TWI251395B - Pulse width modulation apparatus by using output voltage feedback delay circuit to automatically change the output frequency - Google Patents
Pulse width modulation apparatus by using output voltage feedback delay circuit to automatically change the output frequency Download PDFInfo
- Publication number
- TWI251395B TWI251395B TW93134834A TW93134834A TWI251395B TW I251395 B TWI251395 B TW I251395B TW 93134834 A TW93134834 A TW 93134834A TW 93134834 A TW93134834 A TW 93134834A TW I251395 B TWI251395 B TW I251395B
- Authority
- TW
- Taiwan
- Prior art keywords
- frequency
- signal
- output
- voltage
- power
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
1251395 九、發明說明: 【發明所屬之技術領域】 一種利用輸出電壓回授遲滯電路自動改變輸出頻率之 脈寬調變裝置,尤指一種使用於電源供應器中,用以跟隨 負載變化,進而改變輸出切換頻率之脈寬調變裝置。 【先前技術】 在許多低功率輸出之應用場合,如手機、無線電話、 數位相機、PDA的充電器,以及印表機、電視遊樂器與掌 上型隨身聽的交流電壓調整器等,對於待機時的省電要求 皆相當的高。 按目前已知的直流電源供應裝置,如交換式電源供應 器中(AC To DC SWliixhing Power Supply)中,為縮小 變壓器之體積,大多使用高頻的脈波寬度調變(PWM)控制 直流輸出電壓,如第一圖所示,係為習知返馳式電源供應 裝置之電路示意圖,變壓器T1係將電路區分成為一次侧之 前級電路101與二次侧之後級電路102,該一次侧101與 該二次侧102間係以一光電晶體111及一光二極體112分 離該一次侧101與該二次侧102之電信號,但卻可利用光 信號回授二次側102之電壓或電流輸出變化信號至一次側 101,以同步調整該一次侧101及二次侧102之電壓及電流 變化量,或者做為過電流及短路保護之迴授信號。 請復參考第一圖,其中於一次侧101輸入一交流電壓 VAC,交流電壓VAC係經過一 EMI濾波器1010、一橋式整 流器BD1及一高壓濾波電容C1後成為一直流電壓Vin。直 流電壓Vin係藉由一脈波調整控制單元U1控制功率電子開 1251395 關Q1之導通週期,進而傳送到該變壓器T1之一次側繞組。 同日守,變壓為T1之二次侧繞組係感應輸出電壓,該輸出電 壓透過二極體D1及電解電容C2整流濾波後,產生穩定直 流電壓Vout輸出。 直流電壓Vout透過一回授穩壓器D3與一光偶合器u 將輪出直流電壓Vout轉換成一電壓訊號Vfb回授至一次侧 之脈波寬度調整控制單元讥。同時,於功率電子開關 Q/1導通時透過電阻器R2取得一電流回授訊號Ves,電流回 技訊號Vu係被傳送到脈波寬度調整控制單元U1,脈波寬 度调整控制單元υι取得該電流回授訊號Ves與該電壓訊號 Vfb藉以運算輸出一調整脈波pWM到功率電子開關以,用來 穩定輸出直流電壓Vout。該光偶合器n係由該光電晶體 111及該光二極體112組成。 請參考第二圖,係為習知脈波寬度調整控制單元内部 電路方塊圖。脈波寬度調整控制單元讥係由pwM比較器 14、過電流比較器16、正反器18及或(〇R)閘電路等所 組成。脈波寬度調變(PWM)技術的工作方式,就是由振盪 電路12提供一固定的頻率pwMclock給脈波寬度調整控制 單元U1。並,脈波寬度調整控制單元ui中之PWM比較器 14則負責檢知輸出直流電壓v〇ut所回授進來之電壓訊號 Vfb,同時檢知該電流回授訊號vcs以進行比較運算,用來輸 出一調變輸出訊號PWMout。過電流比較器16更取得該電 流回授訊號Vcs與一限流準位IV進行比較運算,以輸出一 過電流致能訊號0CPEN。調變輸出訊號pwMout與過電流致 能訊號0CPEN透過或(OR)之邏輯運算後,係輸出一重置 訊號R到正反器18之R腳位。正反器18之S腳位係連接 1251395 到振盪電路12用以取得固定的頻率pWMcl〇ck作為 率,並透過或(0R)以及反(NOT)之邏輯運算後輪之作頻 動訊號Drv到功率開關(未標示)◦ ⑼出〜% 配合第二圖,請參考第三圖,係為習知脈竣 控制單兀内部訊號波形示意圖。如第三圖所示其楱後麵整 為時間軸t,縱軸表示為各波形圖,在時間切到$軸表系 電壓訊號Vfb為重載,此時電流致能訊號〇cpEN輿時間 吼唬PWMoui:經過或(〇R)之邏輯運算後輸出重复:蚤輪出 用以濃正反益18輸出之驅動訊號Drv白勺輸出方^凌尺, 功率開關(未標示)的工作週期(duty cycle) ^寬,印 此即可以提供負載所需之電力。 跫長,知 士同理,於時間tl-12時,係處於正常工作史負、 時正反器18輸出之驅動訊號!)”的輸出方波係會声歲,此 =應電力之寬度。再者,於時間ΐ2—13負載變輕緃於疋常 =致能訊號〇CPEN與調變輸出訊號pwM〇ut經過此時電 遴輯運算後輪出重置訊號R。重置訊號R與振盪電(OR)文 出固定的頻率PWMclock同時經過正反器18運算後取12輪 可以讓正反器18輸出之驅動訊號Drv的輸出方^織’係於 ^即可以提供輕負載所需之電力。而在此,驅動訊號Drv 所驅動之功率開關(未標示)其工作頻率並不會因為輸出 方波之工作週期(duty cycle)的改變而改變,換句話説, 此龟路的工作頻率永遠是固定的,如此在輕栽下,驅動訊 #b Drv會跟隨頻率PWMclock而固定產生工作週期短之方 ,,進而造成輕載下電力之損耗。上述中,時間為 播栽狀態,此時係無驅動訊號Drv輸出,此段眸划係為跳 靖週期(SKIPPED CYCLE)。 … 丄251395 當電子產品於全#.十a 常,係籍由脈心周^ 4中負載條件下進行工作時,通 作,其工作損耗又技術(PWM)來控制切換開關之切換動 產品在輕載時,有傳^損耗與開關切換損耗。但是電子 關之切換 4 仍由脈見調變技術(PWM)來控制切換開 下降,但是由於d導損耗會因為電子產品處於輕載而 切換損耗不合跟“:換的工作頻率固定不變,所以開關 脈寬調變技術而減少,所以於輕載時,使用 因此,市面上有—餘*作模式’其整體效率係會降低。 以停止輪出驅输到::咖(PWM)其係在輕載下可 換動你 ^ 虎到切換開關,用以停止切換開關之切 達到!電模式的作用。參考第四圖,係為習知 :”式之脈見调變器的電路方塊示意圖。如第四圖所 了士凋、夂斋20係、從負载取得-回授電壓訊號Vfb與- =技電流訊號ves,該回授電壓訊號Vfb係傳送到—週期遮 /又比較奈22並與一臨界電壓值vthlf作比較運算,用以輸 出一省電致能訊號GreenEN。該回授電壓訊號VFB透過一分1251395 IX. Description of the Invention: [Technical Field] The invention relates to a pulse width modulation device which automatically changes an output frequency by using an output voltage feedback hysteresis circuit, in particular, a power supply device for following a load change and thereby changing A pulse width modulation device that outputs a switching frequency. [Prior Art] In many low-power output applications, such as mobile phones, wireless phones, digital cameras, PDA chargers, as well as printers, TV game consoles and handheld walkman AC voltage regulators, etc. The power saving requirements are quite high. According to the currently known DC power supply devices, such as AC To DC SWliixhing Power Supply, in order to reduce the size of the transformer, high frequency pulse width modulation (PWM) is often used to control the DC output voltage. As shown in the first figure, it is a schematic circuit diagram of a conventional flyback power supply device. The transformer T1 divides the circuit into a primary side prior stage circuit 101 and a secondary side subsequent stage circuit 102. The primary side 101 and the The secondary side 102 separates the electrical signals of the primary side 101 and the secondary side 102 by a photoelectric crystal 111 and a photodiode 112, but can use the optical signal to feedback the voltage or current output change of the secondary side 102. The signal is applied to the primary side 101 to synchronously adjust the voltage and current variations of the primary side 101 and the secondary side 102, or as a feedback signal for overcurrent and short circuit protection. Referring to the first figure, an AC voltage VAC is input to the primary side 101. The AC voltage VAC is passed through an EMI filter 1010, a bridge rectifier BD1, and a high voltage filter capacitor C1 to become a DC voltage Vin. The DC voltage Vin is controlled by a pulse wave adjustment control unit U1 to control the conduction period of the power electronic opening 1251395 to the Q1, and then to the primary winding of the transformer T1. On the same day, the secondary side winding of the transformer is transformed into an induced output voltage. The output voltage is rectified and filtered by the diode D1 and the electrolytic capacitor C2 to generate a stable DC voltage Vout output. The DC voltage Vout is converted into a voltage signal Vfb and fed back to the pulse width adjustment control unit 一次 of the primary side through a feedback regulator D3 and an optical coupler u. At the same time, when the power electronic switch Q/1 is turned on, a current feedback signal Ves is obtained through the resistor R2, and the current return signal Vu is transmitted to the pulse width adjustment control unit U1, and the pulse width adjustment control unit 取得ι obtains the current. The feedback signal Ves and the voltage signal Vfb are used to calculate an output pulse wave pWM to the power electronic switch for stabilizing the output DC voltage Vout. The optical coupler n is composed of the photo-crystal 111 and the photodiode 112. Please refer to the second figure, which is the block diagram of the internal circuit of the conventional pulse width adjustment control unit. The pulse width adjustment control unit is composed of a pwM comparator 14, an overcurrent comparator 16, a flip-flop 18, and a (〇R) gate circuit. The pulse width modulation (PWM) technique works by providing a fixed frequency pwMclock to the pulse width adjustment control unit U1 by the oscillation circuit 12. And the PWM comparator 14 in the pulse width adjustment control unit ui is responsible for detecting the voltage signal Vfb fed back by the output DC voltage v〇ut, and detecting the current feedback signal vcs for comparison operation, Output a modulated output signal PWMout. The overcurrent comparator 16 further compares the current feedback signal Vcs with a current limit level IV to output an overcurrent enable signal 0CPEN. After the modulation output signal pwMout and the overcurrent enable signal 0CPEN are ORed (OR), a reset signal R is output to the R pin of the flip-flop 18. The S pin of the flip-flop 18 is connected to the 1251395 to the oscillating circuit 12 for obtaining a fixed frequency pWMcl〇ck as a rate, and through the logical operation of the (0R) and the inverse (NOT), the rear wheel is used as the frequency signal Drv to Power switch (not shown) ◦ (9) out ~% With the second picture, please refer to the third picture, which is a schematic diagram of the internal signal waveform of the conventional pulse control unit. As shown in the third figure, the 楱 is followed by the time axis t, and the vertical axis is represented as each waveform. When the time is cut to the $ axis, the voltage signal Vfb is a heavy load. At this time, the current enable signal 〇 cpEN 舆 time 吼唬PWMoui: After the logical operation of (R), the output repeats: 蚤 蚤 用以 浓 浓 浓 浓 18 18 18 18 18 18 18 18 18 ^ ^ ^ ^ ^ , , , , , , , , , , , , , , , , , Cycle) ^Width, this can provide the power required by the load.跫 长, 知士同理, at time t12-12, is in the normal working history negative, when the positive and negative device 18 output driving signal!)" output square wave will be old, this = the width of the power. Furthermore, in time ΐ 2-13 load becomes lighter than usual 致 = = 致 〇 EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN The electric (OR) message has a fixed frequency. The PWM clock is simultaneously subjected to the operation of the flip-flop 18 to take 12 rounds, so that the output of the driving signal Drv outputted by the flip-flop 18 can be provided to provide the power required for the light load. Here, the power switch (not shown) driven by the drive signal Drv does not change its operating frequency due to the change of the duty cycle of the output square wave. In other words, the working frequency of the turtle path is always It is fixed, so under the light planting, the driver #b Drv will follow the frequency PWMclock to fix the short working period, which will cause the power loss under light load. In the above, the time is the broadcast state. No drive signal Drv output, this segment is skipped Cycle (SKIPPED CYCLE). 丄 251395 When the electronic product is in full #.10a often, the system is operated under the load condition of the pulse heart circumference ^ 4, the work loss is controlled by technology (PWM) to control the switching. When the switch is switched, the product has a loss and switching loss at the light load. However, the switch 4 of the electronic switch is still controlled by the pulse modulation technology (PWM) to control the switching on and off, but because the d conduction loss will be due to the electronic product. At light load, the switching loss is not the same as ": the working frequency of the change is fixed, so the switching pulse width modulation technology is reduced, so when it is lightly loaded, the use of the system has the overall efficiency system." Will decrease. To stop the drive to drive to:: Coffee (PWM), which can be switched at light load. ^ Tiger to switch, to stop switching switch to reach! The role of the electric mode. Referring to the fourth figure, it is a conventional knowledge: "The pulse of the formula is shown in the circuit block diagram of the modulator. As shown in the fourth figure, the system is obtained from the load - feedback voltage signal Vfb and - = technology The current signal ves, the feedback voltage signal Vfb is transmitted to the - period mask/comparison 22 and is compared with a threshold voltage value vthlf for outputting a power-saving enable signal GreenEN. The feedback voltage signal VFB is transmitted through one cent
壓電路21以成為一回授誤差電壓VE,該回授誤差電壓VE 與該回授電流訊號Vcs係同時被傳送到一 p丽比較器24進 行比較運算,以輸出調變輸出訊號pWM〇ut。該回授電流訊 號Ves與一限流準位IV透過一過電流比較器23進行比較運 算,以輸出一過電流致能訊號0CPEN。 該省電致能訊號GreenEN、調變輸出訊號PWMout及該 過電流致能訊號0CPEN係經過一或閘26以進行或(OR)之 邏輯運算後,輸出一重置訊號R,該重置訊號R被傳送到 RS正反器28之重設端(R)並與傳送到RS正反器28設定 端(S)之一頻率PWMclock進行運算處理’同時RS正反器 !251395 28係透過或(OR)以及反(NOT)之邏輯運算後以輸出_ 驅動訊號Drv,用以控制功率開關(未標示)之切換動作。 配合第四圖,參考第五圖,係為習知具省電模式之脈寬調 變器的電路波形示意圖。如第五圖所示其橫軸表示為時間 輛t,縱轴表不為各波形圖。在時間10到11時間電壓訊 號Vfb為正常負載狀態,此時電流致能訊號0CPEN、調變輸 出訊號PWMout及省電致能訊號GreenEN經過或閘26進行 或(OR)之邏輯運算後,輸出重置訊號R,用以讓正反器 28輸出之驅動訊彳虎Drv驅動功率開關(未標示),以提供 負載所需之電力。 卜J时,於时間队尸Γ疋八释戰狀態,此時回本 電壓訊號VFB與臨界電壓值Vthli執行比較運算,並於回申 電壓訊號VFB小於臨界電壓值vthlf時,得到高電位之^ 致能訊號GreenEN,該省電致能訊號GreenEN係用來^ 驅動讯號Drv之產生,進而於輕載下達到省電功效。a 凊參考第六圖,係為f知錢電路内部電路 振盪電路12中係利用電壓源VDD提供電力二二 Rl、R2、R3以得到臨界電壓VH、VL,比較α 別取得臨界電壓VH、VL並同時對 :1、12^ 號進行比較運算。運算後之訊號,係=之充放電t 用以調整控制電流源II及控制帝、、☆、 正反器12 端 率 之充放電動作。再者,振盪電路12執行對電容〔 端產生頻率隱_提供脈寬二 == 復參考第四圖,該具省電 〜 調整臨界電壓值Vthlf與限流^之脈見調變器20係可」 IV’使得負載於正常、 I251395 =以依據頻率PWMclQck輪出—般的驅動訊號Drv到 並於I载或無載時停止輪出驅動訊號Drv到功率門 :协:達到Ϊ電模式要求。可是,此種省電方式係會讓負 4載或無載下處於休眠狀態,甚至可能進機狀 造成不希望的控制IG_或輸出的不穩定。 【發明内容】 私^有銘1表此,本發明—種利用輸出電壓回授遲滯電路自 源二頻率之脈寬調變裝置,其主要目的係使用於電 率了怎态,用以跟隨負载變化,進而改變輸出之切換頻 為達上述目的,本發明利用一遲滯比較電路,用來截 杈,、、:高臨界電壓及一低臨界電壓,並將該些 二運异及遲滞運算後輸出-變頻訊號。該變頻 ^約、运到連接於該遲滯比較電路之-訊號同步電 ί雔同步電路之輪出端輸出—省電致能訊號傳送 、盥"亥雙頻振盪器係接收該省電致能訊號,用 二、鈿出相=振盪頻率。該振盪頻率係被傳送到連接於 亥又頌振盪态之一 PWM控制器,該PWM控制器接收該振盪 ί率後口’係根據該振盪頻率比較運算回授電壓訊號及回授 包"丨Ά號以進仃輪出一驅動訊號。本發明脈寬調變裝置係 於電源供應ϋ負載端接收翻授電壓誠,並利用一定電 ,源傳送電力給二個串接之電阻器,透過該串接之二電阻 叩進行包源之刀壓,以分別提供該高臨界電壓及該低臨界 電壓到二比較,二比較器比較運算後係分別輸出二比較 矾號到一正反器。二比較訊號經正反器運算後,係輸出該 變頻訊號到該簡同步電路,訊號畔電路根據變頻訊號 I251395 :=電致能訊號並將之傳送到雙頻振盪哭,雔 j振盈态係接收該省電致能訊號後,進而 扣。忒又 率到該PWM控制器,控制器:依辰 率進仃輸出-驅動訊號。上述說明中,_康錢盟頻 跟隨負載之輕重變化,進而改變 振盪器係會 PWM控制器,使得電源供應器可率以提供給 行,境’進而達到更好的效率或更穩定忒=化的運 之功效。 ]叛出从達到省電 【實施方式】 一 ^ S考第七圖,係為本發明脈寬調變带晉 示意圖。本發明之脈寬調魏置3,係心2路方塊 器之負載變化’進而改變輸出驅動娜源供應 -遲滞比較電路32、—鮮之料’包括有: 34及一 PWM控制器36。 电 33、—雙頻振盪器 復參考第七圖,本發明係於電源供應器 回授電壓Vfb,同時利用—线流源as傳送電力 ,之弟-電阻器R1及第二電阻器R2,並透過該^串 電口阻器R卜R2進行電力之分壓,以分別得到_高 [ VH及-低臨界電壓VL。再者,遲滞比較電路⑽The voltage circuit 21 is a feedback error voltage VE, and the feedback error voltage VE and the feedback current signal Vcs are simultaneously transmitted to a comparator 24 for comparison operation to output a modulated output signal pWM〇ut . The feedback current signal Ves is compared with a current limit level IV through an overcurrent comparator 23 to output an overcurrent enable signal 0CPEN. The power-saving signal GreenEN, the modulated output signal PWMout and the overcurrent enable signal 0CPEN are subjected to a logic operation of OR or OR to output a reset signal R, the reset signal R It is transmitted to the reset terminal (R) of the RS flip-flop 28 and is processed by the frequency PWM clock transmitted to the RS (reverse-rectifier 28) set terminal (S). At the same time, the RS flip-flop! 251395 28-channel transmission or (OR And the logical operation of the inverse (NOT) to output the _ drive signal Drv to control the switching action of the power switch (not shown). With reference to the fourth figure, referring to the fifth figure, it is a circuit waveform diagram of a pulse width modulator having a conventional power saving mode. As shown in the fifth figure, the horizontal axis is represented as the time t, and the vertical axis is not the waveform. During the time 10 to 11 time, the voltage signal Vfb is in a normal load state. At this time, the current enable signal 0CPEN, the modulated output signal PWMout, and the power-saving enable signal GreenEN are processed by the OR gate 26 or (OR), and the output is heavy. The signal R is used to cause the driver of the flip-flop 28 to output a power switch (not shown) to provide the power required by the load. In the case of Bu J, in the time team, the corpse is released, and the voltage signal VFB is compared with the threshold voltage value Vthli, and the high voltage is obtained when the voltage signal VFB is less than the threshold voltage vthlf. ^ Enable the signal GreenEN, the power-saving signal GreenEN is used to drive the generation of the signal Drv, and then achieve power-saving effect under light load. a 凊 Referring to the sixth figure, the internal circuit oscillating circuit 12 of the 知 电路 电路 circuit uses the voltage source VDD to supply power 22 R1, R2, R3 to obtain the threshold voltages VH, VL, and compares α to obtain the threshold voltages VH, VL At the same time, the comparison operation is performed on: 1, 12^. After the calculation, the charge/discharge t is used to adjust the charge and discharge operation of the control current source II and the control terminal, the ☆, and the flip-flop. Furthermore, the oscillating circuit 12 performs a capacitor on the terminal to generate a frequency ambiguity _ providing a pulse width two == a complex reference fourth picture, the power saving ~ adjusting the threshold voltage value Vthlf and the current limiting circuit IV' makes the load normal, I251395 = to drive the drive signal Drv according to the frequency PWMclQck to stop and drive the drive signal Drv to the power gate when I or no load: Coordination: to meet the power mode requirement. However, this kind of power-saving mode will make the sleep state after the negative load or no load, and may even enter the machine to cause undesired control of the IG_ or the instability of the output. SUMMARY OF THE INVENTION The present invention is a pulse width modulation device that utilizes an output voltage feedback hysteresis circuit from a source two frequency, the main purpose of which is to use the electrical rate to follow the load change. And changing the switching frequency of the output to achieve the above purpose, the present invention utilizes a hysteresis comparison circuit for intercepting,,,,: a high threshold voltage and a low threshold voltage, and outputting the second-order differential hysteresis operation - Variable frequency signal. The frequency conversion is transmitted to the output of the signal-synchronous circuit connected to the hysteresis comparison circuit, the output of the power-saving signal is transmitted, and the dual-frequency oscillator is received by the dual-frequency oscillator. Signal, use two, 钿 phase = oscillation frequency. The oscillating frequency is transmitted to a PWM controller connected to the 颂 颂 oscillating state, and the PWM controller receives the oscillating rate, and the port is based on the oscillating frequency comparison operation to feedback the voltage signal and the feedback packet " The nickname takes a driving signal. The pulse width modulation device of the invention receives the voltage of the voltage at the load end of the power supply, and uses a certain power, the source transmits power to the two series connected resistors, and the knife of the source is transmitted through the two resistors connected in series. Pressing to provide the high threshold voltage and the low threshold voltage to the second comparison, respectively, after comparing the two comparators, respectively outputting two comparison apostrophes to a flip-flop. After the comparison signal is operated by the flip-flop, the frequency conversion signal is outputted to the simple synchronization circuit, and the signal-side circuit is transmitted according to the frequency conversion signal I251395 := electro-energy signal and transmitted to the dual-frequency oscillation crying, 雔j vibration state system After receiving the power-saving enable signal, the button is deducted.忒 and then to the PWM controller, the controller: according to the rate of input and output signals. In the above description, _ Kang Qian Meng frequency follows the light and heavy changes of the load, and then changes the oscillator system to the PWM controller, so that the power supply can be provided to the line, thereby achieving better efficiency or more stable. The effect of the operation. Rebellion from achieving power saving [Embodiment] A ^ S test seventh figure, is a schematic diagram of the pulse width modulation band of the present invention. The pulse width modulation of the present invention is set to 3, and the load change of the two-way blocker 'and the output drive nano source supply - hysteresis comparison circuit 32, fresh material' includes: 34 and a PWM controller 36. The third embodiment of the present invention is applied to the power supply feedback voltage Vfb, and the power is transmitted by the line current source as the resistor R1 and the second resistor R2. The voltage division of the power is performed through the string resistor Rb R2 to obtain _high [VH and - low threshold voltage VL, respectively. Furthermore, the hysteresis comparison circuit (10)
回授電壓VFB、該高臨界電壓VH及該低臨界電壓凡该 車父運异及遲冰運具後,係輸出一變頻訊號QS。變頻訊號 係被傳送到連接於該遲滯比較電路32之訊號同步電路 33。訊號同步電路33根據變頻訊號QS用以輸出—省^致 能訊號GreenEN並將之傳送到雙頻振盪器34,該雙頻二盪 器34係接收該省電致能訊號Gre enEN後,係輪出相應^ — 振盪頻率到連接於該雙頻振盪器34之PWM控制器36c)pwM 11 !251395 控制器36並根據該振盡頻率進行回授電壓訊號Vfb及回授 電流訊號Vcs之比較運算,以輸出一驅動訊號Drv。該驅動 訊號Drv係與一過電壓訊號0Vp同時進行或(OR) 4之邏 輯運算及反閘(Ν〇τ)計算,用以控制功率開關5之切換動 作0 在遲滞比較電路32中,係使用一第一比較器320之非 反向輸入端(+ )連接到電源供應器負載端(未標示),用 以接收該回授電壓Vfb,並其反相輸入端(一)連接到該定The feedback voltage VFB, the high threshold voltage VH, and the low threshold voltage output a variable frequency signal QS after the father and the ice carrier are transported. The variable frequency signal is transmitted to the signal synchronizing circuit 33 connected to the hysteresis comparison circuit 32. The signal synchronizing circuit 33 is configured to output and transmit the green signal ENEN to the dual-frequency oscillator 34 according to the variable frequency signal QS. The dual-frequency dual-disc 34 receives the power-saving enable signal Gre enEN, and the tether Correspondingly, the oscillation frequency is connected to the PWM controller 36c) pwM 11 !251395 controller 36 connected to the dual-frequency oscillator 34, and the comparison operation between the feedback voltage signal Vfb and the feedback current signal Vcs is performed according to the oscillation frequency. To output a drive signal Drv. The driving signal Drv is simultaneously performed with an over-voltage signal 0Vp or (OR) 4 logic operation and inverse gate (Ν〇τ) calculation for controlling the switching action 0 of the power switch 5 in the hysteresis comparison circuit 32. The non-inverting input terminal (+) of the first comparator 320 is connected to the power supply load terminal (not labeled) for receiving the feedback voltage Vfb, and the inverting input terminal (1) is connected to the predetermined
電流源CIS ’用以接收該高臨界電壓vh。再者,遲滯比較 電路32係利用一第二比較器322之反相輸入端(一)連接 到電源供應器負戴端,用以接收該回授電壓Vfb,並其非反 向輸入端(+ )係逯過第一電阻器R1連接到定電流源CIS, 同時透過第二電卩且器R2連接到_參考地端G,用以接收該 低6¾界電壓VL。在遲滯比較電路中更有一正反器324, 係為一 RS正反器,Rs正反器之一重設端(R)連接到該第 二比較态320之輪出端,一設定端(s)連接到該第二比較 器322之輸出端,並該RS正反器之一輸出端Q連接到該訊A current source CIS' is used to receive the high threshold voltage vh. Furthermore, the hysteresis comparison circuit 32 is connected to the power supply negative terminal by using the inverting input terminal (1) of a second comparator 322 for receiving the feedback voltage Vfb and its non-inverting input terminal (+ The first resistor R1 is connected to the constant current source CIS while the second power is connected to the ground reference G to receive the low 63⁄4 boundary voltage VL. In the hysteresis comparison circuit, there is a flip-flop 324, which is an RS flip-flop, and one reset terminal (R) of the Rs flip-flop is connected to the round output end of the second comparison state 320, and a set terminal (s) Connected to the output of the second comparator 322, and one of the RS flip-flops Q is connected to the signal
號同步電路33係輸出該變頻訊號QS到該訊號同步電路 33,該訊號同步電路33係為一防正反器。 立請參考第八圖,係為本發明雙頻振盪器之電路方塊 意圖。雙頻振|器34係由-振還產生單元34Q透過 選擇單元342連接-第-充放電單元344盘一第 = 單元346,用以輸出二個不同之振盪頻率。該振盡產生 兀340係利用三電阻R3、R4、R5透過二比較器34〇〇、料 連接一 RS正反器3404組成。三電_R3、R4 源VDD以分壓取得一第一參考電墨働^妾收 12 1251395The number synchronizing circuit 33 outputs the variable frequency signal QS to the signal synchronizing circuit 33, and the signal synchronizing circuit 33 is an anti-reactor. Please refer to the eighth figure for the purpose of the circuit block of the dual-frequency oscillator of the present invention. The dual frequency oscillator 34 is connected by the -vibration generating unit 34Q through the selecting unit 342. The first charging and discharging unit 344 is a unit 346 for outputting two different oscillation frequencies. The 振340 is formed by the three resistors R3, R4, and R5 passing through the two comparators 34, and the material is connected to an RS flip-flop 3404. Three power _R3, R4 source VDD to obtain a first reference ink by partial pressure 働 ^ 妾 12 1251395
^髮Vthlow,並於RS正反器34〇4的輪出端Q^Vthlow, and the round-trip Q of the RS flip-flop 34〇4
週期§fl號輸出。該頻率選擇單元342係接今 ,以及從遲滯比較電路32傳送過來之省電:::: GreenEN ’用以選擇驅動該第一充放電單元344或該=讯號 放皂單元346以進行充放電之動作。該第一充放電。。弟充 ^有一第—充電控制電流源Iclf與—第—放^^ = ▲源' Idclf,藉由調整該二控制電流源係可以在電^哭屯 上產生不同第一充放電訊號輸出。該第二充放電單元 ^括有一第二充電控制電流源Ichf與一第二放電控制带 U原I dchf,藉由调整§亥_一控制電流源係可以在電容哭匸丁 上產生不同第二充放電訊號輸出。 〜裔Cycle §fl number output. The frequency selection unit 342 is connected to the current and the power saving from the hysteresis comparison circuit 32::::GreenEN ' is used to selectively drive the first charging/discharging unit 344 or the = signal soaping unit 346 for charging and discharging. The action. The first charge and discharge. . The younger brother has a first-charge control current source Iclf and a -first -^^ ▲ source 'Idclf. By adjusting the two control current sources, different first charge and discharge signal outputs can be generated on the electric switch. The second charging and discharging unit includes a second charging control current source Ichf and a second discharging control band U original I dchf, which can be different in the capacitor crying by adjusting the current source system. Charge and discharge signal output. ~
充放電訊號係回授傳送到二比較器34〇〇、34〇2之輪入 端,並分別與第一參考電壓vthhigh、第二參考電壓Vth^= 透過二比較器3400、3402進行比較運算。運算&係透: RS正反為3404的輸出端Q及ρ分別輸出一週期訊號。'該雔 頻振i為34係可根據省電致能訊號GreenEN用以改變輸出 之苐一充放電訊號或第二充放電訊號,並於回授比較後, 在RS正反裔3404的輸出端輸出一低頻波段(MKhz到 27Khz)或 高頻波段(40Khz到lOOKhz)之振盪頻率。 請參考第九圖,係為本發明P丽控制器内部電路方塊 示意圖。PWM控制器36係由一比較器360、或閘電路362、 361、一 RS正反器364及一分壓電路366組成。分壓電路 366係接收回授電壓訊號Vfb用以輸出一誤差電壓訊號vE, 比較杰360輸入端係接收該誤差電壓訊號VE及回授電流訊 號Vcs以執行比較運算,用以輪出一調變輸出訊號PWMout。 t周變輸出訊號PWMout與一過電流致能訊號0CPEN透過或閘 13 1251395 電路362進行或(OR)之邏輯運算後,係輸出一重置訊號 R到RS正反器364之R腳位。RS正反器364之S腳位係連 接到第七圖所示之雙頻振盪器34,用以取得振盪頻率 PWMclock作為工作頻率,並透過或閘電路361與一反閘 (NOT)輪出一驅動訊號此〃。 配合第七圖,請參考第十圖,係為本發明電路訊號波 形示意圖。第十圖中所示,其縱轴表示電壓(V),橫轴表 示時間(t)。配合第七圖,該遲滯比較電路32係利用第一 比較器320接收該高臨界電壓VH與該回授電壓VFB,進而 比較輸出一第一比較訊號CS1。利用一第二比較器322接 收该低Sa界電壓VL與該回授電壓Vfb,進而比較輸出一第 二比較訊號CS2。該第一比較訊號CS1與該第二比較訊號 CS2係分別傳送到RS正反器324之重置端(R)及設定端 (S),並藉由RS正反器324進行運算用以輸出該變頻訊號 QS。該變頻訊號QS係被傳送到訊號同步電路33,訊號同 步電路33係根據振盪頻率PWMclock輸出省電致能訊號 GreenEN到該雙頻振盈器34。省電致能訊號GreenEN係用 來選擇該雙頻振盪器32輸出之振盪頻率PWMclock。該振 盪頻率PWMclock係被傳送到PWM控制器36,該PWM控制 器36接收該振盪頻率P丽clock後,係根據該振盪頻率 PWMclock進行輸出一驅動訊號。第十圖所示之振盪頻率 PWMclock,在輕載(low)下為22KHZ意即週期時間為45 # s,在重載(high)下為65KHZ意即週期時間為15 // s。 復參考第十圖,於時間to-tl期間,電路係處於輕載 狀態,此時省電致能訊號GreenEN為高電位,高電位之省 電致能訊號GreenEN被傳入雙頻振盪器34中,用以調整其 14 1251395 内部電容器ct上之充放電訊號以輸出低振盪頻率 , PWMclock給PWM控制器36使用。上述中,省電致能訊號 GreenEN於時間ΐΐ時,由高電位下降至低電位,其準位下 . 降係同步於振盪頻率PWMclock。再者,於時間期間, 電路係處於重載狀態,此時省電致能訊號GreenEN為低電 · 位,低電位之省電致能訊號GreenEN被傳入雙頻振盡器34 中,用以調整其内部電容器CT上之充放電訊號以輸出高振 盪頻率PWMclock給PWM控制器36使用。上述中,省電致 能訊號GreenEN於時間t2時,由低電位上昇至高電位,其 準位上昇係同步於第二比較訊號CS2。接著,時間t2—13 _ 期間又回覆到輕載狀態,此時雙頻振盪器34係輸出低振盪 頻率PWMclock給PWM控制器36使用。再者,請參考第七 圖之訊號同步電路33在時間1:3-t4時,該變頻訊號妨為 高電位、振盪頻率PWMclock為低電位,該變頻訊號qs係 被傳送到訊號同步電路33之重置端(R),振盡頻率 PWMclock係被傳送到訊號同步電路33之設定端(s)。由 於訊號同步電路33之重置端(R)其訊號優先權高於設定 端(S)所以在此電時間,省電致能訊號GreenEN仍保持高 電位並不會因為振蘯頻率PWMc 1 ock準位下降而改變。^: 鲁 振盪頻率PWMclock,係為一 65KHZ之振盪頻率,並該低拓 盪頻率PWMclock,係為一 22KHZ之振盪頻率。 —、 如上述說明中,遲滯比較電路32係將該回授電堡Vp 用來和高臨界電壓VH、低臨界電壓vl進行比較運算,^ 控制變頻訊號QS來延緩雙頻振盪器34之動作,用. 雙頻振盪器34因為負載變化時產生的干擾訊號或雜訊而 — 造成輸出振盪頻率之切換過於頻繁或造成切換時之★吳動 15 1251395 作。 請參考第十一圖,係為本發明有/無遲滯時之輸出功 率、調頻訊號、回授電壓及振盪頻率之關係比較波形示意 圖◦其中於時間tl—t2期間,輸出功率pout之負載變化時, 輸出電壓Vout則會受到影響,因此係會造成回授電壓Vfb 產生雜訊(noise)之干擾現象,進而影響省電致能訊號 GreenEN之波形輸出。電路中若無遲滯時,省電致能訊號 GreenEN輸出係為S1之波形,此時因為省電致能訊號 GreenEN不%、疋,使得第七圖所示之雙頻振盪器%輸出的 振盪頻率PWMclock,會反覆的切換輸出低振盪頻率與高振 _ 盪頻率,進而導致電路功率損失、工作效率降低。 電路中若有遲滯時,係可以得到穩定之省電致能訊號 GreenEN輸出係為S2之波形,此時第七圖所示之雙頻振盪 器34輸出的振盪頻率PWMcl〇ck即會穩定的輪出低振盪頻 率(Low Frequency)以防止雜訊(n〇ise)之干擾現象。 並且,於日守間ΐ3-ΐ4期間,輸出功率p〇ut之負載變化時, 係會影響輸出電壓V〇ut,相同地,此時一樣會造成回授電 壓VFB產生雜訊(n〇1Se)之干擾,進而影響省電致能訊號 # GreenEN ,波形輸出。電路中若無遲滯時,如第七圖所示 之雙頻振盪為34係會反覆的切換輸出低振盈頻率與高振 盪頻率,進而導致電路功率損失、工作效率降低。若是, 迅路中有遲π日守’如第七圖所示之雙頻振盪器料即會穩定 的幸刖出问振盪頻率(Hlgh FreqUenCy)以防止雜訊(n〇ise) 之干擾現象。 · 本發明係利用一遲滯比較電路,用來戴取一回授電 壓、一南g品界電壓及一低臨界電壓,並將該些電壓進行比 16 1251395 車交運首u 缺^^及遲滞運算後輸出一變頻訊號到訊號同步電路’訊 %u fB] ^ 乂 ^ 夕笔路係輸出省電致能訊號GreenEN到該雙頻振盪 二°遠雙頻振盪器係接收該省電致能訊號GreenEN,用以 輸出相_ > γ , 制哭日應之一振盪頻率,該振盪頻率係被傳送到該Ρ丽控 ^/该PWM控制器接收該振盪頻率後,係根據該振盪頻 4進订輪出一驅動訊號。該雙頻振盪器係會跟隨負載之輕 進而分別改變輸出兩個波段即一高頻波段(40Khz 1〇〇Khz)、一低頻波段(18Khz到27Khz)之振盪頻率以 么、…PWM控制器’使得電源供應器可以適時反應隨時變The charge and discharge signals are sent back to the wheel terminals of the two comparators 34〇〇 and 34〇2, and are respectively compared with the first reference voltage vthhigh and the second reference voltage Vth^= through the two comparators 3400 and 3402. Operation & through: RS is positive and negative for the output terminal Q and ρ of the 3404 output one cycle signal. 'The 雔 frequency vibration i is 34 series according to the power saving enable signal GreenEN used to change the output of the charge and discharge signal or the second charge and discharge signal, and after the feedback comparison, at the output of the RS positive and negative 3404 The oscillation frequency of a low frequency band (MKhz to 27Khz) or a high frequency band (40Khz to lOOKhz) is output. Please refer to the ninth figure, which is a schematic diagram of the internal circuit block of the P-controller of the present invention. The PWM controller 36 is composed of a comparator 360, or gate circuits 362, 361, an RS flip-flop 364, and a voltage dividing circuit 366. The voltage dividing circuit 366 receives the feedback voltage signal Vfb for outputting an error voltage signal vE, and the comparator 360 receives the error voltage signal VE and the feedback current signal Vcs to perform a comparison operation for a rounding Change the output signal PWMout. The t-cycle output signal PWMout and an over-current enable signal 0CPEN pass or gate 13 1251395 circuit 362 perform OR operation (OR), and output a reset signal R to the R pin of the RS flip-flop 364. The S pin of the RS flip-flop 364 is connected to the dual-frequency oscillator 34 shown in FIG. 7 to obtain the oscillation frequency PWMclock as the operating frequency, and is rotated by the OR circuit 361 and a reverse gate (NOT). The drive signal is here. With reference to the seventh figure, please refer to the tenth figure, which is a schematic diagram of the circuit signal waveform of the present invention. As shown in the tenth figure, the vertical axis represents voltage (V) and the horizontal axis represents time (t). In conjunction with the seventh figure, the hysteresis comparison circuit 32 receives the high threshold voltage VH and the feedback voltage VFB by using the first comparator 320, and further compares and outputs a first comparison signal CS1. The second comparator 322 receives the low Sa boundary voltage VL and the feedback voltage Vfb, and compares and outputs a second comparison signal CS2. The first comparison signal CS1 and the second comparison signal CS2 are respectively transmitted to the reset end (R) and the set end (S) of the RS flip-flop 324, and are operated by the RS flip-flop 324 to output the Frequency conversion signal QS. The variable frequency signal QS is transmitted to the signal synchronizing circuit 33, and the signal synchronizing circuit 33 outputs the power saving enable signal GreenEN to the dual frequency vibrator 34 according to the oscillation frequency PWMclock. The power-saving enable signal GreenEN is used to select the oscillation frequency PWMclock output from the dual-frequency oscillator 32. The oscillating frequency PWMclock is transmitted to the PWM controller 36. After receiving the oscillating frequency P volt clock, the PWM controller 36 outputs a driving signal according to the oscillating frequency PWMclock. The oscillation frequency PWMclock shown in the tenth figure is 22KHZ under light load (low) means cycle time is 45 # s, and under heavy load (high) is 65KHZ means cycle time is 15 // s. Referring to the tenth figure, during the time to-tl, the circuit is in a light load state, at this time, the power-saving enable signal GreenEN is high, and the high-potential power-saving signal GreenEN is transmitted to the dual-frequency oscillator 34. To adjust the charge and discharge signal on the 14 1251395 internal capacitor ct to output a low oscillation frequency, the PWM clock is used by the PWM controller 36. In the above, the power-saving enable signal GreenEN drops from a high potential to a low potential at a time ,, and the drop is synchronized with the oscillation frequency PWMclock. Moreover, during the time period, the circuit system is in a heavy load state, at which time the power-saving enable signal GreenEN is a low power bit, and the low-level power-saving enable signal GreenEN is transmitted to the dual-frequency vibration converter 34 for The charge and discharge signal on the internal capacitor CT is adjusted to output a high oscillation frequency PWM clock to the PWM controller 36. In the above, the power-saving enable signal GreenEN rises from a low potential to a high potential at time t2, and its level rise is synchronized with the second comparison signal CS2. Then, during the time t2-13 _, the light load state is returned again. At this time, the dual frequency oscillator 34 outputs the low oscillation frequency PWM clock to the PWM controller 36. Furthermore, please refer to the signal synchronization circuit 33 of the seventh figure. At time 1:3-t4, the frequency conversion signal is high, the oscillation frequency PWMclock is low, and the frequency conversion signal qs is transmitted to the signal synchronization circuit 33. The reset terminal (R), the burst frequency PWM clock is transmitted to the set terminal (s) of the signal synchronizing circuit 33. Since the reset end (R) of the signal synchronizing circuit 33 has a higher signal priority than the set end (S), the power-saving enable signal GreenEN remains high during this electrical time and is not due to the vibrating frequency PWMc 1 ock The bit changes and changes. ^: Lu oscillation frequency PWMclock, which is an oscillation frequency of 65KHZ, and the low extension frequency PWMclock is an oscillation frequency of 22KHZ. - In the above description, the hysteresis comparison circuit 32 compares the feedback power Vp with the high threshold voltage VH and the low threshold voltage v1, and controls the variable frequency signal QS to delay the operation of the dual frequency oscillator 34. The dual-frequency oscillator 34 is caused by interference signals or noise generated when the load changes - causing the switching of the output oscillation frequency to be too frequent or causing the switching when the ★ Wu 151251395 is performed. Please refer to the eleventh figure, which is a waveform diagram for comparing the relationship between the output power, the frequency modulation signal, the feedback voltage and the oscillation frequency when there is no hysteresis in the present invention, wherein during the time t1 - t2, the load of the output power pout changes. The output voltage Vout will be affected, which will cause the noise of the feedback voltage Vfb to generate noise, which will affect the waveform output of the power-saving enable signal GreenEN. If there is no hysteresis in the circuit, the power-saving enable signal GreenEN output is the waveform of S1. At this time, because the power-saving enable signal GreenEN is not %, 疋, the oscillation frequency of the dual-frequency oscillator % output shown in the seventh figure is made. PWMclock will repeatedly switch the output low oscillation frequency and high oscillation frequency, which will lead to circuit power loss and work efficiency. If there is hysteresis in the circuit, the stable power-saving enable signal GreenEN output system is the waveform of S2. At this time, the oscillation frequency PWMcl〇ck output by the dual-frequency oscillator 34 shown in the seventh figure will be stable. Low Frequency is used to prevent noise (n〇ise) interference. In addition, during the period of the day-to-day ΐ3-ΐ4, when the load of the output power p〇ut changes, the output voltage V〇ut will be affected. Similarly, the feedback voltage VFB will generate noise (n〇1Se). The interference, which in turn affects the power-saving enable signal #GreenEN, waveform output. If there is no hysteresis in the circuit, as shown in the seventh figure, the dual-frequency oscillation of the 34-series will repeatedly switch the output low-vibration frequency and high-oscillation frequency, resulting in circuit power loss and reduced working efficiency. If it is, there is a delay of π in the Xun road. As shown in the seventh figure, the dual-frequency oscillator material will be stable and the oscillation frequency (Hlgh FreqUenCy) will be used to prevent the interference of noise (n〇ise). The present invention utilizes a hysteresis comparison circuit for taking a feedback voltage, a south-level voltage, and a low threshold voltage, and delivering the voltages to the 16 1251395 vehicle for the first time. After the operation, a frequency conversion signal is outputted to the signal synchronization circuit '%u fB> ^ 乂^ 夕 pen line output power-saving signal GreenEN to the dual-frequency oscillation two-degree remote dual-frequency oscillator receives the power-saving signal GreenEN is used to output the phase _ > γ , which is the oscillation frequency of the crying day. The oscillation frequency is transmitted to the brilliant control ^ / the PWM controller receives the oscillation frequency, according to the oscillation frequency 4 Order a drive signal. The dual-frequency oscillator will follow the light load and change the output frequency of two bands, namely a high frequency band (40Khz 1〇〇Khz) and a low frequency band (18Khz to 27Khz), ... PWM controller' Allowing the power supply to react at any time
的運仃裱境,進而達到更好的效率或更穩定的輸出以達 到省電之功效。 ^亥雙頻振蘯器係會於重載時,輸出高頻波段(4〇KhzThe environment is designed to achieve better efficiency or more stable output to achieve power saving. ^Hai dual-frequency vibrator will output high frequency band when heavy load (4〇Khz
μ 97〇KhZ)之振I頻率’並於輕載下輸出低頻波段(18Khz Khz)之振i頻率以提供、給p龍控制器。如此,本發 明即可以湘遲滯電路之頻率延緩功能,絲改善習知省 电技術於貞·化時所產生頻料必要之切換情形,進而 減少不必要的切換損失,同時可以防止雜訊( %)之干 擾現象以達到省電功效。 凡王付合專利申請之要件,故爰依專 利法提出申請,請詳杳並嗜旦α k t tα y、, —I明早曰惠准專利,實感德便,以保 障發明者之榷益,若 鉑A +主+ + 土。 + > — 、勺局之貝番查委貝有任何的稽疑, 請不吝來函指示。 _惟,以上所迹,i為本發明最佳之-的具體實施例之詳 細.兄明14® ;、’ It本發日月之特徵並不侷限於此,並非用以限 制本毛月,本1明之所有範圍應以下述之中請專利範圍為 準,凡合於本*明申請專利範圍之精神與其類似變化之實 17 1251395 施例,皆應包含於本發明之範®壽中,任何熟悉該項技藝者在 本發明之領域内,可輕易思及之變化或修飾皆可涵蓋在以 下本案之專利範圍。 【圖式簡單說明】 第一圖為習知返馳式電源供應裝置之電路示意圖; 第二圖為習知脈波寬度調整控制單元内部電路方塊圖; 第三圖為習知脈波寬度調整控制單元内部訊號波形示意 圖; 第四圖為習知具省電模式之脈寬調變器的電路方塊示意 圖; 第五圖為習知具省電模式之脈寬調變器的電路波形示意 圖, 第六圖為習知振盪電路内部電路方塊示意圖; 第七圖為本發明脈寬調變裝置之電路方塊示意圖; 第八圖為本發明雙頻振盪器之電路方塊示意圖; 第九圖為本發明PWM控制器内部電路方塊示意圖; 第十圖為本發明電路訊號波形示意圖;及 第十一圖為本發明有/無遲滯時之輸出功率、調頻訊號、回 授電壓及振盈頻率之關係比較波形示意圖。 【主要元件符號說明】 習知: T1變壓器 101前級電路 1010 EMI濾波器 18 1251395 102後級電路 VAC交流電壓 11光偶合器 12振盪電路 121、122比較器 123正反器 111光電晶體 112光二極體 U1脈波寬度調整控制單元 14 PWM控制器 16過電流比較器 18正反器 20脈寬調變器 21分壓電路 22週期遮沒比較器 23過電流比較器 24 PWM控制器 26或閘 28 RS正反器 本發明: 3脈寬調變裝置 32遲滯比較電路 320第一比較器 322第二比較器 1251395 3 2 4正反器 · 33訊號同步電路 _ 34雙頻振盪器 _ 340振盪產生單元 . 3400、3402比較器 3404 RS正反器 342頻率選擇單元 344第一充放電單元 346第二充放電單元 ⑩ 36PWM控制器 360比較器 361、362或閘電路 364 RS正反器 366分壓電路 4或閘 5功率開關 20The vibration frequency I of μ 97〇KhZ) is output to the vibration frequency of the low frequency band (18Khz Khz) under light load to provide, to the p dragon controller. In this way, the present invention can reduce the frequency delay function of the circuit of the hysteresis circuit, and improve the switching situation necessary for the frequency material generated by the conventional power-saving technology, thereby reducing unnecessary switching loss and preventing noise (%). The interference phenomenon to achieve power saving effect. Where the king pays for the patent application, the application is based on the patent law, please read the details of the patent, and I will be able to guarantee the benefits of the inventor if Platinum A +Main + + soil. + > — The Beacons of the Spoon Board has any doubts. Please do not hesitate to give instructions. _ However, the above, i is the best embodiment of the present invention - the details of the brothers 14®;, 'It's the characteristics of the sun and the moon is not limited to this, not to limit the month, All the scopes of this patent shall be subject to the following patents, and the spirit of the patent application scope and the similar changes of the scope of this patent shall be included in the scope of the invention. Those skilled in the art are susceptible to variations or modifications within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a circuit diagram of a conventional flyback power supply device; the second figure is a block diagram of the internal circuit of the conventional pulse width adjustment control unit; the third figure is a conventional pulse width adjustment control The schematic diagram of the internal signal waveform of the unit; the fourth figure is a schematic diagram of the circuit block of the pulse width modulator with the power saving mode; the fifth figure is the circuit waveform diagram of the pulse width modulator with the power saving mode, the sixth The figure is a block diagram of the internal circuit of the conventional oscillating circuit; the seventh figure is a circuit block diagram of the pulse width modulation device of the present invention; the eighth figure is a circuit block diagram of the dual frequency oscillator of the present invention; The internal circuit block diagram of the device; the tenth figure is a schematic diagram of the circuit signal waveform of the present invention; and the eleventh figure is a schematic waveform diagram of the relationship between the output power, the frequency modulation signal, the feedback voltage and the oscillation frequency with or without hysteresis in the present invention. [Main component symbol description] Convention: T1 transformer 101 pre-stage circuit 1010 EMI filter 18 1251395 102 rear stage circuit VAC AC voltage 11 optical coupler 12 oscillation circuit 121, 122 comparator 123 flip-flop 111 photoelectric crystal 112 photodiode Body U1 pulse width adjustment control unit 14 PWM controller 16 over current comparator 18 forward and reverse 20 pulse width modulator 21 voltage divider circuit 22 period blanking comparator 23 over current comparator 24 PWM controller 26 or gate 28 RS forward and reverse device The present invention: 3 pulse width modulation device 32 hysteresis comparison circuit 320 first comparator 322 second comparator 1251395 3 2 4 flip-flop · 33 signal synchronization circuit _ 34 dual-frequency oscillator _ 340 oscillation generated Unit 3400, 3402 comparator 3404 RS flip-flop 342 frequency selection unit 344 first charge and discharge unit 346 second charge and discharge unit 10 36 PWM controller 360 comparator 361, 362 or gate circuit 364 RS forward and reverse 366 divided piezoelectric Road 4 or gate 5 power switch 20
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93134834A TWI251395B (en) | 2004-11-12 | 2004-11-12 | Pulse width modulation apparatus by using output voltage feedback delay circuit to automatically change the output frequency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93134834A TWI251395B (en) | 2004-11-12 | 2004-11-12 | Pulse width modulation apparatus by using output voltage feedback delay circuit to automatically change the output frequency |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI251395B true TWI251395B (en) | 2006-03-11 |
TW200616305A TW200616305A (en) | 2006-05-16 |
Family
ID=37433572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93134834A TWI251395B (en) | 2004-11-12 | 2004-11-12 | Pulse width modulation apparatus by using output voltage feedback delay circuit to automatically change the output frequency |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI251395B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017133001A1 (en) | 2016-02-05 | 2017-08-10 | 广东欧珀移动通信有限公司 | Charging method, adapter, and mobile terminal |
EP3413429B1 (en) | 2016-02-05 | 2021-02-24 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Adapter and charging control method |
JP6633104B2 (en) * | 2016-07-26 | 2020-01-22 | オッポ広東移動通信有限公司 | Adapter and charge control method |
EP4037175B1 (en) | 2016-07-26 | 2024-08-28 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Charging system, charging method, and power adapter |
EP3276784B1 (en) | 2016-07-26 | 2020-06-17 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Charging system, charging method, and power adapter |
CN108711921B (en) * | 2018-04-16 | 2021-02-02 | 广州昂宝电子有限公司 | Alternating current signal power conversion system for charging battery, charging system and method |
CN110858752A (en) * | 2018-08-24 | 2020-03-03 | 浦登有限公司 | Power adapter |
-
2004
- 2004-11-12 TW TW93134834A patent/TWI251395B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200616305A (en) | 2006-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI262371B (en) | PMW equipment with a power saving mode controlled by an output voltage feedback retardation circuit | |
CN103401539B (en) | A kind of pulse width modulator and two-way integrator | |
CN101841242B (en) | Switch power supply and method for adjusting output current thereof | |
CN104079157B (en) | A kind of ultralow pressure start-up circuit of synchronous boost dc-dc | |
JP2009011144A (en) | Soft start circuit and power supply device including soft start circuit | |
KR101760276B1 (en) | Apparaus and Method for Switch Mode Power Supply | |
TW201251287A (en) | Constant on-time switching regulator implementing dual control loops | |
TWI385499B (en) | Slave switching circuit and interleaved slave switching method | |
JP2010283616A (en) | Illumination light communication device | |
TWI251395B (en) | Pulse width modulation apparatus by using output voltage feedback delay circuit to automatically change the output frequency | |
US9531271B2 (en) | Spread spectrum power converter | |
TW200820561A (en) | A switching controller having synchronous input for the synchronization of power converters | |
CN102969874A (en) | A power converter control circuit with a deep burst mode | |
WO2015149474A1 (en) | Analog voltage source circuit and display device | |
CN1780131A (en) | Pulse width modulator with automatic change of outputting frequency | |
TWI533559B (en) | Circuit in an electronic device and method for powering | |
TW201143265A (en) | A heterodyne dual slope frequency generation method for the load change of power supply | |
JPH01231659A (en) | Switching type electric source | |
TWI515996B (en) | Power supply system with variable supply voltage | |
CN102214986A (en) | System for providing working frequency for switching power supply converter | |
US9838084B2 (en) | Control of a tank circuit in a wireless power transmission system providing FSK communication | |
US8664928B2 (en) | Digital power factor correction device | |
CN209844841U (en) | Microwave switch negative bias voltage generating circuit | |
US20130308791A1 (en) | Apparatus and method for reducing audible noise of power supply | |
CN105914832B (en) | Adjustable voltage feedback circuit with constant current protection and working method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |