[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI231724B - OLED device and EL device - Google Patents

OLED device and EL device Download PDF

Info

Publication number
TWI231724B
TWI231724B TW092112128A TW92112128A TWI231724B TW I231724 B TWI231724 B TW I231724B TW 092112128 A TW092112128 A TW 092112128A TW 92112128 A TW92112128 A TW 92112128A TW I231724 B TWI231724 B TW I231724B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
cap
oled
patent application
Prior art date
Application number
TW092112128A
Other languages
Chinese (zh)
Other versions
TW200400773A (en
Inventor
Hooi-Bin Lim
Ewald Karl Michael Guenther
Shi-Chai Chong
Hagen Klausmann
David Lacey
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/142,208 external-priority patent/US7423375B2/en
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200400773A publication Critical patent/TW200400773A/en
Application granted granted Critical
Publication of TWI231724B publication Critical patent/TWI231724B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A method to ensure uniform deposition of organic layer is disclosed. Since the organic layer is very thin, any deviation from the target thickness will result in visible optical defects. A homogenous layer which exhibits good coating behaviour with organic materials is provided beneath the organic layer. By covering the metal interconnects, the adverse effect on the uniformity of the polymer layer is reduced or prevented.

Description

1 1231724 玖、發明說明: (一) 、發明所屬之技術領域 本發明係關有機裝置之製造,諸如電激發光或有機發光 二極體(〇 LED)裝置。特別是本發明係關於改善電激發光裝 置之封裝’及本發明之又一觀點係關於活性有機材料之同 質性或均勻沉積。 (二) 、先前技術 第1圖係顯示具有一或多個0 LED單胞之習知電激發光 裝置100。0LED單胞係包括透明導電層1〇5(如銦錫氧化物 或ITO)和導電層115之間,有一或多個有機功能層11〇的 功能堆疊。該些導電層係作爲電極。單胞係製造於基板1 〇 i 上之主動區域185中。該單胞可依需求建構成顯示器或指 示燈。形成電極及銲墊1 5 0間互連之金屬化層係被提供。 該銲墊係耦合至諸如驅動電路,以控制OLED單胞之動作。 帽蓋160,係形成空腔145,而封裝該裝置,緊密地密封0LEd 單胞以保護其對抗環境(如濕氣及/或空氣)。 動作時,電荷載體係經由電極注入用於在功能層中復合。 電荷載體之復合使單胞功能層發射可見輻射光。 用於沉積聚合物之技術包括,如旋塗或刮刀成型(d〇etQl< blading)。此種技術係塗覆整個基板表面。因聚合物非常軟 且局部易潮解,故必須自連接至基板的帽蓋區域(即帽蓋連 接區)完全移除。 再者,因銲墊一般係在聚合物材料沉積前形成,該材料 須自銲墊上移除,以露出用於耦合至驅動電路之靜墊。 -6 - 1231724 然而’此瓶頸技術係用於圖樣化聚合物材料。此乃因對 化學性質(乾或濕)有要求之技術係和光敏性聚酯材料不相 容。通常使用圖樣化之技術係爲鐳射熔削(abiati〇n)。 使用鐳射熔削時,高鐳射強度和較長之照射時間爲必須, 以自基板之選定區域上移除聚合物材料。高鐳射強度和較 長之照射時間,可能會損傷金屬化或聚合物下之銦錫氧化 物層,反而影響該裝置。再者,鐳射熔削並無法完全移除 聚合物材料’因在該層變得較薄時,光的吸收能力會下降。 無法自帽盖連接區域完全移除聚合物材料可能導致缺陷封 裝,造成失敗。 由上述之討論證明,提供具有可靠封裝的電激發光裝置 是受到期盼的。 再者,OLED裝置之有機功能層包括,如溶解在溶液中之 共輛聚合物。聚合物係藉如旋塗或刮刀成型(doctor blading) 技術或其他沉積/印刷技術沉積於基板上。一般而言,有機 層係非常薄,例如約50至400nm。因有機層非常薄,在該 層中很小的偏差或不均勻性可能導致裝置動作時的光學缺 陷。 有機層塗覆在備有圖樣化結構的玻璃基板上,諸如金屬 互連和銦錫氧化物電極結構。 不同的結構會在基板表面產生不均勻的形貌。依基板之 形貌,在不同的材料下具有不同的表面能量,使得提供均 勻之有機層成爲困難。 爲了改善有機層塗覆之均勻性,可採取各種解決方案。 -7- 1231724 此等解決方案包括,藉氧氣或電漿處理基板表面,選擇適 當之金屬使有機層展現較佳之塗覆成果,或修改有機材料 以產生較佳之塗覆特性。然而,此等解決方案是無益的, 此乃因有機材料之較佳塗覆特性之達成係藉由犧牲可製造 性,導致成本提高及/或使功能衰減。 由上所論述之事實,在有機裝置中提供均勻的有機功能 層而不會相反地影響裝置特性或增加製造成本,是更受到 期盼的。 (三) 、發明內容 本發明係關於電激發光裝置之密封。該電激發光裝置包 括:具有一活性區域而至少一 OLED單胞形成於其上之基 板;圍繞該活性區域之帽蓋連接區域;諸如光阻之保護層, 係提供在帽蓋焊線連接的活性區中。保護層允許用於形成 OLED的聚合物材料自帽蓋連接區域中移除,而不會損壞保 護層以下之各層。此會改善基板和帽蓋之間的密封。 本發明之另一項觀點係關於在有機裝置中有機層之均勻 沉積。該有機裝置包括一基板,其中有機層沉積在基板上, 或諸如電極、金屬互連部的其他層之上。諸如光阻之同質 層,其具有有機材料而呈現良好之塗覆特性,係被提供於 有機層之下。此避免可能影響基板上有機層均勻沉積之下 層金屬,導致例如在OLED單胞中的有害的效應。 (四) 、實施方式 第2圖中係顯示依照本發明之一實施例之有機裝置200。 該裝置包括一基板2 0 1,其具有一或多個活性元件形成在其 1231724 之主動區域2 8 5中。在一實施例中,該等主動元件包括一 或多個形成OLED裝置之OLED單胞。提供具有有機材料 之其他型式之主動元件,同時可用於形成其他型式之裝置。 在一實施例中,基板包括諸如玻璃之透明基板。可作爲 支撐OLED單胞之基板的其他型式透明材料,亦同時可使 用。例如:塑膠薄膜可應用於當作基板。塑膠材料對於形 成可撓性裝置係特別有用。非透明材料,諸如矽,係同時 可使用,特別是在由帽蓋觀點之應用。 一 OLED單胞包括1或多個夾於第一和第二電極205和 215間之有機層(有機堆疊)210。較佳地,該有機層係包括 共軛聚合物。其他型式有機材料例如低分子材料,寡聚合 物,starburst混合物或dendrimer材料,係亦可使用。該些 材料包括 tris-(8-hydroxyquinolate)-Aluminun(Alq), poly(p-phenylenevinylene)(PPV)或 polyfluorene(PF)。其他 型式包括螢光或磷光系之功能性有機層,亦可使用。在一 實施例中,一電洞傳輸層(HTL)係包括在有機堆疊210中。 該 HTL 包括諸如一般含 polyaniline(Pani)或 polythylenedioxythiophene (Pedot)之聚合物混合物。有機 堆疊之厚度一般係在2至500nm。 第一電極205作爲諸如陽極,此時第二電極(2 15)作爲陰 極。至少一個電極包括透明導電材料,如銦錫氧化物(IT0)。 陰極和陽極可依所需作圖樣化,以形成一或多個OLED單 胞。如陰極和陽極分別在第一和第二方向形成條狀,以創 造出像素化的裝置。其他圖樣亦爲有用的。一般而言,第 -9- 1231724 一和第二方向係彼此垂直。 帽蓋260係連接至基板中圍繞活性區域的帽蓋連接區 域,封裝OLED單胞。帽蓋產生一空腔245以保護單胞免 於因帽蓋受到碰撞而損傷。 裝置之主動區域可能包括,例如用於圖樣化裝置層的成 形墩柱(未顯示)。具有挖除下部的成形墩柱係用於圖樣化 頂部電極。成形墩柱之使用係敘述在例如”結構化電極之生 產”(US200 1/00 1 75 1 6A1)和”〇LED 裝置中電極之圖樣 化”(PCT/SG00/00 1 34)中,其係在此結合而參照到所有使用 目的。 基板係包括位於主動(active)區域28 5外側之第一電極205 之導電互連部。該互連部包括,例如金屬。如前所述,金屬 之互連部可能不利地影響有機層之均勻性。此有機層之不 平坦可能會從非活動區域之外側滲透進入此主動區域,其 中有機層係與下面之金屬層接觸,因此,不利地影響活性 元件。 依照本發明之一實施例,同質層275係提供在基板上活 性區域之外側。該同質層覆蓋基板之非活性區域中的金屬 互連部。該同質層包括在有機層中用於提升均勻性以形成 活性元件之材料。藉由覆蓋金屬互連部,有機層不均勻之 不利效應係被降低或防止。較佳地,該材料包括防止互連 部短路之絕緣材料。爲了同質層之材料導電之應用,須在 保護層之下提供一同質層。更佳地’同質層係由相容於裝 置之製造方法的材料所形成。例如,該材料須易於沉積在 - 1 0 - 1231724 基板上,或易於選擇性移除以露出所需之下層互連部分。 較佳地,該材料可被沉積或藉使用已用於製造該裝置之製 程而易於移除,因此可避免額外之工具或化學特性需求。 在另一實施例中,同質層包括諸如光阻之光敏性材料。其 他型式之光敏性材料,如聚硫亞胺(polyimide)亦爲有用。 非光敏性材料如樹酯或非光敏性聚硫亞胺亦可被使用。具 有良好塗覆特性之其他形式有機材料,亦能被使用。這些 包括,如 Novolak 樹酯,polybenzoxazole,pery 1 ene ° 同質層同時可有利地當作表面保護層。例如,在主動區 域外之有機層部份可能須被移除,使得在帽蓋連接區域中 提升帽蓋和基板之間的黏著性或露出用於銲墊之下層金屬 互連部。有機層之移除一般係藉鐳射熔削達成。然而,鐳 射熔削可能損傷金屬互連部,引起裝置瑕疵或性能之不良 影響。藉提供有機層下方之同質層,金屬互連部可被保護 免於在鐳射熔削製程中受到損傷。同質層之厚度須足夠, 以降低或消除在不均勻有機層上之互連金屬部的不良效 應。另外,同質層須足夠厚,以保護其下方之各層免於在 選擇性移除聚合物材料的製程中受到損傷。一般而言,其 厚度約〇·5〜2微米。其他厚度亦可被使用。 弟3圖係顯不依照本發明之另一實施例之電激發光裝置 200。該裝置包括一個基板201,其係具有一或多個0LED 單胞形成於其中的主動區域2 8 5。在一實施例中,基板包括 和基板相同材質的電激發光裝置係顯示於第2圖中。 顯示於第3圖之OLED單胞同時可能包括和第2圖裝置 1231724 相同的功能堆疊,由夾於第一和第二電極2 Ο 5和2 1 5之間 的一或多個有機層(聚合物堆疊)2 10組成。 陰極和陽極可依第2圖所述之裝置的相同方式,依照需 求圖樣化而形成一或多個OLED單胞。銲墊250係電氣耦 合至陰極和陽極。 帽蓋260係連接至基板中圍繞主動區域之帽蓋連接區 域,密封該些OLED單胞。該帽蓋產生一空腔245以保護 該些單胞免於因實際碰撞帽蓋而損傷。在一實施例中,該 帽蓋包括密封環或密封條(gasket)形成於其上之帽蓋基板。 該帽蓋基板可由如玻璃形成。其他可作爲帽蓋基板之材料, 諸如金屬或陶瓷亦可被使用。該密封環,例如可由光阻形 成。其它材料,諸如矽玻璃,矽氧化物或陶瓷亦可被使用。 黏合劑係用作接合帽蓋至基板。黏合劑包括,諸如環氧樹 酯系之樹酯,矽化物,胺基甲酸酯,丙烯或烯化合物。該 樹酯可以是紫外線或高溫塑形之樹酯。提供由樹酯接合劑 形成之密封環係同時爲有用的。選用地,帽蓋係由例如壓 鑄金屬或蝕刻玻璃,預製形成。 裝置之主動區域可能包括,例如成形墩柱。包括挖除下 部之成形墩柱係用於圖樣化頂部電極。成形墩柱之使用係 敘述在例如”結構化電極之生產”(US200 1 /00 1 75 1 6A1) 和”OLED裝置中電極之圖樣化”(PCT/SG00/00 1 345)中,其 係在此結合而參照到所有使用目的。可替代地或除了地成 形墩柱之外,間隔物質可被提供於基板上。間隔物質作爲 支撐帽蓋,防止其與OLED單胞接觸。間隔物質之使用, 1231724 係敘述在例如:”電器裝置之封裝,,(USSN09/9 893 62),”有 機OLED裝置之改善密封”(pCt/SG99/00 1 45),,,具有改良密 封之〇LED裝置”(PCT/SG99/00 1 43),其係在此結合而參照 到所有使用目的。 依照本發明之一實施例,用以當做保護層之同質層275 係提供在基板上的帽蓋連接區域之中。該帽蓋係接觸保護 層表面。在保護層下之不同層,如用於各電極之間的金屬 互連部及/或諸如ITO電極,係被保護在聚合物層移除時免 於受到損傷。因保護層當作是封裝的一部份,其須展現充 分的機械穩定度,良好之黏合特性和低滲透率,以確保帽 蓋和基板間較佳之密封。若表面保護層直接在金屬互連部 上’其須由絕緣材料形成。較佳地,表面保護層係由和OLED 製程相容之材料形成。典型地,表面保護層之厚度約爲 0.5〜5 0微米。其他厚度亦爲可用。在一實施例中,表面保 護層包括光阻。其他形式之光敏材料,諸如樹酯或非光敏 聚合物,亦亦爲可用。 第4〜9圖係顯示依照本發明之一實施例之製造〇LED裝 置的方法。參照第4圖,係提供基板3 0 1。在一實施例中, 基板包括透明基板,例如蘇打生石灰或砂酸硼玻璃。其他 形式之透明材料亦可使用當作基板。該基板一般係爲 0.4〜1.1毫米厚。 在另一實施例中,基板包括薄式可撓性基板。薄式可撓 性基板係由例如塑膠膜形成,如PET,PBT,PEN,PC,PT, PSO,PES,PE,PP,PVC,PS,PMMA,亦可使用以形成 1231724 基板。選用的材料包栝,如··超薄玻璃(如厚度介於i 〇〜i 〇〇 微米之間)’包括玻璃和聚合物之合成堆疊或塗覆在非有機 阻障層上之聚合物薄膜,亦可被使用。 基板係備製第一電極3 0 5。第一電極係至少位於在活性 區域。第一電極係作爲,如陽極。陽極之形成可藉如,沉 積及圖樣化基板上之導電層。不同之技術,如光照圖像, 亦可被用於圖樣化導電層。在一實施例中,陽極係以條狀 配置於第一方向中。具有其他圖樣之陽極亦可使用。在一 實例中’導電材料包括諸如銦錫氧化物(ITO)之透明導電材 料。其他透明導電材料,例如銦鋅氧化物、鋅氧化物、錫 氧化物,亦爲可用。 互連部3 7 5係提供於基板上活性區域之外。互連部係耦 合至例如電極。在一實施例中,導電層係沉積於基板上且 圖樣化以形成電氣互連部3 7 5和銲墊。導電層包括例如鋁、 銀、金或鉻。導電層之圖樣化可藉由傳統之光罩和蝕刻技 術達成。 參照第5圖,裝置層43 0係沉積於基板上。在一實施例 中,裝置層包括光阻。不同形式之光阻,例如正或負動作 型,皆可使用。其他形式之光敏材料或提升活性聚合物層 之均勻性的非光敏材料,亦可使用。若裝置層包括導電材 料,在有需要時,須提供一絕緣層於其下方,以防止互連 部短路。 參照第6圖,裝置層係接著圖樣化以形成一同質層575 於活性區域外部之區域。若採用光敏裝置層,依照正或負 -14 一 1231724 光敏材料,選擇性的圖樣化露出部分且移除露出或不需要 的部分’係被採用。另一方面,習知之光罩和蝕科技術可 備用於圖樣化非光敏裝置層。 參照第7圖,係爲後續完成製造OLED裝置之製程。各 種不同之習知技術可用於完成OLED裝置。在一實施例中, 成形墩柱68 5係形成於基板上。該成形墩柱包括挖除下部, 諸如V字形外廓,以在沉積時充分地遮斷導電層。較佳地, 成形墩柱係由一單層材料形成。在一實施例中,成形墩柱 係由包括負光阻之單層材料形成。其他形式之光敏材料亦 可被使用。非光敏材料亦可被使用以形成該成形墩柱。選 用地’該成形墩柱係由多數層所形成,以創造出一 T字形 外廓。該多數層可由光敏及/或非光敏材料形成。 在墩柱形成後,功能性有機層6 1 0係沉積於基板上。在 一實施例中,功能性有機層6 1 0係包括共軛聚合物。其他 形式之有機材料亦可使用。聚合物係藉由例如旋塗(spincoating)而沉積 。其 他沉積 技術亦 爲可用 。外 加之功 能層係 被沉積以形成功能性有機堆疊。不同型式之聚合物可被沉 積以形成多種色彩之OLED裝置。在主動區域外側之金屬 層下所存在的同質層,是用以確保聚合物有一良好之均勻 沈積。 參照第 8圖,第二導電層7 1 5係形成於基板上。該導 電層包括例如:鈣、鎂、鋇、銀、鋁或其混合物,或其合 金。特別地,這些包括低工作函數(work function),亦可 被使用以形成第二導電層。選用地,第二導電層包括離子混 - 15 - 1231724 合物’ S者如親化鋰(LiF)、贏化鎂(MgF)或氟化鉋(CsF)。在 一實施例中,第二導電層包括鈣。鈣層係藉例如以1奈米/ 秒(nm/s)之熱蒸發和1〇·5毫巴(mbar)之壓力而沉積。選用 地’第二導電層包括組合層或多重層之堆疊。例如該堆疊 包括第一鈣層及緊隨在後之銀或鋁的第二導電層。各種沉 積技術,諸如熱蒸發,濺鍍(PVD),化學氣相沉積(CVD), 電漿提升化學氣相沉積(PECVD)或金屬有機化學氣相沉積 (MOCVD),可被用於形成第二導電層。較佳地,陰影遮罩 係用於裝置之主動區域585中,以形成第二導電層。第二 導電層之沉積係由墩柱阻斷,以創造出第二電極或陰極。 該陰極和陽極之交叉點形成OLED單胞(cell)。 在活性區域外之有機層的部分係被移除,如第8圖所示。 蝕刻可藉例如鐳射熔削來被執行。在一實施例中,有機材 料可在第二電極形成前被移除。在第二電極形成後圖樣化 有機層亦可被使用。爲確保有機層完全被移除,係施行過 度蝕刻。過度蝕刻同時部分地移除當作表面保護層之同質 層。然而,在金屬互連部,因其受到表面保護層保護,而 不會有雷射熔削所導致的損傷。 如第9圖中所示,OLED裝置藉由安裝帽蓋860至基板上 之帽蓋連接區域而完成。在OLED裝置封裝後,在活性區 域外之同質層部分可使用習知之濕或乾式蝕刻技術而移 除,以露出聯交至電極之互連部。其它技術,例如鐳射熔 削亦可用於移除同質層。此處可以例如0.3焦耳/平方公分 之能量密度和248奈米之波長完成。 1231724 , 在一較佳實施例中,同質層的形成係爲製造OLED裝置 之現行製程的一部份。例如,在銲墊和互連部形成之後, 同質層之一部份可保留在基板上以當作表面保護層。 第10〜14圖係顯示依照本發明之一實施例之用於製造 O LED裝置的製程。參照第10圖,係提供一基板301。在 一實施例中,基板包括一透明基板,包括蘇打石灰或鋇矽 化物玻璃。如第4圖中所述之其他型式透明基板,亦可被 使用。 基板包括形成在其表面上之第一^電極305。第一*電極當 作,例如陽極。陽極可藉沉積和圖樣化基板上之導電層而 形成。各種技術,如光照圖像可被用於圖樣化導電層。在 一實施例中,陽極係在第一方向被配製成條狀。具有其他 圖像之陽極亦爲可用。在一實施例中,導電材料包括例如 銦錫氧化物(IT0)之透明導電材料。其它透明導電材料,例 如銦鋅氧化物,鋅氧化物,錫氧化物,亦可使用。銲墊和 其他互連部亦包括在基板之上。銲墊和互連部係藉沉積和 圖樣化導電層而完成。導電層包括諸如鋁、銀、金、鉻之 類金屬。圖樣化導電層可使用習知之光罩和蝕刻技術達成。 裝置層3 72係沉積於基板上。在一實施例中,表面保護 層包括光阻。各種形式光阻,例如正或負動作型,均可使 用。其他形式之光敏材料或非光敏材料,亦可使用。如第1 1 圖所示,裝置層係接著圖樣化,以形成在基板上的帽蓋連 接區域中之表面保護層475。若使用光敏裝置層,依照使用 正或負光敏材料,藉選擇性露出部分且移除該露出或非期 -17- 1231724 望之部分而圖樣化。另一方面,習知之光罩和蝕刻技術亦 可用於圖樣化非光敏裝置層。 參照第1 2圖,係爲後續完成製造〇LED裝置製程。各種 不同之習知技術可用於完成OLED裝置。在一實施例中, 成形墩柱5 84係形成於基板上。該成形墩柱包括挖除下部, 諸如V字形外廓,以在沉積時充分地遮斷導電層。較佳地, 成形墩柱係由一單層材料形成。在一實施例中,成形墩柱 係由包括負光阻之單層材料形成。其他形式之光敏材料亦 可被使用。非光敏材料亦可被使用以形成該成形墩柱。選 用地,該成形墩柱係由多數層所形成,以創造出一 T字形 外廓。該多數層可由光敏及/或非光敏材料形成。 在墩柱形成後,功能性有機層5 1 0係沉積於基板上。在 一實施例中,功能性有機層5 1 0係包括共軛聚合物。其他 形式之有機材料亦可使用。聚合物係藉由例如旋塗(spin-coating)而沉積 。其 他沉積 技術亦 爲可用 。外 加之功 能層係 被沉積以形成功能性有機堆疊。不同型式之聚合物可被沉 積以形成多種色彩之OLED裝置。 參照第1 3圖,第二導電層6 1 5係形成於基板上。該導 電層包括例如:鈣、鎂、鋇、銀、鋁或其混合物,或其合 金。特別地,這些包括低工作功能,亦可被使用以形成第 二導電層。選用地,第二導電層包括離子混合物,諸如氟 化鋰(LiF)、氟化鎂(MgF)或氟化絶(CsF)。在一實施例中, 第二導電層包括鈣。鈣層係藉例如以1奈米/秒(nm/s)之熱 蒸發和1〇·5毫巴(mb ar)之壓力而沉積。選用地,如第8圖 1231724 .. 所示,第二導電層包括相同之組合層或多重層之堆疊。如 第8圖所示,各層之配置使用相同方法沉積於基板上。 在帽蓋連接區域之聚合物層,可藉例如鐳射熔削而移除 或鈾刻。在一實施例中,聚合物係在在第二電極形成前被 移除。爲確保有機層完全被移除,係施行過度蝕刻。過度 蝕刻同時部分地移除表面保護層。然而,在金屬互連部, 因其受到表面保護層保護,而不會有雷射熔削所導致的損 傷。 如第14圖中所示,OLED裝置藉由安裝帽蓋760至基板 鲁 上之帽蓋連接區域而完成。表面保護層和帽蓋密封環形成 在帽蓋和基板間之介面。黏合樹酯可用於連接帽蓋和基板。 在一實施例中,黏合劑在基板和帽蓋間呈現良好之連接和 阻障特性,以緊密地密封OLED裝置。黏合劑包括,諸如 環氧樹酯系之樹酯,矽化物,胺基甲酸酯,丙烯或烯化合 物。該樹酯可以是紫外線或高溫塑形之樹酯。藉由使用保 護層,設計一個具有所需特性的密封系統(如黏合劑,帽蓋 材料和保護層材料)是很有彈性的。 鲁 在OLED裝置封裝後,在活性區域外之聚合物部分可使 用例如濕式蝕刻技術而移除。因裝置之活性區域係爲密封, 化學作用不會對OLED裝置有不良影響。 在一實施例中,表面保護層係以既有製程之製造OLED 製程一部份而形成。例如,在銲墊和當作表面保護層之互 連部形成後,光阻層之一部份可保留在基板上。選用地, 用於形成成形墩柱之裝置層,可有利的圖樣化,以包括表 -19- 1231724 面保護層。 本發明之保護範圍,並不限於如上所述之實例。本發明 係在各新穎特性和各特性組合之具體化,其包括在申請專 利範圍中所述之任何特徵的各種組合,即使這些特徵的組 合並未在申請專利範圍中詳細敘述。 (五)、圖示簡單說明 第1圖顯示一習知OLED裝置; 弟2圖顯不本發明之一*實施例; 第3圖顯示本發明之一實施例; 第4〜9圖顯示顯示依照本發明之一實施例,製造OLE D裝 置之製程; 第10〜14圖顯示顯示依照本發明之另一實施例,製造〇LED 裝置之製程; 元件代表符號簡單說明: 100 電激發光裝置 102 基板1 1231724 (1) Description of the invention: (1) Technical field to which the invention belongs The invention relates to the manufacture of organic devices, such as electrically excited light or organic light emitting diode (0 LED) devices. In particular, the present invention relates to the improvement of packaging of electroluminescent devices' and another aspect of the present invention relates to the homogeneity or uniform deposition of active organic materials. (2) The first diagram of the prior art shows a conventional electrical excitation light device 100 having one or more 0 LED cells. The 0LED cell system includes a transparent conductive layer 105 (such as indium tin oxide or ITO) and Between the conductive layers 115, there is a functional stack of one or more organic functional layers 110. These conductive layers serve as electrodes. The unit cell line is fabricated in an active region 185 on the substrate 100. The unit can be constructed as a display or indicator light as required. A metallization layer forming the interconnections between the electrodes and the pads 150 is provided. The pad is coupled to, for example, a driving circuit to control the action of the OLED unit cell. The cap 160 forms a cavity 145, and encapsulates the device to tightly seal the OLEd unit to protect it from the environment (such as moisture and / or air). During operation, a charge carrier is injected through an electrode for recombination in a functional layer. The recombination of charge carriers causes the unit cell functional layer to emit visible radiation. Techniques for depositing polymers include, for example, spin coating or doctor blade forming (doetQl < blading). This technique coats the entire substrate surface. Because the polymer is very soft and is prone to deliquescence, it must be completely removed from the cap area (that is, cap connection area) attached to the substrate. Furthermore, because the solder pads are generally formed before the polymer material is deposited, the material must be removed from the solder pads to expose a static pad for coupling to the driving circuit. -6-1231724 However, this bottleneck technique is used to pattern polymer materials. This is because the technical systems that require chemical properties (dry or wet) are incompatible with photosensitive polyester materials. A technique commonly used for patterning is laser melting (abiation). When laser melting is used, high laser intensity and longer irradiation time are necessary to remove the polymer material from selected areas of the substrate. High laser intensity and long exposure time may damage the indium tin oxide layer under the metallization or polymer, and instead affect the device. Furthermore, the laser melting cannot completely remove the polymer material 'because the light absorption capacity will decrease when the layer becomes thinner. Failure to completely remove the polymer material from the cap attachment area can result in defective packaging and failure. As discussed above, it has been desired to provide an electro-optic device with a reliable package. Furthermore, the organic functional layer of the OLED device includes, for example, a total polymer dissolved in a solution. The polymer is deposited on the substrate by, for example, spin coating or doctor blading or other deposition / printing techniques. Generally, the organic layer is very thin, for example, about 50 to 400 nm. Because the organic layer is very thin, small deviations or non-uniformities in this layer may cause optical defects during device operation. The organic layer is coated on a glass substrate provided with a patterned structure, such as a metal interconnect and an indium tin oxide electrode structure. Different structures will produce uneven topography on the substrate surface. Depending on the morphology of the substrate, different surface energies under different materials make it difficult to provide a uniform organic layer. In order to improve the uniformity of the organic layer coating, various solutions can be taken. -7- 1231724 These solutions include treating the surface of the substrate with oxygen or plasma, choosing the appropriate metal to make the organic layer exhibit better coating results, or modifying the organic material to produce better coating characteristics. However, these solutions are not beneficial because the better coating characteristics of organic materials are achieved by sacrificing manufacturability, resulting in increased costs and / or reduced functionality. From the facts discussed above, it is more desirable to provide a uniform organic functional layer in an organic device without adversely affecting device characteristics or increasing manufacturing costs. (3) Summary of the Invention The present invention relates to the sealing of an electro-excitation light device. The electroluminescent device includes: a substrate having an active region on which at least one OLED unit cell is formed; a cap connection region surrounding the active region; a protective layer such as a photoresist, provided at Active area. The protective layer allows the polymer material used to form the OLED to be removed from the cap connection area without damaging the layers below the protective layer. This improves the seal between the substrate and the cap. Another aspect of the present invention relates to the uniform deposition of organic layers in organic devices. The organic device includes a substrate in which an organic layer is deposited on the substrate, or other layers such as electrodes, metal interconnections. Homogeneous layers such as photoresist, which have organic materials and exhibit good coating characteristics, are provided under the organic layer. This avoidance may affect the uniform deposition of the underlying metal on the organic layer on the substrate, resulting in harmful effects such as in OLED cells. (IV), Embodiment FIG. 2 shows an organic device 200 according to an embodiment of the present invention. The device includes a substrate 201 having one or more active elements formed in its active area 2 315 of 1231724. In one embodiment, the active devices include one or more OLED cells that form an OLED device. Provide other types of active components with organic materials, which can also be used to form other types of devices. In one embodiment, the substrate includes a transparent substrate such as glass. Other types of transparent materials that can be used as a substrate to support OLED cells are also used at the same time. For example: plastic film can be used as a substrate. Plastic materials are particularly useful for forming flexible device systems. Non-transparent materials, such as silicon, can be used at the same time, especially in applications from the viewpoint of caps. An OLED unit cell includes one or more organic layers (organic stacks) 210 sandwiched between first and second electrodes 205 and 215. Preferably, the organic layer system comprises a conjugated polymer. Other types of organic materials such as low molecular materials, oligomers, starburst mixtures or dendrimer materials can also be used. These materials include tris- (8-hydroxyquinolate) -Aluminun (Alq), poly (p-phenylenevinylene) (PPV) or polyfluorene (PF). Other types including fluorescent or phosphorescent functional organic layers can also be used. In one embodiment, a hole transport layer (HTL) is included in the organic stack 210. The HTL includes polymer mixtures such as those containing polyaniline (Pani) or polythylenedioxythiophene (Pedot). The thickness of the organic stack is generally between 2 and 500 nm. The first electrode 205 functions as an anode, for example, and the second electrode (215) functions as a cathode at this time. At least one electrode includes a transparent conductive material, such as indium tin oxide (IT0). The cathode and anode can be patterned as desired to form one or more OLED cells. For example, the cathode and anode are formed into strips in the first and second directions, respectively, to create a pixelated device. Other patterns are also useful. Generally speaking, the first and second directions of -9-1231724 are perpendicular to each other. The cap 260 is connected to the cap connection region surrounding the active region in the substrate, and encapsulates the OLED unit cell. The cap creates a cavity 245 to protect the unit cell from damage caused by the cap being hit. The active area of the device may include, for example, shaped pier columns (not shown) for patterning the device layer. Formed piers with cutouts are used to pattern the top electrode. The use of shaped pier columns is described in, for example, "production of structured electrodes" (US200 1/00 1 75 1 6A1) and "〇patterning of electrodes in LED devices" (PCT / SG00 / 00 1 34). Reference is made here to all uses. The substrate includes conductive interconnections of the first electrode 205 located outside the active region 285. The interconnect includes, for example, metal. As mentioned earlier, the metal interconnects may adversely affect the uniformity of the organic layer. The unevenness of the organic layer may penetrate into the active area from the outside of the non-active area, where the organic layer is in contact with the underlying metal layer, thereby adversely affecting the active element. According to an embodiment of the present invention, the homogeneous layer 275 is provided outside the active area on the substrate. The homogeneous layer covers a metal interconnection in an inactive region of the substrate. The homogeneous layer includes a material for improving uniformity in the organic layer to form an active element. By covering the metal interconnections, the adverse effect of the unevenness of the organic layer is reduced or prevented. Preferably, the material includes an insulating material that prevents a short circuit in the interconnect portion. For applications where the material of the homogeneous layer is conductive, a homogeneous layer must be provided under the protective layer. More preferably, the 'homogeneous layer' is formed of a material compatible with the manufacturing method of the device. For example, the material must be easy to deposit on a-10-1231724 substrate, or it must be easily removed to expose the required underlying interconnects. Preferably, the material can be deposited or easily removed by using a process that has been used to manufacture the device, thus avoiding the need for additional tools or chemical properties. In another embodiment, the homogeneous layer includes a photosensitive material such as a photoresist. Other types of photosensitive materials, such as polyimide, are also useful. Non-photosensitive materials such as resins or non-photosensitive polythioimines can also be used. Other forms of organic materials with good coating properties can also be used. These include, for example, Novolak resin, polybenzoxazole, pery 1 ene ° Homogeneous layers can also be advantageously used as surface protective layers. For example, the portion of the organic layer outside the active area may have to be removed so that the adhesion between the cap and the substrate is increased in the cap connection area or exposed for the underlying metal interconnects of the pads. Removal of the organic layer is usually achieved by laser melting. However, laser melting may damage metal interconnections, causing device defects or adverse effects on performance. By providing a homogeneous layer under the organic layer, the metal interconnects can be protected from damage during the laser melting process. The thickness of the homogeneous layer must be sufficient to reduce or eliminate the adverse effects of the interconnecting metal portions on the uneven organic layer. In addition, the homogeneous layer must be thick enough to protect the layers below it from damage during the selective removal of the polymer material. Generally speaking, its thickness is about 0.5 to 2 microns. Other thicknesses can also be used. Figure 3 shows an electro-optic device 200 according to another embodiment of the present invention. The device includes a substrate 201 having an active region 2 8 5 in which one or more OLED cells are formed. In one embodiment, the substrate includes an electro-optic device having the same material as the substrate is shown in FIG. 2. The OLED unit shown in Figure 3 may also include the same functional stack as the device 1231724 in Figure 2. It consists of one or more organic layers (polymerized) sandwiched between the first and second electrodes 2 05 and 2 1 5 Stack) 2 10 composition. The cathode and anode can be patterned in the same manner as the device described in Figure 2 to form one or more OLED cells. The pads 250 are electrically coupled to the cathode and anode. The cap 260 is connected to the cap connection area surrounding the active area in the substrate, and seals the OLED cells. The cap creates a cavity 245 to protect the cells from damage caused by an actual collision with the cap. In one embodiment, the cap includes a cap substrate on which a seal ring or a gasket is formed. The cap substrate may be formed of, for example, glass. Other materials that can be used as the cap substrate, such as metal or ceramic, can also be used. The seal ring may be formed of, for example, a photoresist. Other materials such as silica glass, silicon oxide or ceramics can also be used. The adhesive is used to bond the cap to the substrate. Binders include, for example, epoxy resin-based resins, silicides, urethanes, propylene or olefinic compounds. The resin may be a resin shaped by ultraviolet or high-temperature molding. It is also useful to provide a seal ring system formed from a resin cement. Optionally, the cap is preformed from, for example, die-cast metal or etched glass. The active area of the device may include, for example, a shaped pier. Formed pier columns including the excavated lower part are used to pattern the top electrode. The use of shaped pier columns is described in, for example, "production of structured electrodes" (US200 1/00 1 75 1 6A1) and "patterning of electrodes in OLED devices" (PCT / SG00 / 00 1 345), which are described in This combination refers to all uses. Alternatively or in addition to a ground-shaped pier, a spacer may be provided on the substrate. The spacer acts as a support cap to prevent it from contacting the OLED cell. The use of spacer materials, 1231724 is described in, for example: "Encapsulation of electrical devices, (USSN09 / 9 893 62)," Improved sealing of organic OLED devices "(pCt / SG99 / 00 1 45), and has improved sealing 〇LED device "(PCT / SG99 / 00 1 43), which is incorporated here with reference to all purposes of use. According to an embodiment of the present invention, a homogeneous layer 275 serving as a protective layer is provided in a cap connection area on the substrate. The cap is in contact with the surface of the protective layer. Different layers under the protective layer, such as the metal interconnections used between the electrodes and / or electrodes such as ITO, are protected from damage when the polymer layer is removed. As the protective layer is considered as part of the package, it must exhibit sufficient mechanical stability, good adhesion characteristics and low permeability to ensure a better seal between the cap and the substrate. If the surface protection layer is directly on the metal interconnection, it must be formed of an insulating material. Preferably, the surface protection layer is formed of a material compatible with the OLED process. Typically, the thickness of the surface protective layer is about 0.5 to 50 microns. Other thicknesses are also available. In one embodiment, the surface protection layer includes a photoresist. Other forms of photosensitive materials, such as resins or non-photosensitive polymers, are also available. Figures 4 to 9 show a method for manufacturing an LED device according to an embodiment of the present invention. Referring to FIG. 4, a substrate 3 0 1 is provided. In one embodiment, the substrate includes a transparent substrate, such as soda lime or boron oxalate glass. Other forms of transparent materials can also be used as substrates. The substrate is generally 0.4 to 1.1 mm thick. In another embodiment, the substrate includes a thin flexible substrate. The thin flexible substrate is formed of, for example, a plastic film, such as PET, PBT, PEN, PC, PT, PSO, PES, PE, PP, PVC, PS, PMMA. It can also be used to form a 1231724 substrate. Selected materials include, for example, ultra-thin glass (eg, thickness between 100 and 100 microns), including synthetic stacks of glass and polymers or polymer films coated on non-organic barrier layers Can also be used. The substrate is prepared with a first electrode 305. The first electrode system is located at least in the active region. The first electrode serves as, for example, the anode. The anode can be formed by, for example, depositing and patterning a conductive layer on a substrate. Different techniques, such as illuminated images, can also be used to pattern the conductive layer. In one embodiment, the anodes are arranged in a strip shape in the first direction. Anodes with other patterns can also be used. In one example 'the conductive material includes a transparent conductive material such as indium tin oxide (ITO). Other transparent conductive materials, such as indium zinc oxide, zinc oxide, tin oxide, are also available. The interconnections 3 7 5 are provided outside the active area on the substrate. The interconnect is coupled to, for example, an electrode. In one embodiment, a conductive layer is deposited on the substrate and patterned to form electrical interconnections 3 75 and pads. The conductive layer includes, for example, aluminum, silver, gold, or chromium. Patterning of the conductive layer can be achieved by conventional photomasks and etching techniques. Referring to FIG. 5, the device layer 430 is deposited on the substrate. In one embodiment, the device layer includes a photoresist. Different types of photoresistors, such as positive or negative action types, can be used. Other forms of photosensitive materials or non-photosensitive materials that enhance the uniformity of the active polymer layer can also be used. If the device layer includes a conductive material, an insulating layer must be provided underneath it when necessary to prevent short circuits in the interconnects. Referring to FIG. 6, the device layer is then patterned to form a homogeneous layer 575 outside the active area. If a photosensitive device layer is used, in accordance with a positive or negative -14-1231724 photosensitive material, a selective patterning of exposed portions and removal of exposed or unnecessary portions' is used. On the other hand, the conventional photomask and etching technology can be used for patterning non-photosensitive device layers. Referring to FIG. 7, it is a subsequent process for manufacturing an OLED device. A variety of different conventional techniques can be used to complete OLED devices. In one embodiment, the shaped pier 685 is formed on the base plate. The shaped pier includes a cut out of the lower portion, such as a V-shaped profile, to fully interrupt the conductive layer during deposition. Preferably, the shaped pier is formed from a single layer of material. In one embodiment, the shaped pier is formed from a single layer of material including a negative photoresist. Other forms of photosensitive materials can also be used. Non-photosensitive materials can also be used to form the shaped pier. Optional site 'The shaped pier column system is formed by multiple layers to create a T-shaped profile. The majority layer may be formed of a photosensitive and / or non-photosensitive material. After the pier is formed, the functional organic layer 6 10 is deposited on the substrate. In one embodiment, the functional organic layer 6 1 0 includes a conjugated polymer. Other forms of organic materials can also be used. The polymer is deposited by, for example, spincoating. Other deposition techniques are also available. In addition, functional layers are deposited to form a functional organic stack. Different types of polymers can be deposited to form multiple color OLED devices. A homogeneous layer under the metal layer outside the active area is used to ensure a good uniform polymer deposition. Referring to FIG. 8, the second conductive layer 7 1 5 is formed on the substrate. The conductive layer includes, for example, calcium, magnesium, barium, silver, aluminum, or a mixture thereof, or an alloy thereof. In particular, these include low work functions and can also be used to form a second conductive layer. Optionally, the second conductive layer includes an ionic mixed compound such as lithium-ionized (LiF), magnesium-magnesium (MgF), or fluoride fluoride (CsF). In one embodiment, the second conductive layer includes calcium. The calcium layer is deposited, for example, by thermal evaporation at 1 nanometer / second (nm / s) and a pressure of 10.5 mbar. Optionally, the second conductive layer includes a combination layer or a stack of multiple layers. For example, the stack includes a first calcium layer and a second conductive layer of silver or aluminum immediately following. Various deposition techniques, such as thermal evaporation, sputtering (PVD), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD) or metal organic chemical vapor deposition (MOCVD), can be used to form the second Conductive layer. Preferably, the shadow mask is used in the active area 585 of the device to form a second conductive layer. The deposition of the second conductive layer is blocked by the pier to create a second electrode or cathode. The intersection of the cathode and anode forms an OLED cell. Parts of the organic layer outside the active area are removed, as shown in FIG. 8. Etching may be performed by, for example, laser melting. In one embodiment, the organic material may be removed before the second electrode is formed. The organic layer may be patterned after the second electrode is formed. To ensure that the organic layer is completely removed, excessive etching is performed. Over-etching simultaneously partially removes the homogeneous layer that serves as a surface protection layer. However, the metal interconnections are protected by the surface protective layer without being damaged by laser melting. As shown in FIG. 9, the OLED device is completed by mounting the cap 860 to the cap connection area on the substrate. After the OLED device is packaged, the portion of the homogeneous layer outside the active area can be removed using conventional wet or dry etching techniques to expose the interconnections that are connected to the electrodes. Other techniques, such as laser melting, can also be used to remove homogeneous layers. This can be done, for example, at an energy density of 0.3 Joules per square centimeter and a wavelength of 248 nm. 1231724, in a preferred embodiment, the formation of a homogeneous layer is part of a current process for manufacturing an OLED device. For example, after the pads and interconnects are formed, a portion of the homogeneous layer may remain on the substrate as a surface protection layer. 10 to 14 show a process for manufacturing an O LED device according to an embodiment of the present invention. Referring to FIG. 10, a substrate 301 is provided. In one embodiment, the substrate includes a transparent substrate including soda lime or barium silicide glass. Other types of transparent substrates as shown in Figure 4 can also be used. The substrate includes a first electrode 305 formed on a surface thereof. The first * electrode acts as, for example, the anode. The anode can be formed by depositing and patterning a conductive layer on a substrate. Various techniques, such as illuminated images, can be used to pattern the conductive layer. In one embodiment, the anode is formed into a strip shape in the first direction. Anodes with other images are also available. In one embodiment, the conductive material includes a transparent conductive material such as indium tin oxide (IT0). Other transparent conductive materials, such as indium zinc oxide, zinc oxide, tin oxide, can also be used. Pads and other interconnects are also included on the substrate. The pads and interconnects are completed by depositing and patterning a conductive layer. The conductive layer includes a metal such as aluminum, silver, gold, and chromium. The patterned conductive layer can be achieved using conventional photomasks and etching techniques. The device layer 3 72 is deposited on the substrate. In one embodiment, the surface protection layer includes a photoresist. Various types of photoresistors, such as positive or negative action type, can be used. Other forms of photosensitive materials or non-photosensitive materials can also be used. As shown in FIG. 11, the device layer is then patterned to form a surface protective layer 475 in the cap connection area on the substrate. If a photosensitive device layer is used, according to the use of positive or negative photosensitive material, the pattern can be patterned by selectively exposing the part and removing the exposed or unexpected part. On the other hand, conventional photomasks and etching techniques can also be used to pattern non-photosensitive device layers. Refer to Figure 12 for the subsequent completion of the manufacturing process of the LED device. Various known techniques can be used to complete OLED devices. In one embodiment, the shaped pier 5 84 is formed on the base plate. The shaped pier includes a cut out of the lower portion, such as a V-shaped profile, to fully interrupt the conductive layer during deposition. Preferably, the shaped pier is formed from a single layer of material. In one embodiment, the shaped pier is formed from a single layer of material including a negative photoresist. Other forms of photosensitive materials can also be used. Non-photosensitive materials can also be used to form the shaped pier. Optionally, the shaped pier column system is formed from multiple layers to create a T-shaped profile. The majority layer may be formed of a photosensitive and / or non-photosensitive material. After the pillars are formed, the functional organic layer 5 10 is deposited on the substrate. In one embodiment, the functional organic layer 5 1 0 includes a conjugated polymer. Other forms of organic materials can also be used. The polymer is deposited by, for example, spin-coating. Other deposition techniques are also available. In addition, functional layers are deposited to form a functional organic stack. Different types of polymers can be deposited to form multiple color OLED devices. Referring to FIG. 13, the second conductive layer 6 1 5 is formed on the substrate. The conductive layer includes, for example, calcium, magnesium, barium, silver, aluminum, or a mixture thereof, or an alloy thereof. In particular, these include low operating functions and can also be used to form a second conductive layer. Optionally, the second conductive layer includes an ionic mixture, such as lithium fluoride (LiF), magnesium fluoride (MgF), or fluorinated insulation (CsF). In one embodiment, the second conductive layer includes calcium. The calcium layer is deposited, for example, by thermal evaporation at 1 nanometer / second (nm / s) and pressure at 10.5 mbar (mb ar). Alternatively, as shown in FIG. 8 1231724 .., the second conductive layer includes the same combination layer or a stack of multiple layers. As shown in Figure 8, the configuration of each layer is deposited on the substrate using the same method. The polymer layer in the connection area of the cap can be removed or etched by, for example, laser melting. In one embodiment, the polymer is removed before the second electrode is formed. To ensure that the organic layer is completely removed, over-etching is performed. Excessive etching also partially removes the surface protective layer. However, the metal interconnections are protected by a surface protective layer without being damaged by laser melting. As shown in FIG. 14, the OLED device is completed by mounting the cap 760 to the cap connection area on the substrate. A surface protective layer and a cap seal ring are formed at the interface between the cap and the substrate. Adhesive resins can be used to connect caps and substrates. In one embodiment, the adhesive exhibits good connection and barrier properties between the substrate and the cap to tightly seal the OLED device. Binders include, for example, epoxy resins, silicides, urethanes, propylene or olefinic compounds. The resin may be a resin shaped by ultraviolet or high-temperature molding. By using a protective layer, it is very flexible to design a sealing system (such as adhesive, cap material and protective layer material) with the required characteristics. After the OLED device is packaged, the polymer portion outside the active area can be removed using, for example, wet etching techniques. Because the active area of the device is sealed, the chemical action will not adversely affect the OLED device. In one embodiment, the surface protection layer is formed by a part of an existing OLED manufacturing process. For example, a portion of the photoresist layer may remain on the substrate after the pads and the interconnections serving as surface protection layers are formed. Optionally, the device layer used to form the shaped pier can be advantageously patterned to include the surface protection layer of Table -19-1231724. The protection scope of the present invention is not limited to the examples described above. The invention is the embodiment of novel features and combinations of features, including various combinations of any of the features described in the scope of the patent application, even if the combination of these features is not described in detail in the scope of the patent application. (5) Brief description of the diagram. Figure 1 shows a conventional OLED device; Figure 2 shows a * embodiment of the present invention; Figure 3 shows an embodiment of the present invention; Figures 4 to 9 show the display according to An embodiment of the present invention is a process for manufacturing an OLE D device. Figures 10 to 14 show a process for manufacturing an OLED device according to another embodiment of the present invention. A brief description of the component representative symbols: 100 electro-optical device 102 substrate

105 透明導電層 no 有機功能層 115 導電層 145 空腔 151 銲墊 161 帽蓋 185 主動區域 2〇〇 有機/電激發光裝置 1231724 20 1 基 板 205 第 一 電 極 210 有 機 層 2 15 第 二 電 極 245 空 腔 250 靜 墊 260 帽 蓋 275 同 質 層 285 主 動 區 域 301 基 板 305 第 一 電 極 372 裝 置 層 3 75 互 連 部 430 裝 置 層 475 表 面 保 護 層 5 10 功 能 性 有 機 層 575 同 質 層 585 主 動 域 610 功 能 性 有 機 層 615 第 二 導 電 層 5 84,685 成 形 墩 柱 715 第 二 導 電 層 860 帽蓋105 Transparent conductive layer no Organic functional layer 115 Conductive layer 145 Cavity 151 Solder pad 161 Cap 185 Active area 200 Organic / electrically excited light device 1231724 20 1 Substrate 205 First electrode 210 Organic layer 2 15 Second electrode 245 Empty Cavity 250 static pad 260 cap 275 homogeneous layer 285 active area 301 substrate 305 first electrode 372 device layer 3 75 interconnect 430 device layer 475 surface protective layer 5 10 functional organic layer 575 homogeneous layer 585 active domain 610 functional organic Layer 615 second conductive layer 5 84,685 shaped pier 715 second conductive layer 860 cap

Claims (1)

—籍ΓΓ▼請專利範圍: 第92 1 1 2 1 28號「OLED裝置和電激發光裝置」專利案 (93年11月修正) 1 . 一種OLED裝置,包括: 一具有一活性(active)區域之基板; 一圍繞該活性區域之帽蓋連接區域; 一位於金屬化層之上之同質層,該同質層提升該基板上 有機層之塗覆的均勻性,且因此降低或防止金屬的不良 效應,及 一在該帽蓋連接區域連接至基板的帽蓋。 2 ·如申請專利範圍第1項之裝置,其中該同質層係包括一 非導電材料。 3 ·如申請專利範圍第1項之裝置,其中該同質層係包括提 升有機層均勻性之材料。 4 ·如申請專利範圍第1項之裝置,其中該同質層係包括一 光敏材料。 5 ·如申請專利範圍第4項之裝置,其中該光敏材料包括光 阻或聚硫亞胺(polyamide)。 6 ·如申請專利範圍第1項之裝置,其中該同質層係包括一 非光敏材料。 7 ·如申請專利範圍第6項之裝置,其中該非光敏材料包括 聚硫亞胺(polyamide)。 8·如申請專利範圍第1項之裝置,其中該同質層係同時作 爲一表面保護層。 其中該表面保護層允許—Regarding ΓΓ ▼ Please patent scope: Patent No. 92 1 1 2 1 28 "OLED device and electro-excitation light device" patent (Amended in November 1993) 1. An OLED device comprising: an active area A substrate; a cap connection region surrounding the active region; a homogeneous layer above the metallization layer, the homogeneous layer improving the uniformity of the coating of the organic layer on the substrate, and thus reducing or preventing the adverse effects of the metal And a cap connected to the substrate at the cap connection area. 2. The device of claim 1 in which the homogeneous layer comprises a non-conductive material. 3. The device according to item 1 of the scope of patent application, wherein the homogeneous layer includes a material that improves the uniformity of the organic layer. 4. The device as claimed in claim 1, wherein the homogeneous layer comprises a photosensitive material. 5. The device according to item 4 of the patent application, wherein the photosensitive material comprises a photoresist or a polythioimide (polyamide). 6. The device as claimed in claim 1 wherein the homogeneous layer comprises a non-photosensitive material. 7. The device according to item 6 of the patent application, wherein the non-photosensitive material comprises a polythioimide (polyamide). 8. The device according to item 1 of the patent application scope, wherein the homogeneous layer is also used as a surface protection layer. Wherein the surface protection layer allows 9 ·如申請專利範圍第S項之裝置, 一卜 1231724 自OLED單胞中移除聚硫亞胺材料,而不會損壞裝置層 或保護層以下之各層。 如申請專利範圍第9項之裝置’其中一黏合劑係作爲連 接該帽蓋至該基板。 如申請專利範圍第10項之裝置,其中該帽蓋,該保護層 和黏合劑係形成一密封系統。 1 2 ·如申請專利範圍第11項之裝置,其中該密封系統之材料 係可選擇以提供所要的密封特性。9 · If the device in the scope of patent application is S, I 1231724 removes the polythioimide material from the OLED cell without damaging the device layer or the layers below the protective layer. For example, in the device 9 of the scope of patent application, one of the adhesives is used to connect the cap to the substrate. For example, the device of claim 10, wherein the cap, the protective layer and the adhesive form a sealing system. 1 2 · For the device in the scope of patent application No. 11, wherein the material of the sealing system is selected to provide the desired sealing characteristics. 1 3.如申請專利範圍第1 0項之裝置,其中該黏合劑包括一樹 M· —電激發光裝置,包括: 一具有一活性區域中含有0LED單胞之基板; 一圍繞該活性區域之帽蓋連接區域; 一位於該帽蓋連接區域中之保護層,該保護層允許自該 0LED單胞中移除聚硫亞胺材料,而不會損壞裝置層或保 護層以下之各層;及 一在該帽蓋連接區域連接至基板的帽蓋。13 3. The device according to item 10 of the patent application scope, wherein the adhesive comprises a tree M · —electrically excited light device, including: a substrate having an 0LED unit cell in an active area; a cap surrounding the active area Cover connection area; a protective layer located in the connection area of the cap, the protective layer allowing removal of the polythioimide material from the OLED unit without damaging the device layer or the layers below the protective layer; The cap connection area is connected to a cap of the substrate. -2--2-
TW092112128A 2002-05-07 2003-05-02 OLED device and EL device TWI231724B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/142,208 US7423375B2 (en) 2002-05-07 2002-05-07 Encapsulation for electroluminescent devices
US10/249,533 US7148624B2 (en) 2002-05-07 2003-04-17 Uniform deposition of organic layer

Publications (2)

Publication Number Publication Date
TW200400773A TW200400773A (en) 2004-01-01
TWI231724B true TWI231724B (en) 2005-04-21

Family

ID=29423044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092112128A TWI231724B (en) 2002-05-07 2003-05-02 OLED device and EL device

Country Status (6)

Country Link
US (1) US7148624B2 (en)
EP (1) EP1502311B1 (en)
JP (1) JP2005524946A (en)
CN (1) CN1653626B (en)
TW (1) TWI231724B (en)
WO (1) WO2003096440A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423375B2 (en) * 2002-05-07 2008-09-09 Osram Gmbh Encapsulation for electroluminescent devices
US7224116B2 (en) 2002-09-11 2007-05-29 Osram Opto Semiconductors Gmbh Encapsulation of active electronic devices
US7193364B2 (en) * 2002-09-12 2007-03-20 Osram Opto Semiconductors (Malaysia) Sdn. Bhd Encapsulation for organic devices
JP4255844B2 (en) * 2003-02-24 2009-04-15 ソニー株式会社 Organic light-emitting display device and method for manufacturing the same
US20050116245A1 (en) 2003-04-16 2005-06-02 Aitken Bruce G. Hermetically sealed glass package and method of fabrication
US7026660B2 (en) * 2003-04-25 2006-04-11 Osram Opto Semiconductors (Malaysia) Sdn. Bhd Interconnection for organic devices
JP4534064B2 (en) * 2003-08-27 2010-09-01 奇美電子股▲ふん▼有限公司 Manufacturing method of organic EL display
GB0408569D0 (en) * 2004-04-16 2004-05-19 Exitech Ltd Method of patterning a functional material on to a substrate
US7151342B2 (en) * 2004-05-07 2006-12-19 E. I. Du Pont De Nemours And Company Processes for removing organic layers and organic electronic devices formed by the processes
KR100681022B1 (en) * 2004-06-16 2007-02-09 엘지전자 주식회사 Organic electroluminescent display device and manufacturing method thereof
EP1717877B1 (en) * 2005-04-26 2015-06-03 OSRAM Opto Semiconductors GmbH Laser process for reliable and low-resistance electrical contacts
JP4886540B2 (en) * 2006-03-01 2012-02-29 キヤノン株式会社 Organic EL element panel
JP2008192426A (en) * 2007-02-02 2008-08-21 Fujifilm Corp Light emitting device
TWI420722B (en) 2008-01-30 2013-12-21 Osram Opto Semiconductors Gmbh Device with package unit
CN102077688A (en) 2008-07-08 2011-05-25 日东电工株式会社 Process for producing organic electroluminescent panel
CN103081150A (en) * 2010-09-02 2013-05-01 昭和电工株式会社 EL element, EL element manufacturing method, display device, and illumination device
KR101922603B1 (en) * 2011-03-04 2018-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device, lighting device, substrate, and manufacturing method of substrate

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632298B2 (en) * 1987-08-31 1994-04-27 シャープ株式会社 Thin film EL display
US5059148A (en) * 1987-12-21 1991-10-22 Gte Products Corporation Thin film flat panel displays and method of manufacture
US5427858A (en) * 1990-11-30 1995-06-27 Idemitsu Kosan Company Limited Organic electroluminescence device with a fluorine polymer layer
US5757127A (en) * 1994-06-10 1998-05-26 Nippondenso Co., Ltd. Transparent thin-film EL display apparatus with ambient light adaptation means
WO1996008122A1 (en) * 1994-09-08 1996-03-14 Idemitsu Kosan Co., Ltd. Method for sealing organic el element and organic el element
US6195142B1 (en) * 1995-12-28 2001-02-27 Matsushita Electrical Industrial Company, Ltd. Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element
KR100500078B1 (en) * 1996-02-26 2005-07-18 이데미쓰 고산 가부시키가이샤 Organic electroluminescent element and method for manufacturing the same
EP0917810B1 (en) 1997-05-22 2003-08-27 Koninklijke Philips Electronics N.V. Organic electroluminescent device
JP3758369B2 (en) * 1998-05-15 2006-03-22 Tdk株式会社 Organic EL display device and manufacturing method thereof
TW411726B (en) * 1998-06-18 2000-11-11 Siemens Ag Manufacture of structurized electrodes
US6268695B1 (en) * 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6624570B1 (en) * 1999-09-29 2003-09-23 Sanyo Electric Co., Ltd. Electroluminescent display device and method for its fabrication
JP3423261B2 (en) 1999-09-29 2003-07-07 三洋電機株式会社 Display device
EP1240808B1 (en) 1999-12-17 2003-05-21 Osram Opto Semiconductors GmbH Encapsulation for organic led device
DE69935261T2 (en) 1999-12-17 2007-06-21 Osram Opto Semiconductors Gmbh IMPROVED SEALING OF ORGANIC LED DEVICES
JP2003523046A (en) * 1999-12-17 2003-07-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Organic LED device
US7394153B2 (en) * 1999-12-17 2008-07-01 Osram Opto Semiconductors Gmbh Encapsulation of electronic devices
US6633121B2 (en) * 2000-01-31 2003-10-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence display device and method of manufacturing same
US6624572B1 (en) * 2000-02-17 2003-09-23 Lg Electronics, Inc. Organic electroluminescence display panel and method for sealing the same
US6583557B2 (en) * 2000-04-26 2003-06-24 Canon Kabushiki Kaisha Organic luminescent element
JP4581187B2 (en) * 2000-06-13 2010-11-17 ソニー株式会社 Manufacturing method of display device
US6605826B2 (en) * 2000-08-18 2003-08-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
AU2000274683A1 (en) 2000-09-06 2002-03-22 Osram Opto Semicunductors Gmbh Patterning of electrodes in oled devices
US7026758B2 (en) * 2001-09-28 2006-04-11 Osram Opto Semiconductors Gmbh Reinforcement of glass substrates in flexible devices
US6844673B1 (en) * 2001-12-06 2005-01-18 Alien Technology Corporation Split-fabrication for light emitting display structures

Also Published As

Publication number Publication date
WO2003096440A3 (en) 2004-02-26
CN1653626A (en) 2005-08-10
US20030214232A1 (en) 2003-11-20
WO2003096440A2 (en) 2003-11-20
EP1502311B1 (en) 2014-12-03
CN1653626B (en) 2012-07-04
US7148624B2 (en) 2006-12-12
EP1502311A2 (en) 2005-02-02
JP2005524946A (en) 2005-08-18
TW200400773A (en) 2004-01-01

Similar Documents

Publication Publication Date Title
KR100983446B1 (en) Organic electroluminescent device, manufacturing method and forming method thereof
TWI231724B (en) OLED device and EL device
US7423375B2 (en) Encapsulation for electroluminescent devices
TWI273701B (en) A method for forming an OLED device and an OLED device
EP1320862B1 (en) Encapsulation for oled devices
US7301277B2 (en) Electro-optical apparatus, manufacturing method thereof, and electronic instrument
KR100300151B1 (en) Encapsulation of organic light emitting devices using siloxane or siloxane derivatives
JP5485207B2 (en) Electrodes to reduce the effects of defects in organic electronic devices
JP5744022B2 (en) Encapsulated optoelectronic device and manufacturing method thereof
EP1317874B1 (en) Patterning of electrodes in oled devices
US20070190682A1 (en) Patterning of electrodes in oled devices
US8029684B2 (en) Self-emission panel and method of manufacturing the same
US20040048033A1 (en) Oled devices with improved encapsulation
JP2006524886A (en) Organic device interconnection
JP4449341B2 (en) Sealing structure
CN1230924C (en) Method of producing organic light-emissive device
JP2004192813A (en) Organic electroluminescent display device
JP2008130312A (en) Manufacturing method and encapsulated base board for electroluminescence element panel
WO2003073526A2 (en) Method for preparing light emitting devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees