546964 五、發明說明(1 ) 本發明涉及一種廣播頻道分集方式發送信號的方法。 此廣播頻道在許多連續的時槽內,通過至少一個空氣介 面’從至少一個基地台傳輸到至少一個無線電通信系統用 戶裝置。 在單元構造的無線電通信系統中,例如GSM(=全球行 動式通信系統)或UMTS(二通用行動式電信系統)標準方 面’給相應的用戶裝置,特別是無線電行動式裝置,在其 暫態停留無線電單元內,憑籍該處有關基地台,通過其至 少有一個所謂廣播頻道的空氣介面,轉播與系統有重大關 係的資訊。這種與系統有重大關係的資訊,可能就是相應 用戶裝置功率調節的資訊,或者是關於此用戶裝置暫態停 留無線電單元中可支配的劃碼多工(CDMA)電碼的資訊。一 般說來,此廣播頻道用於,從一個基地台向一切在該處停 留在其無線電單元中的用戶裝置,轉播所謂單元特定的資 訊。只有根據這種單元特定的資訊,才能夠在相應的用戶 裝置和有關基地台之間建立完好無缺的無線電通信。因 此,至少有時候所有用戶裝置在相應的無線電單元中,至 少截聽到一個該處有關的基地台的廣播頻道。 本發明的基本目的在於揭示一種方法,相應的用戶裝置 如何能夠在其暫態停留無線電單元中以簡便可靠的方式接 收廣播頻道資訊。這個目的可以用前述的方式來解決,使 得在相應的基地台中以分集方式運行的一個或多個下行線 路同步猝發脈衝串另外加入一個標誌因素;並且根據這個 546964 五、發明說明(2 ) 標誌因素,至少有一個被相應的用戶裝置接收的基地台之 分集方式下行線路同步猝發脈衝串發送至這個用戶裝置。 及時地給相應的用戶裝置發送信號,何時相應配置的基 地台在用戶裝置停留無線電單元中,不以標準方式而以分 集方式發射一個或多個廣播頻道,相應的用戶裝置就可以 按分集方式最佳探測這種廣播頻道。這一點,在相應的用 戶裝置第一次或者通過交接新的無線電單元記入資訊時, 特別重要。這種以分集方式探測廣播頻道,通過另外以一 個標誌相應基地台的分集方式的標誌因素,使一個或多個 下行線路同步猝發脈衝串加負荷,也就是進行調變,而得 到改善。 本發明另外涉及一種按照此發明有關方法,使一個或多 個廣播頻道以分集方式發送信號的無線電通信系統。 本發明其他進一步的槪念在下面實施例中闡述。 本發明及其進一步的槪念在下面根據繪圖作詳細的解 圖式簡單說明: 第1圖:圖解說明在一個無線電通信系統的基地台與用 戶裝置之間空氣介面上信號傳輸時所謂的控制多框架結 構。特別是按照UMTS (通用行動式電信系統)的1.28Mcps 〜TDD模式 以進行本發明有關的方法。 546964 五、發明說明(3 ) 第2圖:圖解說明第1圖時槽結構的一種時槽時標準碎 發脈衝串的時間結構。 第3圖:圖解說明第1圖時槽結構所謂的下行線路引導 時槽中下行線路同步猝發脈衝串的時間結構。 第4圖:圖解說明第1圖時槽結構上行線路引導時槽中 所謂的上行線路同步猝發脈衝串的時間結構。 第5圖:圖解說明第1圖無線電通信系統基地台所謂的 程式塊空間時間發送分集(space Time Transmit Diversity) 方式的結構。此基地台把資訊/資料信號通過其無線電單元 以分集方式傳輸給用戶裝置。 第6圖:圖解說明相應基地台下行線路同步猝發脈衝串 7Γ /4 — QPSK(四相位移鍵)調變的各種不同相位以及所配置 的複合顯示器的基帶顯示。 第7圖:圖解說明四個連續下行線路同步猝發脈衝串的 相位順序對其7Γ /4 — QPSK (四相位移鍵)編碼,以便能通 知相應的用戶裝置該圖1之時間框架結構的時槽,該時槽 用來傳送各別廣播頻道之一些部份。 第8圖:圖解說明相應的基地台下行線路同步猝發脈衝 串四相位移鍵調變的各種不同相位和所配置的複合顯示器 的基帶顯示。 第9圖和第1 3圖:根據本發明有關的方法,標記相應 用戶裝置的相應基地台通過其無線電單元的分集方式操作 的四種不同方案。 546964 五、發明說明(4 ) 第1圖和1 3圖中具有同樣功能和作用方式的元件,配 備有同樣的基準標誌。 第1圖以圖解和簡單的說明,表示通過基地台BS1和 用戶裝置UE1之間的空氣介面FU,以及其單元結構的無 線電通信系統MCS的無線電單元,進行無線電傳輸時的時 間框架結構。在這期間,用戶裝置UE1代表許多用戶裝 置。這些用於裝置同時處於基地台BS1的相同的無線電單 元中。這些用戶裝置,在第1圖的結構實例中,無線電通 信系統MCS根據其單元的區分,除基地台BS1之外,具 有許多其他的基地台。這些基地台的無線電單元在很大程 度上完全可以符合所規定的供電範圍。這些其他的基地 台,在第1圖的實例中爲了淸楚之故同樣予以省略。 每個無線電單元相應的基地台,最好由至少一假無線電 發送器和至少一個無線電接收器構成,而且最好具有至少 一個發送天線,和/或接收天線,另外,或與其功能無關, 提供一至無線電通信系統CMS之用戶裝置之無線電連接, 則各別基地台可使資訊傳遞到可能存在的固定網路。 作用戶裝置最好是考慮採用行動式無線電話。特別是手 機或蜂巢式電話可作爲用戶裝置。通過至少一個空氣介面 進行通信聯繫所配置的無線電元件,例如:互聯網,終端 裝置,電腦,電視裝置,筆記本,傳真裝置等等。同時也 可以是無線電通信網路的部件。用戶裝置可以行動式地、 非常輕便地置於無線電網路中變換的地點,又可以在該處 546964 五、發明說明(5 ) 停頓不動,也就是說,配置得固定不動。 在單元式無線電通信系統MCS中,最好採用時分複合 多路傳輸法,通過在至少一個用戶裝置,例如UE1,特別 是行動式無線電裝置,與至少一個基地台,例如BS 1之間 的至少一個預定的空氣介面FU,傳輸無線電信號,例如資 訊資料信號。這一點在第1圖中以圖解闡明.,在該處,在 基地台BS1和用戶裝置UE1之間,另外標明時間框架結 構,也就是說,通過空氣介面FU,把時間劃分許多連續的 信號傳輸的時槽。無線電通信系統MCS最好是根據通用行 動式電信系統(UMTS)標準構成。在這種無線電通信系統方 面,根據通用行動式電信系統(UMTS)標準,特別是採用組 合式劃時多工和劃碼多工多路傳輸法,在至少一個無線電 通信系統的無線電單元中,傳輸在相應用戶裝置,特別是 行動式無線電裝置,和至少一個基地台之間至少一個空氣 介面的無線電信號。在這方面,在通過相應用戶裝置和相 應配置的基地台之間的空氣介面進行無線電傳輸時,(或者 相反時),把無線電信號的時間劃分成許多時段可預定且框 架結構可預定的時槽。同時在同樣的無線電單元中與該處 基地台進行通信的許多用戶,在適當地通過正交電碼,特 別是根據劃碼多工原則,聯合進行時間多路劃分時,鑒於 其資訊資料通信聯繫而彼此分離。使無線電通信系統特別 以所謂劃時雙工(TDD)方式操作,以劃時雙工方式,按照 上行線路和下行線路方向(相應的行動式無線售裝置上行線 546964 五、發明說明(6 ) 路信號傳輸給配置的基地台;相應配置的基地台下行線路 信號傳輸給行動式無線電裝置),通過相應分離的時槽分 配,憑籍時間多路方法,達到了分離的信號傳輸。在這方 面,只有按照相應用戶裝置和相應配置的基地台之間的上 行線路和下行線路方向,使用唯一的載波,進行信號傳 輸。 除了已經規定的3_84( Me ps)劃時雙工(TDD)方式和通用 行動式電信系統(UMTS)劃頻雙工(FDD)方式之外,劃時雙 工方式中1·28兆晶片(Meps)方案,將來對於通用行動式 電信系統標準的不斷發展,特別有利。通用行動式電信系 統的1_28 Meps劃時雙工方式主要涉及中國的行動式無線 電系統TD — SCDMA (時分同步劃碼多工 >。此系統如同 3.84 Meps — TDD方式一樣,把TDMA和CDMA技術結合 起來。在1·28 Meps — TDD方式中,上行線路和下行線路 的資料傳輸,在一個唯一的頻率上,經由時分多路進行, (上行線路:行動台(相當靈便的)的資料傳輸到棊地台 (=N ode B);下行線路:基地台的資料傳輸到行動台}。頻 道分離最好是通過正交電碼來進行。 1.28Mcps — TDD 對 UMTS 的 3_84Mcps— TDD 方式 的主要差異,特別在於:晶片頻率減小了三分之一,而框 架結構改變了。在1.28Mcps—TDD方式中,10個時槽綜 合成一個子框架,而2個子框架綜合成一個框架。第1圖 以圖解說明來表示所屬的相應時間框架結構。該處相應地 546964 五、發明說明(7 ) 24個TDMA(劃時多工)框架,如:FRi,FRi + 1…… FRi + 23,綜合成一個所謂的控制多框架,如:MF1〇每一 個TDMA時間框架劃分2個所謂的子時間框架。這樣, TDMA時間框架就區分兩個子框架SFi,SFi + 1。兩個子框 架SFi + 2,SFi + 3綜合成後續的時間框架FRi + 1。每個子 框架如:SFi由許多連續的時槽,如:TsO,DwPTS, GP,UpPTS,TsO和Ts6組成。至少有一個相應子框架時 槽,在這方面,被分派給所謂的下行線路引導頻道,傳輸 至少一個下行線路同步猝發脈衝串和信號。在UMTS的 1·28 Mcps — TDD方式中,時槽DWPTS用於下行線路弓I 導頻道DwPH1中。相應地,對於上行線路方向,至少有 一個上行線路引導頻道用的時槽UpPTS預先保留了,以便 傳輸上行線路同步猝發脈衝串。在下行線路引導時槽 DwPTS和上行線路弓|導時槽UpPTS之間,時槽GP看成 是所謂的防護期間,也就是說,無效時間。在這種無效時 間內,不按照上行線路和下行線路方向進行傳輸,以避免 相應地在同樣的子框中上行及下行線路同步猝發脈衝串的 兩個傳輸頻道相互干擾。 在相應的子框架內剩餘的時槽TsO,Tsl至Ts6中至少 有一個時槽,用於所謂的廣播頻道中,無線電單元中停留 的所有行動台上之無線電特定資訊由服務用之基地台傳送 至該廣播頻道中。在第1圖之時間框架結構方面,每個子 框架(如:SFI)的第一個時槽TsO保留用於廣播頻道BCH1 546964 五、發明說明(8 ) 中。每個框架最好具有一個時間長度,也就是說,持續時 間FP約1 〇毫秒;因此一個子框架約5毫秒長。 綜合地觀察起來,在每個子框架,如:SFi的時槽內, 把一個固定結構中的資料傳輸給了所謂的猝發脈衝串。在 這方面特別有三種類型帶有相應猝發脈衝串的時槽。 所謂的“標準猝發脈衝串”在每個子框架,如:SFi的 時槽TsO和Ts6中使用。在第2圖中,根據圖解,時間結 構就是標準猝發脈衝串,如:BU1的一種時槽,如·· Tsl 的時間區分。標準猝發脈衝串BU1具有爲傳輸無線電信號 而保留的4個時間段DAI,MA,DA2,GP1。第一個時間 段DA1預先用來傳輸有效資料或有效資訊,即,所謂資料 符號。之後,在第二個後續的時間段或時間塊MA中傳輸 所謂的Mid ambles。這就是相應的用戶裝置和/或相應的基 地台頻道評估和/或同步化的信號。根據這種頻道評估參 數,以有效的方式,在相應的用戶裝置,特別是在相應的 行動台和/或相應的基地台中進行頻道校正。跟隨此時間塊 MA之後的是繼續傳輸有效資料和有效信號的時間段 DA2。在含有該有效資料和有效信號的兩個時間塊DA1, DA1之間傳送頻道估計用之Midambles,則可在很大程度 上保證:能夠以時間平均値最佳地校正相應的無線電頻 道。最後,在第四個也就是最後一個猝發脈衝串BU1時間 段GP1期間,不進行信號傳輸,也就是說,這種所謂的防 護期間未予保持,以便使得在個別的時間上前後連貫傳輸 -10- 546964 五、發明說明(9) 的時槽 TsO,DwTPSl,DP,UpPTSl,Tsl 和 Ts6 之間, 有一個安全空隙或者無效時間。這樣,就特別在很大程度 上避免了干擾性的信號重疊,或者可能由於信號傳播時間 差異,例如在多路傳播時可能出現的連續間隙信號的干 優。按照這種方式,就在很大程度上保證了信號通過空氣 介面FU傳輸完好無缺。 總體看來,在相應的時槽期間,所謂的標準猝發脈衝串 (資料塊)可以進行無線電傳輸。此脈衝串在時間上包含符 號(晶片)區段,即,第一組有效資料,隨後連續的 Mid amb Us,第二組合有效資料,一防護期間。在UMTS 的1·28 Mcps — TDD方式中,標準脈衝串BU1具有總長度 864晶片。迨就在Te晶片持續時間781·25η秒方面,符合 總的持續時間675 //秒。猝發脈衝串BU1的每個資料塊 DA1或DA2,最好是由352個晶片組成。Mid ambles段 ΜΑ的長度144晶片。防護期間GP1長16個晶片。如果晶 片頻率已在1·28 Mcps — TDD中確定(符合Tc晶片持續時 間781.28奈秒),則標準猝發脈衝串BU1的長度是 675ns 〇標準時槽TsO至Ts6可以同時容納16個猝發脈衝 串,該脈衝串可以通過其擴展電碼進行區別。根據擴展因 素,每個猝發脈衝串可以傳輸不同數量的資料。 第3圖以圖解方式表示在相應的子框架,如:SFi,的 下行線路引導時槽DwPTS期間發送的下行線路同步猝發脈 衝串BU2的時間區分和結構。該脈衝串,在第一個時間段 -11- 546964 五、發明說明(1 〇) 期間,具有一個防護期間,也就是說,無效時間GP2。在 此無效時間後面,跟隨著一個作第二時間段的所謂同步塊 SYNC1。在UMTS的1.28Mcps— TDD方式中,選取了大 約同樣32晶片長的下行線路同步猝發脈衝串BU2的防護 期間。同步塊SYNC1最好選取長度64晶片。按照這種方 式,下行線路同步猝發脈衝串在1.28McpS— TDD方式中具 有總長度96晶片,這就符合96Tc持續時間75//秒;同時 Tc說明Tc晶片持續時間781.25η秒。在這方面,相應地 經常在同樣預先保留的下行線路引導時槽,如DwPCHl 中,傳輸相應的下行線路同步猝發脈衝串;也就是說,對 每個子框架時槽有一個預先選取的固定配置。 只有在一個唯一的、固定配置的上行線路引導時槽, 如:UpPTS中,相應地傳輸所謂的上行線路同步猝發脈衝 串。這種上行線路同步猝發脈衝串,在涉及其時間結構方 面,以圖解方式在第4圖中作了描繪。此脈衝串具有一個 同步塊SYNC2,在這個同步塊後面跟隨著一個防護期間 GP3,也就是說,其時間結構是與第3圖中下行線路同步 猝發脈衝串的時間段順序相反的。在UMTS的1.2 8 Mcps 一 TDD方式中,選取上行線路同步猝發脈衝串的同步塊 SYNC2,最好大致同樣是128晶片,而防護期間的時間長 度也同樣是32晶片。據此,按照有利方式,上行線路同步 猝發脈衝串BU3具有160Tc時間總長度125//秒。 在上行線路與下行線路同步猝發脈衝串之間,在相應子 -12- 546964 五、發明說明(11) 框架時槽的時間順序中,根據第1圖,時槽GP是一種額 外之防護期間,以·避免相互干擾。此額外的防護期間GP 的長度,在UMTS的1.28 Mcps方式中,最好同樣選取% 晶片。 對於三種UMTS方式FDD(劃頻雙工),3.84 Mcps — TDD(劃時雙工)和1.28Mcps—TDD,規定了不同的分集方 法。詳細情況在有關規定中有說明。3G TR 25.928 : UTRA TDD”實體層 1·28 Mcps 功能性,版本 1.1.0(2000 -07); 3GTS 25.221 : ”實際頻道和傳輸頻道對實際頻道的 映射(TDD)”Release 1999,版本 3·3·0(2000 — 06) ; 3G TS 25.224 : ”實體層過程(TDD) ”Release 1999,版本 3.3.0(2000 - 06) ; 3G TS 25.211 :,,實際頻道和傳輸頻道對 實際頻道的映射(FDD) ”Release 1999,版本 3·3·0(2000 -06) 〇 分集之意義是同樣信號之多種統計性獨立複本之傳送。 分集法特別應用於第三代行動式無線電系統,如:UMTS 中,以便減小對相應的行動式無線電頻道衰弱狀干擾性影 '響。這樣,基地台發送的信號,就可以在一個典型的行動 式無線電環境中,沿著下行線路方向,從一個地固定的基 地台到一個確定的用戶裝置,在其單元中,通過不同的渠 道,以不同的傳播時間和阻尼作用達到這個用戶裝置。所 接收到的信號由許多部件組成;同時其振幅,傳播時間和 相位都是偶發性的,個別的信號可能彼此建設性(信號增強 - 13- 546964 五、發明說明(12) 性)地或者破壞性(信號減弱性)地重疊。這一點會導致在相 應的用戶裝置方面接收場強度變化太大。這種效應特別發 生在行動式的用戶裝置沿著這種走過的路段時;信號減弱 的效應稱爲衰減(Fading)。 一般看來,分集的基本原理就是(信號)發送人給(信號) 接收人發送同樣信號多種統計獨立副本。這些信號經過不 同的傳播途徑,以各種不同的傳播時間和阻尼作用,而到 達接收人。然後,就在接收人處檢測相應最強的信號,以 這種方式減少了衰減作用,因爲這些信號同時以很大之衰 減被接收時之機率很小。最好盡可能不要相互關聯地選取 相應發送信號的副本以及其原本信號。這樣,就在很大程 度上保證了,不會同時在不同的傳播渠道中都爆發出受衰 減影響的信號。 對於UMTS的1.2 8Mcps — TDD方式,分集法作了很不 同的規定,當然最好只按照下行線路方向,而且這時最好 採用兩個發送天線。事實上對於實際廣播頻道P-CCPCH(基本共用擴展實際頻道),規定採用程式塊時空傳 輸分集法。第5圖中對這種方法作了圖解說明。基地台用 兩個發射天線SA1,SA2裝備。以分集方式通過天線SA1 傳輸相應的原本信號,而通過天線SA2發送由第一電線 SA1發射的天線信號編碼副本。憑籍一個程式塊時空傳輸 分集編碼器SC,以程式塊方式進行要傳輸的資料符號S], S2.......Sn/i,Sn/2,SN/2 + 1,……SN 的編碼。天線 SA1 的 -14- 546964 五、發明說明(13) 資料不用這種方法編碼。反之,N資料符號S1……SN的資 料庫憑籍程式塊時空傳輸分集編碼器SC進行符合共軛(在 第5圖中用符號表示),把這種資料塊分成兩半(S,…… 8%/2)和(8%/2 + 1,……S*N)並且把其次序進行更換,同 時’(S*N/2 + l ......S*N)部分還要配備一個負號。通過這個 程式塊時空傳輸分集編碼的編碼方案,則可產生各發送天 線SA1,SA2用之2個廣泛統計性獨立的資料序列。 在程式塊時空傳輸分集(STDD)編碼之後,廣播頻道用 之CDMA-碼,如,c(2),和單元特性的加密代碼來擴展 兩個天線分支中的資料塊。另外在第5圖的相應天線分支 中相應地規定一個加密器SCR1或SCR2。然後,把所擴展 的資料塊相應地憑籍一個所屬的多工器MU1或MU2在相 應的天線分支中多工到一個標準的猝發脈衝串上,並且通 過所屬的天線SA1或SA2傳輸。對於天線SA1,詳細地用 Midamble m⑴使資料塊多工,而對於天線SA2,則相應地 用Midamble m(2)使資料塊多工。對於相應的廣播頻道,除 了劃碼多工代碼c(1),c⑴之外,最好也永久保留兩個 Midamble m(1) » m(2)。Midamble m(2)僅僅使用於相應的基 地台的分集方式中。否則的話,Mid amble m(2)就派不了用 場。這兩個Midamble m⑴,m(2)在這方面是由一個特定單 元的“基本Midamble代碼產生的。在標準方式中,就是 說,各別基地台中若不存在分集發送操作,則第二個天線 分支中也就不進行程式塊時空傳輸分集編碼和後續的操作 -15- 546964 五、發明說明(14 ) 了。 相應的用戶裝置,特別是行動式無線電裝置,最好用僅 僅一種唯一的天線裝備來發送和接收資料。然後按照分集 方式把兩個接收到的,由相應的基地台以分集方式發射的 衰減信號,在相應的用戶裝置接收人處結合起來,相應地 選取兩個信號中最佳的信號。這種利用,會以一分集方式 傳輸相應的廣播頻道時,提高相應用戶裝置接收人的檢測 費用。 因相應的廣播頻道特別重要,別適當之方式是使無線電 單元中所存在之全部之用戶裝置都可最佳化地接收此頻 道。也就是通過廣播頻道傳輸一切與系統有重大關係的相 應無線電單元的資訊;例如:相應用戶裝置調節功率的資 訊。或者通過相應無線電單元中可支配的劃碼多工代碼。 所以基地台最好按照一定的,特別是定期的時間間隔來發 送相應的廣播頻道。然後,這個基地台的無線電單元內一 切用戶裝置,就在這個一定的發送時間點,特別是定期地 截聽這個廣播頻道。如果相應無線電單元中傳輸性質變壞 了,這個無線電單元中基地台就適當地以分集方式發送廣 播頻道。在正常情況中,基地台事先就把這點通過廣播頻 道本身向一切處於其無線電單元中的用戶裝置發送信號。 使得用戶裝置對此相應地有所準備,來檢測基地台的第二 個衰減信號。否則的話’用戶裝置就會通過第二個天線分 支的M i d a m b 1 e m(2}的經常性檢測,來進行分集方式所謂的 -16- 546964 五、發明說明(15) 盲目檢測。如果接收第二個Midambles m(2)的話,相應的 用戶裝置就會以分集方式接收信號。如果不是這樣情況的 話,相應用戶裝置在很壞或者最壞的情況中就完全不能接 收廣播頻道。第二個天線分支的Midambles m(2)這樣的經 常性檢測,那當然會在相應的用戶裝置之接收機中造成巨 大的偵測費用。 現在以分集方式檢測相應廣播頻道的方法的前提是相應 用戶裝置已經在一個無線電單元註冊登記了,以前有些情 況不予以考慮,就是說:用戶裝置第一次,譬如說,當一 個使用者把他的靈巧單元電話接通了,又想要通過轉換(從 一個相鄰的單元轉到瞬間停留的無線電單元)註冊到一個新 的單元,而該處主管的基地台已經按照分集方式發送了廣 播頻道。在這兩種情況中,對相應的用戶裝置有利的是, 就在註冊到新的無線電單元進行時得到一個相應以分集方 式發送信號的機會,並且與此相應地校準其接收器。否則 的話,用戶裝置就很壞的或最壞的情況而言,完全不會接 收這個廣播頻道。這樣一來,註冊到新的無線電單元就失 敗了。 因此,本發明的一項目的就在於,即使當無線電單元變 換時也能夠給相應的用戶裝置儘早地優化檢測相應廣播頻 道,甚至於當該處的新的無線電單元中,基地台已經以分 集方式在發送。這一點,在相應的基地台中,使標誌相應 基地台分集方式操作的一個或多個下行線路同步猝發脈衝 -17- 546964 五、發明說明(16) 串另外載入一個標誌因素,就有可能。根據這個·標誌因 素,至少有一個被相應用戶裝置接收的下行線路同步猝發 脈衝串,在其瞬間停留無線電單元中事先被發送信號給基 地台分集方式的這個用戶裝置,致使用戶裝置能夠立即相 應地將其接收操作轉換成分集方式。一般說來,通過至少 一個下行線路同步頻道的調變,使相應基地台的分集方式 能夠發送信號給所屬的無線電單元中的用戶裝置。這種類 型的分集方式發送信號的優點,特別在於通過在某情況下 及時發送信號,優化檢測廣播頻道,這些情況就是指在相 應的用戶裝置第一次或通過轉換註冊到一個新的無線電單 元時。 相應的基地台的分集方式發送信號,乃是以至少一個下 行線路同步頻道,如第1圖中的DwPCHl的調變作爲依據 的。根據這種方式,可向相應的用戶裝置告知:重要的廣 播頻道是否已經在瞬間停留之無線電單元中或由基地台以 分集方式發送。當相應的用戶裝置第一次進入一個新的無 線電單元或者通過轉換而轉達到一個新的無線電單元時, 這種註冊過程就會出現。當一個用戶裝置註冊進入一個新 的無線電單元這種過程進行時,這種用戶裝置就與主管的 基地台的時槽結構和框架結構同步。特別是通過檢測至少 一個下行線路同步猝發脈衝串,和/或至少一個新無線電單 元的廣播頻道,這種情況才會發生。按照1·28比Mcps — TDD標準,這種過程稱單元搜尋。在1.28 Mcps — TDD的 -18- 546964 五、發明說明(17) 時間框架結構之內,總是按照時槽TsO(參見第1圖)發送相 應之廣播頻道,和總是如SFi的第二時槽的DwPTS發送下 行線路同步頻道。把用冗/4 一 QPSK(四相位移鍵)調變的之 長64晶片的下行線路同步代碼CDL,synch傳輸到這個下 行線路同步頻道。在1.28 Me ps— TDD無線電系統中,確 定了總共最好是32個不同的下行線路同步代碼;用此代碼 可以彼此區分各個無線電單元。相應的基地台在其無線電 單元中,當時槽DwPCHI時,各別之基地台在其無線電單 元中發送其相應的同步代碼(其是同步猝發脈衝串之形 式),使相應的用戶裝置在無線電單元中能夠與該處的基地 台在時間上同步。另外,調變同步猝發脈衝串,給相應的 用戶裝置,在控制多框架,如MF1之內部中,發送廣播頻 道P— CCPC Η (原公共控制實際頻道)位置的信號。 在7Γ /4-QPSK調變方面,調變之意義是根據所傳輸的資 料,來改變高頻載波信號。此處2個資料位元綜合成一個 唯一的資料符號,在ττ/4-QPSK方面,用45°,135°, 225°或315°調變載波信號的相位,也就是說,;r/4-QPSK 是一種移位45°型式的QPSK。對於這種在基本頻帶中移 位元的相位ΡΗ,根據第6圖,按照數學上有效的方式,用 實部和/或虛部來配置複合指標。詳細情況,就是複合指標 1+j分配給45°,複合指標-1+j分配給相位ΡΗ— 135。,複 合指標KZ— 1一 j分配給相位225。,以及複合指標KZ 1 — j分配給相位315°。 -19- 546964 五、發明說明(18) 各別之子框架(如SFi>的下行線路引導時槽是用於下行 引導頻道(如DwPTS)之傳送中。在這種下行線路同步頻道 中,傳輸用7Γ Μ-QPSK調變的下行線路同步代碼cD(_, synch°在1·28 Mcps-TDD系統中,最好確定了總共32 個不同的下行線路同步代碼,據以區分無線電通信系統的 各個無線電單元。相應的基地台,在其無線電單元中,在 下行線路引導頻道,如DwPC Hi中發送其同步代碼。因 此,一個行動台,在這個基地台的無線電單元中,可以在 涉及這個基地台的定時脈衝方面同步;也就是說,配合基 地台所規定的空氣傳輸介面的時間框架順序和時槽結構。 另外,使相應的同步代碼進行7Γ /4_QPSK調變,在時間框 架結構之內,特別是在相應的控制多框架,如MF1之內, 給相應的基地台無線電單元內相應的用戶裝置,發送廣播 頻道,如BCH1的定時位置的信號。 多框架是時間框架的組織結構,據此結構進行確定:發 送之實際頻道的時間間隔多大,處於何種框架,和/或頻率 多大。例如就 Primary Common Control Pysical Channel P-CCPCH 而言,在 1·2 8 Mcps— TDD 模式中定 義了帶24 TDMA框架的一種所謂控制多框架(TDMA =劃 時多工);在相應24個連續的TDMA框架內,按照下行線 路方向,發送一定數量的帶有相應規定的交叉周期,此處 約2 0 m秒的P — C C P C Η。這種2 0 m秒的交叉周期,在此 1·28 Mcps— TDD方式中,最佳符合2框架或4子框架的 -20- 546964 五、發明說明(19) 持續時間。交叉周期表明在Ρ-CCPCH中傳輸的資料的時 間擴展。這種時間擴展的原因在於,一個個別猝發脈衝串 的電容不足以傳播在一個唯一子框架內的一切廣播資訊。 在這方面,把傳送面上的廣播頻道配置給實際面上的原 公共控制實際頻道P—CCHPCH。 由於各別無線電單元之經由廣播頻道而與系統相關的資 訊,例如,效率調整用之資訊;或者藉由可支配的CDMA 代碼,從相應的基地台傳輸到此無線電單元中的行台,値 得追求的是:處於一個無線電單元中的一切用戶裝置,特 別是行動台能夠在很大程度上完好無缺地接收這個廣播頻 道。因此主管各無線電單元的基地台以週期之間隔使該控 制多框架發送至此廣播頻道。爲了接收此廣播資訊,則此 無線電單元中所有之用戶裝置隨時須(特別是定期地)截聽 此廣播頻道。爲了可偵測各存在的用戶裝置之廣播資訊(其 發送至其無線電單元中之基地台),則最好是向相應的用戶 裝置提供有關資訊,何時何地和相隔多久在一個控制多框 架內從主管的基地台發送廣播頻道。由於交叉周期,也就 是說,由於對相應廣播頻道配置的實際引導公共控制實際 頻道P—CCPCH(此處大約20m秒)的時間擴展,在至少4 個連續子框架,如SFi,SFi + 1 ’ SFi + 2,SFi + 3中(參見第 1圖),對下行線路同步猝發脈衝串調變QPSK,因而給這 4個子框架分配一個特定的相位序列,以便在多框架中對 廣播頻道的時間位置編碼。然後相應的用戶裝置,可以通 -21 - 546964 五、發明說明(2〇) 過當至少4個連續子框架,下行線路引導時槽DwPTS 時,在用戶裝置方面輸入的下行線路同步猝發脈衝串 QPSK解調,進行一個或多個時間連續的廣播頻道對時間 連續性時槽結構框架和/或子框架的時間位置配置。由於廣 播頻道以及通信引導公共控制實際頻道的交叉周期,利用 一連串至少4個相位,對於相應的用戶裝置進行時間位置 確定,也就是說,在多框架時間框架結構內進行及時截聽 廣播頻道資訊,是適當的。這可通過至少4個連續性下行 線路引導頻道的下行線路同步猝發脈衝串的解調來達成。 子框架之持續時是插入週期20毫秒之%。 第7圖以圖解方式顯示4個連續性下行線路同步猝發脈 衝串的相位序列。4個單相値的相應相位序列,相應地用 PS表示。根據數學關係(SFN/2)mod (模)8,相應明確地給 相應的相位序列配置框架號數,其間SFN標明相應的框架 號數。8個不同相位序列的每一個序列,就此明確地與一 個框架號數SFN進行通信聯繋。第9圖的表格,相應地用 一個相位45°表示一個交叉周期的開始。在多框架內,給 框架編寫號數從〇到23。多框架內的實際位置用計數器 ZSFN (系統框架號數計數器)表示。例如用相位序列45°, 22 50,22 5°,22 5°發送信號,發送框架0,1,16和17中 的廣播頻道。在這些情況中(SFN/2)mod (模)8 = 0。相應地 給相位序列45°,225。,225°,31 5°發送信號,發送框架 14和15中的廣播頻道。在這些情況中(SFN/2) mod (模} 8 -22- 546964 五、發明說明(21) =7。如果用戶裝置不能檢測第9圖表格中確定的相位序 列’就適當地重復廣播頻道位置確定到下一個時間點的過 程,也就是說,檢測下一個下行線路同步猝發脈衝串,因 而也同時在相應的用戶裝置方面確定了第1圖的時槽結 構。 在規格說明書3G TR 25.928 : UTRA TDD實際層的 1_28功能,版本1.1_〇(2000 - 07)中,詳述了無線電單元 搜尋之過程。在第一步驟中用戶裝置檢測下行線路同步代 碼CDL,synch。結果,用戶裝置,在時槽平面上在其環境 中,同步到最強的基地台。在這方面,用戶裝置現在也知 道’在無線電單元中使用哪些同步代碼。第二步,用戶裝 置試圖在事先規定的時槽TsO中讀出廣播頻道。由於廣播 頻道之插入週期是20毫秒,則用戶裝置在時槽TsO中檢 測至少4個連續子框架中的廣播資料,以便能夠接收全部 系統資訊。在這方面,用戶裝置同時試圖通過至少4個連 續的DwPCH的下行線路同步代碼的解調來確定在控制多 框架之內接收的廣播頻道的時間位置。如果一切步驟都成 功,則此用戶裝置的單元搜尋亦已成功,且此用戶裝置亦 已裝入無線電單元中。否則就重復無線電單元搜尋過程。 在主管之基地台可能進行分集操作時,爲了在無線電 單元中通知相應的用戶裝置,此種分集模式,則須另外給 一個或多個下行線路同步猝發脈衝串,附加一個標誌因素 B,以便標誌基地台的這個分集方式操作,特別是用一個 -23- 546964 五、發明說明(22) 標誌因素B予以調變。換句話說,就是已經7Γ Μ-QPSK調 變的下行線路同步代碼,另外用一個因素B予以調變。用 這個標誌因素B發送信號,不論廣播頻道以分集方式(應用 程式塊STDD編碼)被相應的基地台發送與否,如果廣播頻 道P— CCPCH以分集方式發送,則有利於選取標誌因素 B = ;如果廣播頻道P = CCPCH以標準方式發送,則有利 於選取標誌因素B = 1。標誌因素B符號,不以相應廣播頻 道的標準方式,而是以分集方式選取的。因此,相應基地 台的廣播頻道不僅可以按照分集方式,而且可以按照標準 方式,相應地用相同的功率發射。 根據第9,10和13圖的表格,下面不同的方案對於相 應廣播頻道分集方式發送信號是很適當的。在這方面,每 個表格的左欄中,相應地用數學公式(SFN/2)mod8,明確 地對一連串框架號數作了編碼。根據第7圖表格,給這些 框架代碼號數〇至7明確地配置了框架號數SFN序列。這 些框架號數序列相應地表明那種廣播資訊按照時間分配予 以發送所經過的哪些框架。給代碼號數〇和7相應地以複 合書寫方式配置一個4相位序列,據以相應地調變4個連 續子框架 SFi,SFi + 1,SFi + 2,SFi + 3 ττ Μ-QPSK 或 QPSK的下行線路同步猝發脈衝串。根據第9圖,表格詳 細地表明4個連續DwPCH的ττ /4_QPSK調變的下行線路 同步猝發脈衝串CDL,synch,以便在第24個控制多框架 中發送廣播頻道位置的信號。相位調變就是根據第6圖的 -24- 546964 五、發明說明(23 ) 表格,把下行線路同步代碼CDl_,synch與相應的複合指 標相乘。交叉周期的開始,相應地用相位45。和複合指標 (1+j)來表示。譬如用相位序列45。,225°,225。,225°(符 合序列(1+】)〇[^,$711(^,—(1+】)01:^,57〇(:11,— (1+j)CDL,synch,-(1+j}CDL,synch)來發送信號:在框 架0’ 1,16,17中發送廣播頻道。以標準方式,把調變 的下行線路同步猝發脈衝串序列,根據第9圖表格,傳輸 到DwPCH。反之,以分集方式,把調變的下行線路同步猝 發脈衝串序列,另外再用因素B = -1調變,也就是說,在 這種情況中,把第9圖表格中所調變的下行線路同步猝發 脈衝串序列,以倒置的方式(改變符號),傳輸到Dw PC Η。 標誌因素相反的配置,加上數値+ 1和一 1,就完全恰當地 成標準方式和分集方式。 必要時,也可以不用ττ/4-QPSK,而用標準QPSK來調 變下行線路同步猝發脈衝串或代碼。這一點,第10圖與 13圖的圖表作了圖解說明。那時應用兀/4— QPSK來調變 標準猝發脈衝串資料塊中的資料。對此,相應地把2個資 料位元綜合成一個資料符號。這些然後用相位0。,90。, 18 0°或2 70°來調變載波信號。第4圖的圖表對此作了相 應的基本頻帶描述。給相位ΡΗ 0。,90。,1 80。以及270。 配置了複合指標ΚΖ 1,j,— 1以及一 j。如果在下行線路 同步猝發脈衝串的標準化方面使用QPSK調變,不是如同 以前那樣使用7Γ /4-QPSK的話,下面的4個方案就特別重 -25- 546964 五、發明說明(24 ) 要。 方案2 : 第10圖的圖表提供了 4個連續DwCPH的下行線路同 步猝發脈衝串CDL,synch的QPSK調變,以便發送第24 個控制多框架中廣播頻道位置的信號。QPSK調變就是根 據第8圖的圖表把下行線路同步代碼cDl_,synch與相應 的複合指標相乘。交叉周期的開始,相應地用相位0。或因 素1表示。譬如給相位序列0°,180。,180。,18 0。(符號序 歹[]CDL,synch,一 CDL,synch,一 CDL,synch,一 CDL,synch)發送信號,在框架0,1,16和17中發送廣 播頻道。以標準方式,把第10圖圖表調變的下行線路同步 猝發脈衝串序列傳輸到DwPCH。以分集方式,把調變的下 行線路同步猝發脈衝串序列,按倒置形式,也就是說,用 反相符號,傳輸到DwPCH。一般說來,第10圖圖表的相 位序列,相對於第9圖圖表的相位序列,轉換了一 45°。 方案3 : 第11圖的圖表提供了 4個連續DwPCH的下行線路同 步代碼CDL,synch的QPSK調變。其間,交叉周期的開 始,用相位90°以及用因素j來表示。譬如用相位序列 90°,270°,270°,270°(符合複合指標序列j , synch,-j CDL,synch, 一 j CDL,synch,-j CDL,synch) 發送信號,在框架1,16和17中發送廣播頻道。根據11 圖的圖表,以標準方式,把調變的下行線路同步碎發脈衝 -26- 546964 五、發明說明(25) 串序列傳輸到DwPCH。以分集方式,把調變的下行線路同 步代碼序列,按倒置方式,也就是說,用反相符號傳輸到 DwPCH。在這方面,第11圖的圖表根據第9圖的圖表說 明,該處相位序列轉換了 + 45°。 方案4 : 第12圖的圖表提供了 4個連續DwPCH的下行線路同 步代碼CDL,synch的QPSK調變。其間,交叉周期的開 始,用相位1 800以及用因素-1來表示。譬如用相位序列 180。,0。,0。,0。(符號序歹[J-Cdl,synch,CDL,synch, CDL,synch,CDl_,synch)發送信號,在框架 〇,1,16 和17中發送廣播頻道。根據圖表7,以標準方式把調變的 下行線路同步代碼序列傳輸到DwPCH。以分集方式把調變 的下行線路同步代碼序列,按倒置方式傳輸到DwPCH。相 位序列符合第1 2圖的圖表,與第9圖的相位序列相對而 言,則轉換了 + 135°。 方案5 : 第13圖的圖表提供了 4個連續DwPCH下行線路同步 代碼,synch的QPSK調變;其間,交叉周期的開始, 用相位270°和因素—j表示。譬如用相位序列270°,90°, 90° ,90° (符合序列—j CDL,synch,+ j CDL ^ synch ^ + j CDL,synch,+ j CDL,synch)發送信號,在框架 0,1, 16和17中發送廣播頻道。以標準方式把圖表7中調變的 下行線路同步代碼序列傳輸到DwPCH。以分集方式把調變 -27- 546964 五、發明說明(26) 的下行線路同步代碼序列,按倒置形式,傳輸到DwPCH。 據此,第13圖的圖表相位序列,相對於第9圖圖表的相位 序列,轉換了 — 135°。 一個根據第1方案的有效實例,就可以完全按照下面方 式執行: 根據第1圖的框架結構,傳輸時槽TsO中的廣播頻道 P-CCPCH和DwPTS時槽中的下行線路同步頻道 DwPCHl。在同步頻道中傳輸ττ/4-QPSK調變的下行線路 同步代碼。另外,在無線電單元中確定一個第24的控制多 框架。此控制多框架,相應地在框架〇,1,1 6和1 7中, 按照下行線路方向發送廣播頻道。因此,基地台,就會以 標準方式,在控制多框架中,把下行線路同步代碼序列 (1+j)CDL,synch,—(1+j)CDL,synch,-(1+j}CDL, synch, 一 (1+j)cDL, synch 傳輸到 DwPCH,以便表示多 框架中廣播頻道的位置。交叉周期的開始,用相位45。和 因素(1+j)表示。多框架中基地台,會以分集方式,把倒置 的下行線路同步代碼序列(1+j)CDL,synch,—, synch,—(l+j)cDL,synch,—(1+j)CDL,synch 傳輸到 DwCPHI ’以便表示多框架中廣播頻道的時間位置。在這 種情況中,交叉周期的開始,用相位225。和因素_(1+j)表 示。 這時’相應無線電單元的一切用戶裝置就截聽下行線路 同步頻道。如果在無線電單元搜查中已調變的下行線路同 -28- 546964 五、發明說明(27) 步代碼由相應的用戶裝置所偵測到,則用戶裝置就同時知 道··廣播頻道所用之分集模式是否存在。若存在,則廣播 頻道可在時槽TsO中受到最佳偵測,而且用戶裝置也會成 功地裝到新的無線電單元中。 類似按照第1方案的這種有效實例’也可以在方案2和方 案5中實施。 -29-546964 V. Description of the invention (1) The present invention relates to a method for transmitting signals in a broadcast channel diversity mode. This broadcast channel is transmitted from at least one base station to at least one radio communication system user device through at least one air interface 'in a number of consecutive time slots. In a unit-constructed radio communication system, such as the GSM (= Global System for Mobile Communications) or UMTS (Universal Mobile Telecommunications System) standard, 'to the corresponding user device, especially the radio mobile device, stays in its transient state. In the radio unit, based on the relevant base station of the place, through the air interface of at least one so-called broadcast channel, it relays information that has a significant relationship with the system. This type of information that is of major relevance to the system may be information about the power regulation of the corresponding user device, or information about the coded multiplexing (CDMA) codes available in the user equipment's transient parked radio unit. Generally speaking, this broadcast channel is used to relay so-called unit-specific information from a base station to all user devices that are left in its radio unit. Only based on such unit-specific information can intact radio communication be established between the corresponding user equipment and the relevant base station. Therefore, at least sometimes all user devices in the corresponding radio unit intercept at least one broadcast channel of the relevant base station there. The basic object of the present invention is to disclose a method how a corresponding user device can receive broadcast channel information in its transient stay radio unit in a simple and reliable manner. This purpose can be solved in the foregoing manner, so that one or more downlink synchronization bursts operating in diversity mode in the corresponding base station additionally add a flag factor; and according to this 546964 V. Description of Invention (2) Flag Factor At least one of the diversity downlink downlink bursts of the base station received by the corresponding user equipment is transmitted to the user equipment. Send a signal to the corresponding user device in a timely manner, when the correspondingly configured base station stays in the user device's radio unit, and transmits one or more broadcast channels in a diversity manner instead of in a standard manner, the corresponding user device can perform the most diversity Best to detect this broadcast channel. This is particularly important when the corresponding user device records information for the first time or by handing over a new radio unit. This detection of the broadcast channel in diversity mode, through the use of another marking factor marking the diversity mode of the corresponding base station, causes one or more downlink synchronization burst bursts to be loaded, that is, modulated, and improved. The invention further relates to a radio communication system according to the method according to the invention for causing one or more broadcast channels to transmit signals in a diversity manner. Further ideas of the invention are explained in the following examples. The present invention and its further concepts are briefly explained in detail with reference to the drawings below: Figure 1: Illustrates the so-called control of signal transmission on the air interface between a base station and a user device of a radio communication system Framework. Especially in accordance with UMTS (Universal Mobile Telecommunications System) 1. 28Mcps ~ TDD mode to perform the method related to the present invention. 546964 V. Description of the invention (3) Figure 2: Illustrates the time structure of a standard burst pulse train in the time slot of the first slot. Fig. 3: Illustrates the time structure of the so-called downlink pilot time slot structure in Fig. 1 for the downlink synchronous burst in the time slot. Fig. 4 illustrates the time structure of the so-called uplink synchronization burst burst in the time slot structure of Fig. 1 when the uplink is guided. Fig. 5 illustrates the structure of the so-called space time transmit diversity method of the base station of the radio communication system of Fig. 1. This base station transmits the information / data signal to the user device in a diversity manner through its radio unit. Figure 6: Illustrates the synchronous bursts of the downlink of the corresponding base station. 7Γ / 4 — QPSK (quad-phase shift key) modulation of various phases and the baseband display of the configured composite display. Figure 7: Illustrates the phase sequence of four consecutive downlink synchronous bursts to encode their 7Γ / 4 — QPSK (quad-phase shift key) to inform the corresponding user device of the time slot of the time frame structure of Figure 1 This slot is used to transmit parts of the respective broadcast channels. Figure 8: Illustrates the base station display of the various base stations of the synchronous burst bursts on the downlink of the corresponding base station and the four-phase shift key modulation. Figures 9 and 13: According to the method of the present invention, four different schemes for marking the respective base stations of the respective user devices to operate by the diversity of their radio units are marked. 546964 V. Description of the invention (4) Components with the same function and mode of action in Figures 1 and 13 are equipped with the same reference marks. Fig. 1 is a diagrammatic and simple explanation showing the time frame structure for radio transmission through the air interface FU between the base station BS1 and the user equipment UE1 and the radio unit of the radio communication system MCS of its unit structure. During this period, the user equipment UE1 represents many user equipment. These devices are located in the same radio unit of the base station BS1 at the same time. In these user devices, in the configuration example of Fig. 1, the radio communication system MCS has many other base stations in addition to the base station BS1 according to the division of its units. The radio units of these base stations can to a large extent comply with the specified power supply range. These other base stations are similarly omitted in the example in FIG. 1 for the sake of clarity. The corresponding base station of each radio unit is preferably composed of at least one fake radio transmitter and at least one radio receiver, and preferably has at least one transmitting antenna and / or receiving antenna, and additionally, or has nothing to do with its function, provides one to With the radio connection of the user equipment of the radio communication system CMS, the respective base stations can transmit information to the fixed network which may exist. As a user device, a mobile radiotelephone is preferably considered. Especially mobile phones or cellular phones can be used as user devices. The radio components configured for communication through at least one air interface, such as: Internet, terminal device, computer, television device, notebook, facsimile device, etc. It can also be part of a radio communication network. The user device can be mobilely and very lightly placed in a place to be changed in the radio network, and it can be located there. 546964 V. Description of the invention (5) Stand still, that is, the configuration is fixed. In the unitary radio communication system MCS, it is preferable to use a time division composite multiplexing method by passing at least between at least one user device, such as UE1, especially a mobile radio device, and at least one base station, such as BS 1. A predetermined air interface FU transmits radio signals, such as information signals. This is illustrated graphically in Figure 1. At this point, between the base station BS1 and the user device UE1, the time frame structure is additionally indicated, that is, the time is divided into a plurality of continuous signal transmission time slots through the air interface FU. The radio communication system MCS is preferably constructed in accordance with the Universal Mobile Telecommunications System (UMTS) standard. In this radio communication system, according to the Universal Mobile Telecommunications System (UMTS) standard, in particular, the combined time division multiplexing and code division multiplexing multiple transmission methods are used, in at least one radio unit of a radio communication system, transmission Radio signals of at least one air interface between the respective user device, in particular a mobile radio device, and at least one base station. In this regard, when radio transmission is performed through the air interface between the corresponding user device and the correspondingly configured base station, (or vice versa), the time of the radio signal is divided into a number of time slots that can be scheduled and the frame structure can be scheduled. . Many users who are communicating with the base station in the same radio unit at the same time, when using the orthogonal code, especially in accordance with the code multiplexing principle, to perform time multiplexing jointly, due to their information and communication links, Separated from each other. Make the radio communication system operate especially in the so-called time-division duplex (TDD) mode, in the time-division duplex mode, in accordance with the direction of the uplink and downlink (corresponding mobile wireless sales device uplink 546964) The signal is transmitted to the configured base station; the downlink signal of the correspondingly configured base station is transmitted to the mobile radio device), and the separate signal transmission is achieved through the corresponding time slot allocation and the time multiplexing method. In this regard, only the uplink and downlink directions between the corresponding user equipment and the correspondingly configured base station use a unique carrier for signal transmission. In addition to the 3_84 (Me ps) time division duplex (TDD) method and the Universal Mobile Telecommunications System (UMTS) frequency division duplex (FDD) method, the 1.28 megachip (Meps) ) Scheme, especially for the continuous development of universal mobile telecommunication system standards in the future, is particularly beneficial. The 1_28 Meps time-division duplex mode of the universal mobile telecommunications system mainly involves China's mobile radio system TD-SCDMA (Time Division Synchronized Code Multiplexing >. This system is like 3. 84 Meps — Same as TDD, combining TDMA and CDMA technology. In the 1.28 Meps — TDD method, the data transmission of the uplink and downlink is performed on a unique frequency via time division multiplexing. (Uplink: data from mobile stations (very flexible) is transmitted to the ground. (= N ode B); downlink: data transmission from base station to mobile station}. Channel separation is best done by orthogonal code. 1. 28Mcps — TDD vs. UMTS 3_84Mcps — The main difference between TDD methods is that the chip frequency is reduced by one-third and the frame structure is changed. at 1. In 28Mcps-TDD mode, 10 time slots are integrated into a sub-frame, and 2 sub-frames are integrated into a frame. Fig. 1 illustrates the corresponding time frame structure by illustration. Correspondingly, 546964 V. Description of the invention (7) 24 TDMA (time division multiplexing) frameworks, such as FRI, FRI + 1 ... FRi + 23, are integrated into a so-called multi-control framework, such as: MF1〇 each A TDMA time frame is divided into two so-called sub-time frames. In this way, the TDMA time frame distinguishes the two sub-frames SFi, SFi + 1. The two sub-frames SFi + 2 and SFi + 3 are integrated into the subsequent time frame FRI + 1. Each sub-frame such as: SFi is composed of many consecutive time slots, such as: TsO, DwPTS, GP, UpPTS, TsO and Ts6. There is at least one corresponding subframe time slot, in this regard, assigned to a so-called downlink pilot channel, which transmits at least one downlink sync burst and signal. In the UMTS 1.28 Mcps-TDD method, the time slot DWPTS is used in the downlink bow I channel DwPH1. Correspondingly, for the uplink direction, at least one time slot UpPTS for the uplink pilot channel is reserved in advance to transmit uplink burst bursts. Between the down-link guidance time slot DwPTS and the up-link bow | time slot UpPTS, the time slot GP is regarded as a so-called protection period, that is, an invalid time. During such invalid time, transmission is not performed in the uplink and downlink directions to avoid corresponding interference between the two transmission channels of the uplink and downlink synchronous bursts in the same sub-frame. At least one of the remaining time slots TsO, Tsl to Ts6 in the corresponding sub-frame is used in the so-called broadcast channel. The radio-specific information on all mobile stations staying in the radio unit is transmitted by the serving base station. To the broadcast channel. In terms of the structure of the time frame in Figure 1, the first time slot TsO of each sub-frame (such as: SFI) is reserved for the broadcast channel BCH1 546964 V. Invention description (8). Each frame preferably has a time length, that is, the duration FP is about 10 milliseconds; therefore, a sub-frame is about 5 milliseconds long. Taken together, in each sub-frame, such as the time slot of SFi, the data in a fixed structure is transmitted to the so-called burst burst. There are in particular three types of time slots with corresponding bursts in this respect. The so-called "standard burst" is used in each sub-frame, such as the time slots TsO and Ts6 of SFi. In Figure 2, according to the diagram, the time structure is a standard burst, such as a time slot of BU1, such as the time division of Tsl. The standard burst BU1 has 4 time periods DAI, MA, DA2, GP1 reserved for transmitting radio signals. The first time period DA1 is used in advance to transmit valid data or valid information, so-called data symbols. Afterwards, so-called Mid ambles are transmitted in the second subsequent time period or time block MA. This is the corresponding user equipment and / or corresponding base station channel evaluation and / or synchronization signal. Based on such channel evaluation parameters, channel correction is performed in an effective manner in the corresponding user device, particularly in the corresponding mobile station and / or the corresponding base station. Following this time block MA is a time period DA2 during which valid data and valid signals continue to be transmitted. Transmission of Midambles for channel estimation between the two time blocks DA1, DA1 containing the valid data and valid signals can largely guarantee that the corresponding radio channels can be optimally corrected with time averages. Finally, no signal transmission is performed during the fourth and last burst burst BU1 period GP1, that is, this so-called guard period is not maintained in order to make consecutive transmissions at individual times -10 -546964 V. The time slot TsO, DwTPSl, DP, UpPTSl, Tsl and Ts6 of the description of the invention (9), there is a safety gap or invalid time. In this way, interfering signal overlaps are avoided to a large extent, or due to signal propagation time differences, such as the interference of continuous gap signals that may occur during multipath propagation. In this way, the signal transmission through the air interface FU is largely intact. Overall, so-called standard bursts (data blocks) can be radio transmitted during the corresponding time slot. This burst contains the symbol (chip) segment in time, that is, the first set of valid data, followed by successive Mid amb Us, the second set of valid data, a guard period. In the UMTS 1.28 Mcps-TDD method, the standard pulse train BU1 has a total length of 864 chips.迨 As far as the duration of the Te wafer is 781 · 25η seconds, it corresponds to the total duration of 675 // seconds. Each data block DA1 or DA2 of the burst BU1 is preferably composed of 352 chips. The mid ambles segment is 144 chips long. GP1 is 16 chips long during the protection period. If the wafer frequency has been determined in 1.28 Mcps-TDD (in accordance with Tc wafer duration 781. 28 nanoseconds), the length of the standard burst BU1 is 675ns. The standard time slot TsO to Ts6 can accommodate 16 bursts at the same time, and the bursts can be distinguished by their extended codes. Depending on the expansion factor, each burst can transmit a different amount of data. Fig. 3 illustrates the time division and structure of the downlink synchronization burst burst BU2 transmitted during the downlink pilot time slot DwPTS of the corresponding sub-frame, such as SFi. This pulse train has a guard period during the first period -11- 546964 V. Invention description (10), that is, the invalid time GP2. After this inactive time, a so-called sync block SYNC1 for the second time period is followed. In UMTS 1. In the 28Mcps-TDD method, the protection period of the downlink burst burst BU2, which is about 32 chips long, is selected. The synchronization block SYNC1 is preferably selected with a length of 64 chips. In this way, the downlink sync burst is at 1. 28McpS—The TDD method has a total length of 96 chips, which corresponds to a duration of 96Tc of 75 // s; meanwhile, Tc indicates that the duration of the Tc chip is 781. 25n seconds. In this respect, the corresponding downlink synchronization bursts are often transmitted in the same pre-reserved downlink time slot, such as DwPCH1; that is, there is a pre-selected fixed configuration for each sub-frame time slot. Only in a unique, fixedly configured uplink time slot, such as UpPTS, the so-called uplink synchronization bursts are transmitted accordingly. This uplink synchronous burst is depicted graphically in Figure 4 with respect to its time structure. This burst has a sync block SYNC2, followed by a guard period GP3, that is, its time structure is in the reverse order of the time periods of the downlink burst bursts in Figure 3. In UMTS 1. In the 2 8 Mcps-TDD method, the synchronization block SYNC2 of the uplink burst burst is selected, preferably about 128 chips, and the length of the protection period is also 32 chips. Accordingly, in an advantageous manner, the uplink synchronization burst BU3 has a total time length of 160 Tc of 125 // sec. Between the uplink and downlink synchronization bursts, in the corresponding sub-12-546964 V. Description of the invention (11) The time sequence of the frame time slot, according to Figure 1, the time slot GP is an additional protection period, To avoid mutual interference. The length of the GP during this additional protection is 1. In the 28 Mcps method, it is better to select% chips as well. For the three UMTS modes FDD (Frequency Division Duplex), 3. 84 Mcps — TDD (Time Division Duplex) and 1. 28Mcps-TDD, stipulates different diversity methods. Details are explained in the relevant regulations. 3G TR 25. 928: UTRA TDD "physical layer 1.28 Mcps functionality, version 1. 1. 0 (2000 -07); 3GTS 25. 221: "Actual Channel and Transmission Channel to Actual Channel Mapping (TDD)" Release 1999, version 3.3.0 (2000 — 06); 3G TS 25. 224: "Entity Layer Process (TDD)" Release 1999, version 3. 3. 0 (2000-06); 3G TS 25. 211: ,, the actual channel and transmission channel to actual channel mapping (FDD) "Release 1999, version 3.3.0 (2000-06). The meaning of diversity is the transmission of multiple statistically independent copies of the same signal. Diversity method It is especially applied to the third generation mobile radio system, such as UMTS, in order to reduce the impact of the weak mobile radio channel's weak interference. In this way, the signal sent by the base station can be used in a typical mobile radio. In the radio environment, along the downlink direction, from a fixed base station to a certain user device, in its unit, the user device is reached through different channels with different propagation times and damping effects. Received The signal is composed of many parts; at the same time, its amplitude, propagation time and phase are sporadic, and individual signals may be constructive (signal enhancement-13- 546964 V. Invention description (12)) or destructive (signal (Attenuating) overlap. This can cause the receiving field strength to change too much for the corresponding user device. This effect especially occurs when When a mobile user device moves along such a path, the effect of signal attenuation is called Fading. Generally speaking, the basic principle of diversity is that (signal) sender sends (signal) receiver to the same signal. Statistical independent copies. These signals pass through different propagation paths, with different propagation times and damping effects, and reach the receiver. Then, the corresponding strongest signal is detected at the receiver, in this way the attenuation effect is reduced, because When these signals are received at the same time with a large attenuation, the probability is small. It is best not to select a copy of the corresponding transmitted signal and its original signal as closely as possible. In this way, it is largely guaranteed that it will not Signals affected by attenuation erupt in different propagation channels. For UMTS 1. 2 8Mcps — The TDD method, the diversity method makes very different regulations. Of course, it is best to only follow the downlink direction, and it is better to use two transmitting antennas. In fact, for the actual broadcast channel P-CCPCH (basic shared extended actual channel), the program block space-time transmission diversity method is required. Figure 5 illustrates this method. The base station is equipped with two transmitting antennas SA1, SA2. The corresponding original signal is transmitted through the antenna SA1 in a diversity manner, and a coded copy of the antenna signal transmitted by the first wire SA1 is transmitted through the antenna SA2. Based on the space-time transmission of a program block, the diversity encoder SC performs the data symbol S to be transmitted in a program block manner], S2. . . . . . . Coding of Sn / i, Sn / 2, SN / 2 + 1, ... SN. -14-546964 of antenna SA1 V. Description of invention (13) The data is not encoded by this method. Conversely, the data base of the N data symbols S1 ... SN is based on the time-space transmission diversity encoder SC to perform conjugate (indicated by the symbol in Figure 5), and divides this data block into two halves (S, ... 8% / 2) and (8% / 2 + 1, ... S * N) and change their order while '(S * N / 2 + l. . . . . . S * N) part is also equipped with a negative sign. Through this block-space-time transmission diversity coding coding scheme, two widely statistically independent data sequences can be generated for each transmitting antenna SA1 and SA2. After block-space-time transmission diversity (STDD) coding, the broadcast channel uses CDMA codes, such as c (2), and element-specific encryption codes to extend the data blocks in the two antenna branches. In addition, a corresponding encryptor SCR1 or SCR2 is specified in the corresponding antenna branch of FIG. 5. Then, the extended data block is correspondingly multiplexed into a standard burst with a corresponding multiplexer MU1 or MU2 in a corresponding antenna branch, and transmitted through the corresponding antenna SA1 or SA2. For antenna SA1, the data block is multiplexed with Midamble m⑴ in detail, and for antenna SA2, the data block is multiplexed with Midamble m (2) accordingly. For the corresponding broadcast channel, in addition to the coded multiplexing codes c (1), c⑴, it is better to keep two Midamble m (1) »m (2) permanently. Midamble m (2) is only used in the diversity mode of the corresponding base station. Otherwise, Mid amble m (2) would be useless. These two Midamble m⑴, m (2) are generated in this respect by the "basic Midamble code of a specific unit. In the standard way, that is, if there is no diversity transmission operation in the respective base station, the second antenna The branch does not perform block space-time transmission diversity coding and subsequent operations. -15-546964 V. Description of the invention (14). Corresponding user devices, especially mobile radios, are best equipped with only a single antenna To send and receive data. Then according to the diversity mode, the two received attenuation signals transmitted by the corresponding base station in diversity mode are combined at the corresponding user device receiver, and the best of the two signals is selected accordingly. This use will increase the detection fee of the corresponding user device receiver when transmitting the corresponding broadcast channel in a diversity manner. Because the corresponding broadcast channel is particularly important, the appropriate way is to make all the existing in the radio unit All user devices can receive this channel optimally. That is, transmitting everything through the broadcast channel is important to the system. Information about the corresponding radio unit; for example: information about the power adjustment of the corresponding user device. Or through the coded multiplexing code available in the corresponding radio unit. Therefore, the base station is best to send it at a certain, especially regular time interval. Corresponding broadcast channel. Then, all user devices in the radio unit of this base station, at this certain transmission time point, especially intercept the broadcast channel regularly. If the transmission properties in the corresponding radio unit are deteriorated, this radio The base station in the unit appropriately transmits the broadcast channel in a diversity manner. Under normal circumstances, the base station sends this in advance to the user device in the radio unit via the broadcast channel itself. This allows the user device to respond accordingly. Be prepared to detect the second attenuated signal from the base station. Otherwise, 'the user device will perform the diversity method called -16- through the regular detection of Midamb 1 em (2} from the second antenna branch. 546964 V. Description of the invention (15) Blind detection. If Midambles m (2), the corresponding user device will receive the signal in diversity mode. If this is not the case, the corresponding user device will not be able to receive the broadcast channel at all in the worst or worst case. The second antenna branch Regular detection such as Midambles m (2), of course, will cause huge detection costs in the receiver of the corresponding user device. Now the premise of the method of detecting the corresponding broadcast channel in diversity mode is that the corresponding user device is already on a radio The unit is registered. In the past, some cases were not considered, that is, the first time the user device, for example, when a user connected his smart unit phone, and wanted to switch (from an adjacent unit) Go to the momentary radio unit) register to a new unit, and the base station in charge there has already transmitted the broadcast channel in diversity mode. In both cases, it is advantageous for the respective user device to obtain a corresponding opportunity to transmit signals in a diversity manner immediately upon registration with the new radio unit, and to calibrate its receiver accordingly. Otherwise, the user device will not receive this broadcast channel at all in the worst or worst case. As a result, registration to the new radio unit fails. Therefore, an object of the present invention is to enable the corresponding user device to optimize the detection of the corresponding broadcast channel as early as possible even when the radio unit is changed, and even in a new radio unit there, the base station has been in a diversity manner. Sending. In this regard, in the corresponding base station, it is possible to mark one or more downlink synchronization bursts operating in the corresponding base station diversity mode -17- 546964 V. Description of the invention (16) It is possible to load a flag factor in the string. According to this flag factor, at least one downlink synchronization burst received by the corresponding user equipment is transmitted to the user equipment in the base station diversity mode in advance in its instantaneous stay radio unit, so that the user equipment can respond accordingly immediately. The receiving operation is transformed into a grouping mode. Generally, the modulation of at least one downlink synchronization channel enables the diversity mode of the corresponding base station to send a signal to the user equipment in the radio unit to which it belongs. The advantages of this type of diversity transmission are, in particular, the optimal detection of the broadcast channel by sending the signal in a timely manner under certain circumstances. These situations are when the corresponding user device registers with a new radio unit for the first time or through conversion. . The corresponding base station transmits signals in diversity mode based on the modulation of at least one downlink synchronization channel, such as DwPCH1 in Figure 1. According to this method, it is possible to inform the corresponding user device whether an important broadcasting channel has been in the radio unit that is momentarily stopped or is transmitted by the base station in a diversity manner. This registration process occurs when the corresponding user device enters a new radio unit for the first time or is transferred to a new radio unit. When the process of registering a user equipment into a new radio unit is performed, the user equipment is synchronized with the time slot structure and frame structure of the host base station. This can happen in particular by detecting at least one downlink sync burst and / or at least one new radio unit's broadcast channel. According to the 1.28-Mcps — TDD standard, this process is called cell search. at 1. 28 Mcps — 18- 546964 of TDD V. Description of the invention (17) Within the time frame structure, the corresponding broadcast channel is always sent according to the time slot TsO (see Figure 1), and always the second time slot like SFi DwPTS sends downlink synchronization channel. Downlink synchronization code CDL, synch of 64-chip length modulated with redundant / 4-QPSK (four-phase shift key) is transmitted to this down-line synchronization channel. at 1. In the 28 Me ps- TDD radio system, a total of preferably 32 different downlink synchronization codes are determined; this code can be used to distinguish each radio unit from another. The corresponding base station is in its radio unit. At the time of slot DwPCHI, each base station sends its corresponding synchronization code (which is in the form of a synchronization burst) in its radio unit, so that the corresponding user equipment is in the radio unit. China can be synchronized in time with the base station there. In addition, the synchronization burst is modulated and sent to the corresponding user device to control the position of the broadcast channel P—CCPCΗ (formerly the common control actual channel) in the control multi-frame, such as MF1. In terms of 7Γ / 4-QPSK modulation, the significance of modulation is to change the high-frequency carrier signal based on the transmitted data. Here, the two data bits are combined into a unique data symbol. In terms of ττ / 4-QPSK, the phase of the carrier signal is adjusted by 45 °, 135 °, 225 °, or 315 °, that is, r / 4 -QPSK is a type of QPSK shifted by 45 °. For such a phase PΗ shifted in the basic frequency band, according to Fig. 6, the composite index is configured with a real part and / or an imaginary part in a mathematically effective manner. In detail, the composite index 1 + j is assigned to 45 °, and the composite index -1 + j is assigned to the phase PI-135. The composite index KZ—1—j is assigned to phase 225. , And the composite index KZ 1 — j is assigned to the phase 315 °. -19- 546964 V. Description of the invention (18) The downlink pilot time slot of each sub-frame (such as SFi>) is used for the transmission of downlink pilot channels (such as DwPTS). In this downlink synchronous channel, transmission is used 7Γ Μ-QPSK modulated downlink synchronization code cD (_, synch ° In a 1.28 Mcps-TDD system, it is best to determine a total of 32 different downlink synchronization codes to distinguish each radio of the radio communication system The corresponding base station, in its radio unit, sends its synchronization code in the downlink pilot channel, such as DwPC Hi. Therefore, a mobile station, in the radio unit of this base station, can The timing pulses are synchronized; that is, in accordance with the time frame sequence and time slot structure of the air transmission interface specified by the base station. In addition, the corresponding synchronization code is adjusted by 7Γ / 4_QPSK, within the time frame structure, especially in the time frame structure. Corresponding control multiple frames, such as MF1, to the corresponding user equipment in the corresponding base station radio unit to send broadcast channels, such as BCH1 Time frame signal. Multi-frame is the organizational structure of the time frame. Based on this structure, determine the actual time interval of the actual channel to be transmitted, what frame it is in, and / or the frequency. For example, Primary Common Control Pysical Channel P-CCPCH In terms of 1.2 · 8 Mcps—TDD mode, a so-called control multi-frame with 24 TDMA frames is defined (TDMA = time-multiplexed); in the corresponding 24 consecutive TDMA frames, the transmission is performed in the downlink direction. A certain number of cross periods with corresponding regulations, here P — CCPC 此处 about 20 m seconds. This 20 m second cross period, in this 1.28 Mcps — TDD method, best fits the 2 framework Or 4 sub-frames of -20- 546964 V. Description of the invention (19) Duration. The cross period indicates the time extension of the data transmitted in the P-CCPCH. The reason for this time extension is that the capacitance of an individual burst is insufficient In order to propagate all broadcast information in a single sub-frame. In this regard, the broadcast channel on the transmission plane is allocated to the original public control actual channel P-CCHPCH on the actual plane. The information related to the system through the broadcast channel of the individual radio unit, for example, the information for efficiency adjustment; or through the available CDMA code, transmitted from the corresponding base station to the station in this radio unit. The pursuit is: all user devices in a radio unit, especially mobile stations can receive this broadcast channel intact to a large extent. Therefore, the base station in charge of each radio unit makes the control multi-frame transmission at periodic intervals. So far the broadcast channel. In order to receive this broadcast information, all user devices in this radio unit must intercept this broadcast channel at any time (especially periodically). In order to detect the broadcast information of each existing user device (which is sent to the base station in its radio unit), it is best to provide the relevant user device with the relevant information, when, where and how often within a control multi-frame Send a broadcast channel from the host base station. Due to the cross-period, that is, due to the time extension of the actual guidance of the corresponding broadcast channel configuration to control the actual channel P-CCPCH (here about 20m seconds), at least 4 consecutive sub-frames, such as SFi, SFi + 1 ' In SFi + 2, and SFi + 3 (see Figure 1), the downlink synchronous bursts are modulated by QPSK, so a specific phase sequence is assigned to the four sub-frames, so that the time position of the broadcast channel in the multi-frame coding. Then the corresponding user device can pass -21-546964. 5. Description of the invention (20) When at least 4 consecutive sub-frames, and the downlink guides the time slot DwPTS, the downlink synchronous burst QPSK solution input on the user device side Tuning, performing one or more time-continuous broadcast channels to configure the time position of the time-continuous time slot structure frame and / or sub-frame. Because the broadcast channel and the communication guide publicly control the cross period of the actual channel, using a series of at least 4 phases to determine the time position of the corresponding user device, that is, to intercept the broadcast channel information in a timely manner within the multi-frame time frame structure, Is appropriate. This can be achieved by demodulation of the downlink sync bursts of at least 4 consecutive downlink pilot channels. The duration of the sub-frame is 20% of the insertion cycle. Figure 7 graphically shows the phase sequence of four consecutive downlink sync bursts. The corresponding phase sequences of the four single-phase chirps are represented by PS accordingly. According to the mathematical relationship (SFN / 2) mod (modulo) 8, the corresponding frame sequence number is explicitly assigned accordingly, during which the SFN indicates the corresponding frame number. Each of the eight different phase sequences is explicitly communicated with a frame number SFN. The table in Figure 9 correspondingly indicates the beginning of a crossover period with a phase of 45 °. In multiple frames, write numbers for frames from 0 to 23. The actual position in multiple frames is represented by a counter ZSFN (system frame number counter). For example, a phase sequence of 45 °, 22 50, 22 5 °, 22 5 ° is used to send signals, and broadcast channels in frames 0, 1, 16 and 17 are transmitted. In these cases (SFN / 2) mod (modulo) 8 = 0. Give the phase sequence 45 °, 225 accordingly. , 225 °, 31 5 ° sends the signal, the broadcast channels in frames 14 and 15 are sent. In these cases (SFN / 2) mod (modulo) 8 -22- 546964 V. Description of the invention (21) = 7. If the user device cannot detect the phase sequence 'determined in the table in Fig. 9, the broadcast channel position is appropriately repeated. The process of determining to the next point in time, that is, detecting the next downlink sync burst, thus also determining the time slot structure of Figure 1 on the corresponding user device. In the specification 3G TR 25. 928: UTRA TDD actual layer 1_28 function, version 1. 1_〇 (2000-07), details the radio unit search process. In the first step, the user equipment detects a downlink synchronization code CDL, synch. As a result, the user device is synchronized to the strongest base station in its environment on the time slot plane. In this regard, the user device also now knows' which synchronization codes are used in the radio unit. In the second step, the user device attempts to read a broadcast channel in a predetermined time slot TsO. Since the insertion period of the broadcast channel is 20 milliseconds, the user equipment detects the broadcast data in at least 4 consecutive sub-frames in the time slot TsO to be able to receive all system information. In this regard, the user equipment simultaneously attempts to determine the time position of the broadcast channel received within the control multi-frame by demodulating the downlink synchronization code of at least 4 consecutive DwPCHs. If all steps are successful, the unit search for this user device has been successful and the user device has been installed in the radio unit. Otherwise, the radio unit search process is repeated. When the host base station may perform diversity operations, in order to inform the corresponding user equipment in the radio unit, this diversity mode must additionally add a flag factor B to one or more downlink synchronization bursts in order to mark The base station operates in this diversity mode, especially using a -23-546964 V. Description of Invention (22) The marker factor B is adjusted. In other words, it is the downlink synchronization code that has been modulated by 7Γ M-QPSK, and it is modulated by a factor B. Use this flag factor B to send a signal, regardless of whether the broadcast channel is transmitted in diversity (application block STDD encoding) by the corresponding base station or not, if the broadcast channel P- CCPCH is transmitted in diversity, it is beneficial to select the flag factor B =; If the broadcast channel P = CCPCH is sent in a standard way, it is advantageous to select the flag factor B = 1. The symbol B symbol is not selected in a standard manner for the corresponding broadcast channel, but is selected in a diversity manner. Therefore, the broadcasting channels of the corresponding base stations can be transmitted not only in the diversity mode but also in the standard mode with the same power accordingly. According to the tables in Figures 9, 10 and 13, the following different schemes are suitable for transmitting signals in the corresponding broadcast channel diversity mode. In this regard, the left column of each table, correspondingly, uses a mathematical formula (SFN / 2) mod8 to explicitly encode a series of frame numbers. According to the table in Fig. 7, these frame code numbers 0 to 7 are explicitly assigned frame number SFN sequences. These frame number sequences accordingly indicate which frames through which broadcast information is distributed over time. Assign code numbers 0 and 7 to a 4-phase sequence in composite writing mode, and adjust the 4 consecutive sub-frames SFi, SFi + 1, SFi + 2, SFi + 3 ττ Μ-QPSK or QPSK accordingly. Downlink sync burst. According to Fig. 9, the table details the downlink ττ / 4_QPSK modulation of 4 consecutive DwPCH modulated bursts CDL, synch in order to send the signal of the broadcast channel position in the 24th control multi-frame. The phase modulation is based on the table of -24-546964 in Figure 6. V. Description of the Invention (23) Table, the downlink synchronization code CDl_, synch is multiplied by the corresponding composite indicator. The beginning of the cross period uses phase 45 accordingly. And composite indicator (1 + j). For example, use phase sequence 45. , 225 °, 225. , 225 ° (in accordance with the sequence (1+)) 〇 [^, $ 711 (^, — (1+]) 01: ^, 57〇 (: 11, — (1 + j) CDL, synch,-(1 + j } CDL, synch) to send the signal: the broadcast channel is transmitted in frames 0 '1, 16, 17. In a standard way, the modulated downlink sync burst sequence is transmitted to DwPCH according to the table in Figure 9. Otherwise, In a diversity manner, the modulated downlink burst synchronization sequence is modulated, and then modulated by a factor B = -1, that is, in this case, the modulated downlink in the table of FIG. 9 The synchronous burst sequence is transmitted to the Dw PC 倒 in an inverted manner (changing the sign). The configuration with the opposite sign factor, plus the numbers 値 + 1 and -1, is completely appropriate to become the standard mode and diversity mode. When necessary You can also use standard QPSK instead of ττ / 4-QPSK to modulate the downlink synchronous burst or code. In this regard, the diagrams in Figures 10 and 13 are illustrated. At that time, Wu / 4—QPSK was applied. To modulate the data in the standard burst data block. To this end, the 2 data bits are synthesized accordingly A data symbol. These then modulate the carrier signal with phases 0, 90 ,, 18 0 or 2 70 °. The diagram in Figure 4 describes the corresponding basic frequency bands. Phases P 0, 90. , 1 80. and 270. The composite indicators KZ 1, j, -1 and -j are configured. If QPSK modulation is used in the standardization of the downlink synchronous burst, instead of 7Γ / 4-QPSK as before, The following four solutions are particularly important: -25- 546964. 5. Description of the invention (24). Solution 2: The chart in Figure 10 provides 4 consecutive DwCPH downlink burst bursts CDL, QPSK modulation of synch, In order to send the 24th signal that controls the position of the broadcast channel in the multi-frame. QPSK modulation is to multiply the downlink synchronization code cDl_, synch and the corresponding composite indicator according to the chart in Figure 8. The beginning of the cross cycle, using the phase 0. Or factor 1. For example, send a signal to the phase sequence 0 °, 180., 180., 18 0. (symbol order 歹 [] CDL, synch, one CDL, synch, one CDL, synch, one CDL, synch) , In frame 0,1,1 Broadcast channels are transmitted in 6 and 17. In the standard way, the downlink synchronous burst train modulated by the chart in Figure 10 is transmitted to DwPCH. In the diversity mode, the modulated downlink synchronous burst train is transmitted in an inverted form. In other words, it is transmitted to DwPCH with the reverse sign. Generally speaking, the phase sequence of the graph in Figure 10 is converted by 45 ° relative to the phase sequence of the graph in Figure 9. Option 3: The chart in Figure 11 provides the downlink synchronization code CDL and synch QPSK modulation for 4 consecutive DwPCHs. In the meantime, the beginning of the crossing period is represented by a phase of 90 ° and by a factor j. For example, use the phase sequence 90 °, 270 °, 270 °, 270 ° (in accordance with the composite index sequence j, synch, -j CDL, synch, a j CDL, synch, -j CDL, synch) to send signals in frames 1, 16 And 17 sends the broadcast channel. According to the chart in Figure 11, the modulated downlink synchronous burst pulses are transmitted in a standard way. -26- 546964 V. Description of the invention (25) The string sequence is transmitted to DwPCH. In the diversity mode, the modulated downlink synchronization code sequence is transmitted in an inverted manner, that is, it is transmitted to the DwPCH with an inverted sign. In this respect, the graph in Fig. 11 is based on the graph in Fig. 9 where the phase sequence shifts by + 45 °. Solution 4: The chart in Figure 12 provides the downlink synchronization codes CDL and synch QPSK modulation of 4 consecutive DwPCHs. In the meantime, the beginning of the crossover period is represented by a phase of 1 800 and by a factor of -1. For example, use phase sequence 180. , 0. , 0. , 0. (Symbol order [J-Cdl, synch, CDL, synch, CDL, synch, CDl_, synch) sends a signal, and broadcast channels are sent in frames 0, 1, 16 and 17. According to Figure 7, the modulated downlink synchronization code sequence is transmitted to DwPCH in a standard manner. The modulated downlink synchronization code sequence is transmitted to DwPCH in an inverted manner in a diversity manner. The phase sequence corresponds to the graph in Figure 12 and, in contrast to the phase sequence in Figure 9, is + 135 °. Solution 5: The chart in Figure 13 provides 4 consecutive DwPCH downlink synchronization codes, and the QPSK modulation of synch; in the meantime, the beginning of the crossover period is represented by phase 270 ° and factor -j. For example, the phase sequence is 270 °, 90 °, 90 °, 90 ° (in accordance with the sequence —j CDL, synch, + j CDL ^ synch ^ + j CDL, synch, + j CDL, synch). , 16 and 17 send broadcast channels. The modulated downlink synchronization code sequence in Figure 7 is transmitted to DwPCH in a standard manner. Modulate the downlink synchronization code sequence of -27- 546964 V. Invention Description (26) in diversity mode and transmit it to DwPCH in the inverted form. Accordingly, the phase sequence of the graph of FIG. 13 is shifted by — 135 ° relative to the phase sequence of the graph of FIG. 9. An effective example according to the first scheme can be completely implemented as follows: According to the frame structure of FIG. 1, the broadcast channel P-CCPCH in the transmission slot TsO and the downlink synchronization channel DwPCH1 in the DwPTS slot. Downlink synchronization code with ττ / 4-QPSK modulation is transmitted in the synchronization channel. In addition, a 24th control multiframe is identified in the radio unit. This controls multiple frames, and accordingly in the frames 0, 1, 16 and 17 the broadcast channels are transmitted in the downlink direction. Therefore, the base station will, in a standard manner, control the downlink synchronization code sequence (1 + j) CDL, synch, — (1 + j) CDL, synch,-(1 + j} CDL, synch, one (1 + j) cDL, synch is transmitted to DwPCH to indicate the position of the broadcast channel in the multi-frame. The beginning of the crossover period is represented by phase 45. and the factor (1 + j). The base station in the multi-frame, will In the diversity mode, the inverted downlink synchronization code sequence (1 + j) CDL, synch, —, synch, — (l + j) cDL, synch, — (1 + j) CDL, synch is transmitted to DwCPHI 'for representation The time position of the broadcast channel in the multi-frame. In this case, the beginning of the crossover period is represented by the phase 225. And the factor _ (1 + j). At this time, all user devices of the corresponding radio unit intercept the downlink synchronization channel If the down line that has been modulated in the radio unit search is the same as -28-546964 V. Description of the invention (27) The step code is detected by the corresponding user device, then the user device knows at the same time the diversity used by the broadcast channel Whether the mode exists. If it exists, broadcast the channel It can be optimally detected in the time slot TsO, and the user device will be successfully installed in the new radio unit. Such an effective example similar to the first scheme can also be implemented in schemes 2 and 5. 29-