be single-walled One or more of the carbon nanotube 145, the double-walled carbon nanotube 145, and the multi-walled nanotube 145. The single-walled carbon nanotube 145 has a diameter of m5G nanometer. The diameter of the double-walled carbon nanotube 145 is! . 〇 nano ~ 5 〇 nano. The multi-walled carbon nanotube 145 has a diameter of from 1.5 nm to 5 nm. [0031] It can be understood that 'the carbon nanotube 145 of the super-sequential carbon nanotube array t of the present embodiment is very pure' and since the specific surface area of the carbon nanotube 145 itself is very large, the carbon nanotube film 141 It has a strong viscosity. Therefore, when the carbon nanotube thin 141 is used as the sounding element 114, it can be directly adhered to the surface of the support structure Π6. Alternatively, the above-described carbon nanotube film 141 may be treated with an organic solvent. Specifically, an organic solvent may be dropped on the surface of the carbon nanotube film 141 by a test tube to wet the entire carbon nanotube film 141. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or gas, and ethanol is used in this embodiment. After the carbon nanotube film 141 is subjected to an organic solvent infiltration treatment, the carbon nanotube film 141 can be firmly attached to the surface of the support structure 116 under the action of the surface tension of the volatile organic solvent, and the surface volume ratio is reduced. 'The viscosity is reduced, with good mechanical strength and toughness. [0033] In the sounding device of the embodiment of the present invention, the carbon nanotube film 141 is used as the sounding element 'because the absorption of the electric wave by the carbon nanotube 145 is close to the absolute black body', so that the sounding device has uniformity for electromagnetic waves of various wavelengths. Absorption characteristics. The other 'carbon nanotube 145 has a smaller heat capacity and a larger heat dissipation area. Therefore, when the carbon nanotube 145 in the sound emitting element 114 is irradiated with electromagnetic waves such as laser light, the carbon nanotube 145 is excited by absorbing light energy and converts the absorbed light energy into all or part by non-radiation. heat. 097124108 Form No. A0101 Page 14 of 27 1003423463-0 1.356396 100 years. November 16 Revision Replacement Page The carbon tube 145 rises rapidly and exchanges heat with the surrounding air or other medium. If the irradiated electromagnetic wave is subjected to periodic intensity modulation, a periodic temperature change is generated in the carbon nanotube 145, so that the surrounding gaseous medium also undergoes periodic temperature changes, causing rapid expansion of the surrounding air or other medium. And shrink, which makes a sound. Further, in the embodiment, the sound emitting element 114 includes a carbon nanotube film 141 composed of a plurality of carbon nanotubes 145 connected end to end, so that the frequency of the electromagnetic wave signal 120 emitted by the electromagnetic wave signal input device 112 is appropriate, and When the medium around the sounding element 114 is air, the sound emitted by the sounding element 114 can be directly perceived by the human ear. It will be appreciated that the acoustic component 114 can emit ultrasonic waves as the frequency of the electromagnetic wave signal 120 increases. Referring to FIG. 5, a second embodiment of the present invention provides a sounding device 20, which includes an electromagnetic wave signal input device 212, a sounding element 214, a supporting structure 216, and a modulating device 218. [0035] The support structure 216 is a frame structure, a rod structure or an irregular shape structure. The sounding element 214 is partially in contact with the support structure 216, and the remaining portion is suspended so that sound can be transmitted through the sounding element 214. The electromagnetic wave signal input device 212 is provided corresponding to the sound emitting element 214 and spaced apart. The modulating device 218 is disposed between the electromagnetic wave signal input device 212 and the sound emitting element 214. [0036] The sounding device 20 is substantially similar in structure to the sounding device 10 in the first embodiment, and is different from the sounding device 1 in the first embodiment in that the sounding device 20 further includes a sound-sounding structure 222, which The sound structure 222 is spaced apart from the side of the sounding element 214 that is remote from the input of the electromagnetic wave signal 220. The sound-sounding structure 222 is spaced apart from the sound-emitting element 214 such that the 097124108 form number A0101 page 15/27 pages 1003423463-0 1356396 100 years.11.month '16曰 is replaced by the sound wave emitted by the positive-sounding element 214 The sound structure 222 reflects and enhances the sounding effect of the sounding device 20. Depending on the size of the sounding element 214, the distance may be from 1 cm to 1 meter. It will be appreciated that the muffling structure 222 can be a variety of structures having a large surface, such as a planar structure or a curved structure. In this embodiment, the sound structure 222 is a flat plate. The tuning structure 222 can be spaced from the sounding element 214 by a bracket. In addition, the sound structure 222 and the support structure 216 can also be an integrated whole body, such as a cavity having a narrow opening, the sounding element 214 is laid on the opening of the cavity to form a Helmholtz Resonant cavity The material of the sound structure 222 is wood, plastic, metal or glass. [0037] In the embodiment of the technical solution, the sounding element emits sound in a frequency range of 1 Hz to 100,000 Hz. When the carbon nanotube layer in the sounding element is a single-layer carbon nanotube film, the sound intensity can reach 70 dB sound pressure level (dBSPL). When the number of layers of the carbon nanotube film in the carbon nanotube layer is increased, the vocal intensity of the sound emitting element can be further enhanced. In addition, the carbon nanotube layer of the tenth embodiment of the technical solution has better toughness and mechanical strength, and the sound generating device of various shapes and sizes can be conveniently fabricated by using the carbon nanotube layer, and the sound generating device can be conveniently Used in a variety of music equipment, such as audio, mobile phones, MP3, MP4, television, computers and other electronic fields and other sounding devices. In addition, since electromagnetic waves, especially lasers, can be transmitted over long distances in a vacuum, the sounding device can be used in the field of long-distance signal transmission, such as transmitting sound signals over long distances in the form of electromagnetic waves. Further, since the sound emitting element can emit sound by electromagnetic wave irradiation, when the electromagnetic wave is infrared light, visible light, ultraviolet light, microwave, X-ray, and T-ray, the sound generating element can be in a no-electric, non-magnetic 097124108 form number A0101. Page 16 of 27 pages 1003423463-0 1.356396 works in extreme environments. The replacement of the page provided by the embodiment of the present invention has the following advantages: - due to the sounding in the sounding device: composition, no other complicated structure such as a magnet is required. Therefore, the second configuration is relatively simple, which is conducive to reducing the cost of the county. I: The sound produced by the carbon nanotubes (4) can be (4): In: The electromagnetic signal is sounded, so the hairpin _ ° ^ # 凡 凡 can be in an unpowered environment 1 2, the sounding device uses the input signal to cause _ carbon tube film temperature change 'from the surrounding gas medium rapid expansion and contraction, and then sound waves, so the carbon nanotubes The sounding device composed of a film can operate under non-magnetic conditions. Fourth, since the nano-snap film has a small heat capacity and a large (four) surface area '(four) nanocarbon film) has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange rate, the carbon nanotube film composition The sounding device can emit sound in a wide spectral range (lHz-lOOkHz) and has a good sounding effect. Fifth, since the carbon nanotubes are connected end to end by van der Waals force, the nanometer carbon nanotubes are composed of nano carbon tubes. The carbon tube film has good mechanical strength and diligence, and the carbon nanotubes connected end to end have better heat conduction in the direction of arrangement, and can fully utilize the characteristics of the carbon nanotubes, thereby making the sounding elements more Good sound effect. Sixth, because the carbon nanotube has a very large specific surface area, the carbon nanotube film itself has good adhesion under the action of van der Waals force, so the carbon nanotube film can be conveniently Directly adhered to the surface of the selective structure. Seventh, since the carbon nanotube film is directly drawn from the carbon nanotube array, the width and length are not limited, so that a large area of sound can be easily prepared. element. Eight' when the thickness of the sounding element is relatively small 097124108 Form No. A0101 No. 17 Buy / Total 27 pages 1003423463-0 1356396 __ 100 years. November · 16 曰 Shuttle is replacing k, for example less than 10 microns, the sounding element has a higher Transparency, at this time, the sounding component can be directly disposed on the display surface of various display devices, mobile phone display screens or the upper surface of the oil painting, thereby achieving the purpose of saving space. The sounding device can further include a support structure and a sound-sounding structure, the support structure can improve the sounding intensity of the sounding device, and the sound-sounding structure can reflect the sound wave emitted by the sounding element, and enhance the sounding effect of the sounding device. [0040] In summary, the present invention has indeed met the invention. Patent requirements, patent applications are filed according to law. However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of patent application in this case. Anyone skilled in the art will be in accordance with the spirit of the present invention. Equivalent modifications or changes made shall be covered by the following patents. [Simplified illustration] [0041] Figure 1 2 is a schematic structural diagram of a sound emitting device according to a first embodiment of the present technology. [0043] FIG. 3 is a structure of a carbon nanotube film in a sound generating device according to a first embodiment of the present technical solution. [0044] FIG. 4 is a scanning electron micrograph of a carbon nanotube film in the sounding device of the first embodiment of the present invention. [0045] FIG. 5 is a schematic structural view of a sounding device according to a second embodiment of the present technical solution. Explanation of symbols] [0046] Speaker: 100 [0047] Voice coil: 102 097124108 Form number A0101 Page 18 of 27 1003423463-0 1.356396 100 years. November 16th nuclear replacement page [0048] Magnet: 1 0 4 [0049] Diaphragm: 106 [0050] Sounding device: 10, 20 [0051] Electromagnetic wave signal input device: 112, 212 [0052] Sounding element: 114, 214 [0053] Support structure: 116, 216 [0054] Modulation Apparatus: 118, 218 [0055] Nano carbon tube film: 141 [0056] Nano carbon tube bundle: 143. [0057] Nano carbon tube: 145 [0058] Electromagnetic wave signal: 120, 220 [0059] Sound structure: 222 097124108 Form Number A0101 Page 19 of 27 1003423463-0