TWI233187B - MOS device and fabrication method thereof - Google Patents
MOS device and fabrication method thereof Download PDFInfo
- Publication number
- TWI233187B TWI233187B TW93108635A TW93108635A TWI233187B TW I233187 B TWI233187 B TW I233187B TW 93108635 A TW93108635 A TW 93108635A TW 93108635 A TW93108635 A TW 93108635A TW I233187 B TWI233187 B TW I233187B
- Authority
- TW
- Taiwan
- Prior art keywords
- stress
- layer
- scope
- metal
- item
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 111
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 70
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 45
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 42
- 239000004065 semiconductor Substances 0.000 claims description 37
- 230000008569 process Effects 0.000 claims description 36
- 125000006850 spacer group Chemical group 0.000 claims description 27
- 238000002955 isolation Methods 0.000 claims description 25
- 229910044991 metal oxide Inorganic materials 0.000 claims description 24
- 150000004706 metal oxides Chemical class 0.000 claims description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 229910021332 silicide Inorganic materials 0.000 claims description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 18
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 13
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 12
- 238000005468 ion implantation Methods 0.000 claims description 10
- 150000004767 nitrides Chemical class 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 10
- -1 argon ion Chemical class 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 9
- 229910052732 germanium Inorganic materials 0.000 claims description 9
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 9
- 239000004575 stone Substances 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 7
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000002019 doping agent Substances 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 claims 5
- 230000008021 deposition Effects 0.000 claims 2
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 claims 2
- 241000700159 Rattus Species 0.000 claims 1
- 210000000481 breast Anatomy 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000005121 nitriding Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 235
- 150000002500 ions Chemical class 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910008310 Si—Ge Inorganic materials 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229910003818 SiH2Cl2 Inorganic materials 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 108091006149 Electron carriers Proteins 0.000 description 1
- 240000002989 Euphorbia neriifolia Species 0.000 description 1
- POFVJRKJJBFPII-UHFFFAOYSA-N N-cyclopentyl-5-[2-[[5-[(4-ethylpiperazin-1-yl)methyl]pyridin-2-yl]amino]-5-fluoropyrimidin-4-yl]-4-methyl-1,3-thiazol-2-amine Chemical compound C1(CCCC1)NC=1SC(=C(N=1)C)C1=NC(=NC=C1F)NC1=NC=C(C=C1)CN1CCN(CC1)CC POFVJRKJJBFPII-UHFFFAOYSA-N 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
12331871233187
發明所屬之技術領域 本發明係有關於一種金氧半導體(metal 〇xide semiconductor ;簡稱為MOS)元件及其製造方法,特別b 有關於一種利用局部機械應力控制(1 〇 c a 1 疋 mechanica 卜 stress contr〇i,簡稱]^^)來增加 M⑽元 的效能之方法及其結構。 + 先前技術 在目前的半導體元件中,係使用矽整體(s i bu 1 ^ 做為基底,並藉由縮小元件尺寸來達到高速操作和低 量的目的。然而,目前元件尺寸的縮小已接近物理的== 和成本的極限。因此,需要發展其他不同於縮小尺寸的^ 法之技術,來達到高速操作和低耗電量的目的。 、 因此,有人提出在電晶體的通道區利用應力控制的方 式,來克服元件縮小化的極限。此方法為藉由使用應力改 變矽晶格間距,來增加電子和電洞的遷移率。 常見的方法為使用置於Si-Ge層(處於拉伸應力)上 拉伸張力的矽層(tensile-strained Si layer)做為 NMOS電晶體的通道層,以及使用壓縮張力的石夕鍺層 u⑽pressive-strained Si_Ge layer)(處於^縮應力 )做為PM0S電晶體的通道層。藉由使用拉伸張力的矽層和 壓縮張力的Si-Ge層做為M0S電晶體的通道層,會增加^面 電子和電洞的遷移率,❿同時達到高速操作及二量耗損FIELD OF THE INVENTION The present invention relates to a metal oxide semiconductor (MOS) element and a method for manufacturing the same, and particularly relates to a method using local mechanical stress control (1 0ca 1 疋 mechanica and stress contr). 〇i, abbreviation] ^^) to increase the efficiency of the M⑽ element and its structure. + Prior technology In the current semiconductor devices, the entire silicon device (si bu 1 ^) is used as the substrate, and the purpose of high-speed operation and low volume is achieved by reducing the size of the device. However, the current reduction in device size is close to the physical == and the limit of cost. Therefore, it is necessary to develop other techniques different from the size reduction method to achieve high-speed operation and low power consumption. Therefore, some people have proposed the use of stress control in the channel area of the transistor To overcome the limit of device shrinkage. This method is to increase the mobility of electrons and holes by changing the lattice spacing of silicon by using stress. A common method is to use the Si-Ge layer (under tensile stress). Tensile-strained Si layer is used as the channel layer of the NMOS transistor, and compressive-tension germanium layer (⑽⑽compressive-strained Si_Ge layer) is used as the channel of the PM0S transistor. Floor. By using a tensile tension silicon layer and a compressive tension Si-Ge layer as the channel layer of the M0S transistor, it will increase the mobility of electrons and holes, and achieve high-speed operation and dual loss at the same time.
1233187 五、發明說明(2) -------—~-1233187 V. Description of the invention (2) --------- ~-
Sl/?nV、、此/、術存在一些問題,當同時形成拉伸張力的 S層(η通迢層)和壓縮張力的Si-Ge層(P通道層)做為 互補 至氧半導體(c〇mplementary metai 〇xide semiconductor ; CM0S)元件的通道層時,製程會變得很複 雜,而且要選擇性形成NM0S通道層和PM0S通道層是相當困 莫隹勺 而且 ¥藉由局溫熱處理形成Si-Ge層時,會發生 差排(dislocation)或發生Ge 的分離(segregation), 而使閘極崩潰電壓的特性惡化。There are some problems with Sl /? NV, and this method, when the S layer (η through layer) and the Si-Ge layer (P channel layer) with compressive tension are formed at the same time as complementary to the oxygen semiconductor (c 〇mplementary metai 〇xide semiconductor; CM0S) device when the channel layer, the process will become very complicated, and it is very difficult to selectively form the NM0S channel layer and PM0S channel layer and ¥ Si formed by local temperature heat treatment In the -Ge layer, dislocation or segregation of Ge occurs, and the characteristics of the gate breakdown voltage are deteriorated.
另外’近來有研究利用做為接觸窗蝕刻停止層的氮化 矽層產生應力,來影響電晶體趨動電流,此技術稱為局部 ,,應力控制。藉由增加外加的壓縮應力,可以改善PM0S 電曰日體的遷移率;藉由減少外加的壓縮應力,可以改善 NM0S電晶體的遷移率。 、雖然上述利用氮化矽層產生應力來提高電晶體效能的 方法較使用S 1 -Ge緩衝層的方法簡單,但其能改善的效果 有限。 發明内容 有鑑於此,本發明提供一種可以利用局部機械應力控 制的技術,來進一步提高電晶體的效能之結構及方法。 ^因此’本發明提供一種M0S元件,其結構包括將閘極 電極X»又於基底上’將源極/汲極設於閘極電極兩側之基底 中’將應力緩衝襯層順應性地配置於閘極電極兩側且部份 延伸至基底表面’並將應力層設於閘極電極、應力緩衝襯In addition, recently, there have been studies that use a silicon nitride layer as a contact stop etching layer to generate stress to affect the transistor actuation current. This technique is called localized, stress control. By increasing the applied compressive stress, the mobility of the PM0S transistor can be improved; by reducing the applied compressive stress, the mobility of the NM0S transistor can be improved. 2. Although the method of using the silicon nitride layer to generate stress to improve the performance of the transistor is simpler than the method using the S 1 -Ge buffer layer, the improvement effect is limited. SUMMARY OF THE INVENTION In view of this, the present invention provides a structure and method which can further improve the efficiency of a transistor by using a technique of local mechanical stress control. ^ Therefore, the present invention provides a MOS device having a structure including a gate electrode X »on a substrate, and a source / drain in the substrate on both sides of the gate electrode. The stress buffer liner is compliantly arranged. On both sides of the gate electrode and part of it extends to the surface of the substrate ', and a stress layer is provided on the gate electrode, the stress buffer lining
1233187 五、發明說明(3) 層和源極/汲極上 極電極下方基底中 其中,若上述 方之閘極電極和源 NMOS電晶體。若上 下方之閘極電極和 體。 此外,本發明 將閘極電極設於設 槽隔離元件中包括 電極兩側之基底中 順應性地配置於閘 將第二應力層設於 上,且與應力緩衝 應力層以提南閑極 其中,若上述 拉伸應力時,覆蓋 汲極構成之電晶體 二應力層具壓縮應 覆蓋於第二應力層 晶體為PMOS電晶體 本發明並提供 所述。首先於基底 兩側之基底中之主 曰曰 亦提供了 置有至少 一第一應 並接觸上 極電極兩 閘極電極 襯層接觸 電極下方 第二應力 於第二應 為PMOS電 力而第一 下方之閘 ’且與應力緩衝襯層接觸,藉以提高閘 之通道區的應力。 之應力層具拉伸應力,覆蓋於應力層下 極/汲極構成之電晶體為PM〇s電晶體和 述之應力層具壓縮應力,覆蓋於應力層 源極/沒極構成之電晶體為pM〇s電 另一種MOS元件,其結構包括 一隔離元件之基底上,此淺溝 力層’將源極/汲極設於閘極 述隔離元件,將應力緩衝襯層 側且部份延伸至基底表面,並 應力緩衝概層和源極/沒極 ’藉由上述第一應力層與第二 基底中之通道區的應力。 層具拉伸應力而第一應力層具 力層下方之閘極電極和源極/ 晶體和NMOS電晶體。若上述第 應力層具壓縮或拉伸應歷時, 極電極和源極/汲極構成之電 一種MOS元件的製造方法,其方法如下 的主動區形成閘極電極,並於問極電極 動區形成一淡摻雜區。接著,順應性地1233187 V. Description of the invention (3) Layer and substrate under source / drain electrodes Among them, if the above-mentioned gate electrode and source NMOS transistor are used. If the upper and lower gate electrodes and body. In addition, in the present invention, the gate electrode is disposed in the substrate including the two sides of the electrode in the grooved isolation element, and the second stress layer is compliantly disposed on the gate, and the stress buffer layer is provided to the south pole. If the tensile stress mentioned above is covered, the second stress layer of the transistor formed by covering the drain electrode should be covered by the second stress layer. The crystal is a PMOS transistor. Firstly, the master in the substrate on both sides of the substrate also provided at least one first contact and contacted the upper electrode and two gate electrode liners. The second stress under the contact electrode should be PMOS power and the first The square gate 'is in contact with the stress buffer lining to increase the stress in the channel region of the gate. The stress layer has tensile stress. The transistor covered by the bottom / drain of the stress layer is a PM0s transistor and the stress layer described above has compressive stress. The transistor covered by the source / non-polar layer of the stress layer is pM〇s electric another MOS device, its structure includes an isolation element on the substrate, this shallow trench force layer 'positions the source / drain electrode on the gate isolation element, and extends the stress buffer liner side and partially to The substrate surface, the stress buffer layer, and the source / non-electrode layer are caused by the stress in the channel region in the first stress layer and the second substrate. The layer has tensile stress and the gate electrode and source / crystal and NMOS transistor under the first stress layer have a stress layer. If the above-mentioned first stress layer has a compression or stretching time, a method of manufacturing an MOS device composed of an electrode and a source / drain is as follows. The method is as follows. A lightly doped region. Then, compliantly
五、發明說明(4) Z成應力緩衝襯層於閉極電極兩側且部份 面,以及於閉極電極兩側應力緩衝層 :2底表 者於閘極電極兩側未被閘極電::J ::接 係構成一源極/汲極區。待、/ H狄摻雜區和濃摻雜區 蓋-應力層,且與應力緩;層;源;/汲極上覆 下方基底中之-通道區的=層接觸’错以提高間極電極 :者,本發明並提供了另一麵s 中上述主動底的主動區形成開極電極,1 I上述主動&係由形成於基底内}其 出,而此隔離元件中含有一第一=,離几件所定義 兩側之基底中之主動區形成一 G 口二,者於開極電極 部份延伸至基底表Φ= f於閉極電極兩側且 隙壁4著於閉極電極兩側未被閉=:軒層上 二:,之基底中之主動區形成一濃換雜區, 二間隙 :二區和濃摻雜區係構成一源極/汲極區。待、中迷之淡 ,接著移除間隙壁,並於閘極電 7成源極/汲 和源極/汲極上覆蓋一第二應力:力^友衝襯層 觸,藉由上述第一應力層以及第二力^衝概層接 下方基底中之一通道區的應力。 β 阿閘極電極 於上述製程中,在移除間隙壁之前, 動對準#物製程,以於源極β極的表面^ 1233187V. Description of the invention (4) Z forms a stress buffer layer on both sides and part of the closed electrode, and a stress buffer layer on both sides of the closed electrode: 2 The bottom surface is not gated on both sides of the gate electrode. ::: J: connection forms a source / drain region. The // H doped region and the heavily doped region cover the -stress layer and are in contact with the stress relaxation layer; the source; the / drain electrode overlies the -channel region = layer contact 'error in the underlying substrate to improve the interelectrode: The present invention also provides an open electrode formed by the active region of the active bottom in the other side s. The above active & is formed in the substrate}, and the isolation element contains a first =, A few G ports are formed from the active areas on the two sides of the substrate defined by the two, which extend from the open electrode portion to the base surface Φ = f on both sides of the closed electrode and the gap 4 on both sides of the closed electrode Unclosed =: Xuan layer on the second layer: The active region in the substrate forms a heavily doped region. The second gap: the second region and the heavily doped region form a source / drain region. After waiting for a while, the gap is removed, and the gate electrode 70% of the source / drain and source / drain is covered with a second stress: force ^ contact with the liner, with the above first stress The layer and the second force layer approximate the stress in a channel region in the underlying substrate. β a gate electrode In the above process, before removing the spacer, move the #object process to the surface of the source β electrode ^ 1233187
化物。 乃夕卜 制 移除該間隙壁之後,進行一自動4 化物製程,以於源極/汲極的俛退叮 期。 μ、十、々痛士 r…欠位的表面形成一金屬矽化物。 氧化矽。 9勺厗度係小於50 0埃,材質可為 上述之應力層的材皙, rsi〇N ^ ^ „ 柯貝了為虱化矽(SiN )、氮氧化矽Compound. After the removal of the spacer, an automatic four-chemical process is performed to reduce the source / drain decay period. μ, X, 々 pain men r ... a metal silicide formed on the surface. Silicon oxide. 9 scoops are less than 50 angstroms, and the material can be the material of the above-mentioned stress layer. Rsi〇N ^ ^ ¡Keibei is SiN, silicon oxynitride
.* "上士N )和氮氧化矽(Si〇N )之疊 "^ ^ 、制/包括電漿增強型化學氣相沈積法(PECVD. * " Sergeant N) and silicon oxynitride (Si〇N) " ^ ^, manufacturing / including plasma enhanced chemical vapor deposition (PECVD
丄二,速…,程化學氣相沈積法(rtcvd )、原子層級化 了乱目沈積法(ALCVD )、或低壓化學氣相沈積法(LpcvD 在上述之M0S元件的製造方法中,更包括以下步驟: =應力層或第二應力層上形成一内層介電層;以應力層或 第一應力層為蝕刻停止層,於内層介電層中蝕刻出一接觸 窗開口;以及移除接觸窗開口中之應力層或第二應力層。 為讓本發明之上述目的、特徵及優點能更明顯易懂, 下文特舉一較佳實施例,並配合所附圖式,作詳細說明如 下: 實施方式 根據研究結果顯示,對p通道型電晶體而言,當增加 通道區的壓縮應力或拉伸應力時,會通加電洞載子的遷移 率。對N通道型電晶體而言,當降低通道區的壓縮應力 時,亦即增加通道區的拉伸應力時’會通加電子載子的遷 ΪΒϋΠβΗΓ - - ---------------- _ 0503-8980ClPTWF(Nl) ; TSMC2002-0937 ; Shawn.ptd 第 l〇 負 1233187 五、發明說明(6) 修一" 私率 為了增加載子於通道區的遷移率,因此本發明提供 一種可以有效增加通道區的應力之M〇S元件的結構及其製 造方法。 〃衣 結構 本發明提供一種金氧半導體(簡稱為MOS )元件的結 構’如第1 D圖所示。在此結構,閘極電極丨〇 4係設於基底 1 〇 〇上’且源極/沒極S / D係設於閘極電極1 〇 4兩側之基底 1 0 0中。其中,閘極電極1 〇 4之材質可為多晶矽、金屬、石夕 鍺、或含鍺之多晶矽。 另外’在閘極電極1 〇 4和基底1 〇 0係設置一閘極介電層 I 0 2 ’其材質可為氧化矽。 曰 應力緩衝襯層1 1 〇係順應性地配置於閘極電極丨〇4兩側 且部份延伸至基底丨〇〇表面。應力緩衝襯層丨丨〇的厚度控制 在5 0 0埃以下,其材質可為氧化石夕。 接著,將應力層118設於閘極電極丨04、應力緩衝襯層 110和源極/汲極S/D上,且與閘極電極1〇4和應力緩衝襯層 II 〇接觸,藉以提高閘極電極1 〇 4下方基底1 〇 〇中之通道區 1 j ^的應力。其中,應力層丨丨8的材質為氮化矽(s丨n )、 氮氧化石夕(SiON)、或氮化石夕(^ν)和氮氧化石夕(y〇N )之豎層。 若此應力層118具拉伸應力,覆蓋於應力層118下方之 閘極電極1 04和源極/汲極S/D構成之電晶體則為pM〇s電晶 體和NM0S電晶體。 右此應力層118具壓縮應力,覆蓋於應力層118下方之Twenty-two, high-speed ..., process chemical vapor deposition (rtcvd), atomic layered disordered deposition method (ALCVD), or low-pressure chemical vapor deposition (LpcvD) In the above-mentioned manufacturing method of the MOS device, it further includes Steps: = forming an inner dielectric layer on the stress layer or the second stress layer; using the stress layer or the first stress layer as an etch stop layer, etching a contact window opening in the inner layer dielectric layer; and removing the contact window opening A stress layer or a second stress layer. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below and described in detail with the accompanying drawings as follows: Embodiment According to the research results, for p-channel transistors, when the compressive stress or tensile stress in the channel region is increased, the hole carrier mobility is added. For N-channel transistors, when the channel is reduced The compressive stress in the region, that is, when the tensile stress in the channel region is increased, the migration of the electron carrier will be passed through ΪΒϋΠβΗΓ------------------ _ 0503-8980ClPTWF (Nl ); TSMC2002-0937; Shawn.ptd 10th minus 123318 7 V. Description of the invention (6) Xiuyi " The privacy rate increases the mobility of carriers in the channel region, so the present invention provides a structure of a MOS device and a manufacturing method thereof which can effectively increase the stress in the channel region. Structure The present invention provides a structure of a metal-oxide-semiconductor (MOS for short) device as shown in FIG. 1D. In this structure, the gate electrode is placed on the substrate 100 and the source / non-electrode is provided. S / D is provided in the substrate 100 on both sides of the gate electrode 104. The material of the gate electrode 104 may be polycrystalline silicon, metal, germanium, or polycrystalline silicon containing germanium. The gate electrode 1 〇 04 and the substrate 100 are provided with a gate dielectric layer I 0 2 ′, whose material may be silicon oxide. The stress buffer liner 1 1 〇 is compliantly arranged on the gate electrode 丨 〇 4 Both sides and part of the substrate extend to the surface of the substrate. The thickness of the stress buffering layer is controlled to less than 500 angstroms, and the material can be oxidized stone. Next, the stress layer 118 is provided on the gate electrode. 04. On the stress buffer liner 110 and the source / drain S / D, and the gate electrode 104 The stress buffer liner II is in contact, thereby increasing the stress in the channel region 1 j ^ in the substrate 100 under the gate electrode 104. Among them, the material of the stress layer 丨 8 is silicon nitride (s 丨 n), Vertical layer of oxynitride (SiON), or nitride oxynitride (^ ν) and oxynitride (y〇N). If this stress layer 118 has tensile stress, it covers the gate electrode below the stress layer 118 The transistor composed of 1 04 and source / drain S / D is a pM0s transistor and an NMOS transistor. The stress layer 118 on the right has a compressive stress and covers the layer below the stress layer 118.
1233187 -發明說明(7) $極電極104和源極/汲極S/D構成之電晶體則為pM〇s電晶 體。 另外’在應力層1 18和源極/汲極S/D之間,設置一金 -石夕化物層1 1 6 ’藉以降低源極/汲極S/D的片電阻,其亦 表現出適當之壓縮應力,可提升…⑽電晶體效能。通常, 在應力層11 8和閘極電極丨〇 4之間,亦會設置相同材質之金 屬矽化物層11 6。· ^外’亦可採用離子佈植程序(未繪示)以植入如氬 (Ar)離子或氧(〇)離子於應力層丨18中,其操作時機為應力 層1 1 8形成之後’且於完成離子佈植後接著施行一介於3 5 〇 c〜7〇〇 c之回火程序,以增加應力層丨18之壓縮應力,藉 此而適度調整通道區114中之整體應力。 再者’本發明亦提供了另一種M〇s元件的結構,如第 2F圖所不。在此結構,閘極電極2丨〇係設置於由兩淺溝槽 隔離元件STI,所定義出之主動區AA内基底2〇()上,且源極/ 汲極S/D係設於閘極電極21〇兩側之基底2〇〇中並貼附於鄰 近,淺溝槽隔離元件STI’ 。其中,於淺溝槽隔離元件STI, 内設置有順應性之第一應力層2 〇 5 a。 另外,閘極電極2 1 0之材質可為多晶矽、金屬、矽 鍺、或含鍺之多晶矽,而在閘極電極2丨〇和基底2 〇 〇係設置 一閘極介電層208,其材質可為氧化石夕。 應力緩衝襯層2 1 4係順應性地配置於閘極電極2 1 〇兩側 且。卩伤延伸至基底2 〇 〇表面。應力緩衝襯層2 1 4的厚度控制 在5 0 0埃以下,其材質可為氧化石夕。1233187-Description of the invention (7) The transistor composed of the $ electrode 104 and the source / drain S / D is a pM0s transistor. In addition, 'a gold-lithium oxide layer 1 1 6 is provided between the stress layer 118 and the source / drain S / D, so as to reduce the sheet resistance of the source / drain S / D, which also shows appropriate The compressive stress can improve ... the performance of the transistor. Generally, a metal silicide layer 116 is formed between the stress layer 118 and the gate electrode 104. · ^ Externally, an ion implantation procedure (not shown) can also be used to implant, for example, argon (Ar) ions or oxygen (〇) ions into the stress layer 18, the operation timing is after the formation of the stress layer 1 18 ' After the ion implantation is completed, a tempering procedure between 3500c and 700c is performed to increase the compressive stress of the stress layer 18, thereby appropriately adjusting the overall stress in the channel region 114. Furthermore, the present invention also provides another Mos element structure, as shown in FIG. 2F. In this structure, the gate electrode 20 is provided on the substrate 20 () in the active area AA defined by two shallow trench isolation elements STI, and the source / drain S / D is provided on the gate. The substrate 200 on both sides of the electrode 21 is attached to the adjacent, shallow trench isolation element STI ′. In the shallow trench isolation element STI, a compliant first stress layer 205a is disposed. In addition, the material of the gate electrode 210 can be polycrystalline silicon, metal, silicon germanium, or polycrystalline silicon containing germanium, and a gate dielectric layer 208 is provided between the gate electrode 2 and the substrate 200, and the material Can be oxidized stone eve. The stress buffer layer 2 1 4 is compliantly arranged on both sides of the gate electrode 2 1 0. The sting extends to the surface of the base 2000. The thickness of the stress buffer lining layer 2 1 4 is controlled below 500 angstroms, and its material can be oxidized stone.
1233187 五、發明說明(8) 接著,將第二應力層224設於閘極電極21〇、應力緩衝 槪層214和源極/汲極s/D上,且與閘極電極21〇和應力緩衝 襯層2 1 4接觸,藉由設置於淺溝槽隔離元件ST I,内之第一 應力層204a以及設置於閘極電極表面之第二應力層224的 景> 響以提咼閘極電極210下方基底2〇〇中通道區220應力。 /、中 弟應力層2〇5a以及弟二應力層224的材質可為氮 ,石夕(SiN)、氮氧化矽(Si0N)、或氮化矽(SiN)和氮 氧化碎(SiON)之疊層。 若此第二應力層224具拉伸應力而第一應力層2〇5a具 拉伸應力時,覆蓋於第二應力層2 2 4下方之閘極電極2 1 〇和 源極//及極S / D構成之電晶體則為ρ μ 〇 s電晶體或晶體。 若此第二應力層224具壓縮應力而第一應力層2〇5&具 拉伸或壓縮應力時,覆蓋於第二應力層224下方之閘極電 極210和源極/汲極S/D構成之電晶體則為pM〇s電晶體。 另外在弟一應力層2 2 4和源極/沒極s / D之間,設置 金屬石夕化物層222,藉以降低源極/汲極S/I)的片電阻, 其$可表現出適當之壓縮應力而提升pM〇s電晶體之效能。 通吊,在第二應力層224和閘極電極2 1 〇之間,亦會設置相 同材質之金屬矽化物層2 2 2。 ,外’亦可採用離子佈植程序(未繪示)以植入如氬 二〇離子或氧(〇)離子於第一應力層2〇5a及第二應力層224 中/其操作時機為此些應力層形成之後,且於完成離子佈 ^後接著施行一介於35(rc〜7〇〇t之回火程序,以增加此 二應力層之壓縮應力,藉此而適度調整通道區220中之整1233187 V. Description of the invention (8) Next, a second stress layer 224 is provided on the gate electrode 21, the stress buffer layer 214, and the source / drain s / D, and is connected to the gate electrode 21 and the stress buffer. The liner 2 1 4 contacts, and the scene of the first stress layer 204a provided in the shallow trench isolation element ST I and the second stress layer 224 provided on the surface of the gate electrode enhances the gate electrode. The stress in the channel region 220 in the substrate 200 below the 210 is. /, The material of the middle stress layer 205a and the second stress layer 224 can be nitrogen, Shi Xi (SiN), silicon oxynitride (Si0N), or a stack of silicon nitride (SiN) and oxynitride (SiON) Floor. If the second stress layer 224 has tensile stress and the first stress layer 205a has tensile stress, the gate electrode 2 1 0 and source // and electrode S covering the second stress layer 2 2 4 The transistor composed of / D is a ρ μ s transistor or crystal. If the second stress layer 224 has compressive stress and the first stress layer 205 & has tensile or compressive stress, the gate electrode 210 and source / drain S / D covering the second stress layer 224 are formed. The transistor is a pMos transistor. In addition, a metal oxide layer 222 is provided between the first stress layer 2 2 4 and the source / non-pole s / D to reduce the sheet resistance of the source / drain S / I). The compressive stress improves the performance of the pMOS transistor. Through suspension, a metal silicide layer 2 2 2 of the same material is also provided between the second stress layer 224 and the gate electrode 2 10. You can also use an ion implantation procedure (not shown) to implant, for example, argon ions or oxygen (〇) ions into the first stress layer 205a and the second stress layer 224 / the timing of this operation After the formation of these stress layers, and after the completion of the ion cloth, a tempering procedure between 35 (rc ~ 700 t) is performed to increase the compressive stress of the two stress layers, thereby appropriately adjusting the pressure in the channel area 220. whole
1233187 ------- 五、發明說明(9) 體應力。 製造方法 弟一實施例 土第1A圖至第1E圖係繪示一種MOS元件的製造方法之示 圖 。 首先請參照第1 A圖,提供一基底丨〇 〇,基底丨〇 〇具有主 區A A °其中此主動區AA係藉由於基底丨〇 〇中形成隔離元 件結構二例如淺溝槽隔離元件STI,而定義出。 接著’於主動區形成電晶體,此電晶體可為PMOS電晶 =和襲0S電晶體。如圖所示,於基底1〇〇上形成一閘極介 ,層102和間極電極104,其中閘極介電層1〇2的材質可為 =化矽,閘極電極104的材質可為多晶矽、金屬、矽鍺或 :鍺之多晶矽。其中閘極介電層丨〇 2和閘極電極1 〇 4的形成 法,例如疋於基底1 〇 〇上依序沈積一層介 層,並於導電層上形成一圖案化罩幕層(未繪日示广電之 後以圖案化罩幕層為罩幕,依序對導電層及介電層進行 非等向性蝕刻,以形成如圖所示之閘極介電層1〇2和閘極 電極104,再將圖案化罩幕層移除。 之後,於閘極電極104兩側之基底1〇〇中之主動區AA形 成淡摻雜區106,其形成方法係以離子植入法將摻質植入 未被閘極電極1 04和淺溝槽隔離元件ST工覆蓋的基底丨〇〇 中。 一 接著請參照第1 B圖,順應性地形成一應力緩衝襯層1233187 ------- V. Description of the invention (9) Body stress. Manufacturing Method First Embodiment Figures 1A to 1E are diagrams showing a method for manufacturing a MOS device. First, please refer to FIG. 1A. A substrate is provided. The substrate has a main area AA. The active area AA is formed by forming an isolation element structure in the substrate. For example, a shallow trench isolation element STI, And defined. Next, a transistor is formed in the active region, and this transistor may be a PMOS transistor = and a 0S transistor. As shown in the figure, a gate dielectric layer 102 and an interlayer electrode 104 are formed on the substrate 100. The material of the gate dielectric layer 102 can be silicon, and the material of the gate electrode 104 can be Polycrystalline silicon, metal, silicon germanium or polycrystalline silicon germanium. The formation method of the gate dielectric layer 〇2 and the gate electrode 104 is, for example, sequentially depositing a layer of a dielectric layer on the substrate 1000, and forming a patterned mask layer (not shown) on the conductive layer. After the display of the radio and television, the patterned mask layer was used as the mask, and the conductive layer and the dielectric layer were sequentially anisotropically etched to form the gate dielectric layer 102 and the gate electrode as shown in the figure. 104, and then removing the patterned mask layer. Then, a lightly doped region 106 is formed in the active region AA in the substrate 100 on both sides of the gate electrode 104, and the formation method is doped with an ion implantation method Implanted into the substrate not covered by the gate electrode 104 and the shallow trench isolation element ST. One by one, please refer to FIG. 1B to form a stress buffer liner conformably.
0503'8980ClmF(Nl) : TSMC2002-0937 ; Shawn.ptd 第14頁 1233187 五、發明說明(10) 108於閘極電極丨04兩側且部份延伸至基底1〇〇表面。上述 之應力緩衝襯層1〇8的厚度小於5〇〇埃,其材質可為氧化a 石f。應力緩衝襯層1 0 8除了用以做為應力緩衝之作用外, 逛可用以保護閘極電極丨04的側壁以及靠近通道區丨丨4的區 域。之後’於閘極電極104兩側應力緩衝層1〇8上形成一間 ,壁110。上述之間隙壁11〇的材質可為氮化矽或氧化矽/ 氮化矽之疊層。其中,應力緩衝襯層108和間隙壁11〇的彤 成方法,例如是依序於基底1〇〇、閘極電極1〇4及閘極^ 層1 02露出之表面上順應性形成一薄層絕緣層和另一較尸 之絕緣層;錢,利用非等向性蝕刻,以形成一辟予 Π0及應力緩衝襯層1〇8。 ,、土 接著,於閘極電極104兩側未被閘極電極1〇4 ! 覆蓋之基底100中之主動區AA形成濃摻雜區i 12,y+开广 成方法係以離子植入法將摻質植入未被閘極電極丨、、間 隙壁110和淺溝槽隔離元件STI覆蓋的基底1〇〇中。1 : 摻雜區1 0 6和濃摻雜區丨丨2係構成電晶體之源極/汲極區狄 〇 / D ° 接著,參照第lc圖,利用濕姓刻或乾蝕刻移除 11 〇 ’以路出應力緩衝襯層i 0 8。 其中在移除間隙壁110之前,更包括進行一自 矽化物製程,以於源極/汲極5/1}的表 ΓΓ制r 間隙壁11G之後,進行—自動對準石夕 二Λ'以於源極"及極S/D的表面形成一金屬石夕化物芦 116 ’如弟lc圖所示。在上述之自動對準矽化物製程中,曰0503'8980ChemF (Nl): TSMC2002-0937; Shawn.ptd page 14 1233187 V. Description of the invention (10) 108 is on both sides of the gate electrode 04 and partially extends to the surface of the substrate 100. The thickness of the stress buffer lining layer 108 described above is less than 500 angstroms, and its material may be alumina f. In addition to being used as a stress buffer, the stress buffer liner 108 can protect the sidewalls of the gate electrode 丨 04 and the area near the channel area 丨 丨 4. After that, a wall 110 is formed on the stress buffer layer 108 on both sides of the gate electrode 104. The material of the spacers 110 can be a silicon nitride or a silicon oxide / silicon nitride laminate. The method for forming the stress buffer liner 108 and the gap wall 110 is, for example, forming a thin layer in compliance with the exposed surface of the substrate 100, the gate electrode 104, and the gate ^ layer 102 in sequence. Insulating layer and another relatively insulating layer; money, using anisotropic etching to form a layer Π0 and a stress buffer liner 108. Then, on the two sides of the gate electrode 104, the active region AA in the substrate 100 that is not covered by the gate electrode 104 is formed to form a heavily doped region i 12, and the y + method is to ion implantation The dopant is implanted in the substrate 100 which is not covered by the gate electrode, the spacer 110, and the shallow trench isolation element STI. 1: Doped region 106 and heavily doped region 丨 丨 2 constitute the source / drain region of the transistor θ / D ° Then, referring to FIG. 1c, remove 11 with wet or dry etching. 'Take out the stress buffer lining i 0 8. Before removing the spacer 110, it also includes performing a self-silicide process to make the spacer 11G from the source / drain 5/1} table ΓΓ, then-automatic alignment of Shi Xier Λ 'to A metal oxide compound 116 is formed on the surface of the source electrode and the S / D electrode, as shown in FIG. In the above-mentioned automatic alignment silicide process,
0503-8980CIFnVF(Nl) ; TSMC2002-0937 ; Shawn.ptd 第 15 頁 1233187 五'發明說明(11) 右閘極電極1 〇 4的材當么《曰石々 a 0i ^ ^ J何貝為夕日曰矽、矽鍺或含鍺之多晶矽, 則其表面亦會形成金屬矽化物層丨丨6,如圖所示。 、隹接參照第1D圖,於移除間隙壁110且完成自動對 準矽化物衣程之後,於閘極電極104、應力緩衝襯層108和 極(汲極S/D上覆盍一應力層118,且與閘極電極104和應 力緩衝襯層108接觸,藉以提高閘極電極1〇4下方基底中 100之通道區114的應力。 一0503-8980CIFnVF (Nl); TSMC2002-0937; Shawn.ptd Page 15 1233187 Five 'invention description (11) What is the material of the right gate electrode 1 〇 "Shi Shi a 0i ^ ^ J 何 贝 为 夕 日 曰Silicon, silicon germanium or polycrystalline silicon containing germanium will also form a metal silicide layer on the surface, as shown in the figure. Referring to FIG. 1D, after removing the spacer 110 and completing the self-aligning silicide process, a stress layer is overlaid on the gate electrode 104, the stress buffer liner 108, and the electrode (drain S / D). 118, and in contact with the gate electrode 104 and the stress buffer liner 108, so as to increase the stress of the channel region 114 in the substrate 100 under the gate electrode 104.
上述之應力層1 18可為壓縮應力層或者是拉伸應力 層’其材質可為氮化石夕(SiN)、氮氧化石夕(Si〇N)、或 氮化矽(SiN)和氮氧化矽(Si〇N)之疊層,其 3J)0〜700埃(A)之間,其形成方法可為電漿增強型化學 氣相沈積法(PECVD )、快速熱製程化學氣相沈積法 (RTCVD)、原子層級化學氣相沈積法以^”)^低壓化 學氣相沈積法(LPCVD )。 當應力層118為使用氮化矽(SiN) /氮氧化矽(si〇N )疊層之拉伸應力層時,位於上層之拉伸應力較下層較士 地來得大。此時,位於疊層上層之材質較佳為氮氧/匕矽¥ 一 ^石夕量較高之氮化石夕層(siliC0n-rich nitride),而士The above-mentioned stress layer 118 may be a compressive stress layer or a tensile stress layer. Its material may be silicon nitride (SiN), silicon oxynitride (SiON), or silicon nitride (SiN) and silicon oxynitride. (SiON) stack, its 3J) 0 ~ 700 angstrom (A), the formation method can be plasma enhanced chemical vapor deposition (PECVD), rapid thermal process chemical vapor deposition (RTCVD) ), Atomic-level chemical vapor deposition method ^ ") ^ low pressure chemical vapor deposition (LPCVD). When the stress layer 118 is stretched using silicon nitride (SiN) / silicon oxynitride (si〇N) stack In the case of a stress layer, the tensile stress in the upper layer is larger than that in the lower layer. At this time, the material in the upper layer of the stack is preferably a nitrogen oxide layer with a high nitrogen content (siliC0n). -rich nitride), and
於疊層下層之材質則較佳地為氮化矽或含氮量較高之氮^丨 矽層(nitrogen-rich nitride)。 藉由控制形成的條件,可調整所形成的膜層之應力大 小,根據研究,可控制應力的因素有溫度、壓^或^程氣 體比例,若為電漿沈積法,則可控制應力的因素還$ =電 漿電力(plasma power)。The material of the lower layer of the stack is preferably silicon nitride or a nitrogen-rich nitride layer (nitrogen-rich nitride). By controlling the formation conditions, the stress of the formed film layer can be adjusted. According to research, the factors that can control the stress are temperature, pressure, or gas ratio. If the plasma deposition method is used, the stress factors can be controlled. Return $ = plasma power.
〇503-8980CIPTWF(Nl) : TSMC2002-0937 ; Shawn.ptd 第16頁 Ϊ233187〇503-8980CIPTWF (Nl): TSMC2002-0937; Shawn.ptd Page 16 Ϊ233187
斤〜以電漿增強型化學氣相沈積法形成材質為氮化碎且為 姿縮應力之應力層11 8為例,所需的溫度大致介於3〇〇 t和 00 °C之間,所需的壓力大致介於丨· 〇托爾(t〇rr )和丨· 5 托爾之間,所需的電漿電力大致介於丨〇 〇 〇瓦(w )和2 〇 〇 〇 瓦之間’其製程氣體可為Ml ·· SiH4,比例大致為4〜1〇。 以快速熱製程化學氣相沈積法形成材質為氮化矽且為 拉伸應力之為例,所需的溫度大致介於3〇〇它和8〇〇之 所需的壓力大致介於1 5 〇托爾和3 〇 〇托爾之間,其製程 氣體可為NH3 : Si &,比例大致為5〇〜400 ;或者其製程氣體 可為二氣矽烷(dichl〇r〇silane,SiH2Cl2,簡稱Dcs): NH3,比例大致為〇.:[〜1。 以低壓化學氣相沈積法形成材質為氮化矽且為壓縮應 力之應力層11 8為例,所需的溫度大致介於4 〇 〇。〇和了 5 〇 之間,所需的壓力大致介於〇· i托爾(t〇rr )和5〇托爾之 間’其製程氣體可為二氣矽烷與N1,比例大致為1〜3 〇 〇。 若應力層118具拉伸應力,覆蓋於應力層118下方之閘 極電極104和源極/汲極S/D構成之電晶體可為PM〇s電晶體 和NMOS電晶體。在此情況下,與傳統未移除間隙壁的結構 相較’本發明之CMOS元件的通道區1丨4的壓縮應力會降低 約93〜128 MPa ’藉此提高電子和電洞載子於通道區的遷移 率〇 若應力層118具壓縮應力,覆蓋於應力層118下方之閘 極電極104和源極/汲極S/D構成之電晶體係為PM0S電晶 體。在此情況下’與傳統未移除間隙壁的結構相較,本發For example, the plasma-enhanced chemical vapor deposition method is used to form a stress layer 11 8 which is made of nitrided material and is a pinch stress. The required temperature is approximately 300 t and 00 ° C. Therefore, The required pressure is roughly between 丨 · TOR (t〇rr) and 丨 · 5 Torr, and the required plasma power is between 丨 00 watt (w) and 2000 watt 'The process gas can be Ml · · SiH4, and the ratio is approximately 4 ~ 10. Taking the rapid thermal process chemical vapor deposition method as an example for forming silicon nitride and tensile stress, the required temperature is approximately 300 and the required pressure is approximately 150. Between Thor and 300 Tor, its process gas may be NH3: Si & the ratio is approximately 50 ~ 400; or its process gas may be digas silane (SiH2Cl2, referred to as Dcs) ): NH3, the ratio is approximately 0: [~ 1. Taking the low-pressure chemical vapor deposition method to form a stress layer 118 made of silicon nitride and compressive stress as an example, the required temperature is approximately 400 °. 〇 and 50 〇, the required pressure is approximately between 0 · Torr (t〇rr) and 50 Torr 'its process gas can be two gas silane and N1, the ratio is approximately 1-3 〇〇. If the stress layer 118 has tensile stress, the transistor composed of the gate electrode 104 and the source / drain S / D covering the stress layer 118 may be a PMOS transistor and an NMOS transistor. In this case, the compressive stress of the channel region 1 丨 4 of the CMOS element of the present invention will be reduced by about 93 ~ 128 MPa compared with the conventional structure without removing the spacer, thereby increasing the electron and hole carriers in the channel. The mobility of the region. If the stress layer 118 has compressive stress, the transistor system consisting of the gate electrode 104 and the source / drain S / D covering the stress layer 118 is a PMOS transistor. In this case, compared with the conventional structure without the spacers removed, the present invention
12331871233187
明之CMOS元件的通道區114的壓縮應力會增加約93〜128 MPa,藉此提高電洞載子於通道區的遷移率。 此外亦可採用離子佈植程序(未繪示)以植入如氬 (AO離子或氧(0)離子於應力層118中,其操作時機為應力 層1 1 8形成之後,且於完成離子佈植後接著施行一介於3 5 〇 C 700 C之回火程序,以增加應力層118之壓縮應力,藉 此而適度調整通道區114中之整體應力。 此外,上述之應力層丨丨8亦可做為後續接觸窗製程的 名虫刻停止層。 接著進行後續的製程,例如是内連線製程。如第丨E圖 所示,於應力層1 1 8上形成内層介電層丨20,其材質例如為 氧化秒、卿磷矽玻璃(BPSG )、或其他類似此性質者,並 於該内層介電層1 2 〇經平坦化後,藉由微影蝕刻製程,於 内層介電層120和應力層118中形成接觸窗開口122。在接 觸窗之餘刻步驟中,上述之應力層丨丨8係做為蝕刻停止 層’待钱刻至露出接觸窗開口丨22中的應力層11 8後,再轉 換餘刻條件,移除接觸窗開口丨2 2中的應力層11 8,直至暴 露出待連線的元件區。 第二實施例 第2A圖至第2G圖繪示了另一種M0S元件的製造方法之 不意圖。 首先請參照第2A圖,提供一基底200,其中於基底200 具有主動區AA,其中此主動區AA係藉由於基底100中形成 兩溝槽202而定義出。接著於溝槽2〇2内分別形成一襯層The compressive stress of the channel region 114 of the Ming CMOS device will increase by about 93 ~ 128 MPa, thereby improving the mobility of hole carriers in the channel region. In addition, an ion implantation procedure (not shown) can be used to implant, for example, argon (AO ions or oxygen (0) ions) into the stress layer 118. The operation timing is after the formation of the stress layer 1 18, and the ion cloth is completed. After the implantation, a tempering procedure between 350 ° C and 700 ° C is performed to increase the compressive stress of the stress layer 118, thereby appropriately adjusting the overall stress in the channel region 114. In addition, the above-mentioned stress layer may also be used. As the famous engraving stop layer for the subsequent contact window process. Then the subsequent process, such as the interconnect process, is formed. As shown in FIG. 丨 E, an inner dielectric layer 20 is formed on the stress layer 1 18, which The material is, for example, oxide seconds, phosphophosphosilicate glass (BPSG), or other similar properties. After the inner dielectric layer 120 is flattened, the inner dielectric layer 120 and the inner dielectric layer 120 are processed by a lithography etching process. A contact window opening 122 is formed in the stress layer 118. In the remaining step of the contact window, the above-mentioned stress layer 丨 8 is used as an etching stop layer 'after the money is etched to expose the stress layer 118 in the contact window opening 218 , And then convert the remaining conditions to remove the The stress layer 118 is until the device area to be connected is exposed. Figures 2A to 2G of the second embodiment illustrate the intention of another method of manufacturing a MOS device. First, please refer to Figure 2A to provide a substrate 200, in which the substrate 200 has an active area AA, wherein the active area AA is defined by forming two trenches 202 in the substrate 100. Then, a liner is formed in the trenches 202 respectively.
1233187 五、發明說明(14) 2 04以平滑化溝槽20 2之表面。襯層204例如為由熱氧化法 所形成之氧化矽層。接著於溝槽2 〇 2内及基底2 〇 〇上順應地 形成第一應力層205並覆蓋於溝槽202内襯層204上。在 此’第一應力層2 0 5可參照前述第一實施例中之應力層1! 8 之製造方法而形成。然後全面性地沉積一絕緣材料2 〇 6於 基底200上並填入溝槽2〇2内。 接著请參照第2 B圖,藉由如化學機械研磨程序之一平 坦化步驟(未圖示)的施行將高於基底2〇〇表面之絕緣材料 20 6移除,進而於溝槽2〇2内留下一絕緣層2〇6a。然後藉由 一 #刻步驟(未圖示)的施行以除去主動區AA内基底表面之 部份第一應力層,最後於溝槽内留下順應於溝槽表面之一 第一應力層205a,並於溝槽202内則形成了定義不同主動 區用之淺溝槽隔離元件以丨,。 請參照第2C圖,接著於主動區^内形成電晶體,此電 晶體可為PMOS電晶體和NMOS電晶體。如圖所示,於基底 2 0 0上形成一閘極介電層2 〇 8和閘極電極2丨〇,其中閘極介 電層2 08的材質可為氧化矽,閘極電極21〇的材質可為多晶 石夕至屬、石夕鍺或含鍺之多晶石夕。其中閘極介電層2 〇 §和 閘極電極210的形成方法,例如是於基底2〇〇上依序沈積一 層介電層和導電層,並於導電層上形成一圖案化罩幕層 (未繪示),之後,以圖案化罩幕層為罩幕,依序對^電 層及介電層進行非等向性蝕刻,以形成如圖所示之閘極介 電層2 0 8和閘極電極2 1 〇,再將圖案化罩幕層移除。 之後,於閘極電極210兩側之基底20 0中之主動區AA形1233187 V. Description of the invention (14) 2 04 to smooth the surface of the groove 20 2. The underlayer 204 is, for example, a silicon oxide layer formed by a thermal oxidation method. Then, a first stress layer 205 is formed compliantly in the trench 200 and the substrate 200 and covers the inner liner layer 204 of the trench 202. Here, the first stress layer 205 can be formed with reference to the manufacturing method of the stress layer 1 to 8 in the aforementioned first embodiment. Then, an insulating material 206 is deposited on the substrate 200 in a comprehensive manner and filled into the trench 002. Then referring to FIG. 2B, the planarization step (not shown), such as one of the chemical mechanical polishing procedures, is performed to remove the insulating material 20 6 higher than the surface of the substrate 200, and then to the trench 200 An insulating layer 206a is left inside. Then, a part of the first stress layer on the substrate surface in the active area AA is removed by performing a #etching step (not shown), and finally a first stress layer 205a conforming to the trench surface is left in the trench. In the trench 202, shallow trench isolation elements defining different active regions are formed. Referring to FIG. 2C, a transistor is formed in the active region ^, and the transistor can be a PMOS transistor or an NMOS transistor. As shown in the figure, a gate dielectric layer 208 and a gate electrode 2 are formed on the substrate 2000. The material of the gate dielectric layer 208 may be silicon oxide, and the gate electrode 21 The material can be polycrystalline stone genus, genus germanium or polycrystalline stone containing germanium. The gate dielectric layer 20 and the gate electrode 210 are formed by, for example, sequentially depositing a dielectric layer and a conductive layer on the substrate 200, and forming a patterned mask layer on the conductive layer ( (Not shown), and then, using the patterned mask layer as the mask, the dielectric layer and the dielectric layer are sequentially anisotropically etched to form the gate dielectric layer 208 and The gate electrode 21 is removed, and the patterned mask layer is removed. After that, the active area AA in the substrate 200 on both sides of the gate electrode 210
1233187 五、發明說明(15) — ------- 成淡摻雜區212,其形成方法係以離子植入法將摻 未被閘極電極2 1 〇和淺溝槽隔離元件ST I,霜 二 中。 丁01丄後盍的基底200 接著請參照第2D圖,順應性地形成一應力緩 21 4於閘極電極2 1()兩側且部份延伸至基底2〇〇表面。曰 之應力緩衝襯層2 1 4的厚度小於5 0 0埃,其材質可為& ;L t。應力緩衝襯層214除了用以做為應力緩衝之作"用%卜化, 還可用以保護閘極電極21〇的側壁以及靠近通道區22〇的’ 域。之後,於閘極電極2 1 0兩側應力緩衝層2丨4上 — 隙壁216。上述之間隙壁216的材質可為氮化矽或氧化間 氮化矽之疊層。其中,應力緩衝襯層214和間隙壁2 16的, 成方法,例如是依序於基底20 0、閘極電極21〇及閘極^ 層2 08露出之表面上順應性形成一薄層絕緣層和另一較严 之絕緣層;然後,利用非等向性蝕刻,以形成一間隙乂辟予 21 6及應力緩衝襯層21 4。 ’、土 接著,於閘極電極210兩側未被閘極電極2 1〇和間隙壁 216覆盖之基底2〇〇中之主動區AA形成濃摻雜區218,其形九 成方法係以離子植入法將摻質植入未被閘極電極2 1 〇、間 隙壁216和淺溝槽隔離元件STI,覆蓋的基底2〇〇中。其中曰淡 換雜區2 1 2和濃摻雜區2 1 8係構成電晶體之源極/汲極區^ S/D。 接著請參照第2E圖,利用濕蝕刻或乾蝕刻移除間隙壁 2 1 6 ’以露出應力緩衝襯層2 1 4。 土 其中在移除間隙壁216之前,更包括進行一自動對準1233187 V. Description of the invention (15) — ------- Lightly doped region 212 is formed by doping the gate electrode 2 1 0 and the shallow trench isolation element ST I by ion implantation. , Frost II. Ding 01, the substrate 200 of the suffix, and then referring to FIG. 2D, a stress relief 21 4 is compliantly formed on both sides of the gate electrode 21 () and partially extends to the surface of the substrate 200. The thickness of the stress buffer lining 2 1 4 is less than 500 Angstroms, and the material may be & L t. In addition to being used as a stress buffering layer, the stress buffer lining layer 214 can also be used to protect the sidewall of the gate electrode 21o and the '' area near the channel region 22o. Then, a gap 216 is formed on the stress buffer layer 2 丨 4 on both sides of the gate electrode 210. The material of the spacer 216 may be a stack of silicon nitride or silicon oxide nitride. The method for forming the stress buffer lining layer 214 and the spacer 216 is, for example, forming a thin insulating layer in compliance with the exposed surface of the substrate 20, the gate electrode 21 and the gate ^ layer 2 08 in this order. And another stricter insulating layer; then, anisotropic etching is used to form a gap gap 21 6 and a stress buffer liner 21 4. 'Then, the active region AA in the substrate 2000 which is not covered by the gate electrode 210 and the spacer 216 on both sides of the gate electrode 210 forms a heavily doped region 218, and the method of forming it by ion The implantation method implants a dopant into the substrate 200 that is not covered by the gate electrode 21, the spacer 216, and the shallow trench isolation element STI. The lightly doped region 2 1 2 and the heavily doped region 2 1 8 constitute the source / drain region ^ S / D of the transistor. Referring to FIG. 2E, the spacer 2 1 6 ′ is removed by wet etching or dry etching to expose the stress buffer liner 2 1 4. Before removing the partition wall 216, it further includes performing an automatic alignment.
〇3〇3-8980CimF(Nl);TSMC2〇〇2.〇937;Shawn.ptd〇3〇3-8980CimF (Nl); TSMC2000.937; Shawn.ptd
1233187 五、發明說明I (16) 夕化物‘私以於源極/汲極S / D的表面形成一金屬石夕化物 層222;或者是在移除間隙壁216之後,進行一自動對準矽 化物衣私—以於源極/沒極S / D的表面形成一金屬石夕化物層 222,如第2E圖所示。在上述之自動對準矽化物製程中, 若閘極電極210的材質為多晶矽、矽鍺或含鍺之多晶矽, 則其表面亦會形成金屬矽化物層22 2,如圖所示。在此, 形成於源極/汲極S/D的表面處之金屬矽化物層222對於通 道區220亦可表現出一壓縮應力。 接著請參照第2F圖,於移除間隙壁216且完成自動對 5 f/化物製程之後,於閘極電極21〇、應力緩衝襯層21 4和 /及極S/D上覆蓋一第二應力層224,且與閘極電極21〇 m緩f襯層m接觸,藉以提高閘極電極210下方基底 中200之通這區22〇的應力。 此外,亦可採用離子佈植程序(未繪示)以植入如氬 (Ar) ^子或氧(〇)離子於第一應力層2〇5a及第二應力層224 措m ί作時機為此些應力層形成之後,且於完成離子佈 =者施行一介於35(rc〜70(rc之回火程序以增加此 ~ 層之壓縮應力,藉此而適度調整通道區220中之整 體應力。 r的上述之第二應力層224亦可做為後續接觸窗製 私的蝕刻停止層。 接著進行後續的製程,例如是内連線製程。如第%圖 上:二於第二應力層224上形成内層介電層226,豆材質例 °為乳化石夕、石朋填石夕玻璃(BPSG)、或其他類似此性質 till ()503-8980CimF(Nl) ; TSMC2002-0937 ;Shawn.ptd 第 21 頁 1233187 五、發明說明(17) 者’並於該内層介電層226經平 程’於内層介電層226和第错由微影钱刻製 2 2 80 t . ^ ,1 ^ HI2 4/_ ^ ^ ^ 力 = 停止層,刻至露出接二 二^力_再=;=:連Π接觸窗開σ22δ中的第 且芏泰路出待連線的元件區。 力層i ί, ΐ: ί f層205a與第二應力層224可為麼縮應 气各ΐ 伸 層,其材質可為氮化矽(SiN)、氮 之最;m石夕(SiN) *氮氧化石夕(si〇N) ^曰,其厗度分別約為20〜300埃(A )及3〇〇 7〇〇埃 (PECVD之)間’Λ开i成方法可為電衆增強型化學氣相沈積法1233187 V. Description of the invention I (16) The compound is used to form a metal oxide compound layer 222 on the surface of the source / drain S / D; or after the spacer 216 is removed, an automatic alignment silicidation is performed. Material and clothing-A metal lithoxide layer 222 is formed on the surface of the source / non-polar S / D, as shown in FIG. 2E. In the automatic alignment silicide process described above, if the material of the gate electrode 210 is polycrystalline silicon, silicon germanium, or germanium-containing polycrystalline silicon, a metal silicide layer 22 2 is also formed on the surface, as shown in the figure. Here, the metal silicide layer 222 formed at the surface of the source / drain S / D may also exhibit a compressive stress to the channel region 220. Next, referring to FIG. 2F, after removing the spacer 216 and completing the automatic 5 f / chemical process, a second stress is covered on the gate electrode 21, the stress buffer liner 21 4 and / or the electrode S / D. The layer 224 is in contact with the gate electrode 21m and the liner layer m, so as to increase the stress in the region 200 of the 200 through region in the substrate below the gate electrode 210. In addition, an ion implantation procedure (not shown) can also be used to implant ions such as argon (Ar) or oxygen (〇) ions into the first stress layer 205a and the second stress layer 224. The timing is as follows: After the formation of these stress layers, and after the completion of the ion cloth, a tempering procedure between 35 (rc ~ 70 (rc) is performed to increase the compressive stress of this layer, thereby appropriately adjusting the overall stress in the channel region 220. The above-mentioned second stress layer 224 of r can also be used as an etching stop layer for subsequent contact window manufacturing. Then, a subsequent process, such as an interconnection process, is performed. As shown in the second figure: on the second stress layer 224 An inner dielectric layer 226 is formed. Examples of bean materials are emulsified stone, stone-filled glass (BPSG), or other similar properties till () 503-8980CimF (Nl); TSMC2002-0937; Shawn.ptd Section 21 Page 1233187 V. Description of the invention (17) The 'and the inner dielectric layer 226 is traversed' on the inner dielectric layer 226 and the first part is engraved by lithography money 2 2 80 t. ^, 1 ^ HI2 4 / _ ^ ^ ^ Force = stop layer, engraved until exposed to the next two ^ force _ again =; =: the second and the second contact window opening σ22δ from the first and second Taitai Road to be connected to the element The force layer i ί, ΐ: What can the f-layer 205a and the second stress layer 224 be the respective stretched layers of the corresponding gas, the material can be silicon nitride (SiN), the most nitrogen; m Shi Xi (SiN ) * Nitride oxide (si〇N) ^ Said that the degrees of their respective degrees are about 20 ~ 300 angstroms (A) and 3,007 angstroms (PECVD). Enhanced chemical vapor deposition
片/望(一 r_!、低壓化學氣相沈積法(LPCVD)。當應力 曰,=應力層205a或第二應力層2 24 )為使用氮化矽(siN 夕化矽(Si〇N )疊層之一拉伸應力層時,位於上層 之2伸應力較下層較佳地來得大。此時,位於疊層下層之 材質較佳為氮氧化矽或含矽量較高之氮化矽層 曰 (sU^con —rich nitride),而位於疊層上層之材質則較佳 地為氮化矽或含氮量較高之氮化矽層(ni tr〇gen-rich nitride) 〇 藉由控制形成的條件,可調整所形成的膜層之應力大 小,根據研究,可控制應力的因素有溫度、壓力或製程氣 月且比例,右為電漿沈積法,則可控制應力的因素還包括電Wafer / Wang (a r_ !, Low Pressure Chemical Vapor Deposition (LPCVD). When the stress is said, the stress layer = 205a or the second stress layer 2 24) is a silicon nitride (SiN silicon oxide (Si〇N) stack) When the tensile stress layer is one of the layers, the tensile stress of the upper layer is better than that of the lower layer. At this time, the material of the lower layer of the stack is preferably silicon oxynitride or a silicon nitride layer with a higher silicon content. (sU ^ con —rich nitride), and the material on the upper layer of the stack is preferably silicon nitride or a nitrogen-rich silicon nitride layer (ni tr〇gen-rich nitride) 〇 formed by control The conditions can adjust the stress of the formed film layer. According to the research, the factors that can control the stress are temperature, pressure or process gas month and ratio. The right is plasma deposition method, and the factors that can control the stress include electricity.
05Q3-8980CIPTWF(N1) ; TSMC2002-0937 ; Shawn.ptd 第22頁 123318705Q3-8980CIPTWF (N1); TSMC2002-0937; Shawn.ptd Page 22 1233187
漿電力(plasma power)。 以電聚增強型化學氣相沈積法形成材質為氮化發且為 壓縮應力之第二應力層2 2 4為例,所需的溫度大致介於3 〇〇 C和5 0 0 C之間,所需的壓力大致介於丨· 〇托爾(t 〇 r )和 1 · 5托爾之間,所需的電漿電力大致介於丨〇 〇 〇瓦(w )和 2 0 0 0瓦之間,其製程氣體可為NHs :SiH4,比例大致為 4 〜1 〇。 以快速熱製程化學氣相沈積法形成材質為氮化矽且為 拉伸應力之為例,所需的溫度大致介於3 〇 〇和8 〇 〇它之 間,所需的壓力大致介於15〇托爾和3〇〇托爾之間,其製程 氣體可為NI ·· S i H4,比例大致為5 〇〜4 0 0 ;或者其製程氣體 可為二氣矽烷(dichlorosilane,SiH2Cl2,簡稱DCS): N H3,比例大致為〇 . 1〜1。 以低壓化學氣相沈積法形成材質為氮化矽且為壓縮應 力之第二應力層224為例,所需的溫度大致介於4〇〇和 750 °C之間,所需的壓力大致介於〇. 1托爾(t〇rr )和5〇托 爾之間,其製程氣體可為DCS : NH3,比例大致為 1 〜3 0 0。 若第一應力層224具拉伸應力而第一應力層2〇6a具拉 伸應力時,覆蓋於第二應力層224下方之閘極電極21〇和源 極/汲極S/D構成之電晶體可為PM〇s電晶體和⑽⑽電晶體。 在此情況下,與傳統未移除間隙壁的結構相較,本發明之 M0S元件的通道區220的壓縮應力會降低約1〇〇〜,藉 此提高電子和電洞載子於通道區的遷移率。Plasma power. Taking the electro-enhanced chemical vapor deposition method to form a second stress layer 2 2 4 which is nitrided and compressive stress as an example, the required temperature is approximately between 300 ° C and 500 ° C. The required pressure is roughly between 丨 · TOR (t 〇r) and 1.5 Torr, and the required plasma power is roughly between 丨 00 watt (w) and 2000 watt. In the meantime, the process gas can be NHs: SiH4, and the ratio is approximately 4 ~ 10. Taking the rapid thermal process chemical vapor deposition method as an example for forming silicon nitride and tensile stress, the required temperature is approximately between 300 and 800, and the required pressure is approximately 15 Between 〇 Tor and 300 TOR, the process gas can be NI ·· Si H4, the ratio is approximately 50 ~ 400; or the process gas can be dichlorosilane (SiH2Cl2, referred to as DCS) ): N H3, the ratio is approximately 0.1 ~ 1. Taking the low-pressure chemical vapor deposition method to form a second stress layer 224 made of silicon nitride and compressive stress as an example, the required temperature is approximately between 400 and 750 ° C, and the required pressure is approximately between Between 0.1 Torr and 50 Torr, the process gas may be DCS: NH3, and the ratio is approximately 1 to 300. If the first stress layer 224 has tensile stress and the first stress layer 206a has tensile stress, the gate electrode 21 and the source / drain S / D formed under the second stress layer 224 are covered with electricity. The crystal can be a PMOS transistor and a pseudotransistor. In this case, the compressive stress of the channel region 220 of the MOS device of the present invention will be reduced by about 100% compared with the conventional structure without the spacer wall removed, thereby increasing the electron and hole carriers in the channel region. Mobility.
0503-8980CIPnVF(Nl) : TSMC2002-0937 ; Shawn.ptd 第23頁 1233187 五、發明說明(19) 若第二應力層224具壓縮應力而第一應力層206a具拉 伸或壓縮應力時,覆蓋於第二應力層224下方之閘極電極 210和源極/汲極S/D構成之電晶體係為pM〇s電晶體。在此 情況下’與傳統未移除間隙壁的結構相較,本發明之MOS 凡件的通道區2 2 0的壓縮應力會增加約1 〇 〇〜9 〇 〇 MPa,藉此 提高電洞載子於通道區的遷移率。 綜上所述,利用本發明 械應力集中於通道區,藉以 損的特性之電晶體。 在製造電晶體的過程中 加一道移除間隙壁的過程, 地集中於電晶體的通道區。 由局部機械應力控制來提高 就上述之應力層的製造而言 的需求,分別製造符合其需 的應力層。 所提供的結構及方法,可將機 形成具有南速彳呆作及低能量耗 ’在沈積應力層之前,藉由增 可使沈積的應力層之應力有效 因此’該方法可適用於任何藉 電晶體的效能之製程。另外, 了根據P通道和N通道之不同 求之具有壓縮應力和拉伸應力 ,並不限定於上述之方 制來提高電晶體的效能 法, 之製 因此,應力層的形成方法 其他可以藉由局部機械應力控 程均可適用於本發明。 以 精 圍 雖然本發明已以較佳實施例揭露如上,麸盆 :制本發明’任何熟習此項技藝者 :: :和範圍内’當可做更動與潤飾,因此本 田視後附之申請專利範圍所界定者為準。 ’、0503-8980CIPnVF (Nl): TSMC2002-0937; Shawn.ptd page 23 1233187 V. Description of the invention (19) If the second stress layer 224 has compressive stress and the first stress layer 206a has tensile or compressive stress, it is covered by The transistor system composed of the gate electrode 210 and the source / drain S / D under the second stress layer 224 is a pMOS transistor. In this case, compared with the conventional structure without removing the barrier wall, the compressive stress of the channel region 220 of the MOS element of the present invention will increase by about 100-900 MPa, thereby increasing the hole load. Mobility in the channel region. In summary, the present invention utilizes a transistor in which mechanical stress is concentrated in a channel region, thereby deteriorating characteristics. In the process of manufacturing the transistor, a process of removing the spacer is added, and the ground is concentrated in the channel region of the transistor. The local mechanical stress control is used to increase the demand for the above-mentioned manufacturing of the stress layer, and the stress layers meeting their needs are manufactured separately. The provided structure and method can be used to form the machine with a low-speed operation and low energy consumption. 'Before the stress layer is deposited, the stress of the deposited stress layer can be made effective by increasing the stress. Therefore, the method can be applied to any borrowing. Process of crystal efficiency. In addition, according to the difference between the P channel and the N channel, it has compressive stress and tensile stress. It is not limited to the above-mentioned method to improve the efficiency of the transistor. Therefore, the method for forming the stress layer can be determined by other methods. Local mechanical stress control programs are applicable to the present invention. Although the present invention has been disclosed in the preferred embodiment as above, the bran bowl: the invention of 'anyone skilled in the art :: within the range' can be modified and retouched, so Honda Vision's attached patent The scope defined shall prevail. ’,
1233187 圖式簡單說明 第1 A圖至第1 E圖係繪示根據本發明一實施例之一種 Μ 0 S元件的製造方法之不意圖, 第2Α圖至第2G圖係繪示根據本發明另一實施例之一種 MOS元件的製造方法之示意圖。 符號說明 主動區· A A, 淺溝槽隔離元件:STI、STI’ ; 源極/汲極:S/D ; 基底:100、2 0 0 ; 閘極介電層:1 0 2、2 0 8 ; 淡摻雜區:1 0 6、2 1 2 ; 應力緩衝襯層:1 0 8、2 1 4 濃摻雜區:1 1 2、2 1 8 ; 金屬矽化物層:11 6、2 2 2 内層介電層:120、226 ; 接觸窗開口 : 1 2 2、2 2 8 ; 襯層:2 0 4 ; 絕緣層:2 0 6 a ; 第二應力層:224。 閘極電極:1 0 4、2 1 0 ; 間隙壁:11 0、2 1 6 ; 通道區:1 14、220 ; 應力層:11 8 ; 溝槽:2 0 2 ; 絕緣材料:2 0 6 ; 第一應力層:205a ;1233187 The drawings briefly explain that FIGS. 1A to 1E are schematic diagrams illustrating a method for manufacturing an M 0 S element according to an embodiment of the present invention, and FIGS. 2A to 2G are diagrams illustrating another method according to the present invention. A schematic diagram of a method for manufacturing a MOS device according to an embodiment. Symbol description Active area · AA, shallow trench isolation element: STI, STI '; source / drain: S / D; substrate: 100, 2 0; gate dielectric layer: 1 2 2, 2 0 8; Lightly doped region: 1 0 6, 2 1 2; Stress buffer liner: 1 0 8, 2 1 4 Heavyly doped region: 1 1 2, 2 1 8; Metal silicide layer: 11 6, 2 2 2 Inner layer Dielectric layer: 120, 226; Contact window opening: 1 2 2, 2 2 8; Lining layer: 2 0 4; Insulating layer: 2 0 6 a; Second stress layer: 224. Gate electrode: 104, 2 1 0; Spacer wall: 11 0, 2 1 6; Channel area: 1 14, 220; Stress layer: 1 1 8; Trench: 2 0 2; Insulating material: 2 0 6; The first stress layer: 205a;
0503-8980CIPTWF(Nl) : TSMC2002-0937 ; Shawn.ptd 第25頁0503-8980CIPTWF (Nl): TSMC2002-0937; Shawn.ptd page 25
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93108635A TWI233187B (en) | 2004-03-30 | 2004-03-30 | MOS device and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93108635A TWI233187B (en) | 2004-03-30 | 2004-03-30 | MOS device and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI233187B true TWI233187B (en) | 2005-05-21 |
TW200532861A TW200532861A (en) | 2005-10-01 |
Family
ID=36480824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93108635A TWI233187B (en) | 2004-03-30 | 2004-03-30 | MOS device and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI233187B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7989912B2 (en) | 2006-07-24 | 2011-08-02 | Hynix Semiconductor Inc. | Semiconductor device having a compressed device isolation structure |
TWI509699B (en) * | 2007-09-19 | 2015-11-21 | Asm Inc | Stressor for engineered strain on channel |
-
2004
- 2004-03-30 TW TW93108635A patent/TWI233187B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7989912B2 (en) | 2006-07-24 | 2011-08-02 | Hynix Semiconductor Inc. | Semiconductor device having a compressed device isolation structure |
TWI509699B (en) * | 2007-09-19 | 2015-11-21 | Asm Inc | Stressor for engineered strain on channel |
Also Published As
Publication number | Publication date |
---|---|
TW200532861A (en) | 2005-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7052964B2 (en) | Strained channel transistor and methods of manufacture | |
KR100992036B1 (en) | High performance mosfet comprising a stressed gate metal silicide layer and method of fabricating the same | |
JP5274594B2 (en) | CMOS structure and method using a self-aligned dual stress layer | |
US7569434B2 (en) | PFETs and methods of manufacturing the same | |
TWI446453B (en) | Stressed field effect transistor and methods for its fabrication | |
TWI306309B (en) | Semiconductor device and method of making the same | |
US7378308B2 (en) | CMOS devices with improved gap-filling | |
US20050253173A1 (en) | Dual work-function metal gates | |
TWI297214B (en) | Semiconductor device and semiconductor device manufacturing method | |
US7612389B2 (en) | Embedded SiGe stressor with tensile strain for NMOS current enhancement | |
US20080230844A1 (en) | Semiconductor Device with Multiple Silicide Regions | |
TW200532803A (en) | Method for fabricating strained silicon-on-insulator structures and strained silicon-on-insulator structures formed thereby | |
US20080128765A1 (en) | MOSFET Device With Localized Stressor | |
TW201003916A (en) | Semiconductor device and method for production of semiconductor device | |
TW201013928A (en) | Contact trenches for enhancing stress transfer in closely spaced transistors | |
TW201015668A (en) | Method for N/P patterning in a gate last process | |
TW200933820A (en) | Method of forming high-k gate electrode structures after transistor fabrication | |
TW201013758A (en) | Semiconductor device and method for making semiconductor device having metal gate stack | |
TW200814234A (en) | Method for forming a strained transistor by stress memorization based on a stressed implantation mask | |
US7888214B2 (en) | Selective stress relaxation of contact etch stop layer through layout design | |
US9564488B2 (en) | Strained isolation regions | |
TW201010009A (en) | Method for fabricating a semiconductor device and semiconductor device therefrom | |
TW200903660A (en) | Enhanced transistor performance of N-channel transistors by using an additional layer above a dual stress liner in a semiconductor device | |
JP5204106B2 (en) | Method for forming a transistor with increased electron mobility | |
US7776695B2 (en) | Semiconductor device structure having low and high performance devices of same conductive type on same substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |