1253363 九、發明說明: 【發明所屬之技術領域】 本發明係有關於-種面銑式戟齒輪與螺旋傘齒輪(_線傘齒輪)去 面縱向曲率修整方法;此方法係·動態的刀位半徑運動配合搖=轉齒 動’將現行讀中心、在《平面上糊弧的運城跡修正為曲料動的執 跡,進而進行齒面縱向曲率的修整。 【先前技術】 按’齒面縱向曲率修整目_在於改變齒輪對接觸齒印區域的大小。 目前產業界所使用的修整方法: 1) ·改變刀具頭幾何形狀:例如腦年9月3日公告之美國專利公報第 5, 044, 127號中提出以修整過的砂輪外型進行#形的修整; 2) .修整搖台與工件齒輪間的滾比關係,進行齒面縱向曲率的修整運 動.如1988年11月1日公告之美國專利公報第4 78g,⑽峨所示。 但齒面縱向醇修紐’絲對安裝公差㈣幻絲也社改變,現 在產業界所遇到的主要問題是當接觸齒印敎時(降低接觸時的赫兹應 力)’齒輪對安裝公差帶範圍(V_H卩料。對於—錄對㈣好與壞的 兩項指標:安裝公差帶範_接_印區域大小往往產生矛盾衝突;本發 明主要目_在解決此矛额突,使修整過後的齒輪對能安裝容易但不犧 牲齒面接觸強度,提高其產品價值。 、近年來夕軸同動電知數控(CN◦戟齒輪創成機已漸漸取代傳統搖台式 戟齒輪創成機。多軸同動戟#輪創成機運動方式為卡式直角形式運動。如 1253363 吳國專利公告號第4 9 8丄4 Q 2號所為之多軸戟齒輪創成機器,並整體 機器共計六個自由度,包含三個迴_刀具軸、工件轴及機器齒根角轴) 及二個平移軸(x、γ、z),此三個平雜安排方式為卡式直角形式。刀具轴 與工件轴之空關係由機器餘㈣及三個直角平祕、y、z)來^述 如W 1 Ρ〇專利公告號第W〇 0 "〇 6 6 ! 9 3號所為之伞齒^造。 方法及.製造機器’其整體機器共計六個自由度,包含三個迴轉軸(刀呈轴 工件轴及錄錄)及三個平移糾、γ、z),此三個平移軸安排方式亦為 卡式直角形式。刀具軸與玉件軸之空_係由錄角軸及三個直角 (X、Y、Z)來描述’傳統設計齒根賴係由摇台所構成。 者修=====外乎採用改變刀頭幾何外型或 幾何外型往往其姆__也㈣】然,改變刀頭 :費,產業界所使用的搖台型 機〜的成: 台型戟齒輪創成機刀⑴是架在轉盤角板2:=:圖:所不。搖 轉盤角板則架設於-偏心圓盤3上,刀頭 i片。 =練控圓盤則架在搖台轉^轉 機器刀頭不傾斜時,㈣,㈣,刀盤直接 ,齒輪, 為搖台軸線a-a與刀盤軸線b_b間在機$ ^丄搖°刀位+徑戈 平面為-固聯於機座上且其法向量為搖^考千面^的最短距離。此機器 盤與工件齒輪4間的相對運動進行齒輪二成搖台轉動時’藉由刀 用的搖台型戟齒輪創成機其刀位半徑在現在讀^ 台轉動時,刀射心錢成"輪過財為—敗值,當搖 位半徑4決定了刀盤中心^置。〃動軌跡為—圓弧,搖台轉角q與刀 【發明内容】 本發明係有關於—種面銑式戟齒輪與螺旋傘齒輪之齒面縱向曲率修整 口53363 的方法域供-動恶刀位半徑運動配合搖台的轉動進行齒面縱向曲率的 -種修整方法,其轉在不改變刀頭設定下進储面縱向曲㈣修整,這 新的齒面修整方法完全解決了現行齒面修整時所產生財盾,增^安^ 公差帶的範圍,齒面接觸面積並不因此而縮小,這新方法的提出將對戟齒 輪或者蜗線傘齒輪提供一低成本高效率之縱向曲面修整方法。 本發明的齒面縱向鲜修整方法係將現行_定的騎半娜正成動 態’係提供現行搖台型戟#輪創成機—新的運動自由度。當齒面曲率進行 修整時’ 77位半徑隨著搖台轉動爾之變化,此時刀财心在機器平面的 運動執跡為-曲線,而魏行搖纟型触輪創成機之圓錄跡。代表刀盤 轉角’當卫件齒輪使用面滾法創成時,刀盤轉0將與卫件轉_成一比 例運動關係;然而當工件齒輪使用面銑法創成時,則兩轉角之間並無關聯。 工件齒輪軸線e讀搖台maW_對位置及相對方向由底下機械設定 參數所決定: 搖台架於滑塊6上,滑塊6與基座7的相對位置B決定切齒的深度。 疋轉塊8與基座7間的夾角為機械齒根角\,控制齒輪創成時刀頭頂點 的軌跡方向。 月鬼9架於方疋轉塊§上,用於调整工件齒輪在齒根角方向位置a。 滑塊10架於滑塊9上,調整工件齒輪轴線c_c與搖台軸線㈣間垂直 矩離。 茲為使貴審查查委員對本發明之方法、特性及功能,有進一步 之深入了解,特配合圖式及圖號說明如后: 【實施方式】 1253363 一戟齒輪對或者_傘絲對接繼印及其刀具與細間的接觸路徑 圖如圖—所不。圖二為大齒輪齒簡與小齒輪齒面丨2的接觸投影面,圖中 虛線部分13為刀具創成小齒輪過程中的接觸線,每一條接觸線代表不同的 工件創成轉Μ。戟齒輪對或者顯齒輪對輕觸,因 喊合轉角料制-接繼《蝴躺朗麵,齡处接觸2母接 觸橢0便是齒輪對齒面接觸路徑14及接觸齒印區15。當進行齒面縱向曲率 修整物時,為了使修整後的絲對接卿㈣力與修歸_,且齒輪 對的女裝公差(V-Η值)能增加,因此’在刀具細_印區科,i機械 奴能盡量與修整前_,#創成非接觸鱗隨、叫,修改其機械設 定。我們藉由底下所提的修整理論來達成此一想法。 考慮一假想齒輪18安裝於滑塊6上,假想齒輪的轉軸與搖台轴線a-a相 同。假想絲的-録面為·運動⑽所域。刀頭與假想齒輪間的修 整運動關係如圖三所示。小齒輪法向載面19、修正前刀具位測、修正後 刀盤中心運動執跡23,而當刀位半徑為—固定值時,在齡平面上刀盤中 心的執跡將是一圓弧22。當刀具創成至小齒輪齒面p點處時,刀具沿P點處 的齒面法向量'進刀或退刀一修整量L。刀盤中心位置將由A點處移至B點。 當刀盤k敏轉至_,將會產生—微小_轉正伟峰及—微小 搖台修正轉角Μ。考慮搖台修正轉角从及刀位修正半徑略這兩修正值將 存在一特定關係。在欲修整的小齒輪齒面上,選定_參考則,在此參考點 上的幾何條件(如鲜)將不被改變。因刀位半徑為固定值時,刀盤中心在 機器平面上其運動軌跡為—圓弧,此圓弧為二階方程式。在此,我們舉搖 1253363 台修正轉角及刀位修正半押^&比s ,r 白疋工件轉角為函數的二次多jf-V k 例子,並餅在小絲“接 W項式為 並表示如下: 妾觸·之機械設定能與修正前相去不遠, (1) (2) d、件轉角表不小齒輪齒面參考點處Μ的初始創成角度。 和?為搖台修正轉角△处 ^ 刀位修正半徑崎二次多項式的係數。選定, 齒輪即線上小端與大端處疋 Δ, -王里為-和& ,且相對的搖台修正轉角 (及刀位修正半徑%麵, 祕ΛΑπ姐山 ’和叫。在機器平面上,修肩1253363 IX. Description of the Invention: [Technical Field] The present invention relates to a face-to-face longitudinal curvature trimming method for a face milling type frog gear and a spiral bevel gear (_line bevel gear); this method is a dynamic tool position The radius motion cooperates with the shake=rotor motion to correct the current reading center and the track of the paste arc on the plane to the obstruction of the curved material movement, and then the trimming of the longitudinal curvature of the tooth surface. [Prior Art] The trimming of the 'tooth surface longitudinal curvature' is to change the size of the gear pair to contact the toothed area. The trimming methods currently used by the industry: 1) • Changing the geometry of the tool head: For example, in the U.S. Patent Publication No. 5,044,127, issued on September 3, the Japanese Patent Publication No. 5, 044, No. 127, 2). The relationship between the roll ratio of the cradle and the workpiece gear is trimmed, and the trimming motion of the longitudinal curvature of the tooth surface is performed. For example, U.S. Patent Publication No. 4 78g, (10), published on November 1, 1988. However, the longitudinal aspect of the tooth surface has been changed to the installation tolerance (4). The main problem encountered in the industry is when contacting the toothed enamel (reducing the Hertz stress at the time of contact). (V_H dip. For the two pairs of good and bad for the recording (four): the installation tolerance band _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ It can be easily installed without sacrificing the contact strength of the tooth surface and improving the value of its products. In recent years, the CNC machine has gradually replaced the traditional rocker gear creation machine. The multi-axis is the same. The #轮创创机 movement mode is a card type right angle form movement. For example, the multi-axis 戟 gear creation machine of the 1253363 Wuguo Patent Announcement No. 4 9 8丄4 Q 2, and the total machine has a total of six degrees of freedom, including three Back to the _tool axis, the workpiece axis and the machine root angle axis) and the two translation axes (x, γ, z), the three flat arrangements are in the form of a card-right angle. The relationship between the tool axis and the workpiece axis is determined by the machine. (4) and three right angles Secret, y, z) to say such as W 1 Ρ〇 Patent Bulletin No. W〇 0 " 〇 6 6 ! 9 No. 3 made of umbrella teeth. Method and manufacturing machine's overall machine has a total of six degrees of freedom, including three rotary axes (knife axis workpiece axis and recording) and three translation correction, γ, z), the three translation axis arrangement is also Card type right angle form. The space between the tool axis and the jade axis is described by the angled axis and three right angles (X, Y, Z). The traditional design of the tooth root is composed of a cradle.修修=====External use of changing the geometry of the cutter head or geometric appearance often __ also (four)] However, change the cutter head: fee, the cradle machine used by the industry ~ The type 戟 gear creation machine knife (1) is mounted on the turntable gusset 2:=: Picture: No. The rocker turret is erected on the eccentric disc 3 with the blade i. =The training disc is placed on the cradle and the machine head is not tilted. (4), (4), the cutter head is direct, the gear is between the yoke axis aa and the cutter axis b_b. + The path plane is - fixed on the base and its normal vector is the shortest distance to shake the surface. The relative movement between the machine disc and the workpiece gear 4 is carried out when the gear is turned into a turret. 'With the turret type 戟 gear of the knives, the cutter radius is changed when the cutter is rotated. The round of the fortune is - the value of the defeat, when the rocker radius 4 determines the center of the cutter. The trajectory is a circular arc, a swaying angle q and a knife. [Invention] The present invention relates to a method for supplying a face-to-face longitudinal curvature trimming port 53363 of a face milling type 戟 gear and a spiral bevel gear. The radiusing motion is combined with the rotation of the cradle to perform the trimming method of the longitudinal curvature of the tooth surface, and the rotation is performed in the longitudinal direction of the storage surface without changing the setting of the cutting head. The new tooth surface finishing method completely solves the current tooth surface finishing. When the financial shield is generated, the range of the tolerance zone is increased, and the contact area of the tooth surface is not reduced. This new method proposes to provide a low-cost and high-efficiency longitudinal surface finishing method for the 戟 gear or the worm gear. . The method for longitudinally trimming the tooth surface of the present invention provides the current yoke type 戟# wheel creation machine-new movement degree of freedom. When the curvature of the tooth surface is trimmed, the radius of the 77-bit changes with the rotation of the cradle. At this time, the movement of the knives in the plane of the machine is a curve, and the track of the Wei-Chang-Shake-type wheel is created. On behalf of the cutter head angle 'When the guard gear is created by the roll method, the cutter turn 0 will be in a proportional motion relationship with the guard turn; however, when the workpiece gear is created by the face milling method, there is no correlation between the two corners. . The workpiece gear axis e reads the cradle maW_ The position and relative direction are determined by the underlying mechanical setting parameters: The cradle is placed on the slider 6, and the relative position B of the slider 6 and the pedestal 7 determines the depth of the cutting teeth. The angle between the turning block 8 and the base 7 is the mechanical root angle\, and the direction of the trajectory of the cutter head when the gear is created is controlled. The 9th Moon Ghost is placed on the square block § to adjust the position of the workpiece gear in the root angle direction a. The slider 10 is mounted on the slider 9 to adjust the vertical moment between the workpiece gear axis c_c and the cradle axis (4). In order to enable the members of the review committee to have a deeper understanding of the method, characteristics and functions of the present invention, the descriptions of the drawings and drawings are as follows: [Embodiment] 1253363 One pair of gear pairs or _ umbrellas are connected and printed The contact path diagram of the tool and the thin room is as shown in the figure. Figure 2 shows the contact projection surface of the large gear tooth and the pinion tooth 丨2. The dotted line 13 in the figure is the contact line during the tool creation of the pinion. Each contact line represents a different workpiece creation switch. The pair of gears or the pair of gears are lightly touched, because of the combination of the corner material system and the successor, the contact between the two sides is the gear-to-tooth contact path 14 and the contact tooth print area 15. When the longitudinal curvature of the tooth surface is trimmed, in order to make the trimmed wire (4) force and repair _, and the gear pair's women's tolerance (V-Η value) can be increased, so in the tool fine _ printing area , i mechanical slaves as much as possible before the trimming _, # create a non-contact scale with, call, modify its mechanical settings. We achieve this idea by the finishing theory mentioned below. Considering that an imaginary gear 18 is mounted on the slider 6, the imaginary gear has the same axis of rotation as the cradle axis a-a. The imaginary silk - the recording surface is the domain of sports (10). The trimming motion relationship between the cutter head and the imaginary gear is shown in Figure 3. The pinion normal carrier surface 19, the pre-correction tool position measurement, and the correction of the cutter center movement trace 23, and when the tool position radius is a fixed value, the cutter center at the age plane will be an arc. twenty two. When the tool is created to the p-tooth surface of the pinion, the tool is fed or retracted along the tooth surface normal vector at point P. The center position of the cutter head will move from point A to point B. When the cutter head k senses to _, it will produce - tiny _ turn positive Weifeng and - tiny cradle correction corner Μ. There will be a specific relationship between the correction angle of the cradle and the correction radius of the tool position. On the tooth surface of the pinion to be trimmed, the _ reference is selected, and the geometric conditions (such as fresh) at this reference point will not be changed. When the tool nose radius is a fixed value, the center of the cutter head on the machine plane is a circular arc, which is a second-order equation. Here, we shake 1253363 sets of correction corners and tool position correction half-puffs ^ & s, r white workpiece workpiece angle as a function of the second multiple jf-V k example, and the pie in the small wire "connected W term" And it is expressed as follows: The mechanical setting of the touch can not be far from the pre-correction, (1) (2) d, the corner table of the piece is not the initial creation angle of the reference point of the pinion tooth surface. △ ^ ^ The tool position correction radius quadratic polynomial coefficient. Selected, the gear is the small end of the line and the big end 疋 Δ, - Wang Li is - and &, and the opposite cradle correction angle (and the tool radius correction radius % face, secret ΛΑ sister mountain' and call. On the machine plane, shoulder
後的刀盤中心位置Β位⑪量麵如下: L (3) 、=t,h 在機台平面上’ ^修正及雜修正半徑吗可以另外表示如 0 (4) 1253363 、x J i:i,h 和#Q)分別代表修整前刀位半徑和搖台轉角。當修整量,給定時 由方程式(1)〜(4)我們可以求出搖台修正轉角A為及刀位修正半徑^七一 a 夕項式的絲Ί和“修整後的刀位半徑及搖台轉角便以下列所示的 方程式取代修正前的機械設定。 (5) 利用齒輪顧及微分幾何理論,帶人方程式⑸我們可求得修整後的小 齒輪齒形及其接觸分析。 這裡提供-小齒輪齒面縱向曲率修整範例,—17齒小齒輪搭配32齒大 齒輪’大、小齒輪皆採面銳刀盤加工,賴的搖台機床刀頭並糊斜,所 以i=0,Η。-般來說’曲率的修整皆以小齒輪為優先考量。因此,這裡 提出的範例皆是小錄齒面修整後的結果。底下所顺小錄未修整前的 機械設定參數: (1)小齒輪凸面 刀片點直徑=74. 422_ 1253363 刀片壓力角二22° 刀片頂圓半徑=0. 18137_ 刀位半徑& =31.4772醒 搖台轉角 ? = 1.20989+ 0.468293#+ 2.03407 xl0_3# +2.57946 χ10_5# +1.86084χ10'4^4 +4.22193x10^^+1.66451x10^ 滑塊基座位置B=-〇. 23991mm 齒胚水平位置A=0. 55302im 齒胚垂直位置34465_The rear center position of the cutter head is 11 as follows: L (3) , =t, h On the machine plane ' ^ correction and miscorrected radius can be additionally expressed as 0 (4) 1253363 , x J i: i , h and #Q) represent the rake radius and the cradle angle before trimming, respectively. When the amount of dressing is given, the equations (1) to (4) can be used to determine the yoke correction angle A and the tool radius correction radius ^ 七 a 夕 式 Ί Ί Ί Ί Ί Ί Ί Ί Ί Ί Ί Ί Ί Ί Ί Ί The table corner replaces the mechanical setting before the correction with the equation shown below. (5) Using the gear to take into account the differential geometry theory, we can find the modified pinion profile and its contact analysis with the equation (5). Example of longitudinal curvature correction of gear tooth surface, 17-tooth pinion with 32-tooth large gear 'large and small gears are all processed with sharp cutters. Lai's cradle machine head is slanted, so i=0, Η.- Generally speaking, the curvature of the trimming is given priority to the pinion. Therefore, the examples presented here are the results of the trimming of the small tooth surface. The mechanical setting parameters before the undressing are recorded in the bottom: (1) Pinion Convex blade point diameter = 74. 422_ 1253363 Blade pressure angle 2 22° Blade top circle radius = 0.1 18137_ Tool nose radius & = 31.4772 Wake table angle? = 1.20989+ 0.468293#+ 2.03407 xl0_3# +2.57946 χ10_5# +1.86084 Χ10'4^4 +4.22193x10^^+1.66451x10^ B = the horizontal position of the block base -〇. 23991mm tooth germ positions A = 0. 55302im tooth germ vertical position 34465_
機台齒根角、=25D 35M 1S (1)小齒輪凹面 刀片點直徑=72. 644mm 刀片壓力角=18° 刀片頂圓半徑=0. 18137mm 刀位半徑~二30· 6531mm 搖台轉角 ? = 1.34888+0.483281 於+1.75079χΚΓ3 政 +1.85905xl(T5 政 +1.70513x 10^^4 +3.2215 xl + 1.62271χ10"5^6 滑塊基座位置Β=0. 2714_ 齒胚水平位置Α=-0. 63106_ 齒胚垂直位置~=0. 58474_Machine root angle, =25D 35M 1S (1) Small gear concave blade point diameter = 72. 644mm Blade pressure angle = 18° Blade top circle radius = 0.118137mm Tool nose radius ~ two 30 · 6531mm Rocker angle? = 1.34888 +0.483281 at +1.75079χΚΓ3 政+1.85905xl (T5 政+1.70513x 10^^4 +3.2215 xl + 1.62271χ10"5^6 slider base position Β=0. 2714_ tooth embryo horizontal position Α=-0. 63106_ The vertical position of the tooth embryo ~=0. 58474_
機台齒根角^二25D 35Μ 1S 1253363 給定小齒輪齒凸面節線上大端及小端處的修整量分別為,_和 z 一30㈣。小齒輪凹面節線上大端及小端處的修整量分別為俨=2〇_和 刀別。十异這給定的齒面四點處單位法向量〜,及原始刀盤中心 4置V方私式(1)〜⑷中。計异結果小齒輪凸面及凹面刀位修正半徑 及搖台修正轉角方程式的係數為如下: 小齒輪凸面 小齒輪凹面 at 2.524x10^ 1.496 Χίο-3 1.172X1CT1 -9.8 χ10~2Machine root angle ^ 2 25D 35 Μ 1S 1253363 The trimming amount at the big end and the small end of the given pinion tooth convex line is _ and z 30 (4) respectively. The trimming amount at the big end and the small end of the concave gear section line is 俨=2〇_ and knife. Ten different this given tooth surface four points at the unit normal vector ~, and the original cutter center 4 placed V square private (1) ~ (4). The difference between the convex and concave surface correction radius of the pinion and the correction angle formula of the cradle is as follows: Small gear convex surface Small gear concave surface at 2.524x10^ 1.496 Χίο-3 1.172X1CT1 -9.8 χ10~2
Ct 4.99χ10*44.99 x1ο-4 6.15x10— dt 3.946 x1ο*·3 -4.47 3 χ ΙΟ'3 圖四表示小齒輪凸面修整前_健後25的!誤差圖。圖五為小齒 輪凹面修整與修紐27的齒面誤錢。由這兩圖可以看出,實際的誤 差量與給定的修整量蠻接近的,證明我們提出的方法是可行的。圖六〜圖九 分別為齒面初始位置、中點處、大端處及小端處修整前及修整後齒面接觸 齒印區及運動誤差比較圖。圖六〜圖九我們使用兩種方法找齒面接觸區:(1) 格點搜尋法(2)微分幾何法。結果顯示,這兩種方法尋找到的齒面接觸區幾 乎是一樣的。圖十及圖十一分別為切製小齒輪凸面及凹面時刀盤中、、運動 軌跡在齒面修整前、後的比較圖,在齒面接觸區,刀盤運動執跡幾乎曰 的齒面接觸 貼近的。圖十二為使用改變刀盤半徑方法修整齒面縱向曲率後 區及運動誤差圖。 1253363 小齒輪凸面及’齒印接觸比在修正前、_刀位半徑及改變刀盤半徑三 種機械設定下分別為·· 小齒輪凸面 小齒輪凹面 修正前 0.540 0.487 動態刀位半徑 0.542 0.487 改變刀盤半徑 0.450 0.420 由以上結果我們知道,使用固定刀位半徑及動態刀位半徑方法下的齒 印接觸比幾乎是相同的,然而使肢變刀盤半彳f方法齡縮小齒印接觸比 平均約15%,造成接觸赫茲應力增大。由圖八、圖九中,我們可以得到使用 動態刀位半徑法,小齒輪在凸面及凹面的偏移量安裝公差(V值)分別增加 49· 及21% ;小齒輪在凸面及凹面的軸向安裝公差(H值)分別增加123%及 132.3%。由圖十二中,我們可以得到使用改變刀盤半徑法,小齒輪在凸面 及凹面的偏移量安裝公差(V值)分別增加50· 3%及41% ;小齒輪在凸面及凹面 的軸向安裝公差(H值)分別增加38. 4%及43%。由結果的分析可以看出,提出、 的動態刀位半徑齒面縱向曲率修整方法可以在齒印接觸比不變的條件下, 增加齒輪的安裝公差約5〇%。這結果是現行齒面縱向曲率修整方法所沒有 的因此’所提出的齒面縱向曲率修整方法對產業界將會帶來魔大的經声 利益。 多軸同動電腦數控(CNC)戟齒輪創成機已漸漸取代傳統搖台式戟齒輪 1253363 創成機。多__齒輪創成機運動方式為卡 、 三),包含三個平移軸⑽28、舰9、z /式運動(如圖十 編《根細3)。然㈣_卡式編 (刀綱、工 供了最高的自由度供設計__,卻也是提供最f彳成機雖提 者。因此,我們將搖台型所發明的齒面縱向曲率 輕、-貝訊給設計 形式運動的戟齒輪創成機器。在不同的戟齒輪創二 四=刀嶋轉輸㈣酬議^十 轉軸在空間中相對位置及相對方向相同的條件下,進行戟⑽ 輪 系統的機械設定轉換(搖台麵轉換至卡式直角形式35;^輪創成機機器 綜上所述,本發明乃提供—種創新之面銳式戟齒輪與螺旋伞齒輪之去 面縱向曲_ W谢、㈣觸如f,並州 產業界4龐大的經濟利益而深具產f之· ,誠能符合我國發明專 利之核可要件’細釣職,w日賜料利,毋任 感禱。 【圖式簡單說明】 圖一係現行搖台型戟齒輪創成機裝置構造圖。 圖一係本發明齒面縱向曲率修整方法概念說明圖。 圖三係動態刀位半徑運動予刀具法向載面修整運動說明圖。 圖四係小齒輪凸面齒面誤差圖。 #圖五係小齒輪凹面齒面誤差圖。 圖六_面縱向辨修整前齡面初始位置接繼及運動誤差比較圖 圖七係齒面縱向曲率修整前後齒面中點位置接觸區及運動誤差比^圖 圖八係齒面縱向曲率修整前後齒面大端位置接觸區及運動誤差比^圖 圖九係齒面縱向曲率修整前後齒面小崢位 圖十係創成小齒輪凸面修整前後刀盤=置接觸區及運動誤差比較圖。 圖十一係創成小齒輪凹面修整 前後:運動軌跡比較圖。 圖十二係使用現行的改變刀盤半徑進_|u運動執跡比較圖。 圖。 丁W面修整後齒面接觸區及運動誤差 圖十三係多軸同動卡式直角形式運動戟齒 齒輪相對空間位置說明圖。M 1"創成機機器系統之刀盤與工件 圖十四係搖台式與卡式直角形式戟齒輪 相對空間位置說明圖。 、機态系統之刀盤與工件齒輪 α【主要元件符號說明】 刀盤1轉盤角板2齒輪18圓弧22 ,Α 回車向齒面Ρ點 修整量L刀般 中心Α點、Β點搖台轉角q齒面法向量~ 刀- 修正轉角Μ㈣娜 ⑽紅伟β搖台 苓考點M小齒輪法向戴面;[q ^ 後刀盤中心運動執跡23偏心圓般3乃-修正前刀具位置20 Κ爲心圓盤3)搖台轉盤5 線=碩=角度Κ轉盤角板2)、 刀般刀盔輛線b-b工件齒輪4 ^角‘工件轉角A滑塊6基座7旋轉塊8齒根角' 工件齒輪1a_直轉&场純抓小齒輪齒 回輪18小齒輪法向戴面19修正前刀具位置20 Η刀盤中心運動執跡23圓弧22運動轨跡23齒面法向量〜 修整量L修正半經% *正轉角从碍轉角碎。)Ct 4.99χ10*44.99 x1ο-4 6.15x10—dt 3.946 x1ο*·3 -4.47 3 χ ΙΟ'3 Figure 4 shows the pinion convex before trimming _ after 25! Error map. Figure 5 shows the concave surface of the small gear and the tooth surface of the repairing button 27. It can be seen from these two figures that the actual amount of error is quite close to the given amount of trimming, which proves that the proposed method is feasible. Figure 6 to Figure 9 are the comparison of the tooth surface contact and the motion error before and after trimming at the initial position, midpoint, big end and small end of the tooth surface. Figure 6 ~ Figure 9 We use two methods to find the tooth surface contact area: (1) grid search method (2) differential geometry method. The results show that the flank contact areas found by the two methods are almost the same. Figure 10 and Figure 11 show the comparison of the movement path before and after the tooth surface is cut in the cutter head and the concave surface. In the tooth surface contact area, the cutter movement is almost obscured. Contact is close. Figure 12 shows the rear area and motion error of the longitudinal curvature of the tooth surface using the method of changing the cutter radius. 1253363 Pinion convex and 'tooth contact ratio are three kinds of mechanical settings before correction, _ knife radius and changing cutter radius respectively · · Small gear convex small gear concave surface correction before 0.540 0.487 Dynamic tool radius 0.542 0.487 Change cutter head Radius 0.450 0.420 From the above results, we know that the tooth-tooth contact ratio under the fixed tool radius and the dynamic tool radius method is almost the same, but the limb-changing cutter half-foil method is smaller than the average tooth contact ratio. %, causing an increase in contact Hertz stress. From Fig. 8 and Fig. 9, we can obtain the dynamic tool radius method. The mounting tolerance (V value) of the pinion on the convex and concave surfaces is increased by 49· and 21% respectively; the pinion is on the convex and concave axes. Increase the installation tolerance (H value) by 123% and 132.3%, respectively. From Fig. 12, we can get the change of the cutter radius method. The mounting tolerance (V value) of the pinion on the convex and concave surfaces is increased by 50·3% and 41% respectively; the pinion is on the convex and concave axes. 4% and 43%, respectively, to the mounting tolerance (H value). It can be seen from the analysis of the results that the proposed dynamic tool radius radius tooth surface longitudinal curvature dressing method can increase the gear mounting tolerance by about 5〇% under the condition that the tooth print contact ratio is constant. The result is that the current method of longitudinal curvature correction of the flank is not available. Therefore, the proposed method of trimming the longitudinal curvature of the flank will bring great benefits to the industry. The multi-axis synchronous computer numerical control (CNC) 戟 gear creation machine has gradually replaced the traditional swaying 戟 gear 1253363 creation machine. More __ gear creation machine movement mode is card, three), including three translation axes (10) 28, ship 9, z / type motion (Figure 10 "root thin 3"). However, (4) _ card type (knife, work for the highest degree of freedom for design __, but also provides the most f 彳 machine although the mention. Therefore, we will invert the longitudinal curvature of the tooth surface of the cradle type, -Beixun creates the machine for the design of the smashing gear of the movement. In the different 戟 gears, the 二(10) wheel system is created under the condition that the relative position and relative direction of the ten-axis are the same in space. Mechanical setting conversion (rocking surface conversion to card type right angle form 35; ^ wheel creation machine machine in summary, the present invention provides an innovative face sharp type 戟 gear and spiral bevel gear to face longitudinal _ W Xie, (4) touched f, and the state's industrial sector 4 has a huge economic interest and has a strong production. It can meet the core requirements of China's invention patents, and it is a fine fisherman's job. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a structural view of a conventional cradle type 戟 gear creation machine. Fig. 1 is a conceptual illustration of a longitudinal curvature correction method of a tooth surface of the present invention. Fig. 3 is a dynamic tool radius movement to a tool normal direction Fig. 4 is a pinion convex tooth surface Fig.5 Fig.5 is the concave tooth surface error diagram of the pinion gear. Fig.6 _face longitudinally trimming the initial position of the front face and the motion error comparison Fig.7 The contact point of the midpoint of the tooth surface before and after the longitudinal curvature correction of the seven tooth surface And the motion error ratio ^Fig. Fig. 8 The longitudinal contact curvature of the tooth surface and the motion error ratio before and after the correction of the longitudinal curvature of the tooth surface. Fig. 9 The longitudinal curvature of the tooth surface is trimmed before and after the tooth surface is small. Front and rear cutter head = contact area and motion error comparison chart. Figure 11 is a comparison of the motion trajectory before and after the concave surface of the pinion gear is created. Figure 12 shows the comparison of the _|u motion trace using the current change of the cutter radius. Fig. D-W face trimming after tooth surface contact area and motion error Fig. 13 is a multi-axis synchronous card type right angle form moving tooth gear relative space position explanatory diagram. M 1" Chuangcheng machine system cutter head and workpiece figure ten Description of the relative spatial position of the four-stage rocking table and the card-type right-angled 戟 gear. The cutter head and the workpiece gear α of the machine state system [Description of the main components] Cutter 1 turntable gusset 2 gear 18 arc 22, Α To the tooth surface, the amount of trimming L-knife-like center point, the point of the yoke, the corner of the q-tooth surface vector ~ knife - correction angle Μ (four) Na (10) Hong Wei β 摇台苓考点M pinion normal wear; [q ^ Rear cutter center movement trace 23 eccentricity 3 is - correction before the cutter position 20 Κ for the heart disc 3) cradle turntable 5 line = master = angle Κ turntable gusset 2), knife-like helmet line bb workpiece Gear 4 ^ angle 'workpiece angle A slider 6 base 7 rotating block 8 tooth root angle ' workpiece gear 1a_ straight turn & field pure grip pinion tooth return wheel 18 small gear normal wear surface 19 correction front tool position 20 Η Cutter center motion trace 23 arc 22 motion trajectory 23 tooth surface normal vector ~ trimming amount L correction half-% * positive corner broken from the corner. )
1係數修整量為#)、#)滑塊基座位置B 齒胚水平位罟A 刀具轴3】ALrJ1直位 轴28取9綱〇 刀盤36工件】齒根角軸33搖台型34卡式直角形式351 coefficient trimming amount is #), #) slider base position B tooth embryo horizontal position 罟A tool axis 3] ALrJ1 straight axis 28 takes 9 class boring plate 36 workpiece] tooth root angle axis 33 cradle type 34 card type Right angle form 35