TWI296457B - High-performance power conditioner for solar photovoltaic system - Google Patents
High-performance power conditioner for solar photovoltaic system Download PDFInfo
- Publication number
- TWI296457B TWI296457B TW95101841A TW95101841A TWI296457B TW I296457 B TWI296457 B TW I296457B TW 95101841 A TW95101841 A TW 95101841A TW 95101841 A TW95101841 A TW 95101841A TW I296457 B TWI296457 B TW I296457B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- circuit
- power
- current
- converter
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Control Of Electrical Variables (AREA)
- Inverter Devices (AREA)
Description
1296457 九、發明說明: 【發明所屬之技術領域】 本發明所涉及之技術領域包含自動控制、電力電 直流/直流轉換技術、直流/交流變流技術及能源科^ 轉,雖然本發明所牽涉之技術領域廣泛,但其主要在於& 用太陽光電於市電併·統,改善目前太陽光電應用^ 電併聯供電系統之缺失。 ' φ1296457 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The technical field of the present invention includes automatic control, power electric DC/DC conversion technology, DC/AC current conversion technology, and energy division, although the present invention relates to The technology field is extensive, but it mainly lies in the use of solar photovoltaics in the city and the system to improve the current solar photovoltaic application ^ power parallel power supply system. ' φ
【先前技術】 雖然科技的進步為人類的生活帶來·許多的便利,但同 =也衍生出許多的問題如··石化簡存量減少、能源危機 意識山屈起、環保意識抬頭、京都議定書的規範及能源價格 的飆漲…等,除了減少現有能源使用的浪費外,新能源的 開發是刻不容緩。一般新能源對環境的衝擊不大,其所造 成之空氣、水或廢棄物等污染行為較不顯著,更重要的是 此種能源開發更可重複使用,具有永續發展的特性,再生 能源(Renewable Energy)為新能源中較受到重視的,包含太 陽能、風力、生質能、地熱、海洋能及非抽蓄水力等可永 績利用的能源[1,2],此外,太陽光電因無污染且容易取得 的特性成為近年來熱門研究領域之一,並發展出許多不同 的架構。市電併聯型太陽光電能源轉換系統主要是透過太 1%能板進行光電轉換因而生成直流電源,再經由電力調節 器將直流電源轉換交流輸出後饋入市電的匯流排與市電同 步併聯運轉[3,4],一般包含直流輸入電源、電力調節器 (Power Conditioner)、配電箱、變壓器、蓄電池等,電力調 7 1296457 節器主要由直流/直流轉換器(Converter)、直流/交流變流器 (Inverter)以及系統控制器所構成,並視應用場合及使用者 需求而有所不同。由於太陽能板輸出電壓較低的關係,傳 統以串接方式形成所需之直流匯流排電壓[5,6],然而此匯 流排電壓易受負載影響而改變,致使後級變流器設計困難 且於直流負載供應時產生電力品質不佳的問題;再者,倘 若串聯模組中任一模組發電功能衰退或故障,易導致整體 發電系統效能大打折扣。因此,一般以兩級電源轉換方式 完成交流電源輸出之目的,先將輸入電壓透過直流/直流轉 換器穩定昇壓後,再經由直流/交流變流器轉換為交流電壓 輸出。 習用之直流/直流昇壓電路通常採單電感所組成之昇 壓式轉換電路,該電路中功率半導體開關同時承受高電 壓、大電流及輸出二極體之逆向恢復突波電流,是故其電 源轉換效率不彰,昇壓侷限最高約七倍比例。其次,利用 變壓器昇壓,昇壓範圍受限於匝數比,倘若無法有效處理 漏感能量情形下,轉換效率難以提高。為改善此問題,本 發明延用參考文獻[7]之耦合電感雙向磁路能量傳遞之高 昇壓比轉換電路取代習用電路,其具有高昇壓比及較佳轉 換效率的優點,可提供系統一直流電壓昇壓比超過三十倍 以上之高效率直流/直流電源轉換。 為使太陽光電能源轉換系統得以穩定的供電,本發明 以微處理器針對變流器加以控制,一般解決控制問題時, 常常遭遇參數變化與各種不確定性的情況,在控制領域中 1296457 有著各式各樣的控制理論,例如比例、積分以及微分 (Proportional-Integral-Derivative,PID)控制[8],或是使用複 雜方程式的現代控制理論如計算轉矩控制(Computed Torque Control)、滑動模式控制(Sliding_Mode Control)[9, 10] 等都是為了於系統參數變動與各種外來的干擾下可使系統 的行為合乎設計的要求。比例、積分以及微分控制器因結 構簡單,易於設計且費用低,所以在工業界已被廣泛使用, 但對於具有不確定動態之系統,比例積分微分控制器卻不 能提供完善的性能。計算轉矩控制是利用消除非線性方程 式中的某些或全部的非線性項以得到其線性化方程式,接 著設計線性迴授控制器以達到所設計的閉迴路控制特性。 然而由於計算轉矩控制是基於理想化消除非線性動態所發 展之理論,其缺點是在時域中缺少對系統不確定量的暸 解’包括系統參數變化及外加擾動,因此通常選取較大的 控制增益以達到系統強健性及保證系統穩定。 可變結構控制(Variable Structure Control)或滑動模式 控制是有效的非線性強健控制之方法之一 [9 — 18 ],原因在於 /月動模式下,受控系統動態不受系統不確定量以及擾動項 的影響。設計滑動模式控制系統可分為兩大步驟,首先根 據所需求的閉迴路控制來選擇在狀態變化空間上的滑動平 面’再者設計控制法則使系統狀態朝向滑動平面移動且保 持在滑動平面上。剛開始系統狀態軌跡接觸滑動平面前的 情況稱為迫近相位(Reaching Phase),一但系統狀態軌跡到 達⑺動平面後,系統狀態就會保持在平面上並朝向目標 1296457 ^此情況稱為滑動相位(Sliding Phase)。可是告备 t 處在迫近相位時仍會受系統參數變動以及外^ 樁= 響二因此許多學者提出迫近相位的設計方式或 衩式控制(Total Sliding_Mode Control),以降低系統不確定 ,所造成的影響[12-15]。Gao和Hung[12]合力研究設計二 定迫近法則來具體說明系統狀態在迫近相位時之動能,然 而在此隋况下糸統不確定量仍會影響系統控制性能'。入= 滑動模式控制[13-15]即為控制過程不存在迫近相=模二丄 所有狀態均在滑動平面上,整個控制過程中不受系統不確 定量影響,但仍有可能導致控制力顫抖現象以及激發系統 不穩定動態。過去幾年許多研究學者引用邊界層(B〇undary[Prior Art] Although the advancement of science and technology has brought many conveniences to human life, the same problem has also been derived from the reduction of petrochemical stocks, the awareness of energy crisis, the rise of environmental awareness, and the Kyoto Protocol. Regulations and soaring energy prices... In addition to reducing the waste of existing energy use, the development of new energy sources is an urgent task. Generally, new energy has little impact on the environment, and the pollution caused by air, water or waste is less significant. More importantly, such energy development is more reusable, with sustainable development characteristics, and renewable energy ( Renewable Energy) is a new energy source that includes energy such as solar energy, wind power, biomass energy, geothermal energy, ocean energy, and non-pumping water. [1, 2] Contaminated and easily accessible features have become one of the hot research areas in recent years and have developed many different architectures. The mains parallel solar photovoltaic energy conversion system mainly generates photoelectric power through the photoelectric conversion of the 1% energy board, and then converts the DC power to the AC output through the power regulator and feeds the busbar of the mains in parallel with the commercial power [3, 4], generally including DC input power, Power Conditioner (Power Conditioner), distribution box, transformer, battery, etc., power adjustment 7 1296457 section is mainly by DC / DC converter (Converter), DC / AC converter (Inverter ) and the system controller, and depending on the application and user needs. Due to the low output voltage of the solar panel, the required DC bus voltage is conventionally formed in series [5, 6]. However, the bus voltage is easily affected by the load, which makes the design of the rear converter difficult. In the case of DC load supply, the problem of poor power quality is generated; in addition, if the power generation function of any module in the series module is degraded or malfunctions, the overall power generation system performance is greatly reduced. Therefore, the AC power output is generally completed by a two-stage power conversion method. The input voltage is stably boosted by a DC/DC converter, and then converted to an AC voltage output by a DC/AC converter. The conventional DC/DC boost circuit usually adopts a boost converter circuit composed of a single inductor. The power semiconductor switch in the circuit is subjected to high voltage, large current and reverse recovery surge current of the output diode. The power conversion efficiency is not good, and the boost limit is up to about seven times. Secondly, with the transformer boost, the boost range is limited by the turns ratio. If the leakage inductance energy cannot be effectively processed, the conversion efficiency is difficult to increase. In order to improve the problem, the present invention uses the high-boost ratio conversion circuit of the coupled inductor bidirectional magnetic circuit energy transfer of reference [7] to replace the conventional circuit, which has the advantages of high step-up ratio and better conversion efficiency, and can provide system continuous flow. High-efficiency DC/DC power conversion with voltage boost ratios over thirty times higher. In order to enable the stable power supply of the solar photovoltaic energy conversion system, the present invention controls the converter with a microprocessor. Generally, when the control problem is solved, the parameter variation and various uncertainties are often encountered. In the control field, 1296457 has various Various control theories, such as Proportional-Integral-Derivative (PID) control [8], or modern control theory using complex equations such as Computed Torque Control, Sliding Mode Control (Sliding_Mode Control) [9, 10], etc. are all designed to make the behavior of the system conform to the design requirements of system parameters and various external disturbances. Proportional, integral, and derivative controllers have been widely used in the industry because of their simple structure, ease of design, and low cost, but for systems with uncertain dynamics, proportional-integral-derivative controllers do not provide perfect performance. Computational torque control uses a nonlinear term that eliminates some or all of the nonlinear equations to obtain its linearization equation, and then designs a linear feedback controller to achieve the designed closed loop control characteristics. However, since the computational torque control is based on the idealized theory of eliminating nonlinear dynamics, its shortcoming is the lack of understanding of the system uncertainty in the time domain, including system parameter changes and external disturbances. Therefore, larger control is usually selected. Gain to achieve system robustness and to ensure system stability. Variable Structure Control or Sliding Mode Control is one of the effective methods for nonlinear robust control [9-18], because the controlled system dynamics are not affected by system uncertainties and disturbances in /monthly mode. The impact of the item. The design of the sliding mode control system can be divided into two major steps. First, the sliding plane in the state change space is selected according to the required closed loop control. The design control law moves the system state toward the sliding plane and remains on the sliding plane. The situation before the system state trajectory touches the sliding plane is called the Reaching Phase. Once the system state trajectory reaches the (7) moving plane, the system state remains on the plane and faces the target 1296457. This condition is called the sliding phase. (Sliding Phase). However, when the t is in the near phase, it will still be subject to system parameter changes and the external pile = ring 2. Therefore, many scholars have proposed the approach phase design or the Total Sliding_Mode Control to reduce the system uncertainty. Impact [12-15]. Gao and Hung [12] jointly studied the design of the two imminent laws to specify the kinetic energy of the system state in the near phase, but in this case, the uncertainty of the system will still affect the system control performance. In = sliding mode control [13-15] means that there is no imminent phase in the control process = all states are in the sliding plane, and the whole control process is not affected by the system uncertainty, but it may still cause the control to tremble. Phenomenon and the instability of the system. Many research scholars have cited the boundary layer in the past few years (B〇undary
Layer)觀念[16,17]以消除控制力顫抖現象,遺憾的是若選擇 不適當的邊界層寬度時易造成系統不穩定的控制響應,意 指無法保證在邊界層中穩定性的需求。因此亦有學者引入 可處理不確定量估測的適應性演算法[18]以求減少控制力 顫抖現象’本發明即採用此法應用於全橋式變流器的控制 上。 太陽能板的輸出功率易隨著不同的日照強度而產生大 幅度的變化,以台灣為例,全年最大平均照曰量為正南方 位且傾斜角度為23.5。,所以絕大部分國内廠商皆採取此方 位作固定式安裝太陽能板。然而此固定安裝模式不易擷取 最大太陽光能,以致於太陽光電能源轉換系統之效能無法 提昇,因此近年來許多學者致力於追日系統研究[19-21], 傳統被動式追日系統於太陽能板框架兩端架設由光感元件 1296457 ’ 7組成1光量感測裝置,當框架兩端的光量感測裝置迴授 .里相等日:’、即表示太陽能板正向光源並具有最大日照量, 但因米篁感剛I置的調校並不容易且光感元件易受使 限的〜s而迈成元件特性的改變。有鑑於此,本 一聿勤式i自口么 ^ ^ ^ 土切y糸統,利用太陽能板開路電壓正比於日照 度的特性,對太陽方位進行追縱,改善傳統被動式追 統的缺點。 系 太&板輪出電壓、電流以及功率呈現非線性關係, 在不同的日二、強度、溫度,或者因元件老化及光電材料等 因素下,皆會影響太陽能板的輸出功率。由於條件不同, 其均具有各別獨特的工作曲線,I一條工作線均只有—個 最大功率點,此即太陽能板的最佳工作點。因此為了充分 地運用太陽光電能,需要設計適當控制法則使能在各種= 同工作環境下自太陽能板汲取最大功率,此控制方法即所 謂的最大功率追蹤法[22-25],一般文獻中主要可歸納為電 壓迴授法(Voltage Feedback Method)、功率迴授法(power ® Feedback Method)、增量電導法(Incremental ConductanceLayer) concept [16,17] to eliminate the control tremor phenomenon, unfortunately, if the inappropriate boundary layer width is selected, it is easy to cause unstable control response of the system, which means that the stability in the boundary layer cannot be guaranteed. Therefore, some scholars have introduced an adaptive algorithm that can handle uncertainty estimation [18] in order to reduce the control tremor phenomenon. This invention is applied to the control of a full-bridge converter. The output power of solar panels is subject to large variations with different sunshine intensity. In Taiwan, for example, the maximum average illuminance for the year is positive south and the tilt angle is 23.5. Therefore, most domestic manufacturers adopt this position for fixed installation of solar panels. However, this fixed installation mode is not easy to extract the maximum solar energy, so that the performance of the solar photovoltaic energy conversion system cannot be improved. Therefore, in recent years, many scholars have devoted themselves to the study of the Japanese system [19-21], the traditional passive chasing system on the solar panel. The two ends of the frame are erected by the light-sensing element 1296457' 7 and the light-sensing device is used. When the light-sensing device at both ends of the frame is fed back, the same day: ', which means that the solar panel is forward light source and has the maximum amount of sunlight, but The adjustment of the meter sensation is not easy and the light-sensitive element is susceptible to the change of the s. In view of this, this kind of logistics is self-sufficient. ^ ^ ^ The earth-cutting system uses the solar panel's open circuit voltage to compare with the characteristics of the sun's illumination to track the solar azimuth and improve the shortcomings of the traditional passive pursuit. The voltage and current and power of the board are too nonlinear. The output power of the solar panel will be affected by different factors such as day 2, intensity, temperature, or due to component aging and optoelectronic materials. Due to different conditions, they all have unique working curves. Each of the I working lines has only one maximum power point, which is the best working point of the solar panel. Therefore, in order to fully utilize solar photovoltaic energy, it is necessary to design appropriate control rules to enable maximum power extraction from solar panels in various = same working environments. This control method is called the maximum power tracking method [22-25], which is mainly in the general literature. Can be summarized as Voltage Feedback Method, Power ® Feedback Method, Incremental Conductance
Method)、線性近似法(Linear Approximation Method)、實際 量測法(Practical Measurement Method)及擾動觀察法 (Perturbation and Observation Method),其中擾動觀察法因 不需系統參數且控制架構簡單而較常被使用,但擾動量的 大小不易於響應速度和能量損耗間取得平衡而容易造成能 量損失,因此本發明提出適應性步距擾動法改善傳統擾動 觀察法的缺點,加快最大功率點的追縱並減少能量的損失。 11 1296457 備註:參考文獻 [1] S. R. Bull, "Renewable energy today and tomorrow/5 Proc. IEEE, vol. 89, no. 8, pp· 1216—1226, 2001.Method), Linear Approximation Method, Practical Measurement Method, and Perturbation and Observation Method, where the perturbation observation method is used more often because it does not require system parameters and the control structure is simple. However, the magnitude of the disturbance is not easy to balance between the response speed and the energy loss, and the energy loss is easily caused. Therefore, the present invention proposes that the adaptive step disturbance method improves the shortcomings of the conventional disturbance observation method, accelerates the tracking of the maximum power point, and reduces the energy. Loss. 11 1296457 Remarks: References [1] S. R. Bull, "Renewable energy today and tomorrow/5 Proc. IEEE, vol. 89, no. 8, pp· 1216-1226, 2001.
[2] S. Rahman,“Green power: what is it and where can we find it?,’’ IEEE Power Energy Mag., vol. 1? no. 1? pp. 30 — 37, 2003.[2] S. Rahman, “Green power: what is it and where can we find it?,”’ IEEE Power Energy Mag., vol. 1? no. 1? pp. 30 — 37, 2003.
[3] C· Yang and K. M. Smedley,“A cost-effective single-stage inverter with maximum power point tracking/5 IEEE Trans. Energy Conversion, vol. 195 no. 5, pp. 1289 一 1294, 2004.[3] C. Yang and K. M. Smedley, “A cost-effective single-stage inverter with maximum power point tracking/5 IEEE Trans. Energy Conversion, vol. 195 no. 5, pp. 1289-1294, 2004.
[4] Β· Μ· Τ· Ho and S. H. Chung,“An integrated inverter with maximum power tracking for grid-connected PV systems/5 IEEE Trans, Energy Conversion, vol. 20? no. 45 pp. 953 — 962, 2005.[4] Β· Μ· Τ· Ho and SH Chung, “An integrated inverter with maximum power tracking for grid-connected PV systems/5 IEEE Trans, Energy Conversion, vol. 20? no. 45 pp. 953 — 962, 2005 .
[5] T. F· Wu, C. H. Chang, and Υ· H· Chen, “A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications^ IEEE Trans, Ind. Electron., vol. 47? φ no. 2? pp. 287 — 296, 2000.[5] T. F· Wu, CH Chang, and Υ·H· Chen, “A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications^ IEEE Trans, Ind. Electron., vol. 47? Φ no. 2? pp. 287 — 296, 2000.
[6] T· J. Liang,Y· C. Kuo, and J. F Chen,“Single-stage photovoltaic energy conversion system/9 IEE Proa Electr. Power Appl^ vol. 148, no· 4, pp· 339-344, 2001.[6] T. J. Liang, Y. C. Kuo, and J. F Chen, “Single-stage photovoltaic energy conversion system/9 IEE Proa Electr. Power Appl^ vol. 148, no· 4, pp· 339- 344, 2001.
[7] R. J. Wai and R. Y. Duan, "High step-up converter with coupled-inductor^ IEEE Trans. Power Electron., vol. 209 no. 5, pp. 1025 —1035,2005.[7] R. J. Wai and R. Y. Duan, "High step-up converter with coupled-inductor^ IEEE Trans. Power Electron., vol. 209 no. 5, pp. 1025 — 1035, 2005.
[8] K. J. Astrom and T. Hagglund, PID Controller: Theory, Design, 12 1296457 Λ and Tuning. Research Triangle Park, NC: ISA, 1995. ^ [9] K. K. Shyu,Y· W. Tsai,and C. K. Lai,“Sliding mode control for mismatched uncertain systems/9 Electronic Letters, vol. 34? no. 24, pp. 2359-2360, 1998.[8] KJ Astrom and T. Hagglund, PID Controller: Theory, Design, 12 1296457 Λ and Tuning. Research Triangle Park, NC: ISA, 1995. ^ [9] KK Shyu, Y· W. Tsai, and CK Lai, "Sliding mode control for mismatched uncertain systems/9 Electronic Letters, vol. 34? no. 24, pp. 2359-2360, 1998.
[10] K. K. Shyu,Y· W· Tsai,and C. K. Lai,“Stability regions estimation for mismatched uncertain variable structure systems with bounded controllers^ Electronic Letters, vol. 35? no. 165 pp. • 1388—1390,1999.[10] K. K. Shyu, Y. W. Tsai, and C. K. Lai, “Stability regions estimation for mismatched uncertain variable structure systems with bounded controllers^ Electronic Letters, vol. 35? no. 165 pp. • 1388-1390, 1999.
[11] V. I· Utkin,“Sliding mode control design principles and applications to electric drives/5 IEEE Trans. Ind Electron., vol. 40, no· 1,pp· 23 —36, 1993.[11] V. I. Utkin, “Sliding mode control design principles and applications to electric drives/5 IEEE Trans. Ind Electron., vol. 40, no· 1, pp· 23 — 36, 1993.
[12] W. Gao and J. C. Hung, "Variable structure control for nonlinear systems: a new approach/5 IEEE Tran. Ind. Electron., vol. 405 no. 1,ρρ·2 - 22, 1993.[12] W. Gao and J. C. Hung, "Variable structure control for nonlinear systems: a new approach/5 IEEE Tran. Ind. Electron., vol. 405 no. 1, ρρ·2 - 22, 1993.
[13] J. C. Hung,“Total invariant VSC for linear and nonlinear systems,” A seminar given at Harbin Institute of Technology, Harbin,China,Dec. 1996; Hunan University Changsha, China, Dec. 1996.[13] J. C. Hung, “Total invariant VSC for linear and nonlinear systems,” A seminar given at Harbin Institute of Technology, Harbin, China, Dec. 1996; Hunan University Changsha, China, Dec. 1996.
[14] K. K. Shyu and J· C· Hung,“Totally invariant variable structure control systems/9 IEEE Conf Ind. Electron. Contr. Instrument, vol· 3, pp· 1119—1123, 1997· 13 1296457 [15] K. Κ. Shyu? J. Υ. Hung, and J. C. Hung, 'Total sliding mode trajectory control of robotic manipulators/9 IEEE Conf Ind. Electron, Contr. Instrument., vol. 3? pp. 1062— 1066, 1999.[14] KK Shyu and J. C. Hung, “Totally invariant variable structure control systems/9 IEEE Conf Ind. Electron. Contr. Instrument, vol· 3, pp· 1119—1123, 1997· 13 1296457 [15] K. Shyu? J. Υ. Hung, and JC Hung, 'Total sliding mode trajectory control of robotic manipulators/9 IEEE Conf Ind. Electron, Contr. Instrument., vol. 3? pp. 1062-1066, 1999.
[16] J. J. E. Slotine and W. Li? Applied Nonlinear Control. Englewood Cliffs,NJ: Prentice_Hall,1991.[16] J. J. E. Slotine and W. Li? Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice_Hall, 1991.
[17] K. J. Astrom and B· Wittenmark, Adaptive Control. New York: Addison-Wesley,1995.[17] K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addison-Wesley, 1995.
[18] R. J· Wai and K. M. Lin,“Robust decoupled control of direct field-oriented induction motor drive/5 IEEE Trans. Ιηά Electron., νο1·52, no· 3, pp. 837—854, 2005· [19] B. Koyuncu and K. Balasubramanian,“A microprocessor controlled automatic sun tracker/5 IEEE Trans. Consumer Electron., vol. 31, no. 4? pp. 913 —917, 1991.[18] R. J. Wai and KM Lin, “Robust decoupled control of direct field-oriented induction motor drive/5 IEEE Trans. Ιηά Electron., νο1·52, no· 3, pp. 837—854, 2005· [ 19] B. Koyuncu and K. Balasubramanian, “A microprocessor controlled automatic sun tracker/5 IEEE Trans. Consumer Electron., vol. 31, no. 4? pp. 913 — 917, 1991.
[20] A. Ferriere and B. Rivoire,“An instrument for measuring concentrated solar-radiation: a photo-sensor interfaced with an integrating sphere/v^o/. Energy, vol. 72? no. 3, pp. 187—193, 2002. pi] J. D· Garrison,“A program for calculation of solar energy collection by fixed and tracking collectors/9 Sol Energy, vol. 12, no· 4, pp· 241 -255, 2002· [22] C. Hua,J. Lin, and C. Shen,“Implementation of a 14 1296457 λ DSP_controlled photovoltaic system with peak power tracking,’’ • IEEE Trans. Ιηά Electron., vol. 45? no. 1? pp. 99—107, 1998.[20] A. Ferriere and B. Rivoire, “An instrument for measuring focused solar-radiation: a photo-sensor interfaced with an integrating sphere/v^o/. Energy, vol. 72? no. 3, pp. 187— 193, 2002. pi] J. D. Garrison, “A program for calculation of solar energy collection by fixed and tracking collectors/9 Sol Energy, vol. 12, no· 4, pp· 241-255, 2002· [22] C. Hua, J. Lin, and C. Shen, "Implementation of a 14 1296457 λ DSP_controlled photovoltaic system with peak power tracking,'' • IEEE Trans. Ιηά Electron., vol. 45? no. 1? pp. 99— 107, 1998.
[23] Υ· H. Lim and D. C. Hamill,“Simple maximum power point tracker for photovoltaic arrays/5 Electronics Letters, vol. 36? no. ll,pp· 997 — 999, 2000.[23] Υ·H. Lim and D. C. Hamill, “Simple maximum power point tracker for photovoltaic arrays/5 Electronics Letters, vol. 36? no. ll, pp· 997 — 999, 2000.
[24] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic _ maximum power point tracking control system/5 IEEE Trans,[24] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, "Development of a microcontroller-based, photovoltaic _ maximum power point tracking control system/5 IEEE Trans,
Power Electron., vol. 16, no. 1? pp. 46 — 54, 2001.Power Electron., vol. 16, no. 1? pp. 46 — 54, 2001.
[25] M· A· S· Masoum,H· Dehbonei,and E· F· Fuchs,“Theoretical and experimental analyses of photovoltaic systems with voltage-and current-based maximum power-point tracking/5 IEEE Trans, Energy Conversion, vol. 17? n〇· 4? pp. 514 — 522, 2002. 【發明内容】 本發明所揭示高性能太陽光電能源轉換系統之整體架 構,如圖1所示,太陽能板10用以吸收太陽光能,在進行 光電轉換後輸出直流電源Fp並與高昇壓比直流/直流轉換 電路20連接,提供系統高昇壓比及高轉換效率之直流/直 流電壓轉換,高昇壓比直流/直流轉換電路架構如圖2所 示,直流輸入電路201之直流電壓,於一次側電路202 之功率半導體開關2導通時,電流將能量儲存於耦合電感 7;之一次側繞組A,同時二次側電路204耦合電感7;之二次 15 1296457 側繞組z2目具雙向電料魏路,所錢 性點為正)’串聯-再生被動式缓震電路2〇3之籍制= 電壓,經由功率半導體開關2與放電二極體z>2迴路,對二1 =電路204高屢電紅2充電(充電電流 ^ 半導體開關㈣止瞬間,-次側電路搬電流離開功率^ 導體開關2,經由再生被動式緩震電路203之箝制二極❹ :瓜入.亥,路之籍制電容q。而二次侧電路綱之電流&必 員利用箝tj—極體A及放電二極體&續流,以釋放轉合電 感2次側繞組“漏感所儲存的能量,由高壓電容C2吸收 二月b塁纟釋放一次側繞組&漏感能量後,依據磁通不滅 疋理’-次側激磁電流將把二次側電流h轉向,濾波電路 〇5之整流二極體乃〇導通注入該電路之濾波電容^,取得 ^定且不易變動之直流電壓匕,改善習用單級式太陽光電 能源轉換之直流匯流排電壓易受負載變動影響的缺點,並 與全橋式變流器3G做-連接電路,同時直流電壓匕可視為 定值,並與後級變流器動態解耦,有效簡化變流器控制系 統的設計。 [公式推導] k 令耦合電感7;之一次側繞組A與二次側繞組&之匝數 比心乂/力,耦合係數A定義為 L· 其中A«為激磁電感(又稱互感),4為一次侧繞組勾之 感,藉由電路的分析,可推導得知轉換電路電壓增益及 (2) 1296457 關2所承受之電壓如方程式(2)及方程式(3)所示[25] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, "Theoretical and experimental analyses of photovoltaic systems with voltage-and current-based maximum power-point tracking/5 IEEE Trans, Energy Conversion, Vol. 17? n〇· 4? pp. 514 — 522, 2002. SUMMARY OF THE INVENTION The overall architecture of the high performance solar photovoltaic energy conversion system disclosed in the present invention is shown in FIG. 1 , and the solar panel 10 is used to absorb sunlight. After the photoelectric conversion, the DC power source Fp is output and connected with the high step-up ratio DC/DC conversion circuit 20 to provide a DC/DC voltage conversion with high boost ratio and high conversion efficiency, and a high step-up ratio DC/DC conversion circuit architecture such as 2, the DC voltage of the DC input circuit 201, when the power semiconductor switch 2 of the primary side circuit 202 is turned on, the current is stored in the coupled inductor 7; the primary side winding A; and the secondary side circuit 204 is coupled to the inductor 7 The second 15 1296457 side winding z2 head with two-way electric material Wei Road, the money point is positive) 'series-regeneration passive cushioning circuit 2〇3 system= voltage, through the work The semiconductor switch 2 and the discharge diode z>2 circuit, the pair 1 = the circuit 204 is high and the red 2 is charged (the charging current ^ the semiconductor switch (4) is instantaneous, the secondary circuit is carrying the current away from the power ^ the conductor switch 2, via regeneration The clamped two-pole 被动 of the passive cushioning circuit 203: melon into the sea, the circuit of the capacitor q, and the secondary side of the circuit current & must use the clamp tj - polar body A and discharge diode & Flow to release the energy stored in the second-side winding of the turn-in inductor. The energy stored by the leakage inductance is absorbed by the high-voltage capacitor C2. The second-side winding is released. The first-side winding & leakage inductance energy is determined according to the magnetic flux. The excitation current will steer the secondary side current h, and the rectifying diode of the filter circuit 〇5 is turned on and injected into the filter capacitor of the circuit to obtain a DC voltage that is constant and difficult to change, thereby improving the conventional single-stage solar photovoltaic energy source. The converted DC busbar voltage is susceptible to load fluctuations and is connected to the full-bridge converter 3G. The DC voltage can be regarded as a fixed value and dynamically decoupled from the downstream converter. The design of the converter control system. Derivation] k Let the coupled inductor 7; the primary side winding A and the secondary side winding & the turns ratio of the heart / force, the coupling coefficient A is defined as L · where A « is the magnetizing inductance (also known as mutual inductance), 4 For the sense of the primary winding, the circuit voltage analysis can be used to derive the voltage gain of the conversion circuit and (2) the voltage to which 1296457 is 2, as shown in equations (2) and (3).
Vd _2 + nk D(\~k)(n-1) viVd _2 + nk D(\~k)(n-1) vi
1-D (3)1-D (3)
Vpv D(l-k)(n-l) l — D "2(1 - D)pv 其中Z)為開關責任周期,令耦合係數A:等於1時,可改寫方 程式(2)及方程式(3)如下:Vpv D(l-k)(n-l) l — D "2(1 - D)pv where Z) is the duty cycle of the switch, so that the coupling coefficient A: is equal to 1, the formula (2) and equation (3) can be rewritten as follows:
GG
1 一 Z) (4) vDS=Vpv/(l-D) (5) 將方程式(5)代入方程式(4)後可得到開關所承受之電壓值 如下: vDS=Vd/(n + 2) (6)1 a Z) (4) vDS=Vpv/(l-D) (5) Substituting equation (5) into equation (4) can obtain the voltage value of the switch as follows: vDS=Vd/(n + 2) (6)
觀察方程式(6),將輸出電壓匕及匝數比π固定,功率 半導體開關2所承受電壓與輸入電壓及責任周期Ζ)無 關,因此可以確保功率半導體開關元件之所承受最高電壓 為定值。只要輸入電壓不高於開關2耐壓,依據方程式(6) 所設計之轉換電路,配合原本高電壓增益比之特性,將可 接受高、低電壓大範圍變動之輸入電壓。 全橋式變流器30連接高昇壓比直流/直流轉換電路 20,做為直流/交流轉換之用,控制單元50包含微處理器 60及驅動電路70,本發明透過系統狀態的迴授,利用微處 理器 60 以正弦脈波寬度調變(Sinusoidal 17 1296457 * Pulse-Width-Modulation,SPWM)技術中的單極性(Unipolar) • 電壓切換方式控制並輸出驅動信號,藉由變流器之驅動電 路70對全橋式變.流器30的四個功率晶體開關進行控制, 其輸出與扼流電感40連接,藉此濾除變流器交流輸出電壓 之高頻成份,同時轉換變流器交流輸出電壓為交流電流輸 出,並與市電併聯供電。 解耦後的系統等效電路如圖3所示,為使說明精簡易 於瞭解,專有名詞不至於冗長,電路歸屬圖號(如…電路 • 10)省略之,直接對照說明所屬圖式即可明瞭。圖中匕為 高昇壓比直流/直流轉換電路輸出之直流匯流排電壓, 為直流匯流排電壓經過全橋式變流器調變後含有高頻諧波 成份之交流電壓,其高頻諧波成份可透過適當設計之扼流 電感Zy所濾除,進一步得到交流輸出電流忍,rZ/為扼流電 感之等效内阻,而電壓源%代表因負載變化所引起之干擾 電壓。為方便分析及簡化狀態空間方程式的推導,本文假 設(1)扼流電感I/之等效内阻很小,故於此忽略不計;(2) ⑩假設功率開關為理想元件,開關之導通損失及切換損失為 零;(3)忽略開關導通與截止之反應延遲時間;(4)開關切換 頻率遠大於系統的自然頻率及調變頻率,故於一開關切換 周期内可將控制訊號及輸入/輸出電壓視為定值。 依據上述假設條件,將單極性正弦脈波寬度調變的功 率開關切換方式分成正負半周,由於負半周除的電壓極 性與正半周相反外,其動作原理與正半周相仿,因此,以 下細部分析以正半周期作一介紹。開關於正半周切換時具 18 1296457 有兩種不同狀態’等效電路如圖4所示,故本發明針對正 半周利用狀態空間平均法及線性化技巧推導後,整個正半 周切換的動態空間方程式可表示為 其中匕為交流輸出電流,1¾為每切換周期内開關及心導 通的責任周期(Duty Cycle)。定義責任周期a = 與橋Observing equation (6), the output voltage 匕 and the turns ratio π are fixed, and the voltage with which the power semiconductor switch 2 is subjected is independent of the input voltage and duty cycle ,), so that the maximum voltage tolerated by the power semiconductor switching element can be ensured. As long as the input voltage is not higher than the withstand voltage of switch 2, the conversion circuit designed according to equation (6), in combination with the original high voltage gain ratio, will accept input voltages with high and low voltage variations. The full-bridge converter 30 is connected to the high-boost DC/DC converter circuit 20 for DC/AC conversion. The control unit 50 includes a microprocessor 60 and a drive circuit 70. The present invention utilizes the feedback of the system state. The microprocessor 60 controls and outputs a driving signal by a unipolar (unipolar) pulse switching method in a sinusoidal pulse width modulation (Sinusoidal 17 1296457 * Pulse-Width-Modulation, SPWM) technique, and a driving circuit of the converter 70 pairs of four power crystal switches of the full bridge type converter 30 are controlled, and the output thereof is connected with the choke inductor 40, thereby filtering out the high frequency component of the AC output voltage of the converter and simultaneously converting the AC output of the converter. The voltage is an AC current output and is supplied in parallel with the mains. The decoupled system equivalent circuit is shown in Figure 3. In order to make the description simple and easy to understand, the proper nouns are not too long, and the circuit attribution figure number (such as ... circuit • 10) is omitted, directly referring to the description of the schema. It is clear. In the figure, the DC busbar voltage of the output of the high-boost ratio DC/DC converter circuit is the AC voltage of the high-frequency harmonic component after the DC busbar voltage is modulated by the full-bridge converter, and the high-frequency harmonic component thereof It can be filtered by a properly designed choke inductor Zy to further obtain the AC output current, rZ/ is the equivalent internal resistance of the choke inductor, and the voltage source % represents the interference voltage caused by the load change. In order to facilitate the analysis and simplify the derivation of the state space equation, this paper assumes that (1) the equivalent internal resistance of the choke inductor I/ is small, so it is neglected; (2) 10 assuming that the power switch is an ideal component, the conduction loss of the switch And the switching loss is zero; (3) ignoring the reaction delay time of the switch on and off; (4) the switching frequency of the switch is much larger than the natural frequency and the modulation frequency of the system, so the control signal and input can be controlled during a switching cycle. The output voltage is considered to be a fixed value. According to the above assumptions, the power switch switching mode of unipolar sinusoidal pulse width modulation is divided into positive and negative half cycles. Since the voltage polarity of the negative half cycle is opposite to that of the positive half cycle, the operation principle is similar to that of the positive half cycle. Therefore, the following detailed analysis is performed. The positive half cycle is an introduction. There are two different states for the first half-cycle switching. The equivalent circuit is shown in Figure 4. Therefore, the present invention is directed to the dynamic space equation of the entire positive half-cycle after the positive half-cycle is deduced by the state space averaging method and the linearization technique. It can be expressed as 匕 is the AC output current, and 13⁄4 is the duty cycle of the switch and the heart conduction during each switching cycle. Define the duty cycle a = with the bridge
式功率級增盈= 6/1,其中為正弦控制信號,/ 為三角波信號之峰值,則系統動態模型可改寫如方程式 所示’並透過拉氏轉換(Laplace Transform)可進一步將系統 等效模型表示如圖5所示。 ’、Power level gain = 6/1, where is the sinusoidal control signal, / is the peak value of the triangular wave signal, then the system dynamic model can be rewritten as shown in the equation 'and the Laplace Transform can further transform the system equivalent model This is shown in Figure 5. ’,
WM 選擇交流 hWM chooses exchange h
V con -V 一 —-hU ^ ,Vd (δ) 方程;以==^統狀態^作為控制變數,V con -V a --- hU ^ , Vd (δ) equation; with the ==^ system state ^ as the control variable,
>可重新整理如下: ^ (0 ^ dpu(t) + epf{t) + g(t) 則 ^ (^pn + ^pn)U^f) + {^ρη+ ^epn)f{t) + ^ dpnU(0 + epnf(t) + h{t) K、— vcon、dp = KPWM !Lf、ep 二〜]Ji^、= /Zy ; 及分別表示常態情況下4及 確κ玲 『P«及«代表系統參數擾動量;/?(〇代表總集 其中 (0 svj ^ (9) 統參數;μ 並定義為 j. , ^ ^dpnu{t) + Aepnf(t) + g(t) % + 總 A > /、不確定量之邊界值給定如方程式(u)所 V. 的系 (10) 示,其中 1296457 k pg為一正值常數。 , l^wl < pg (ίο 為使全橋式變流器在有不確定量及外來干擾的情況 下,其輸出電流仍可有效的追隨電流命令且與市電同頻率 且同相位以達到單位功因之最佳併聯效率,本發明以適應 性全域滑動控制(Adaptive Total Sliding-Mode Control, ATSMC)對變流器之輸出電流進行控制,如圖6所示,定義 控制誤差气-X% ,其中為輸出電流命 > 令,並設計滑動平面&⑺為 & =气(〇 一气⑼+ ⑺介 (12) 〇 其中α為正值常數且\(〇)為&⑴的初始值。 適應性全域滑動模式控制系統主要可分成三個部分: 第一部份是系統性能規劃,此方式主要在明確規劃常態情 況下期望獲得的系統效能,且將其歸屬為基礎模型設計 > (Baseline Model Design) % ;第二部分是約束控制器 (Curbing Controller) Wc的建構,亦即消除產生來自於系統參 數變化、負載變化所引起之干擾電壓以及未模式化系統動 態之不可預測的擾亂效應,使其能完全地滿足基礎㈣設 計的系統效能;再者,第三部分為發展適應性演算法則 (Adaptive Obse削tion Design)…對總集不確定量之上界進 行估測’以避免因約束控制器上界選取不當而造成的控制 力顫抖現象。適應性全域滑動變流器控制系統之整體控制 設計如定理-所示,此外,若系統後級直流/交流轉換機制 1296457 • 改變時,亦可以同樣方式進行推導,進而完成變流器控制 - 系統設計。 [定理一] 假設方程式(9)所示之全橋式變流器採用適應性全域滑 動模式控制,控制器各部分設計如方程式(13)至方程式(15) 所示,並發展適應性演算法則如方程式(16)所示,則系統 之穩定度將得以被保證。 u = ugb + Ugc (13) ugb= - d~pln(epnf + aeg^xgd) (14) ugb= - Pg(〇dplnsgn(sg(t)) (15) 从)士〆〇 (16) 其中sgn(·)為符號函數,·為絕對值函數,\為一正值常數。 [證明] 依據里亞普諾(Lyapunov)穩定理論[16,17]的分析,變流器控 制系統的穩定度將可被保證,因定理一的證明與參考文獻 [18]大致相同,故此予以省略。 太陽的追蹤控制雖可令太陽能板獲得較大的日照強 度,進而提昇系統發電效率,但於施行上仍有其困難點, 如感測器技術、外在干擾排除、可靠性及成本的問題等; 一般常見的太陽追控方法為於太陽能板框架兩端架設由光 感元件所組成之光量感測裝置,透過致動裝置旋轉而改變 板面角度,當太陽能板框架兩端的光量感測裝置迴授量相 等時,即表示太陽能板正向光源並具有最大日照量,但因 21 1296457 光量感測裝置的調校並不容易且光感元件易受使用年限的 影響而造成元件特性的改變。有鑑於此,本發明提出一主 動式追日系統,利用太陽能板開路電壓正比於日照強度的 特性,透過致動裝置旋轉太陽能板之板面以改變陽光入射 角度,進而對太陽能板的開路電壓進行擾動,藉由太陽能 板開路電壓的迴授,微處理器將可判斷正確的旋轉方向並 送出驅動信號而驅使致動裝置作用。此法僅需迴授太陽能 板開路電壓即可對太陽方位進行追蹤,同時由於太陽的位 置移動緩慢且單調,單月爬升角度不變及一年中變化幅度 在±10。以内,因此追曰系統無須調整其傾斜角度,以單軸 位置控制方位角度即可達到收集最大照度之目的,勿需更 動系統原本架構,改善傳統被動式追日系統的缺點且具有 施工便利之優點。程式控制流程如圖7所示,其中及 -1]分別為當次及前次開路電壓;為開路電壓變化 量;因太陽於一日之中僅會單方向由東至西移動,故程式 於開始時順時針(由東至西)以每單位角度旋轉L秒進而改 變太陽能板角度,藉此擾動太陽能板之開路電壓,並由此 判斷是否應繼續往同方向旋轉,以獲得更大的日照量,若 因旋轉角度過多或受外在環境影響(遮蔭)而導致開路電壓 下降,則系統將逆時針旋轉返回前一次的板面位置,靜候 一段時間後秒)將再次進行追蹤。 傳統最大功率追蹤法則中,擾動觀察法因架構簡單且 毋需系統參數而較常被使用,然而擾動量的選取不易為其 缺點,較大的擾動量雖可有效的提昇響應速度,但當太陽 22 1296457 能板輸出達最大功率點時,其擾動行為並不會因而停止, 而會在最大功率點附近擾動造成能量的損失,雖可縮小每 次擾動的步距來改善此缺點,但是當溫度或照度大幅變動 時,特性曲線改變,而最大功率點移動,會造成追蹤到新 最大功率點時間響應變慢,這時將有能量上的損耗,所以 每次擾動量的大小需在響應速度和能量損耗間作權衡。因 此本發明提出一適應性步距擾動法(Adaptive Step-Perturbation Method),透過太陽能板輸出電壓及輸出 電流的迴授可由微處理器計算太陽能板輸出電壓及輸出功 率的變化量,並藉由兩者的關係依系統狀況適當地調整擾 動步距,如此將可有效改善傳統擾動觀察法的缺點,加快 最大功率點的追蹤並減少能量的損失。 適應性步距擾動法之控制流程如圖8所示,其中 &νΜ、及尸;分別為當次之輸出電流、電壓及功率; /pV [/7 -1] ' [« -1]及[«-1]分別為前次之輸出電流、電壓 及功率;及Δ^ν為輸出電壓及輸出功率變化量;及 Af^/為輸出電壓命令及擾動步距;^為一正值增益。程式 開始時將取得當次輸入電壓及輸入電流,進而求得輸出功 率及輸入電壓變化量,本發明設計適應性擾動步距 AF^/^V/AF^,可發現擾動步距〜正比於太陽能板 輸出電壓對輸出功率之曲線斜率(ΔΡρν/Δ1^ν),意指擾動步 距將隨系統情況而具有適應調節的能力,可加快最大功率 點的追蹤並減少能量的損失。當獲得太陽能板電壓命令 後,利用電壓誤差-厂經過比例控制器可產生變流 23 1296457 器之電流振幅命令,間接控制太陽能板電壓,如圖9所 示’其中%為一正值常數,為變流器電流命令改變量, % =2式’尤為市電頻率;最大功率追蹤所產生變流器之電 流振幅命令‘乘上與市電同相位的單位正弦信號sin(wj) 之後,形成一完整電流命令,逕行交由本發明所設計之 適應性全域滑動模式控制系統,以完成最大功率追蹤及單 位功因市電併聯供電之功效。 【實施方式】 本發明所揭示之高性能太陽光電能源轉換系統,實施例 採用6塊茂廸公司所生產的F-MSN-75W_R-〇2型號之太陽能 板併聯作為低壓直流電源供應高昇壓比直流/直流轉換電 路所使用,該太陽能板在標準測試條件(IkW/m2,】〗。。)下之 單板電氣規格為額定輸出功率為76.78W,額定輸出電壓為 17.228¥,額定輸出電流為4.4567入,開路電壓為21.61又, 短路電流為4·9649Α及光電轉換效率為11.92%,由於高昇壓 比直流/直流轉換電路之開關0責任週期D約為0·5時,將使 得各電路元件導通電流具有較小的漣波成份,尤其導通關 係為互補之元件,其影響更為顯著,且因太陽能板輸入電 壓於17V左右接近最大功率點而具有較佳的使甩效率,故 可利用方程式(4),並設定額定輸出電壓為200V,本發明設 計匝數比《等於4,透過方程式(6)可得到開關最高箝制電壓 為34V。即使輸入最低電壓為ιον且輸出電壓為200V時,可 經由方程式(4)計算此時責任周期乃為0·7,此為實務可接受 24 1296457 V 之值。本發明設定高昇壓比直流/直流轉換電路開關切換頻 • 率為100kHz,為一般業界所常用之高頻切換頻率,詳細電 路規格整理如下:> can be rearranged as follows: ^ (0 ^ dpu(t) + epf{t) + g(t) Then ^ (^pn + ^pn)U^f) + {^ρη+ ^epn)f{t) + ^ dpnU(0 + epnf(t) + h{t) K, — vcon, dp = KPWM !Lf, ep 2~]Ji^, = /Zy ; and respectively represent the normal case 4 and indeed κ玲『P «And « represents the parameter perturbation of the system; /? (〇 represents the total set (0 svj ^ (9) system parameters; μ and is defined as j. , ^ ^dpnu{t) + Aepnf(t) + g(t) % + Total A > /, the boundary value of the uncertainty is given by the system (10) of Equation (u), where 1296457 k pg is a positive constant. , l^wl < pg (ίο In the case of a full-bridge converter with uncertainties and external interference, the output current can still effectively follow the current command and be in phase with the same frequency and the same phase to achieve the best parallel efficiency of the unit power, the present invention The output current of the converter is controlled by Adaptive Total Sliding-Mode Control (ATSMC), as shown in Fig. 6, defining a control error gas -X%, where is the output current command > Design the sliding plane & (7) for & = gas (〇一气 (9) + (7) (12) α where α is a positive constant and \(〇) is the initial value of & (1). The adaptive global sliding mode control system can be mainly divided into three parts: The first part is system performance planning, this method is mainly Clearly plan the system performance expected under normal conditions, and assign it to the basic model design > (Baseline Model Design) %; the second part is the construction of the constraint controller (Curbing Controller) Wc, that is, the elimination from the system The parameter variation, the interference voltage caused by the load change, and the unpredictable disturbance effect of the unpatterned system dynamics make it possible to fully satisfy the system performance of the basic (4) design; in addition, the third part is the development of the adaptive algorithm (Adaptive). Obse cut design...) Estimate the upper bound of the total uncertainty of the set to avoid the control tremor caused by improper selection of the upper bound of the constrained controller. The overall control design of the adaptive global sliding converter control system is as follows. Theorem-show, in addition, if the system's post-level DC/AC conversion mechanism 1296457 • changes, it can be deduced in the same way. Complete the converter control - system design. [Theorem 1] Assume that the full-bridge converter shown in equation (9) adopts adaptive global sliding mode control, and the various parts of the controller are designed as equations (13) to (15). As shown, and the development of the adaptive algorithm is as shown in equation (16), the stability of the system will be guaranteed. u = ugb + Ugc (13) ugb= - d~pln(epnf + aeg^xgd) (14) ugb= - Pg(〇dplnsgn(sg(t)) (15) From) Gentry (16) where sgn (·) is a symbolic function, · is an absolute value function, and \ is a positive constant. [Proof] According to the analysis of Lyapunov stability theory [16,17], the stability of the converter control system can be guaranteed, because the proof of Theorem 1 is roughly the same as the reference [18], so Omitted. Although the solar tracking control can make solar panels gain greater sunlight intensity and improve system power generation efficiency, there are still difficulties in implementation, such as sensor technology, external interference elimination, reliability and cost issues. The common method for sun tracking is to erect a light quantity sensing device composed of light sensing elements at both ends of the solar panel frame, and change the angle of the board surface by rotating the actuating device, when the light amount sensing device at both ends of the solar panel frame is returned When the amount is equal, it means that the solar panel is forward source and has the maximum amount of sunlight. However, the adjustment of the 21 1296457 light quantity sensing device is not easy and the photosensitive element is susceptible to the age of the device, which causes the component characteristics to change. In view of the above, the present invention proposes an active solar tracking system, which utilizes the solar panel open circuit voltage proportional to the characteristics of the sunshine intensity, and rotates the surface of the solar panel through the actuating device to change the incident angle of the sunlight, thereby performing the open circuit voltage of the solar panel. Disturbance, by feedback of the open circuit voltage of the solar panel, the microprocessor will be able to determine the correct direction of rotation and send a drive signal to drive the actuator. This method only needs to feedback the open circuit voltage of the solar panel to track the sun's azimuth. At the same time, because the position of the sun moves slowly and monotonously, the single-month climbing angle does not change and the variation range is ±10 in one year. Therefore, the tracking system does not need to adjust its tilt angle, and the maximum illumination can be achieved by controlling the azimuth angle with a single axis position. It is not necessary to change the original structure of the system, improve the shortcomings of the traditional passive sun chasing system and have the advantages of convenient construction. The program control flow is shown in Figure 7, where -1] is the current and previous open circuit voltage; the open circuit voltage change; because the sun only moves from east to west in one direction in one day, the program Start clockwise (from east to west) by rotating L seconds per unit angle to change the angle of the solar panel, thereby disturbing the open circuit voltage of the solar panel, and thus judging whether it should continue to rotate in the same direction to obtain greater sunshine. If the open circuit voltage drops due to excessive rotation angle or external environment influence (shading), the system will rotate counterclockwise to return to the previous board position, and wait for a while (seconds) to track again. In the traditional maximum power tracking rule, the disturbance observation method is often used because of its simple structure and lack of system parameters. However, the selection of the disturbance amount is not easy to be a disadvantage. Although the large disturbance amount can effectively improve the response speed, when the sun 22 1296457 When the output of the energy board reaches the maximum power point, its disturbance behavior will not stop, but the energy loss will be disturbed near the maximum power point. Although the step of each disturbance can be reduced to improve this disadvantage, but when the temperature Or when the illuminance changes greatly, the characteristic curve changes, and the maximum power point moves, causing the time response to track to the new maximum power point to slow down. At this time, there will be energy loss, so the amount of perturbation needs to be in response speed and energy. Weigh the tradeoffs. Therefore, the present invention proposes an Adaptive Step-Perturbation Method, which can calculate the output voltage and output power of the solar panel by the microprocessor through the feedback of the output voltage and the output current of the solar panel. The relationship of the person appropriately adjusts the disturbance step according to the system condition, which can effectively improve the shortcomings of the traditional disturbance observation method, accelerate the tracking of the maximum power point and reduce the energy loss. The control flow of the adaptive step disturbance method is shown in Figure 8, where & νΜ, and corpse; respectively, the current output current, voltage and power; /pV [/7 -1] ' [« -1] and [«-1] is the previous output current, voltage and power; and Δ^ν is the output voltage and output power variation; and Af^/ is the output voltage command and the disturbance step; ^ is a positive gain. At the beginning of the program, the current input voltage and input current will be obtained, and then the output power and the input voltage variation will be obtained. According to the design of the adaptive disturbance step AF^/^V/AF^, the disturbance step can be found to be proportional to the solar energy. The slope of the output voltage vs. output power (ΔΡρν/Δ1^ν) means that the disturbance step will have the ability to adjust to the system conditions, which can speed up the tracking of the maximum power point and reduce the energy loss. After obtaining the solar panel voltage command, the voltage error-factor can be used to generate the current amplitude command of the current transformer 23 1296457 to indirectly control the solar panel voltage, as shown in Figure 9, where % is a positive constant. Converter current command change amount, % = 2 type is especially the mains frequency; maximum current tracking produces the current amplitude command of the converter 'multiplied by the unit sinusoidal signal sin(wj) in phase with the mains to form a complete current The command is passed to the adaptive global sliding mode control system designed by the present invention to complete the maximum power tracking and the power of the unit power supply parallel supply. [Embodiment] The high-performance solar photovoltaic energy conversion system disclosed by the present invention adopts six F-MSN-75W_R-〇2 models of solar panels produced by Motech Company in parallel as a low-voltage DC power supply for high-boost DC. / DC conversion circuit used, the solar panel under the standard test conditions (IkW / m2, 〗 〖). The electrical specifications of the board is rated output power is 76.78W, rated output voltage is 17.228¥, rated output current is 4.4567 In, the open circuit voltage is 21.61, the short-circuit current is 4·9649Α, and the photoelectric conversion efficiency is 11.92%. Since the high-boost ratio DC/DC conversion circuit has a duty cycle D of about 0·5, the circuit components are turned on. The current has a small chopping component, especially the component with the conduction relationship is complementary, the influence is more significant, and since the input voltage of the solar panel is close to the maximum power point at about 17V, the enthalpy efficiency is better, so the equation can be utilized ( 4), and set the rated output voltage to 200V, the design of the invention turns ratio "equal to 4, through the equation (6) can get the switch maximum clamping voltage of 34V. Even if the input minimum voltage is ιον and the output voltage is 200V, the duty cycle can be calculated by equation (4). The duty cycle is 0·7, which is a practical value of 24 1296457 V. The invention sets a high-boost ratio DC/DC conversion circuit switching frequency of 100 kHz, which is a high-frequency switching frequency commonly used in the industry, and the detailed circuit specifications are as follows:
Vd : DC 200VVd : DC 200V
Tr : =9μΗ ; I2 =143μΗ ; Nx : N2=3 : 12 ; k=0.91 ; core : EE-55Tr : =9μΗ ; I2 =143μΗ ; Nx : N2=3 : 12 ; k=0.91 ; core : EE-55
Q : IRFP048N : 55V/64A ; C1N : 3300μΡ/5〇ν*2 Cx : 6.8μΡ/10〇ν ; C2 : 1μΡ/25〇ν*2 ; C〇 : 47μΡ/45〇ν*2 • A : SB2060, 60V/20A (Schottky),TO-220AC D2,D0 : SB20200CT, 200V/20A (Schottky), TO-220AB 為瞭解本發明所延用之高昇壓比直流/直流轉換電路 内容,以下實施例之實驗波形,電路元件之電壓及電流之 代號,敬請參閱圖2。 而昇壓比直流/直流轉換電路於輸出功率4〇w(輕載)及 320W(重載)時之實作響應如圖1〇及圖n所示,由圖中可以 發現開關兩端電壓〜被箝制在斯左右,開關電流k近似 方波,顯不開關具有較佳的利用率並可降低導通損。檢視 所有的二極體電壓及電流波形,逆向恢復電流均低於導通 電抓,且在未加緩震電路的情況下,二極體兩端不存在突 波電壓且低於輸出電壓200v,表示二極體已達成電壓箱制 及柔性切換效果,值得一提的是輕載時因電流不連續,輕 合電,一次側及二次側繞組之漏感將與其他元件内部的寄 生電容產生譜振現象,如圖10中化波形即為一次側繞組之 漏感與開關内部寄生電容諧振所致。 25 1296457 圖12為咼昇壓比直流/直流轉換電路於負載由8〇w逐漸 艾化至320Wk ’整流二極體%的電流、、電壓〜及開關 2的電壓vm實作響應波形,由圖可以發現在不同負載的情 況下,一極體的電壓均在200V以下,而開關g電壓仍有不 錯的箝制效果,圖13為不同負載時的轉換效率,電路最高 轉換效率超過96.5%,於輕載時轉換效率均在95%以上,由 此可驗證本發明所採用高昇壓比直流/直流轉換電路之有 效性。 本發明採用德州儀器公司所生產之數位信號處理器 TMS320LF2407A貫現適應性全域滑動模式控制於全橋式 變流器’選擇控制變數,\=3·3,開關切換頻率為 20kHz,變流器詳細電路規格整理如下:Q : IRFP048N : 55V/64A ; C1N : 3300μΡ/5〇ν*2 Cx : 6.8μΡ/10〇ν ; C2 : 1μΡ/25〇ν*2 ; C〇: 47μΡ/45〇ν*2 • A : SB2060 , 60V/20A (Schottky), TO-220AC D2, D0: SB20200CT, 200V/20A (Schottky), TO-220AB In order to understand the contents of the high step-up ratio DC/DC conversion circuit extended by the present invention, the experiment of the following examples Waveform, the code for the voltage and current of the circuit components, please refer to Figure 2. The actual response of the step-up ratio DC/DC converter circuit at 4 〇w (light load) and 320 W (heavy load) is shown in Figure 1 and Figure n. The voltage across the switch can be found in the figure. Being clamped around the sigma, the switching current k is approximately square wave, and the display switch has better utilization and can reduce the conduction loss. View all the diode voltage and current waveforms, the reverse recovery current is lower than the conduction current, and without the cushion circuit, there is no surge voltage at both ends of the diode and lower than the output voltage 200v, indicating The diode has achieved the voltage box system and flexible switching effect. It is worth mentioning that the light current is discontinuous, light and close, and the leakage inductance of the primary and secondary windings will be generated with the parasitic capacitance inside other components. The vibration phenomenon, as shown in Figure 10, is caused by the leakage inductance of the primary winding and the resonance of the internal parasitic capacitance of the switch. 25 1296457 Figure 12 shows the response waveform of the 咼 boost ratio DC/DC converter circuit in the load from 8〇w gradually to 320Wk 'rectifier diode % current, voltage ~ and switch 2 voltage vm It can be found that under different load conditions, the voltage of one pole is below 200V, and the voltage of switch g still has good clamping effect. Figure 13 shows the conversion efficiency under different loads. The highest conversion efficiency of the circuit exceeds 96.5%. The load-time conversion efficiency is above 95%, thereby verifying the effectiveness of the high step-up ratio DC/DC conversion circuit used in the present invention. The invention adopts the digital signal processor TMS320LF2407A produced by Texas Instruments Co., Ltd. to realize the adaptive global sliding mode control in the full-bridge converter's selection control variable, \=3·3, the switching frequency is 20 kHz, and the converter details The circuit specifications are organized as follows:
ta+Ja-Jb+Jb- : IRFP264:250V/38A Zy:7.5mH 為產生與市電同頻率且同相位之電流命令以使變流器 之輸出電流在控制後能與市電電壓呈單位功因,本發明以 建表的方式產生正弦函數值,節省運算時間,且利用數位 ja 7虎處理裔之e十日守中斷功能適時累加正弦函數指標值切, 將可使電流命令與市電電壓頻率相同,此中斷時間設定為 166ps ’市電頻率為60HZ,另,中斷時間可視應用場合不同 而予以調整,增加系統彈性。本發明採用如圖14所示之市 電零交越點偵測電路將市電電壓乂透過變壓器隔離降壓後 的信號%經IC LM311組成之比較電路取得市電相位信號 々,由於數位信號處理器外部中斷腳位輸入上限為3 3ν, 26 1296457 ,因此將〜利用分壓電路分壓後經—級電壓隨㈣處理並以 .此做為數位信號處理器外部中斷功能的觸發信號’於外部 中斷發生時重置正弦函數表之指標值,藉此修正弦波電流 命令與市電電壓之間的相位差,控制流程如圖15所示,其 中W為電流振幅命令,可由最大功率追縱法決定。 圖16分別為系統於輕載與重载時的市電電壓及輸出電 流的波形’由圖可知系統在穩態時具有良好的控制響應, 且功率因素(Ρ_心⑽,PF)均高於一般商用產品所規範 • PF=95%以上。系統於負載變化時的實作響應如圖17所示, 分別為輕載到重載、重載到輕載、無載到滿載及滿載到無 載日卞的市電電廢及輸出電流波形。由圖中可發現在負載發 生變化時,系統輸出電流仍可被有效的控制,輸出電流與 市電電壓幾乎同頻率且同相位,具有很高的功率因數,顯 示系統具有良好的暫態及穩態控制響應。 為使太陽能板的板面可藉由旋轉來改變太陽光的入射 角度1成主動式追曰糸統以便獲得較大的曰照強度,本 發明使用統玲公司所生產的GL韻㉟號之同步馬達作為 致動裝置,馬達於輸入交流電壓n〇v時,功率消耗僅 15W’通電時旋轉平台的角度改變量為每秒3。,而馬達最 大負重為38kg,因此可將太陽能板架設於旋轉平台之上, 進而控制太陽能板的板面角度。 一日之中,於清晨時分時主動式追日系統之太陽能板 初始位置面向東方,追日㈣轉㈣度衫用太大即可獲 得較大之日照量;而正午時分恰是傳統固定式太陽光電 27 1296457 源轉換系統板面正對太陽的時候,因此為了明顯看出主動 式追日系統的有效性’貫測時間選定下午時間較為適當, 本發明於民國94年10月5日下午3點左右,照度67mW/cm2 及核板溫度50。C時對糸統進行貫測,設定計時中斷時間為 lms ’每單位時間馬達旋轉角度為3。念並選定控制參數 L =30。圖18分別為主動式追日系統於無遮蔭條件 及遮隆條件下的實作響應,圖18(a)中當追曰程序開始後, 太陽能板之板面因同步馬達的帶動而旋轉,開路電壓亦隨Ta+Ja-Jb+Jb- : IRFP264:250V/38A Zy: 7.5mH is a current command that generates the same frequency and same phase as the mains to make the output current of the converter be able to work with the mains voltage after control. The invention generates a sine function value in a form of table construction, saves the operation time, and uses the digital ja 7 tiger to deal with the e-day observing interrupt function to timely accumulate the sine function index value cut, which will make the current command and the mains voltage frequency the same. The interruption time is set to 166ps' The mains frequency is 60HZ. In addition, the interruption time can be adjusted depending on the application, increasing system flexibility. The invention adopts the commercial zero-crossing point detection circuit shown in FIG. 14 to obtain the mains phase signal 比较 by the comparator circuit composed of the IC LM311 after the mains voltage 乂 is separated by the transformer isolation stepped signal 々, due to the external interruption of the digital signal processor The upper limit of the pin input is 3 3ν, 26 1296457, so the voltage is divided by the voltage divider circuit, and the voltage is processed with the voltage of (4) and used as the trigger signal of the external interrupt function of the digital signal processor. The index value of the sine function table is reset, thereby correcting the phase difference between the sine wave current command and the mains voltage. The control flow is as shown in FIG. 15, where W is the current amplitude command, which can be determined by the maximum power tracking method. Figure 16 shows the waveforms of the mains voltage and output current for the system at light and heavy loads. 'The figure shows that the system has a good control response at steady state, and the power factor (Ρ_心(10), PF) is higher than normal. Commercial product specifications • PF = 95% or more. The actual response of the system when the load changes is shown in Figure 17, which is the mains waste and output current waveforms from light load to heavy load, heavy load to light load, no load to full load and full load to unloaded sundial. It can be seen from the figure that when the load changes, the output current of the system can still be effectively controlled. The output current and the mains voltage are almost the same frequency and in phase, with high power factor, and the display system has good transient and steady state. Control response. In order to make the surface of the solar panel change the incident angle of sunlight 1 into an active tracking system to obtain a large contrast intensity, the present invention uses the synchronization of GL Yun No. 35 produced by Tongling Company. The motor acts as an actuating device. When the motor inputs the AC voltage n〇v, the power consumption is only 15W'. The angle of change of the rotating platform when energized is 3 per second. The maximum load of the motor is 38kg, so the solar panel can be mounted on the rotating platform to control the angle of the solar panel. In the middle of the day, the initial position of the solar panel in the early morning hours is facing the east. The chasing day (four) turns (four) the shirt is too large to get a larger amount of sunshine; and the noon is the traditional fixed sun. Optoelectronics 27 1296457 The source conversion system is facing the sun, so in order to clearly see the effectiveness of the active chase system, the selected time is more appropriate. The invention was made at 3 pm on October 5, 1994. Left and right, the illuminance is 67mW/cm2 and the nuclear plate temperature is 50. At C, the system is continuously measured, and the timing interruption time is set to lms ’. The motor rotation angle is 3 per unit time. Read and select the control parameter L = 30. Fig. 18 is the actual response of the active sun-tracking system under the conditions of no shading and occlusion, and in Fig. 18(a), after the start of the tracking process, the surface of the solar panel is rotated by the synchronous motor. Open circuit voltage is also
著板面角度的改變由原本的18.5V增加至2〇v。為了測試 外來干擾對系統所造成的影響,於是在實測條件中加入遮 蔭條件,由圖18(b)可以發現當系統開始追縱日照一段時間 後,於34秒時將板面予以遮蔭’此時開路電壓隨即下降, 程式於判斷電壓下降後返回前次板面位置,並靜候一兵 間(約為30秒)’等待外來干擾的消除,而於62秒左^ 統移除板面祕’開路電壓上昇至穩態,板面將於^The change in the angle of the board is increased from the original 18.5V to 2〇v. In order to test the impact of external interference on the system, the shading conditions were added to the measured conditions. From Fig. 18(b), it can be found that when the system starts to track the sunshine for a period of time, the board surface is shaded at 34 seconds. At this time, the open circuit voltage drops, and the program returns to the previous board position after judging that the voltage drops, and waits for a soldier (about 30 seconds) to wait for the elimination of external interference, and removes the board at 62 seconds. Secret 'open circuit voltage rises to steady state, the board will be ^
次開^追縱時進行旋轉,完成追日控制。根據圖18之廣 電赴化及模板溫度條件時,針對蚊式安裝及主動式 曰^之太陽能板特性進行數值 ^ 提昇,藉此將可改善傳統固定::二::功率均可獲 提的是’當主動式追曰系統:功率:二率。值得 所需/動式追日錢之同步馬: 根據此數值模擬結果可驗證本發明7 28 1296457 研製主動式追日系統之實用性。 圖20至圖23為系統在民國94年11月06曰午後,照 度88mW/cm2及模板溫度53。(:時以太陽能板做為系統輸入 時所作的實作響應,系統控制參數選取& =〇.〇〇1,/? = 〇.〇2。 由圖20可以觀察到當系統以小步距(0.15V)進行擾動時,除 追蹤速度較慢外,仍可有效的沿功率曲線進行最大功率追 蹤,但需要花費較久的時間,若希望加快追蹤的速度,則 必須加大擾動步距(0.3V),其實作響應如圖21所示,發現 系統花費較少的時間即可追蹤至最大功率點,但因傳統擾 動觀察法採用固定擾動步距,故於最大功率點時仍會以大 步距擾動而造成系統抖動的現象,致使功率損失,當系統 因操作點不穩定而操作於功率曲線左半面時,將容易因抖 動過劇而發生崩潰的現象,對系統帶來危害,如圖22所 示。圖23為適應性步距擾動法之實作響應,可發現系統僅 以較少的時間便可到達最大功率點,且無抖動的現象,因 此可知不管是在暫態追蹤或穩態操作時,適應性步距擾動 法均具有良好的最大功率追蹤性能。 【圖式簡單說明】 圖1 本發明高性能太陽光電能源轉換系統之整體架構。 圖2 本發明高性能太陽光電能源轉換系統之高昇壓比直 流/直流轉換電路架構。 圖3 本發明高性能太陽光電能源轉換系統之等效電路。 圖4 本發明高性能太陽光電能源轉換系統之全橋式變流 29 1296457 r 器於正半周切換時之兩種狀態:(a)h+及導通; 、 (b)7^+及Γβ+導通或巧-及心―導通。 圖5 本發明高性能太陽光電能源轉換系統之變流器等效 模型。 圖6 本發明高性能太陽光電能源轉換系統之適應性全域 滑動模式變流器控制系統。 圖7 本發明高性能太陽光電能源轉換系統之主動式追曰 系統控制流程。 瞻圖8 本發明高性能太陽光電能源轉換系統之適應性步距 擾動法控制流程。 圖9 本發明高性能太陽光電能源轉換系統之變流器振幅 命令示意。 圖10本發明高性能太陽光電能源轉換系統之高昇壓比直 流/直流轉換電路實施例之一,應用於太陽能板昇壓 至200V,輸出功率40W時各元件電壓及電流波形。 圖11本發明高性能太陽光電能源轉換系統之高昇壓比直 • 流/直流轉換電路實施例之一,應用於太陽能板昇壓 至200V,輸出功率320W時各元件電壓及電流波形。 圖12本發明高性能太陽光電能源轉換系統之高昇壓比直 流/直流轉換電路實施例之一,應用於太陽能板昇壓 至200V,輸出功率由80W變化至320W時、V% 及\^波形。 圖13本發明高性能太陽光電能源轉換系統之高昇壓比直 流/直流轉換電路實施例之一,應用於太陽能板昇壓 30 1296457 至200V,輸出功率由40W變化至320W時之轉換效 率。 圖14本發明高性能太陽光電能源轉換系統之市電零交越 點偵測電路。 圖15本發明高性能太陽光電能源轉換系統之控制流程。 圖16本發明高性能太陽光電能源轉換系統適應性全域滑 動模式變流器控制系統實施例之一,系統於輕載及 重載時之實作響應:(a)輕載;(b)重載。 圖17本發明高性能太陽光電能源轉換系統之適應性全域 滑動模式變流器控制系統實施例之一,系統於負載 變動時之實作響應:(a)輕載到重載;(b)重載到輕載; (c)無載到滿載;(d)滿載到無載。 圖18本發明高性能太陽光電能源轉換系統之主動式追日 系統實施例之一,系統於有無遮蔭情況下之實作響 應:(a)無遮蔭條件;(b)遮蔭條件。 圖19本發明高性能太陽光電能源轉換系統之主動式追曰 系統實施例之一,固定式安裝與主動式追日系統響 應比較:(a)輸出電壓對輸出功率曲線;(b)輸出電壓 對輸出電流曲線。 圖20本發明高性能太陽光電能源轉換系統之最大功率追 蹤實施例之一,系統於擾動步距0.15V之實作響應: (a)輸出功率、輸入電壓及輸入電流關係;(b)暫態追 蹤軌跡;(c)穩態軌跡。 圖21本發明高性能太陽光電能源轉換系統之最大功率追 31 1296457 ~ 蹤實施例之一,系統於擾動步距0.3V之實作響應(抖 产 動)··⑻輸出功率、輸入電壓及輸入電流關係;(b) 暫態追蹤軌跡;(c)穩態執跡。 圖22本發明高性能太陽光電能源轉換系統之最大功率追 蹤實施例之一,系統於擾動步距0.3V之實作響應(崩 潰)··⑻輸出功率、輸入電壓及輸入電流關係;⑻ 暫態追蹤執跡;(c)穩態執跡。 圖23本發明高性能太陽光電能源轉換系統之最大功率追 • 蹤實施例之一,系統於適應性步距擾動法時之實作 響應:⑷輸出功率、輸入電壓及輸入電流關係;⑻ 暫態追蹤執跡;(c)穩態執跡。 【主要元件符號說明】 10 :太陽能板 20:高昇壓比直流/直流轉換電路 201 :直流輸入電路 202 : —次侧電路 * 203 :再生被動式緩震電路 204 :二次側電路 205 :濾波電路 30 :全橋式變流器 40 :扼流電感 50 :系統控制單元 60 :微處理器 70 :驅動電路 32 1296457 , 80 :致動裝置 - Fpv :太陽能板輸出電壓 /pv:太陽能板輸出電流 匕:高昇壓比直流/直流轉換電路輸出電壓 vw :市電電壓 全橋式變流器輸出電流 7;:具高激磁電流之變壓器(簡稱耦合電感) β :高昇壓比直流/直流轉換電路之功率半導體開關 # A:耦合電感一次側繞組 :耦合電感二次側繞組 ‘:耦合電感一次側激磁電感 4 :柄合電感一次側繞組漏感 ··直流輸入電路之輸入電容 C\ :再生被動式緩震電路之箝制電容 c2:二次側電路之高壓電容 c^:濾波電路之濾波電容 • Μ:再生被動式缓震電路之箝制二極體 :再生被動式緩震電路之放電二極體 :濾波電路之整流二極體 33The rotation is performed when the second opening is performed, and the tracking control is completed. According to the radio and television and the template temperature conditions in Figure 18, the solar panel characteristics of the mosquito-mounted and active 曰^ are improved, which can improve the traditional fixation: 2:: Power can be improved 'When active tracking system: power: two rate. It is worthwhile to synchronize the horse with the required/moving chasing money: According to the numerical simulation results, the practicality of the active day chasing system developed by the invention 7 28 1296457 can be verified. Figure 20 to Figure 23 show the system illumination at 88 mW/cm2 and template temperature 53 after November 06, 1994. (: When the solar panel is used as the system input, the system control parameter is selected & =〇.〇〇1, /? = 〇.〇2. It can be observed from Fig. 20 when the system is in small step (0.15V) When the disturbance is performed, in addition to the slow tracking speed, the maximum power tracking can be effectively performed along the power curve, but it takes a long time. If you want to speed up the tracking, you must increase the disturbance step ( 0.3V), in fact, as shown in Figure 21, it is found that the system takes less time to track to the maximum power point, but because the traditional disturbance observation method uses a fixed disturbance step, it will still be large at the maximum power point. The phenomenon of system jitter caused by step disturbance causes power loss. When the system is operated on the left half of the power curve due to unstable operation point, it will easily collapse due to jitter and cause harm to the system. Figure 22. Figure 23 shows the practical response of the adaptive step-distance perturbation method. It can be found that the system can reach the maximum power point in less time and there is no jitter. Therefore, it can be seen whether it is transient tracking or stable. State operation The adaptive step-distance perturbation method has good maximum power tracking performance. [Simplified illustration] Figure 1 The overall architecture of the high-performance solar photovoltaic energy conversion system of the present invention. Figure 2 The high-performance solar photovoltaic energy conversion system of the present invention High boost ratio DC/DC converter circuit architecture. Figure 3. Equivalent circuit of the high performance solar photovoltaic energy conversion system of the present invention. Figure 4 Full-bridge converter of the high performance solar photovoltaic energy conversion system of the present invention 29 1296457 r in the positive half cycle Two states during switching: (a) h+ and conduction; (b) 7^+ and Γβ+ conduction or coincidence-and-heart-conduction. Figure 5 Converter equivalent of the high performance solar photovoltaic energy conversion system of the present invention Figure 6. The adaptive global sliding mode converter control system of the high performance solar photovoltaic energy conversion system of the present invention. Figure 7 The control flow of the active tracking system of the high performance solar photovoltaic energy conversion system of the present invention. The adaptive step-disturbance method control flow of the high-performance solar photovoltaic energy conversion system. Figure 9 The converter of the high-performance solar photovoltaic energy conversion system of the present invention Figure 10 is one of the embodiments of the high-boost ratio DC/DC conversion circuit of the high-performance solar photovoltaic energy conversion system of the present invention, which is applied to the voltage and current waveforms of various components when the solar panel is boosted to 200V and the output power is 40W. 11 The high-boost ratio direct current/DC conversion circuit embodiment of the high-performance solar photovoltaic energy conversion system of the present invention is applied to the voltage and current waveforms of various components when the solar panel is boosted to 200V and the output power is 320W. One of the embodiments of the high-boost DC/DC conversion circuit of the high-performance solar photovoltaic energy conversion system is applied to the solar panel to boost to 200V, and the output power is changed from 80W to 320W, V% and waveforms. One of the high-boost DC/DC conversion circuit examples of the high-performance solar photovoltaic energy conversion system is applied to the solar panel boosting 30 1296457 to 200V, and the output power is changed from 40W to 320W. Fig. 14 shows a commercial zero-crossing point detection circuit of the high performance solar photovoltaic energy conversion system of the present invention. Figure 15 shows the control flow of the high performance solar photovoltaic energy conversion system of the present invention. Figure 16 is a diagram of an embodiment of the adaptive global sliding mode converter control system of the high performance solar photovoltaic energy conversion system of the present invention. The system responds to light load and heavy load: (a) light load; (b) heavy load . 17 is an embodiment of an adaptive global sliding mode converter control system of the high performance solar photovoltaic energy conversion system of the present invention, the system responds to changes in load: (a) light load to heavy load; (b) heavy Loaded to light load; (c) no load to full load; (d) full load to no load. Figure 18 is a diagram showing an embodiment of the active solar tracking system of the high performance solar photovoltaic energy conversion system of the present invention, the system reacting in the presence or absence of shading: (a) no shading conditions; (b) shading conditions. Figure 19 is one embodiment of the active tracking system of the high performance solar photovoltaic energy conversion system of the present invention. The comparison between the fixed installation and the active tracking system is: (a) output voltage versus output power curve; (b) output voltage pair Output current curve. Figure 20 is one of the maximum power tracking embodiments of the high performance solar photovoltaic energy conversion system of the present invention. The system responds to the disturbance step of 0.15V: (a) output power, input voltage and input current relationship; (b) transient state Tracking trajectory; (c) steady state trajectory. Figure 21 is a schematic diagram of one of the maximum power chasing 31 1296457 traces of the high performance solar photovoltaic energy conversion system of the present invention, the system responds to the disturbance step of 0.3V (shake production) (8) output power, input voltage and input Current relationship; (b) transient tracking trajectory; (c) steady state trajectory. Figure 22 is one of the maximum power tracking embodiments of the high performance solar photovoltaic energy conversion system of the present invention, the system responds (crash) in the disturbance step of 0.3V (8) output power, input voltage and input current relationship; (8) transient state Tracking the execution; (c) Steady-state execution. Figure 23 is one of the maximum power tracking embodiments of the high performance solar photovoltaic energy conversion system of the present invention, and the system responds in response to the adaptive step disturbance method: (4) output power, input voltage and input current relationship; (8) transient state Tracking the execution; (c) Steady-state execution. [Main component symbol description] 10: Solar panel 20: High step-up ratio DC/DC converter circuit 201: DC input circuit 202: - Secondary circuit * 203: Regenerative passive cushion circuit 204: Secondary side circuit 205: Filter circuit 30 : Full-bridge converter 40: choke inductor 50: system control unit 60: microprocessor 70: drive circuit 32 1296457, 80: actuating device - Fpv: solar panel output voltage / pv: solar panel output current 匕: High boost ratio DC/DC converter circuit output voltage vw: mains voltage full bridge converter output current 7; transformer with high excitation current (referred to as coupling inductor) β: power semiconductor switch with high step-up ratio DC/DC converter circuit # A: Coupled inductor primary winding: coupled inductor secondary winding ': coupled inductor primary side magnetizing inductance 4: shank combined inductor primary winding leakage inductance · · DC input circuit input capacitor C\ : regenerative passive cushioning circuit Clamping capacitor c2: high-voltage capacitor of secondary circuit c^: filter capacitor of filter circuit • Μ: clamped diode of regenerative passive cushion circuit: regenerative passive cushion circuit Discharging diode: rectifier smoothing circuit of diode 33
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95101841A TWI296457B (en) | 2006-01-18 | 2006-01-18 | High-performance power conditioner for solar photovoltaic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95101841A TWI296457B (en) | 2006-01-18 | 2006-01-18 | High-performance power conditioner for solar photovoltaic system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200729662A TW200729662A (en) | 2007-08-01 |
TWI296457B true TWI296457B (en) | 2008-05-01 |
Family
ID=45068771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95101841A TWI296457B (en) | 2006-01-18 | 2006-01-18 | High-performance power conditioner for solar photovoltaic system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI296457B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI408887B (en) * | 2009-12-29 | 2013-09-11 | Delta Electronics Inc | Dc-ac conversion circuit with wide input voltage level |
TWI427239B (en) * | 2010-03-15 | 2014-02-21 | Spi Tecno S R L | Street lamp system |
TWI456153B (en) * | 2008-10-24 | 2014-10-11 | Suncore Photovoltaics Inc | Terrestrial solar tracking photovoltaic array |
TWI465877B (en) * | 2012-03-13 | 2014-12-21 | Univ Nat Changhua Education | Improvement of power conversion device and method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI498705B (en) * | 2008-05-14 | 2015-09-01 | Nat Semiconductor Corp | Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system |
TWI428724B (en) | 2010-11-03 | 2014-03-01 | Univ Nat Cheng Kung | Discontinuous conduction current mode of the maximum power limiting PV system converter |
TW201420007A (en) * | 2012-11-16 | 2014-06-01 | Inst Information Industry | Sensing device capable of converting light energy into electrical energy and conversion method thereof |
CN104868764B (en) * | 2014-02-26 | 2017-08-04 | 全汉企业股份有限公司 | Inverter and its power conversion method |
TWI573385B (en) * | 2015-12-18 | 2017-03-01 | 國立勤益科技大學 | Real-time fault detector of photovoltaic module array and method thereof |
TWI640146B (en) | 2017-02-06 | 2018-11-01 | 圓展科技股份有限公司 | Intelligent charging system and intelligent charging method |
US10921368B2 (en) * | 2017-09-29 | 2021-02-16 | Boehringer Ingelheim Vetmedica Gmbh | Testing and calibration of a circuit arrangement |
TWI651920B (en) * | 2018-04-30 | 2019-02-21 | 國立臺北科技大學 | Renewable energy supply system |
TWI838315B (en) * | 2023-09-13 | 2024-04-01 | 國立虎尾科技大學 | Dual active bridge converter |
-
2006
- 2006-01-18 TW TW95101841A patent/TWI296457B/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI456153B (en) * | 2008-10-24 | 2014-10-11 | Suncore Photovoltaics Inc | Terrestrial solar tracking photovoltaic array |
TWI408887B (en) * | 2009-12-29 | 2013-09-11 | Delta Electronics Inc | Dc-ac conversion circuit with wide input voltage level |
TWI427239B (en) * | 2010-03-15 | 2014-02-21 | Spi Tecno S R L | Street lamp system |
US9101004B2 (en) | 2010-03-15 | 2015-08-04 | Spi Tecno Srl | Street lamp system including a renewable energy device coupled to a power line through a switch |
US9480132B2 (en) | 2010-03-15 | 2016-10-25 | Spi Tecno S.R.L. | Safety device for a street lamp system |
TWI465877B (en) * | 2012-03-13 | 2014-12-21 | Univ Nat Changhua Education | Improvement of power conversion device and method |
Also Published As
Publication number | Publication date |
---|---|
TW200729662A (en) | 2007-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI296457B (en) | High-performance power conditioner for solar photovoltaic system | |
US7479774B2 (en) | High-performance solar photovoltaic (PV) energy conversion system | |
Wai et al. | Grid-connected photovoltaic generation system | |
Jain et al. | New current control based MPPT technique for single stage grid connected PV systems | |
Taghvaee et al. | A current and future study on non-isolated DC–DC converters for photovoltaic applications | |
Palanisamy et al. | Simulation of various DC-DC converters for photovoltaic system | |
Kim et al. | Soft-switching current-fed push–pull converter for 250-W AC module applications | |
Levron et al. | High weighted efficiency in single-phase solar inverters by a variable-frequency peak current controller | |
TWI379183B (en) | Frequency-varied incremental conductance maximum power point tracking controller and algorithm for pv converter | |
TW201513541A (en) | Micro inverter of solar power system and method of operating the same | |
Liu et al. | Design of a solar powered battery charger | |
Yu et al. | A soft-switching control for cascaded buck-boost converters without zero-crossing detection | |
CN103501020A (en) | Hybrid power supply system consisting of mains supply network and photovoltaic assembly and control method thereof | |
Devi et al. | Ripple current reduction in interleaved boost converter by using advanced PWM techniques | |
CN103701329A (en) | Solar photovoltaic converter of phase-shifted full-bridge soft switch | |
JP2005312158A (en) | Power converter and its control method, and solarlight power generator | |
CN103647453A (en) | CCM-based micro inverter and control method thereof | |
Yoomak et al. | Design of solar charger challenging various solar irradiance and temperature levels for energy storage | |
TWI460979B (en) | Control method of a dc-dc converter and a voltage coverting system | |
Sansare et al. | Design of standalone PV charging system for lead acid battery using controlled boost converter | |
TWI296460B (en) | High-performance power conditioner for clean energy with low input voltage | |
Paul et al. | Modeling and analysis of PV micro-inverter | |
Barakat et al. | ZVS QR boost converter with variable input voltage and load | |
Yao et al. | Isolated Buck-Boost DC/DC converter for PV grid-connected system | |
Ravichandrudu et al. | Design and performance of a bidirectional isolated Dc-Dc converter for renewable power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |