[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI283514B - CMOS buffer circuits, and integrated circuits and ring oscillation circuits using circuit - Google Patents

CMOS buffer circuits, and integrated circuits and ring oscillation circuits using circuit Download PDF

Info

Publication number
TWI283514B
TWI283514B TW94145281A TW94145281A TWI283514B TW I283514 B TWI283514 B TW I283514B TW 94145281 A TW94145281 A TW 94145281A TW 94145281 A TW94145281 A TW 94145281A TW I283514 B TWI283514 B TW I283514B
Authority
TW
Taiwan
Prior art keywords
transistor
signal
output
circuit
coupled
Prior art date
Application number
TW94145281A
Other languages
Chinese (zh)
Other versions
TW200726082A (en
Inventor
Hideharu Koike
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW94145281A priority Critical patent/TWI283514B/en
Application granted granted Critical
Publication of TWI283514B publication Critical patent/TWI283514B/en
Publication of TW200726082A publication Critical patent/TW200726082A/en

Links

Landscapes

  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

CMOS buffer circuits with reduced short circuit current. In the CMOS buffer circuit, an output stage drives an output terminal and comprises a first output transistor of a first conductive type and a second output transistor of a second conductive type. An output driving unit produces a first signal to turn off the first output transistor according to a delay signal. A bidirectional delay unit is controlled by the input signal to turn on the second output transistor after the first output transistor be turned off. In the bidirectional delay unit, a bidirectional logic unit generates two logic signals according to an inversion signal of the input signal, first and second bidirectional buffers are coupled to the output driving unit, generating a second signal to turn on the second output transistor according to the input signal and the two logic signals.

Description

1283514 九、發明說明: 【發明所屬之技術領域】 本發明有關於缓衝電路,特別有關一種能夠減少短路電流之緩衝電路 以及相關之積體電路與環狀振盪電路。 ·〜--— 【先前技彳标】 CMOS緩衝電路係廣泛地顧連接至,出級之驅動電路。一般而言, CMOS電路之電能耗損係、為動態電能耗損或短路電能耗損,動態電能耗損 是無法避免的,但短路電能耗損會導致電能驗f。隨著製程技術的進步: MOS電晶叙避’毯j、,使得祕電流經常發 生。為了減少短路電能耗損’目前係著重在減少具有高切換率之缓衝器⑽ 如時脈缓衝器〇的短路電流。此外,CM0S缓衝器的短路電流亦會導致靜電 干擾(electromnagnetic interference ; EMI)。因此,減少 CM〇s 緩衝電路之短 路電流,將是個十分重要的課題。 習知亦提出多種方法來減少CMOS緩衝電路之短路電流。第丨圖所示 係為能夠減少短路電流之CMOS緩衝電路200,然而短路電流不只發生在 預驅動級310中’亦會發生在輸出驅動級350中。舉例而言,當輸入電塵 (IN)初始為低準位時’節點20及30會位於高準位,使得電晶體M36-M37 導通,而電晶體M38截止。於輸入電壓(in)由低準位變高準位時,電晶體 M38會導通、電晶體M36會截止,而且電晶體M37會一直導通直到節點 20上之準位變為低準位。因為電晶體M36與M38之閘極相連,於閘極電 壓越過電源電壓與接地電壓之中間範圍時,電晶體M36與M38會一起導通 而導致短路電流。再者,若節點20及30上之準位由高準位變低準位,於 閘極電壓越過電源電壓與接地電壓之中間範圍時,會使得反相器!N3與 之電晶體都會導通,所以亦會有短電路流通過反相器IN3與IN4。同樣地, 於輸入電壓(IN)由高準位變低準位時,亦會有短電路流通過電晶體 M33-M35以及反相器IN3與IN4 〇1283514 IX. Description of the Invention: [Technical Field] The present invention relates to a snubber circuit, and more particularly to a snubber circuit capable of reducing a short-circuit current and an associated integrated circuit and a ring-shaped oscillating circuit. ·~--- [Previous technical standard] The CMOS buffer circuit is widely connected to the driver circuit of the stage. In general, the electrical energy loss of a CMOS circuit is a dynamic electric energy loss or a short-circuit electric energy loss, and the dynamic electric energy loss is unavoidable, but the short-circuit electric energy loss causes the electric energy to be inspected. With the advancement of process technology: MOS electro-crystals evade the blanket j, making the secret current often occur. In order to reduce the short-circuit power consumption, the current focus is on reducing the short-circuit current of a buffer (10) such as a clock buffer with a high switching rate. In addition, the short-circuit current of the CMOS buffer also causes electrostatic interference (EMI). Therefore, reducing the short-circuit current of the CM〇s snubber circuit will be a very important issue. Various methods have also been proposed to reduce the short circuit current of the CMOS buffer circuit. The first diagram shows a CMOS snubber circuit 200 capable of reducing the short circuit current, however, the short circuit current does not only occur in the pre-driver stage 310' but also occurs in the output driver stage 350. For example, when the input dust (IN) is initially at a low level, the nodes 20 and 30 will be at a high level, causing the transistors M36-M37 to turn on and the transistor M38 to turn off. When the input voltage (in) is changed from the low level to the high level, the transistor M38 is turned on, the transistor M36 is turned off, and the transistor M37 is turned on until the level on the node 20 becomes the low level. Since the transistor M36 is connected to the gate of M38, when the gate voltage crosses the middle of the power supply voltage and the ground voltage, the transistors M36 and M38 are turned on together to cause a short-circuit current. Furthermore, if the levels on the nodes 20 and 30 are lowered from the high level to the low level, the inverter will be made when the gate voltage crosses the middle of the supply voltage and the ground voltage! Both N3 and the transistor are turned on, so there will also be a short circuit flow through inverters IN3 and IN4. Similarly, when the input voltage (IN) goes from the high level to the low level, there will also be a short circuit current through the transistor M33-M35 and the inverters IN3 and IN4.

Client’s Docket Ν〇·:93Ν001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 1283514 第2圖所示係為能夠減少短路電流之CM〇s緩衝電路5〇〇。當輪入端 5〇1由低準位變南準位日夺,節點582之準位會維持在高準位,而節點别 之準位會由间準位變低準位,使得電晶體姐與祀一起導通直到節點奶 之準位縣鮮位,目而藏短路驗。蘇-,玉於電㉟體M5與_之閑 極相連,電晶體M5與M6之-者會一直導通,因而在輸入端501之準位變 化時,會產生短路電流。 換言之’第1圖所示之緩衝驅動級350與第2圖所示之驅動級550仍 然會有短路電流產生。 【發明内容】 有鑑於此,本發明之首要目的,係在於提供一種減少短路電流之 CMOS緩衝電路。 根據上述目的,本發明係提供一種CM〇s緩衝電路,包括一輸出級用 以驅動-輸出端,包括_第—導電型之_第_輸出電晶體以及_第二導電 ,之-第二輸出電晶體;—輸出驅動單元,用以根據—延遲信號,產生一 第4號以截止第-輸出電晶體;以及一雙向延遲單元,係由一輸入信號 所控制用以於第一輸出冑晶體截止後,將第二輪出電晶體導通,包括一 雙向邏解70 ’肋根據輸人信號之—反相信號m邏輯信號與 一 ^邏輯錢,·以及第-及第二雙向緩衝器,_輸出級,用以根據輸 入u虎以及第-、第二邏輯信號,產生―第二信號以導通第二輸出電晶體。 本發明亦提供一種積體電路包括至少兩級前述之CM〇s缓衝電路串 聯地連接,並角每一級CM0S缓衝電路之輸出端係耦接至下一級之CM〇s 緩衝電路之輸出驅動單元。 本發明亦提供一種環狀振盪電路包括第一及第二前述之CM〇s缓衝 電路串聯地連接,其中第一 CM0S緩衝電路之輸出端係祕至第二CM〇s 缓衝電路之輸出驅動單元;以及-反相器,包括_輸人她接第二CM〇s 缓衝電路之輸出端,以及-輸出端耦接第_ CM〇s _電路之輸入端。 Client’s Docket Νο·:93Ν001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 1283514 為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文 較佳貫施例,並配合所附圖示,作詳細說明如 L貫施方式】 /第3圖示係為本發明之CMOS緩衝電路之一示意圖。如圖所示,CM〇s _ 緩衝電路100包括一輪入端1(n、一輸出級11〇、一輪出驅動單元H 一 . 雙向延遲單元130以及一延遲單元140。 輪入端101用以接收一輸入信號S;[,輸出級11〇包括一 PM〇s 體翌—以及一廻0¾ 用以驅動-輸出端102。PM0S電晶體 φ M13包括一第一端搞接第一電壓源,一第二端耦接輸入端以及一 控制端耦接輸出驅動單元120 〇NM〇S電晶體M12包括一第一端耦接輸出 鈿102 ’ 一第一端搞接第二電壓源GND以及一控制端|馬接輸入驅動單元 120 〇 輸出驅動單元120用尽根據一延遲信號SD,產生一第一信號V1/V2 以截止M0S電晶體M13/M12。輸出驅動單元120包括pm〇S電晶體Mil . ... · · - - - - - - — · - - ; ·—. .一 — . · _ 以及一 NM0S電晶體]\15,?]^08電晶體]^11包括一第一端耦接第一電壓 源Vdd,一第二端耦接PM0S電晶體M13之控制端,以及一控制端耦接延 遲信號SD°NM0S電晶體M5包括一第一端耦接PM0S電晶體M12之控 春 制端,一第二端耦接第二電壓源GND以及一控制端||接延遲信號SD。 雙向延遲單元130係由輸入信號SI所控制,用以於M0S電晶體Client's Docket Ν〇·:93Ν001 TT’s Docket No:0492-A40340-TW/Finak/Wu Zhengying/2005-12-14 1283514 Figure 2 shows a CM〇s snubber circuit 5〇〇 capable of reducing short-circuit current. When the wheel terminal 5〇1 changes from the low level to the south level, the level of the node 582 will remain at the high level, and the level of the node will be lowered to the low level, so that the crystal sister Conducted with the cockroaches until the node of the milk in the county is fresh, and the purpose is to check the short circuit. Su-, Yu-Yu 35 M5 is connected to the idle pole of _, and the transistors M5 and M6 will always be turned on, so when the level of the input terminal 501 changes, a short-circuit current will be generated. In other words, the buffer drive stage 350 shown in Fig. 1 and the drive stage 550 shown in Fig. 2 still have a short-circuit current. SUMMARY OF THE INVENTION In view of the above, it is a primary object of the present invention to provide a CMOS buffer circuit that reduces short-circuit current. According to the above object, the present invention provides a CM〇s buffer circuit including an output stage for driving-outputting, including a _first-conducting type _th output transistor and a second-conducting-second output a transistor; an output driving unit for generating a No. 4 to turn off the first output transistor according to the delay signal; and a bidirectional delay unit controlled by an input signal for the first output, the crystal cutoff After that, the second round of the output transistor is turned on, including a bidirectional logic 70' rib according to the input signal - the inverted signal m logic signal and a logic money, and the first and second bidirectional buffers, _ output a stage for generating a "second signal" to turn on the second output transistor according to the input u tiger and the first and second logic signals. The invention also provides an integrated circuit comprising at least two stages of the aforementioned CM〇s buffer circuit connected in series, and the output end of each stage of the CM0S buffer circuit is coupled to the output drive of the CM〇s buffer circuit of the next stage. unit. The invention also provides a ring oscillator circuit comprising first and second CM s s buffer circuits connected in series, wherein the output end of the first CMOS snubber circuit is secreted to the output drive of the second CM 〇 s buffer circuit And an inverter, comprising: an input terminal connected to the second CM〇s buffer circuit, and an output terminal coupled to the input terminal of the _CM〇s_ circuit. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The embodiment is described in detail with reference to the accompanying drawings, and the third embodiment is a schematic diagram of a CMOS buffer circuit of the present invention. As shown, the CM〇s_buffer circuit 100 includes a wheel-in terminal 1 (n, an output stage 11A, a wheel-out drive unit H. a bidirectional delay unit 130, and a delay unit 140. The wheel-in terminal 101 is configured to receive An input signal S; [, the output stage 11 〇 includes a PM 〇 s body 翌 - and a 迴 03⁄4 for driving the output terminal 102. The PM0S transistor φ M13 includes a first terminal for the first voltage source, a first The second terminal is coupled to the input terminal and the control terminal is coupled to the output driving unit 120. The NM〇S transistor M12 includes a first end coupled to the output port 102'. The first end is coupled to the second voltage source GND and a control terminal. The output driving unit 120 is used to generate a first signal V1/V2 to turn off the MOS transistor M13/M12 according to a delay signal SD. The output driving unit 120 includes a pm 〇S transistor Mil . . . · · - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - a voltage source Vdd, a second end coupled to the control end of the PM0S transistor M13, and a control end coupled to the delay signal SD°NM0S transistor M5 The first end is coupled to the control terminal of the PM0S transistor M12, the second end is coupled to the second voltage source GND, and the control terminal is coupled to the delay signal SD. The bidirectional delay unit 130 is controlled by the input signal SI. For MOS transistors

Ml主费主士複,7爹通電晶霞M12/M13。雙向延遲單元130包括一 ' 、_ 一— 向邏輯單元1310以及第二、第二雙向缓衝器1320與1330。雙向邏輯單元 1310用以根據輸入信號SI之反相信號SV,產生兩邏輯信號(未顯示於圖 中)。雙向邏輯單元1310係可為一雙向邏輯閘(bidirectional logic gate)或含有 複數串聯連接的雙向邏輯閘之一雙向邏輯鏈(bidirectional logic chain)。第 1 ------ 一、第二雙向緩衝器1320^:1330係耦接至輸出驅動單元120,用以根據輸 —-------一 --…- ____—.............. 一一—_______> 入信號SI與前述兩邏輯信號,產生一第二信號V2/V1用以導通電晶體Ml main charge is the main sergeant, 7 爹 power Jingxia M12/M13. The bidirectional delay unit 130 includes a ', _-to-logic unit 1310 and second and second bidirectional buffers 1320 and 1330. The bidirectional logic unit 1310 is configured to generate two logic signals (not shown in the figure) according to the inverted signal SV of the input signal SI. The bidirectional logic unit 1310 can be a bidirectional logic gate or a bidirectional logic chain containing a plurality of series connected bidirectional logic gates. The first ------ first, second bidirectional buffer 1320 ^: 1330 is coupled to the output drive unit 120, according to the input --------- a--...- ____-... ........... 一一—_______> The input signal SI and the aforementioned two logic signals generate a second signal V2/V1 for conducting the crystal

Client’s Docket No. :93N001 TT,s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 1283514 M12/M13。 舉例而言,當輸入信號由高準位變為低準位時,輸出驅動單元120用 以根據延遲信號SD,產生第一信號VI以截止驅動M13。雙向延遲單元13〇 用以根據輸入信號SI,用以於電晶體M13截止之後,將電晶體M12導通。 、或者是說,當輸入信號由低準位變為高準位時,輸出驅動單元12〇用 ^ 以根據延遲信號SD,產生第一信號V2以截止驅動Μ12。雙向延遲單元130 用以根據輸入信號SI,用以於電晶體Μ12截止之後,將電晶體Μ13導通。 因此,當輸入信號SD由低準位變高準位或由高準位變低準位時,PM〇s 鲁 電晶體M13與NMOS電晶體M12不會同時導通,因而可避免短路電流產 生。 第4A圖係為本發明之雙向邏輯閘之一實施例。如圖所示,雙向邏輯 閘1310A用以根據控制信號CS與兩輸入信號ΓΓ1與IT2,產生兩邏輯信號 OT1與OT2,並且包括兩NMOS電晶體Ml與M2以及PMOS電晶體M3 與M4。NMOS電晶體Ml儀包括一第一端麵接至第二電壓源〇_、一控 制端耦接控制信號CS以及一第二端,而NMOS電晶體M2係包括一第一 端耦接NMOS電晶體Ml之第二端,一控制端耦接輸入信號IT1,以及一 第二端耦接節點N1。PMOS電晶體M3係包括一第一端耦接節點N1,一 鲁 控制端耦接輸入信號IT2,以及一第二端。PMOS電晶體M4包括一第一端 耦接PMOS電晶體M3之第二端,一控制端耦接控制信號cs,以及一第二 端耦接第一電壓源Vdd。 於控制“號CS為兩準位時’電晶體Ml與]y[4會分別為導通與截止, 若輸入信號IT1為高準位時,則節點!^上之電壓1會變為低準位,否則 電壓VL會保持在高阻抗狀態(high_impedance ; Hiz)。因此 A用以產生具有低電壓準位之電壓%,作為邏輯信號〇τι與〇τ2, 輸出至第一、第二雙向緩衝器1320與1330〆或者是^ 低準位時’電晶體M1與Μ4會分別為截止與導通,若輪入信號ιτ2為低準 Client’s Docket Ν〇·:93Ν001 TT’s Docket N〇:0492-A40340-TW/Finak/吳政該/2005-12-14 8 1283514 ‘位時,節點N1上之電壓VL會變為高準位,否則電壓VL會保持在高阻 抗狀態(high-impedance ; Hiz)。因此,雙向邏輯單元131〇A用以產生具有高 電壓準位之電遷VL,作為邏輯信號〇T1與〇T2,輸出至第一、第二雙向 緩衝器1320與1330。 • 第4Β圖係為本發明之雙向邏輯閘之另一實施例。如圖所示,雙向邏 . 賴13励係與第4Α圖中之雙向邏輯閘1310Α相似,除了 nM〇S電晶體 Μ3Χ與PMOS電晶體M2XaNM〇S電晶體Μ2Χ係耦接於節點N1與舰〇3 電晶體Ml之第二端之間,並且包括一控制端耦接耦接輸入信號 φ 電晶體M3X係_於節點N1與PMOS電晶體M4之第二端之間,並且包 括一控制端麵接輕接輸入信號IT2。 於控制彳§號03為高準位時,電晶體M1與]^#會分別為導通與截止, 若輸入信號IT1或IT2為高準位時,則節點N1上之電壓I會變為低準位, 否貞彳電M VL會彳祕在*阻抗狀。目此,雙向邏輯 單元1310B用以產生具有低電壓準位之電壓%,作為邏輯信號〇τι與 OT2 ’輸出至第-、第二雙向緩衝器測與133〇。或者是說,於控制信號 cs為低準位時,電晶體M1與M4會分別為截止與導通,若輸入信號ιτι 或IT2為低準位時,則節點N1上之電壓%會變為高準位,否則電壓%Client’s Docket No. :93N001 TT,s Docket No:0492-A40340-TW/Finak/Wu Zhengying/2005-12-14 1283514 M12/M13. For example, when the input signal changes from the high level to the low level, the output driving unit 120 generates the first signal VI to turn off the driving M13 according to the delay signal SD. The bidirectional delay unit 13 is configured to turn on the transistor M12 after the transistor M13 is turned off according to the input signal SI. Or, when the input signal changes from the low level to the high level, the output driving unit 12 uses ^ to generate the first signal V2 according to the delay signal SD to turn off the driving Μ12. The bidirectional delay unit 130 is configured to turn on the transistor Μ13 after the transistor Μ12 is turned off according to the input signal SI. Therefore, when the input signal SD changes from the low level to the high level or from the high level to the low level, the PM 〇s Lu crystal M13 and the NMOS transistor M12 are not turned on at the same time, thereby preventing the short circuit current from being generated. Figure 4A is an embodiment of the bidirectional logic gate of the present invention. As shown, bidirectional logic gate 1310A is used to generate two logic signals OT1 and OT2 based on control signal CS and two input signals ΓΓ1 and IT2, and includes two NMOS transistors M1 and M2 and PMOS transistors M3 and M4. The NMOS transistor M1 includes a first end face connected to the second voltage source 〇_, a control end coupled to the control signal CS and a second end, and the NMOS transistor M2 includes a first end coupled to the NMOS transistor At the second end of the M1, a control terminal is coupled to the input signal IT1, and a second terminal is coupled to the node N1. The PMOS transistor M3 includes a first terminal coupled to the node N1, a control terminal coupled to the input signal IT2, and a second terminal. The PMOS transistor M4 includes a first end coupled to the second end of the PMOS transistor M3, a control terminal coupled to the control signal cs, and a second terminal coupled to the first voltage source Vdd. When the control "CS is two levels", the transistors M1 and y[4 will be turned on and off respectively. If the input signal IT1 is at the high level, the voltage 1 on the node !^ will become low. Otherwise, the voltage VL will remain in a high impedance state (high_impedance; Hiz). Therefore, A is used to generate a voltage % having a low voltage level as the logic signals 〇τι and 〇τ2, and output to the first and second bidirectional buffers 1320. When the 1330〆 or ^low level is used, the transistors M1 and Μ4 will be turned off and on, respectively. If the turn signal ιτ2 is low, the client's Docket Ν〇·:93Ν001 TT's Docket N〇:0492-A40340-TW/Finak / Wu Zhengzhi/2005-12-14 8 1283514 'When the bit is set, the voltage VL on node N1 will become high level, otherwise the voltage VL will remain in high impedance state (high-impedance; Hiz). Therefore, bidirectional logic The unit 131A is used to generate the electromigration VL having a high voltage level as the logic signals 〇T1 and 〇T2, and output to the first and second bidirectional buffers 1320 and 1330. • The fourth diagram is the two-way of the present invention. Another embodiment of the logic gate. As shown in the figure, the two-way logic and the 13th excitation system are in the fourth diagram. The bidirectional logic gate 1310 is similar except that the nM〇S transistor Μ3Χ and the PMOS transistor M2XaNM〇S transistor Μ2 are coupled between the node N1 and the second end of the ship 3 transistor M1, and include a control terminal coupling. Connected to the input signal φ transistor M3X is between the node N1 and the second end of the PMOS transistor M4, and includes a control end face connected to the light input signal IT2. When the control 彳§03 is at a high level The transistors M1 and ]^# will be turned on and off respectively. If the input signal IT1 or IT2 is at a high level, the voltage I on the node N1 will become a low level, otherwise the power M VL will be secret. In this case, the bidirectional logic unit 1310B is used to generate a voltage % having a low voltage level as a logic signal 〇τι and OT2 'output to the first and second bidirectional buffers to measure 133 〇. When the control signal cs is at a low level, the transistors M1 and M4 are respectively turned off and on. If the input signal ιτι or IT2 is at a low level, the voltage % on the node N1 will become a high level, otherwise Voltage%

會保持在局阻抗狀恶(high-impedance ; Hiz)。因此,雙向邏輯單元1310A 用以產生具有高電壓準位之電塵VL,作為邏輯信號〇T1與〇T2,輸出至 第一、第二雙向緩衝器1320與1330。 第一實施例 第5Α圖係為雙向緩衝電路之一實施例。如圖所示,緩衝電路1〇〇Α 係包括一輸入端10卜一輸出級u〇、一輸出驅動單元12〇、一雙向延遲單 το 130以及一延遲電路14〇。輸出級11〇與輸出驅動單元12〇係為第3圖所 示之缓衝電路100中之輸出級儿10與輪奥驅動軍元汛2〇相獻^ 單元1310係與第4圖所示之雙向邏輯閘1310A相似。Will remain in a high-impedance (Hiz). Therefore, the bidirectional logic unit 1310A is configured to generate the electric dust VL having a high voltage level as the logic signals 〇T1 and 〇T2, and output to the first and second bidirectional buffers 1320 and 1330. First Embodiment A fifth embodiment is an embodiment of a bidirectional buffer circuit. As shown, the buffer circuit 1 includes an input terminal 10, an output stage u, an output driver unit 12, a bidirectional delay unit τ 103, and a delay circuit 14A. The output stage 11〇 and the output drive unit 12 are the output stage 10 of the buffer circuit 100 shown in FIG. 3, and the unit 1310 and the unit 1310 are shown in FIG. The bidirectional logic gate 1310A is similar.

Client’s Docket N〇.:93N001 TT s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 1283514 於雙向邏輯單元1310中,PM0S電晶體M3之控制端係耦接至電壓 V2 ’而NMOS電晶體M2之控制端係耦接電壓vi。電晶體M1與M4之控 制端係耦接來自延遲電路140之反相信號sv。電壓%係作為前述第一、 第二邏輯信號,耦接至雙向邏輯緩衝器1320與1330。 雙向緩衝器1330係包括連接於第一電壓源Vdd與電壓V2之間的兩 PMOS電晶體M6與M7,而雙向緩衝器132〇係包括連接於第二電壓源GND 與電壓VI之間的兩PMOS電晶體M9與M10。電晶體M7與M9之控制端 係孝馬接至輸入#號SI,而電晶體]VI6與M10之控制端係輕接至電壓vi。 延遲電路140係包括串聯連接之反相器51〇與52〇,其中反向器51〇 用以產生輸入俗號SI之反相信號SV,而反相器520用以產生延遲信號SD。 以下芩考第5A圖與第6圖,用以說明緩衝電路1〇〇A之動作。如第6 圖中所示,於初始時,輸入信號SI會保持在高準位,反相信號sv會維持 在低準位而延遲信號SD會保持在高準位。於是電遷vi與V2皆會維持在 低準位而電壓VL維持在高準位,因此輸出端1〇2上之電壓νουτ會維持 在南準位。 、 於%間tl時,輪入信號SI會變為低準位,電晶體M7與M9會分別 為導通與截止。由於電壓VL仍然維持在高準位,電晶體¥6仍然截止,因 此在此瞬間不會有短路電流通過電晶體M5-M7。 於時間t2時,反相信號SV變為高準位,電晶體M1與…^會分別為 導通與截止。由於電壓V1仍然維持在低準位,電晶體M2仍然截止,因此 在此瞬間不會有短路電流通過電晶體Ml-M4。 於時間t3時,延遲信號SD變為低準位,電晶體M5與M11會分別為 截止與導通。由於電晶體M9已依據輸入信號31而截止,因此在此瞬間不 會有短路電流通過電晶體M9-M11。 於時間t4時,因為電晶禮M11於時間t3時被導通,因此電壓%變 為高準位。由於賴V1為高準位,電晶體Ml3會被截止。即輪出驅動必Client's Docket N〇.:93N001 TT s Docket No:0492-A40340-TW/Finak/Wu Zhengying/2005-12-14 1283514 In the bidirectional logic unit 1310, the control terminal of the PM0S transistor M3 is coupled to the voltage V2' The control terminal of the NMOS transistor M2 is coupled to the voltage vi. The control terminals of the transistors M1 and M4 are coupled to the inverted signal sv from the delay circuit 140. The voltage % is coupled to the bidirectional logic buffers 1320 and 1330 as the first and second logic signals. The bidirectional buffer 1330 includes two PMOS transistors M6 and M7 connected between the first voltage source Vdd and the voltage V2, and the bidirectional buffer 132 includes two PMOSs connected between the second voltage source GND and the voltage VI. Transistors M9 and M10. The control terminals of the transistors M7 and M9 are connected to the input #SI, and the control terminals of the transistors VI6 and M10 are connected to the voltage vi. The delay circuit 140 includes inverters 51A and 52A connected in series, wherein the inverter 51' is used to generate the inverted signal SV of the input hash number SI, and the inverter 520 is used to generate the delayed signal SD. The following is a description of FIGS. 5A and 6 for explaining the operation of the buffer circuit 1A. As shown in Figure 6, at the beginning, the input signal SI will remain at the high level, the inverted signal sv will remain at the low level and the delayed signal SD will remain at the high level. Therefore, the electromigration vi and V2 will remain at the low level and the voltage VL will remain at the high level, so the voltage νουτ at the output terminal 1〇2 will remain at the south level. When the interval between % is tl, the rounding signal SI will become low level, and the transistors M7 and M9 will be turned on and off respectively. Since the voltage VL is still maintained at a high level, the transistor ¥6 is still off, so there is no short-circuit current passing through the transistors M5-M7 at this instant. At time t2, the inverted signal SV becomes a high level, and the transistors M1 and ... are turned on and off, respectively. Since the voltage V1 is still maintained at the low level, the transistor M2 is still turned off, so that no short-circuit current passes through the transistors M1-M4 at this moment. At time t3, the delay signal SD becomes a low level, and the transistors M5 and M11 are turned off and on, respectively. Since the transistor M9 has been turned off in accordance with the input signal 31, there is no short-circuit current passing through the transistors M9-M11 at this instant. At time t4, since the electro-ceramic M11 is turned on at time t3, the voltage % becomes a high level. Since the Lai V1 is at a high level, the transistor M13 is turned off. That is, the wheel drive must

Client’s Docket No.:93N001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 1283514 會根據延遲信號SD產生電壓V1將電晶體M丨3截止。 於時間t5時,由於電壓%為高準位,電晶體“2會被導通,且因為 電晶體Ml與M2皆為導通,電壓%會變為低準位。即雙向邏邏輯單元 1310A會根據輸入信號SI之反相信號sv,產生電壓%(邏輯信號)。由於 電晶體M2已於時間t2時截止,因此在此瞬間不會有短路電流通過電晶體 Ml姻。 於時間t6時,電壓vl為低準位,電晶體M6與M1〇會分別為導通 舆截止。由於電晶體撾6與]^7皆被導通,電壓V2會變為高準位,因為電 晶體M5為截止,因此在此瞬間不會有短路電流通過電晶體奶奶。 •於時間t7時,由於電壓V2為高準位,電晶體M12會導通用以驅動 輸出端102,因此輸出端102上之電屢ν〇υτ會變為低準位。即第一及第 二雙向緩衝器1320與1330會根據輸入信號幻與電壓%(第一、第二邏輯 七唬)產生電壓V2來導通電晶體Μ12。因此,電晶體Μ12會於電晶體Μ13 被截止之後才被導通。換言之,龍與廳不會同時被導通,因而 不會有短_流通過1關]\412與]\413。—可知,#輸人錢81由低 準位變為高準位時,於輸出級110、輸出驅動單元12〇與雙向延遲單元13〇 中不會有短路電流產生。 反過來說,於時間t8時,輸入信號si會變為高準位,電晶體Μ7與 _會分別為截止與導通。由於籠凡4乃然維持在低準位,電晶體廳 仍然為截止,因此在此瞬間不會有短路電流通過電晶體Μ9_Μη。 、於枯間t9時,反相信號sv變為低準位,電晶體M1與“々會分別為 截止與導通。由於電屢V2仍然轉在高準位,電晶體紹仍然截止,因此 在此瞬間不會有短路電流通過電晶體m1_M4。 於時間tlO時,延遲信號SD變為高準位,電晶體M5與Mn會分別 為導通與截止。由於電晶體M7會依據輪入信號撒雨截止,因此在此瞬間 不會有短路電流通過電晶體M5-M7 〇Client's Docket No.: 93N001 TT’s Docket No: 0492-A40340-TW/Finak/Wu Zhengying/2005-12-14 1283514 The transistor M丨3 is turned off according to the delay signal SD generating voltage V1. At time t5, since the voltage % is at a high level, the transistor "2 will be turned on, and since the transistors M1 and M2 are both turned on, the voltage % will become a low level. That is, the bidirectional logic unit 1310A will be based on the input. The inverted signal sv of the signal SI generates a voltage % (logic signal). Since the transistor M2 has been turned off at time t2, there is no short-circuit current passing through the transistor M1 at this instant. At time t6, the voltage vl is At low level, the transistors M6 and M1〇 will be turned on and off respectively. Since the transistors 6 and 7 are turned on, the voltage V2 will become high, because the transistor M5 is off, so at this moment There will be no short-circuit current through the transistor grandmother. • At time t7, since the voltage V2 is at a high level, the transistor M12 will be versatile to drive the output terminal 102, so the power ν 〇υ τ on the output terminal 102 will become The low level, that is, the first and second bidirectional buffers 1320 and 1330 will conduct the voltage V12 according to the input signal illusion and the voltage % (first, second logic 唬) generating voltage V2. Therefore, the transistor Μ12 will The transistor Μ13 is turned off after being turned off. In other words. In the meantime, the dragon and the hall will not be turned on at the same time, so there will be no short _ flow through 1 off]\412 and]\413. - It can be seen that when the input money 81 changes from low level to high level, it is output. There is no short-circuit current generated in stage 110, output drive unit 12A and bidirectional delay unit 13A. Conversely, at time t8, input signal si will become high level, and transistors Μ7 and _ will be cut off respectively. And the conduction. Since the cage 4 is still at the low level, the crystal hall is still cut off, so there will be no short-circuit current passing through the transistor Μ9_Μη at this moment. In the dead t9, the inverted signal sv becomes low. The level, the transistor M1 and "々 will be cut off and on, respectively. Since the electric repeatedly V2 is still at the high level, the transistor is still cut off, so there is no short-circuit current passing through the transistor m1_M4 at this moment. At time t10, the delay signal SD becomes a high level, and the transistors M5 and Mn are turned on and off, respectively. Since the transistor M7 will be cut off according to the wheeling signal, there will be no short-circuit current through the transistor M5-M7 at this moment.

Client’s Docket Νρ·:93Ν001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 1283514 於時間til時’ g]為電晶體M5於時間咖寺被導通,因此電壓% " 為低準位。由於龍V2為低準位,電晶體M12會被截止,輪出驅動= 會根據延遲信號SD產生電壓V2將電晶體M12截止。 於時間似時,由於電壓%為低準位,電晶體M3會被導通,且 為電晶體MS與_皆被導通,電壓vl會變為高準位。即雙向邏邏輯單元 1310A會根據輸入信號Si之反相信號sv,產生電遂见(邏輯信號)。由2 電晶體Ml為截止,因此在此瞬間不會有短路電流通過電晶體·侧。; 於時間tl3時,由於電壓几為高準位,電晶體滿與Μι〇會分別為 截止與導通。由於電晶體M9與M1〇皆被導通,電壓V1會變為低準位: 因為電晶體Mil會轉被截止,因此在此_不會有短路電流通過電 M9-M11 〇 於時間tl4時,由於電壓¥1為低準位,電晶體以^會導通用以驅動 輸出端102,因此輸出端102上之電壓ν〇υτ會變為高準位。即第一及第 二雙向緩衝器1320與1330會根據輸入信號SI與電壓VL(第一、第二邏輯 信號)產生電壓VI來導通電晶體Μ13。因此,電晶體Μ13會於電晶體Μ12 被截止之後才被導通。換言之,電晶體Μ12與Μ13不會同時被導通,因而 不會有短路電流通過電晶體Μ12與Μ13。由此可知,當輸入信號SI由高 準位變為低準位時’於輸入級H0、輸出驅動單元12〇與雙向延遲單元 中不會有短路電流產生。 因為於輸出級110、輸出驅動單元120與雙向延遲單元13〇中不會有 短路電流產生,因此本發明可避免第丨圖與第2圖所示之輸出驅動級中發 生之短路電流,因而比傳統緩;^電路更能減少電能耗損與靜電干擾。 第二實施例 弟5B圖係為雙向緩衝電路之另一實施例。如圖所示,緩衝電路10QB 係與弟5A圖中之緩衝電路ιοοΑ相似,除等雙命緩衝器1330:令 M7的第一端係耦接至電晶體M13之控制端,而不是第一電壓源Vdd,並 Client’s Docket No·:93N001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 !283514 且雙向缓衝器1320中之電晶體M9的第二端係耦接至電晶體M12之控制 端,而不是第二電壓源GND。緩衝電路100B之動作係為緩衝電路1〇〇A 之動作相似,於此不再累述。 由於雙向緩衝器1330中之電晶體M7的第一端係摩馬接至電晶體M13 之控制端’且雙向缓衝器1320中之電晶體]\49的第二端係|馬接至電晶體 M12之控制端,因此可自動地避免電晶體M13之閘極電壓超出電晶體M12 之閘極電壓’或電晶體M12之閘極電壓超出電晶體M13之閘極電壓。 第三實施例 鲁 第5C圖係為雙向緩衝電路之另一實施例。如圖所示,緩衝電路1〇〇c 係與第5A圖中之緩衝電路i〇OA相似,除了雙向緩衝器、131〇c包括三個串 聯連接之雙向邏輯閘,而不是單-個雙向邏輯閘,並且緩衝電路1〇〇c之動 作係為緩衝電路100A之動作相似,於此不再累述。 於缓衝電路1GGC巾,其延遲_謂由增加雙崎輯絲增加,因 為雙向邏制中不會產生短路電流,因此整個緩衝電路之總短路電流不會 增加。 第7圖所示係為-長延遲電路之_實施例。如騎示,長延遲電路⑽ 包括串聯連接之兩級緩賊路綱」與1G(L2,其愧衝電路〗⑻丨之輪迁 端係祕至緩衝働_2中之輸出驅鱗元,骑—_電路卿^ 7Λ 100—2係與第5A圖中所示者相似,因此,緩衝電路的增加並不會增加辟 電流。 ^ 枯第嶋為環狀減電路之-實施例。如騎示,環狀紐電物 串聯連接之第-、第二緩衝電路1()(U與繼—2,第—緩衝編 =出端係麵接至第二緩衝電路100_2之輪出驅動單元。反姉別係; 括一輪入端耦接第二緩衝電路1〇〇 2之輪 ’、匕 緩衝電路HXU之輸人端。-%以及-輪出端祕至第— 屬卿賴獅辦職从姊㈣—咖皆會 Cliffs Docket No.:93N001 ' 一^ ^ 、 s Docket NO:0492-A40340-TW/Finak/吳政諺/2005-12-14 13 1283514 電流隨著冬相器的數目增加。於本發明之環狀振 f路中,由於每一級中之輸出級no、輪出驅動單元㈣與雙向延遲單元 0中不會有短路電流產生,因此短路電流並不會喔 ,U本t明已以較佳實施例揭露如上,然其並非用以限定本發明,任 π、、技☆者在不脫離本發明之精神和範圍内,當可作些許更動與潤飾, 因範目#_如_懷麵狀者轉。 第1圖所示係為一傳統CMOS緩衝電路。 _ S 2 ®所示縣傳^CMQS緩衝電路。 第3圖示係為本發明之CM〇s緩衝電路之一示意圖。 第4A圖係為本發明之雙向邏輯閘之一實施例。 第4B圖係為本發明之雙向邏輯閘之另一實施例。 第5A圖係為雙向缓衝電路之一實施例。 第5B圖係為雙向緩衝電路之另一實施例。 第5C圖係為雙向緩衝電路之又一實施例。 第6圖係為第5A圖中緩衝電路之一時序控制圖。 第7圖所示係為一長延遲電路之一實施例。 ® 第8圖係為環狀振盪電路之一實施例。 【主要元件符號說明】 、 100、 100J、100—2、200、500 : CMOS 缓衝電路; 100A、100B、100C :雙向缓衝電路; 101、 501 :輸入端; 102 :輸出端; 110 :輸出級; .120:輸出驅動單元; 130:雙向延遲單元;Client's Docket Νρ·:93Ν001 TT's Docket No:0492-A40340-TW/Finak/Wu Zhengying/2005-12-14 1283514 At time til 'g] is the transistor M5 is turned on at time cafe, so the voltage % " Low level. Since the dragon V2 is at a low level, the transistor M12 is turned off, and the wheel drive = will turn off the transistor M12 according to the delay signal SD generating voltage V2. When the time is like, since the voltage % is at a low level, the transistor M3 is turned on, and both the transistors MS and _ are turned on, and the voltage v1 becomes a high level. That is, the bidirectional logic unit 1310A generates an electrical sigma (logic signal) based on the inverted signal sv of the input signal Si. Since the transistor M1 is turned off, there is no short-circuit current passing through the transistor side at this moment. At time t13, since the voltage is a high level, the transistor full and Μι〇 will be off and on, respectively. Since the transistors M9 and M1〇 are both turned on, the voltage V1 will become a low level: Since the transistor Mil will be turned off, there will be no short-circuit current passing through the power M9-M11 at time t14 due to The voltage ¥1 is at a low level, and the transistor is generalized to drive the output terminal 102, so the voltage ν〇υτ on the output terminal 102 becomes a high level. That is, the first and second bidirectional buffers 1320 and 1330 generate a voltage VI based on the input signal SI and the voltage VL (first and second logic signals) to conduct the transistor 13. Therefore, the transistor 13 is turned on after the transistor Μ12 is turned off. In other words, the transistors Μ12 and Μ13 are not turned on at the same time, so that no short-circuit current flows through the transistors Μ12 and Μ13. It can be seen that when the input signal SI changes from the high level to the low level, no short-circuit current is generated in the input stage H0, the output driving unit 12A, and the bidirectional delay unit. Since no short-circuit current is generated in the output stage 110, the output driving unit 120, and the bidirectional delay unit 13A, the present invention can avoid the short-circuit current occurring in the output driving stages shown in the second and second figures, and thus Traditionally, the circuit can reduce electrical energy consumption and static interference. SECOND EMBODIMENT Figure 5B is another embodiment of a bidirectional buffer circuit. As shown in the figure, the snubber circuit 10QB is similar to the snubber circuit ιοοΑ in the figure 5A except that the double-life buffer 1330 is coupled to the control terminal of the transistor M13 instead of the first voltage. Source Vdd, and Client's Docket No: 93N001 TT's Docket No: 0492-A40340-TW/Finak/Wu Zhengying/2005-12-14 !283514 and the second end of the transistor M9 in the bidirectional buffer 1320 is coupled to The control terminal of the transistor M12, instead of the second voltage source GND. The operation of the buffer circuit 100B is similar to that of the buffer circuit 1A, and will not be described here. Since the first end of the transistor M7 in the bidirectional buffer 1330 is connected to the control terminal of the transistor M13 and the second end of the transistor in the bidirectional buffer 1320 is connected to the transistor. The control terminal of M12 can thus automatically prevent the gate voltage of the transistor M13 from exceeding the gate voltage of the transistor M12 or the gate voltage of the transistor M12 exceeding the gate voltage of the transistor M13. Third Embodiment Lu 5C is another embodiment of a bidirectional buffer circuit. As shown, the buffer circuit 1〇〇c is similar to the buffer circuit i〇OA in Figure 5A except that the bidirectional buffer, 131〇c includes three bidirectional logic gates connected in series instead of single-two-way logic. The operation of the gate and the snubber circuit 1〇〇c is similar to that of the snubber circuit 100A, and will not be described here. In the snubber circuit 1GGC, the delay _ is increased by the addition of Shuangsaki, because the short-circuit current is not generated in the bidirectional logic, so the total short-circuit current of the entire snubber circuit does not increase. Figure 7 shows an embodiment of a long delay circuit. Such as riding, long delay circuit (10) including two-stage cascade of thief roads and 1G (L2, its smashing circuit〗 (8) 丨 迁 迁 迁 系 系 系 働 働 働 , , , , , , , , , —_ Circuitry ^ 7Λ 100-2 is similar to that shown in Figure 5A. Therefore, the increase of the snubber circuit does not increase the current. ^ 嶋 嶋 is a ring-shaped circuit - an embodiment. The first and second buffer circuits 1() (the U and the second-2, the first buffering device are connected to the wheel drive unit of the second buffer circuit 100_2). Others; including one round of the end coupled to the second buffer circuit 1〇〇2 wheel ', the buffer circuit HXU's input end. -% and - round end secret to the first - belongs to the Qing Lai lion from the 姊 (4) -Caf will Cliffs Docket No.:93N001 '一^^, s Docket NO:0492-A40340-TW/Finak/吴政谚/2005-12-14 13 1283514 The current increases with the number of winter phase devices. In the ring-shaped vibration f path, since there is no short-circuit current generated in the output stage no, the wheel drive unit (4) and the bidirectional delay unit 0 in each stage, the short-circuit current does not occur. The present invention has been disclosed in the above preferred embodiments, and it is not intended to limit the present invention. Any of the π, 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Fanmu #_如_怀面状者转. Figure 1 shows a traditional CMOS buffer circuit. _ S 2 ® shows the county CMQS buffer circuit. The third picture is the CM〇s of the present invention. A schematic diagram of one of the buffer circuits. Fig. 4A is an embodiment of the bidirectional logic gate of the present invention. Fig. 4B is another embodiment of the bidirectional logic gate of the present invention. Fig. 5A is one of the bidirectional buffer circuits. Embodiment 5B is another embodiment of a bidirectional buffer circuit. Fig. 5C is a further embodiment of a bidirectional buffer circuit. Fig. 6 is a timing control diagram of a buffer circuit in Fig. 5A. The figure shows an embodiment of a long delay circuit. ® Figure 8 is an example of a ring oscillator circuit. [Main component symbol description], 100, 100J, 100-2, 200, 500: CMOS slow Crush circuit; 100A, 100B, 100C: bidirectional buffer circuit; 101, 501: input terminal; 102: output terminal; 110: output stage; .120: output drive unit; 130: bidirectional delay unit;

Client’s Docket No.:93N001 TT,s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 14 1283514 Λ 140 :延遲單元; 300:環狀振盪電路; 310 :預驅動級; 510、520、530、IN3、IN4 :反相器; . 1310 :雙向邏輯單元; 1320、1330 ··雙向緩衝器; SI、ΓΓ1、IT2 ··輸入信號;Client's Docket No.: 93N001 TT, s Docket No: 0492-A40340-TW/Finak/Wu Zhengying/2005-12-14 14 1283514 Λ 140: delay unit; 300: ring oscillator circuit; 310: pre-driver stage; 520, 530, IN3, IN4: inverter; . 1310: bidirectional logic unit; 1320, 1330 · · bidirectional buffer; SI, ΓΓ 1, IT2 · · input signal;

Vdd:第一電壓源; GND :第二電壓源; ® SD ··延遲信號; V卜 V2、VI’、V2’ :信號; SV :反相信號; CS :控制信號; ΟΤΙ、OT2 :邏輯信號; Μ、20、30、582、594 ··節點; VL、VL,、VOUT、VOUT,:電壓; IN :輸入電壓; • Ml 〜M7、M9 〜M13、M2X、M3X、Ml A〜M4A、M1B 〜M4B、Ml C 〜M4C、 M33-M38、M101 〜M107、M109〜Ml 13、M201 〜M207、M209〜M213 : MOS 電晶體。Vdd: first voltage source; GND: second voltage source; ® SD ··delay signal; V Bu V2, VI', V2': signal; SV: inverted signal; CS: control signal; ΟΤΙ, OT2: logic signal ; Μ, 20, 30, 582, 594 ·· nodes; VL, VL, VOUT, VOUT,: voltage; IN: input voltage; • Ml ~ M7, M9 ~ M13, M2X, M3X, Ml A ~ M4A, M1B ~M4B, M1 C to M4C, M33-M38, M101 to M107, M109 to Ml 13, M201 to M207, M209 to M213: MOS transistor.

Client 5s Docket N〇.:93N001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14Client 5s Docket N〇.:93N001 TT’s Docket No:0492-A40340-TW/Finak/吴政谚/2005-12-14

Claims (1)

1283514 十、申請專利範圍: 1· 一種CMOS緩衝電路,包括: 一輸入端,用以接收一輸入信號; -輸出級,用以驅動-輸出端,包括—第—導電型之—第—輸出電晶 • 體以及一第二導電型之一第二輸出電晶體; • —輸出驅動單元,用以根據-延遲信號,產生-第-信號以截止上述 第一輸出電晶體;以及 -雙向延遲單元,係由上賴人信號所控制’㈣於上述第_輸出電 _ 晶體截止後,將上述第二輸出電晶體導通,包括·· 雙向邏輯單70,用以根據上雜人信號之_反相錢,產生一第一 邏輯信號與一第二邏輯信號;以及 第+-及第二雙向緩衝H,耦接上述輸出級,用錄據上述輸入信號以 及上述第-、第二邏輯信號,產生_第二信號以導通上述第二輸出電晶體。 2·如申請專機n第1項所述之⑽⑺缓衝電路,更包括·· -延遲電路,用以根據上述輸入信號,產生上述延遲信號與 信號。 彳日 3.如申請專利範圍第2項所述之CMOS緩衝電路,其中上述延遲電路 包括· 电 ’第一反相器,包括一輸入端耦接上述輸入信 號 上述反相信號;以及 ,以及一輸出端耦接 -第二反相H.,包括-輸人端_上述第—反相器之上述輪 及一輸出端用以輸出上述延遲信號。 驅動 4·如申請專利麵第2項所述2CM〇·衝電路,其中上胁 單元包括·· ’、 %輸出 -具有上述第-導電型m體,包括_第—端_ 源,-控制端墟上述延遲信號,以及一第二端用以輪出上述第壓 4就,· Client's Docket N〇.:93N001 IT’s Docket N〇:0492-A40340-TW/Finak/吳政諺/2005-12_14 16 1283514 以及 源 -具有上述第二導電型之第二電晶體,包括 拉 —控制端祕上述延_ m ^:第二電壓 緩衝電路,其中上述第一雙向 5.如申請補範_4項所叙CMQS ’相-仏號。 綏衝器包括: 卫市而_接上述輸入七 六令工逆乐一導電型之第三電晶體 號,以及一第一端;以及 曰-具有上述第二導電型之第四電晶體,包括_第_端 晶體之第-端控制端減 及 " 述第—信號; Μ 以及-第二端_至上 並且上述弟二雙向绥衝器包括: ’包括一控制端耦接上述輸入信 —具有上述第一導電型之第五電晶體 號,以及一第一端;以及 -具有上述第-導電型之第六電晶體,包括_第—端難上述第五電 之弟-端’—第二端用以輸出上述第二信號,以及-控制端祕上述 第一邏輯信號。 曰6·如申請專利範圍第5項所述之CM0S緩衝電路,其中上述第三電 曰曰體更包括一第二端耦接上述第二電壓源,並且上述第五電晶體更包括一 弟一端耦/接上述第一電壓源。 7·如申請專利範圍第5項所述之CMOS緩衝電路,其中上述第三電 晶體更包括一第二端耦接上述第二輸出電晶體之一控制端,並且上述第五 電曰曰體更包括一第二端輕接至上述第一輸出電晶體之一控制端。 8·如申請專利範圍第4項所述之CMOS緩衝電路,其中上述雙向邏 輯單元包括至少一個雙向邏輯閘。 9.如申請專利範圍第4項所述之CMQSw缓衝電路、·其中上述雙相邏 輯單元包括複數串連接之雙向邏輯閘。 Client’s Docket Ν〇·:93Ν001 TT s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 17 • 1283514 輯閘=如申請專利範圍第8項所述之CM0S缓衝電路,其中上述雙向邏 —具有上述第-導電型之第七電晶體,包括—第一翻接上述第一電 一控制端耦接上述反相信號,以及一第二端; 曰〜具有上述第—導電型之第人電晶體,包接一第-端_上述第七電 益第—端’-控制端域上述第二信號,以及—第二端触上 邏輯信號; 短枯r具有上述第二導電型之第九電晶體,包括—第—端_上述第二邏 。唬,一控制端耦接上述第一信號,以及一第二端;以及 曰—具有上述第二導電型之第十電晶體,包括一第一端輕接上述第九電 晶體之第二端’-控制端输上述反相信號,以及—第二端_上述第二 11.如申請專利範圍第1〇項所述之CM〇S缓衝電路 邏輯閘更包括: 一具有上述第一導電型之第十一電晶體,包括一第 七電晶體之第二端,一控制端耦接上述第一信號,以及 第八電晶體之第二端;以及1283514 X. Patent application scope: 1. A CMOS buffer circuit comprising: an input terminal for receiving an input signal; - an output stage for driving-outputting, including - a first conductivity type - a first output current a second output transistor of the crystal body and a second conductivity type; - an output driving unit for generating a -first signal according to the -delay signal to turn off the first output transistor; and - a bidirectional delay unit, The second output transistor is turned on, and the bidirectional logic unit 70 is used to turn on the money according to the signal of the miscellaneous person after the _th output _ crystal is turned off. Generating a first logic signal and a second logic signal; and the +- and second bidirectional buffers H, coupled to the output stage, and recording the input signal and the first and second logic signals to generate a _ The two signals are used to turn on the second output transistor. 2. If the (10) (7) buffer circuit described in item 1 of the special plane n is applied, the delay circuit is further configured to generate the delayed signal and the signal according to the input signal. 3. The CMOS snubber circuit of claim 2, wherein the delay circuit comprises: an electric 'first inverter, comprising an input coupled to the input signal and the inverted signal; and The output terminal is coupled to the second inversion H., including the input terminal, the first wheel of the first inverter, and an output terminal for outputting the delay signal. Driving 4: The 2CM 〇 冲 circuit according to item 2 of the patent application, wherein the upper lash unit includes ·· ', % output - has the above-mentioned first-conducting type m body, including _th-end_source, - control end The above delay signal, and a second end to turn out the above pressure 4, · Client's Docket N〇.:93N001 IT's Docket N〇:0492-A40340-TW/Finak/吴政谚/2005-12_14 16 1283514 and source a second transistor having the above second conductivity type, comprising a pull-control terminal, said extension _m ^: a second voltage buffer circuit, wherein said first bidirectional 5. CMQS 'phase as recited in claim _4 - nickname. The buffer includes: a third transistor number of the input type of the seventy-sixth counter-lean conductivity type, and a first end; and a fourth transistor having the second conductivity type, including The first-end control terminal of the _th-end crystal is reduced to "the first-signal; Μ and - the second-end _upper and the above-mentioned two-way bidirectional buffer includes: 'including a control terminal coupled to the input signal- a fifth transistor number of the first conductivity type, and a first end; and - a sixth transistor having the above-mentioned first conductivity type, including a _th-end difficult to be the fifth-electrode-end'-second The terminal is configured to output the second signal, and the control terminal secretizes the first logic signal. The CMOS buffer circuit of claim 5, wherein the third electrical body further includes a second end coupled to the second voltage source, and the fifth transistor further includes a second end The first voltage source is coupled to the first voltage source. The CMOS snubber circuit of claim 5, wherein the third transistor further comprises a second end coupled to one of the control ends of the second output transistor, and the fifth electrode body is further The second end is connected to one of the control ends of the first output transistor. 8. The CMOS buffer circuit of claim 4, wherein the bidirectional logic unit comprises at least one bidirectional logic gate. 9. The CMQSw buffer circuit of claim 4, wherein the biphasic logic unit comprises a bidirectional logic gate connected by a plurality of strings. Client's Docket Ν〇·:93Ν001 TT s Docket No:0492-A40340-TW/Finak/吴政谚/2005-12-14 17 • 1283514 LOCK = CM0S snubber circuit as described in claim 8 of the patent application, wherein a two-way logic-having a seventh transistor having the above-mentioned first conductivity type, comprising: a first flipping said first electrical first control terminal coupled to said inverted signal, and a second end; 曰~ having said first conductivity type a first human transistor, including a first end - the seventh electrical signal first end - the second end of the control end domain, and - the second end touches the logic signal; the short dead r has the second conductivity type The ninth transistor includes - the first end - the second logic described above.控制 a control terminal coupled to the first signal and a second terminal; and 曰-the tenth transistor having the second conductivity type, including a first end lightly connected to the second end of the ninth transistor - the control terminal inputs the inverted signal, and - the second terminal - the second 11. The CM 〇 S snubber circuit logic gate as described in claim 1 further includes: The eleventh transistor includes a second end of a seventh transistor, a control end coupled to the first signal, and a second end of the eighth transistor; 其中上述雙向 一端耦接至上述第 弟一端I馬接上述 一端I馬接上述第九 第二端耦接上述第 一具有上述第二導電型之第十二電晶體,包括一第 電晶體之第二端,一控制端耦接上述第二信號,以及一 十電晶體之第一端。 12· —種積體電路,包括至少兩級如申請專利範圍第1項所述之 CM0S緩衝電路串聯地連接,其中上述每一級CMOS緩衝雷敗夕仏山: 可电路之輸出端係 耦接至下一級之CMOS緩衝電路之輸出驅動單元。 13· —種環狀振盪電路,包括: 第一及第二如申請專利範圍第1項所述之CMOS緩衝電路,串聯地、 接,其中上述第一 CMOS缓衝電路之輪出端係耦接至上述第二cm〇^緩^ Glienfs Docket N〇.:93N001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14 18 1283514 電路之輸出驅動單元;以及 一反相器,包括一輸入端耦接上述第二CMOS缓衝電路之輸出端,以 及一輸出端耦接上述第一 CMOS緩衝電路之輸入端。The bidirectional end is coupled to the first end of the first leg, and the first end is connected to the first end. The second end is coupled to the first twelfth transistor having the second conductivity type, including a first transistor. The second end, a control end is coupled to the second signal, and the first end of the ten-electrode. 12· an integrated circuit comprising at least two stages, such as the CMOS buffer circuit described in claim 1 of the patent scope, connected in series, wherein each of the above-mentioned CMOS buffers is defeated by Xishan: the output end of the circuit is coupled to the lower The output driver unit of the CMOS snubber circuit of the first stage. A ring-shaped oscillating circuit, comprising: the first and the second CMOS snubber circuit according to claim 1, connected in series, wherein the first CMOS snubber circuit is coupled to the wheel end To the above second cm 〇 ^ ^ ^ Glienfs Docket N〇.: 93N001 TT's Docket No: 0492-A40340-TW/Finak / Wu Zhengyu / 2005-12-14 18 1283514 circuit output drive unit; and an inverter, including An input end is coupled to the output end of the second CMOS buffer circuit, and an output end is coupled to the input end of the first CMOS buffer circuit. Client’s Docket Ν〇·:93Ν001 TT’s Docket No:0492-A40340-TW/Finak/吳政諺/2005-12-14Client’s Docket Ν〇·:93Ν001 TT’s Docket No:0492-A40340-TW/Finak/吴政谚/2005-12-14
TW94145281A 2005-12-20 2005-12-20 CMOS buffer circuits, and integrated circuits and ring oscillation circuits using circuit TWI283514B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94145281A TWI283514B (en) 2005-12-20 2005-12-20 CMOS buffer circuits, and integrated circuits and ring oscillation circuits using circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94145281A TWI283514B (en) 2005-12-20 2005-12-20 CMOS buffer circuits, and integrated circuits and ring oscillation circuits using circuit

Publications (2)

Publication Number Publication Date
TWI283514B true TWI283514B (en) 2007-07-01
TW200726082A TW200726082A (en) 2007-07-01

Family

ID=39428196

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94145281A TWI283514B (en) 2005-12-20 2005-12-20 CMOS buffer circuits, and integrated circuits and ring oscillation circuits using circuit

Country Status (1)

Country Link
TW (1) TWI283514B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10614864B1 (en) 2019-05-13 2020-04-07 Winbond Electronics Corp. Buffer output circuit, driving method thereof and memory apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848758B1 (en) * 2011-12-08 2018-04-16 에스케이하이닉스 주식회사 Semiconductor device and method operation of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10614864B1 (en) 2019-05-13 2020-04-07 Winbond Electronics Corp. Buffer output circuit, driving method thereof and memory apparatus

Also Published As

Publication number Publication date
TW200726082A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
US6819142B2 (en) Circuit for transforming a differential mode signal into a single ended signal with reduced standby current consumption
JP5676711B2 (en) Level shift device
US8120404B2 (en) Flip-flop circuit with internal level shifter
US6930518B2 (en) Level shifter having low peak current
US8324955B2 (en) Level shifter design
CN210168031U (en) Circuit
JP2004072426A (en) Master slave flip flop circuit
JPH0211019A (en) Differential current switching circuit
US11295789B2 (en) Latching sense amplifier
JP2006279517A (en) Voltage level converting circuit and semiconductor integrated circuit device
TW200306073A (en) Level shift circuit
US8253441B1 (en) Circuits and methods for level shifting a signal
EP0810732B1 (en) Differential signal generating circuit having current spike suppressing circuit
TWI283514B (en) CMOS buffer circuits, and integrated circuits and ring oscillation circuits using circuit
US6437604B1 (en) Clocked differential cascode voltage switch with pass gate logic
JP2001068978A (en) Level shifter circuit
TW201944731A (en) Apparatus for generating twenty-five percent duty cycle clock
WO2002029972A2 (en) Buffers with reduced voltage input/output signals
TWI330463B (en) Voltage level shifter and image display system with the voltage level shifter
JP3456849B2 (en) Signal transmission circuit, signal reception circuit and transmission / reception circuit, signal transmission method, signal reception method and signal transmission / reception method, and semiconductor integrated circuit and control method therefor
US6624666B2 (en) Differential type logic circuit
JP2006287699A (en) Level conversion circuit
WO2006087845A1 (en) Level shift circuit and semiconductor integrated circuit having the same
JP2009194560A (en) Frequency dividing circuit
JP2002344301A (en) Semiconductor output circuit