TW530385B - CMOS with strain-balanced structure and method of manufacturing the same - Google Patents
CMOS with strain-balanced structure and method of manufacturing the same Download PDFInfo
- Publication number
- TW530385B TW530385B TW91105975A TW91105975A TW530385B TW 530385 B TW530385 B TW 530385B TW 91105975 A TW91105975 A TW 91105975A TW 91105975 A TW91105975 A TW 91105975A TW 530385 B TW530385 B TW 530385B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- strain
- silicon
- scope
- item
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
530385 五、發明說明(1) 本發明係有關於一種場外雷a減 ^ ^ t 每效電晶體’特別是有關於一癯 具有拉伸應變矽層之n通道元件及 、 通道元件之CMOS(互補式金氧半場#雷θ 鍺0 方法。 、玉軋牛场效電晶體)7〇件及其製造 隨著閘極元件尺寸的縮小化,要使金氧半場效艚 (M0SFET)元件能在低操作電壓下,具有高趨動電流=高 速的效能是相當困難的。因此,許多人在努力尋求改善金 氧半場效電晶體元件之效能的方法。 利用應變引發的能帶結構變型來增加載子的遷移率, 以增加場效電晶體的趨動電流,可改善場效電晶體元件之 效能,且此種方法已被應用於各種元件中。這些元件的矽 通道係處於雙軸拉伸應變的情況。 已有研究指出利用石夕通道處於雙軸拉伸應變的情況中 來增加電子的遷移率(Κ. Ismail et al.,"Electron transport properties in Si/SiGe heterostructures: Measurements and device applications' Appl· Phys· Lett· 63,pp· 660,1 993·),及利用矽鍺通道處於雙軸 壓縮應變的情況中來增加電洞的遷移率(D. K. Nayak et al·,丨丨 Enhancement - mode quantum-well GeSi PM0Sn, IEEE Elect. Dev. Lett· 12, pp· 154, 1991·)。然而, 結合具有雙軸拉伸應變之矽通道之NMOSFETs(N型金氧半場 效電晶體)及具有雙軸壓縮應變之矽鍺通道之PM0SFETs(P 型金氧半場效電晶體)之CMOS製程技術是難以達成的。在 電晶體之製造上有利用厚的緩衝層或複雜多層結構等許多 ΙϋΜΙΙΙΗ 0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第5頁 530385 五、發明說明(2) 應變層製造方法(K· Ismail et al·, IBM,Jul· 1 996,530385 V. Description of the invention (1) The present invention relates to an out-of-field lightning a reduction ^ ^ t per effect transistor 'especially a n-channel element with a strained silicon layer and a CMOS (complementary) channel element Method: Metal oxide half field # Rayθ Germanium 0 method. 70 pieces of jade-rolled cattle field effect transistor) and its manufacturing As the size of the gate element is reduced, it is necessary to make the metal oxide half field effect (M0SFET) element at a low level. Under operating voltage, it is quite difficult to have high actuation current = high speed. Therefore, many people are trying to find a way to improve the performance of metal-oxide-semiconductor field-effect transistor devices. Strain-induced band structure modification is used to increase the mobility of carriers to increase the actuating current of the field effect transistor, which can improve the performance of the field effect transistor element, and this method has been applied to various elements. The silicon channel system of these devices is under the condition of biaxial tensile strain. It has been pointed out that the mobility of electrons is increased by using the Shixi channel in a biaxial tensile strain condition (K. Ismail et al., &Quot; Electron transport properties in Si / SiGe heterostructures: Measurements and device applications' Appl · Phys · Lett · 63, pp · 660, 1 993 ·), and the use of silicon germanium channels in the case of biaxial compressive strain to increase hole mobility (DK Nayak et al ·, 丨 Enhancement-mode quantum-well GeSi PM0Sn, IEEE Elect. Dev. Lett · 12, pp · 154, 1991 ·). However, a CMOS process technology combining NMOSFETs (N-type metal-oxide-semiconductor half-effect transistors) with silicon channels with biaxial tensile strain and PM0SFETs (P-type metal-oxide-semiconductor half-effect transistors) with silicon- germanium channels with biaxial compression strain It is difficult to achieve. In the manufacture of transistors, there are many ΙΜΜΙΙΙΙΗ 0503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 5 530385 for the use of thick buffer layers or complex multilayer structures. · Ismail et al ·, IBM, Jul · 1 996,
Complementary metal-oxide semi conductor transistor logic using strained Si/SiGe heterostructure layers,U.S· Patent No· 553471 3·),此些方法並不易 於整合到傳統之CMOS製程中。 因此,為了製造具有高趨動電流和高速的效能之金氧 半場效電晶體元件’亟待針對上述問題謀求改善之道。 有鑑於此’本發明之目的在提供一種具有應變平衡結 構之CMOS元件結構及其製造方法,其利用形成具有拉伸應 變矽層之η通道元件及具有壓縮應變矽鍺層之p通道元件之 應變平衡結構’以增進場效電晶體元件之效能。 為達成上述目的,本發明提出一種具有應變平衡結構 之CMOS元件的製造方法’首先提供一絕緣層上有石夕層 (soo之基底。其次’於此矽層上成長一矽鍺層,其θ中此 石夕層係處於雙轴拉伸應變情況之丁而此矽鍺層θ係處於雙軸 壓縮應變情況之下,以獲得應變平衡結構。接著,於此矽 鍺層上形成一第二矽層,其中此第二矽層具有一第三厚产 適用於-PM0S元件,及-第二厚度適用於_Ν_元件^ 後,對於此基底施行圖案化製程以定義出一pM〇s元 及 -Ν’:件區。再者’於此第二矽層上形成閘極絕緣;。 最後’於此閘極絕緣層上形成一閘極電極。 本發明另提出一種具有應變平衡結構之cm〇s元件,包 括:一絕緣層上有矽層基底;一矽鍺厣 L ^ ^ ^ ^ ^ . &丄 两禮成長於此絕緣層 上有矽層基底上,其中此矽層係處於雙鉦 !釉拉伸應變情況之Complementary metal-oxide semi conductor transistor logic using strained Si / SiGe heterostructure layers, U.S. Patent No. 553471 3 ·), these methods are not easy to integrate into traditional CMOS processes. Therefore, in order to manufacture a metal-oxide half-field-effect transistor element with high actuating current and high-speed efficiency, it is urgent to seek improvement for the above problems. In view of this, the object of the present invention is to provide a CMOS device structure with a strain-balanced structure and a method for manufacturing the same, which utilize the strain of an n-channel device having a tensile strained silicon layer and a p-channel device with a compressive strained silicon germanium layer. 'Balance structure' to improve the performance of field effect transistor devices. In order to achieve the above-mentioned object, the present invention proposes a method for manufacturing a CMOS device with a strain-balanced structure. 'First, a substrate with a stone layer (soo) on an insulating layer is provided. Second, a silicon-germanium layer is grown on the silicon layer. The Shixi layer is under the condition of biaxial tensile strain and the silicon-germanium layer θ is under the condition of biaxial compressive strain to obtain a strain balanced structure. Then, a second silicon is formed on the silicon-germanium layer. Layer, where the second silicon layer has a third thickness suitable for -PM0S devices, and-after the second thickness is suitable for _N_ devices ^, a patterning process is performed on this substrate to define a pM0s element and -N ': piece area. Furthermore,' gate insulation is formed on this second silicon layer; and finally, a gate electrode is formed on this gate insulation layer. The present invention also proposes a cm with a strain-balanced structure. The s element includes: a silicon substrate on an insulating layer; a silicon germanium 厣 L ^ ^ ^ ^ ^. & 丄 two growths on the silicon substrate on the insulating layer, where the silicon layer is in a double ! The glaze tensile strain
530385 五、發明說明(3) ΐίί:鍺層係處於雙軸壓縮應變情況之下’以獲得應變 矽屏—第二矽層’成長於此矽鍺層1,其中此第二 用::N_第:厚度適用於一職元件’及-第二厚度適 以及_ 疋件;一閘極絕緣層’形成於此第二矽層上; ^ 一閘極電極,形成於此閘極絕緣層上。 曰 汽施例1 其製i ΐ明提供一種具有應變平衡結構之cm〇s元件結構及 半遂=ϊ法。本發明之觀念係應用具有不同晶格常數之各 較=^膜層間在鬆他狀態之互相作用,在鬆他狀態具有 曰日秸之半導體薄膜層是處於壓縮應變情況之下,而且 ,季^小晶格常數之半導體薄膜層是處於壓縮應變情況之:^ 進而形成一具有應變平衡結構。例如,一 之堆疊層結構,在具有不同晶格常數之;層= 壓i i ί弛狀悲之互相作用下’其中石夕錯層係處於雙軸 ι細應蜓情況之下而矽層係處於雙軸拉伸應變情況之下。 夂應變平衡結構可藉由后述說明的方法來製作,首先請 二丨第1圖,在一半導體基底丨〇上形成一埋藏絕緣層11及 半導體層1 2,本實施例則以一絕緣層上有矽層(s i丨i c〇n = n〜insulator,s〇I)之晶圓為例,用以做為啟始材料, :利用植入氧(SIM0X)或是SmartCut®技術來得到隔離,但 ,不以此為限制。半導體層(s〇I層)12 一般是厚度約2〇〇 ^ 的矽材料。埋藏絕緣層1丨一般是由氧化矽所構成。之後, 於矽層12上磊晶成長一矽鍺層14,如第2圖所示,矽鍺層 14的厚度t2是要與矽層12的厚度u相當而使得矽層^係曰處530385 V. Description of the invention (3) ΐίί: The germanium layer is under the condition of biaxial compressive strain 'to obtain a strained silicon screen-the second silicon layer' is grown on this silicon germanium layer 1, where this second use :: N_ No .: the thickness is suitable for the first element and the second thickness is suitable; the gate insulation layer is formed on the second silicon layer; ^ a gate electrode is formed on the gate insulation layer. Said steam application example 1 Its manufacturing method provides a cm0s element structure with a strain-balanced structure and a semi-successive method. The concept of the present invention is to apply the comparisons with different lattice constants to the interaction between the film layers in the loose state, and the semiconductor thin film layer with the Japanese straw in the loose state is under compressive strain. The semiconductor thin film layer with a small lattice constant is in a compressive strain condition: ^ and then a strain-balanced structure is formed. For example, a stacked layer structure of one, under the interaction of different lattice constants; layer = ii the relaxation of the sorrowful sorrowful interaction 'where the Shixi fault layer is under the biaxial condition and the silicon layer is under Under biaxial tensile strain.夂 The strain balance structure can be manufactured by the method described below. First, please refer to Figure 1 to form a buried insulating layer 11 and a semiconductor layer 12 on a semiconductor substrate. In this embodiment, an insulating layer is used. As an example, a wafer with a silicon layer (si 丨 ic〇n = n ~ insulator, so) is used as the starting material: using implanted oxygen (SIM0X) or SmartCut® technology to obtain isolation, However, this is not a limitation. The semiconductor layer (SOI layer) 12 is generally a silicon material having a thickness of about 2000 ^. The buried insulating layer 1 is generally composed of silicon oxide. After that, a silicon germanium layer 14 is epitaxially grown on the silicon layer 12. As shown in FIG. 2, the thickness t2 of the silicon germanium layer 14 is to be equal to the thickness u of the silicon layer 12 so that the silicon layer ^
530385 、發明說明(4) 情、兄^ ^伸應蜒情況之下而矽鍺層1 4係處於雙軸壓縮應變 /凡之:,以獲得應變平衡結構。 圖所^者:於矽鍺層1 4上磊晶成長一第二矽層1 6,如第3 敍Mil,第二矽層16的厚度t3是要與矽層12的厚度1:1及矽 #二、、的厚度ΐ2相當而使得第二矽層1 6係處於雙軸拉伸應 更隱況之下。 在1^通道元件的情況中,第二矽層16的厚度t3須夠 ^丄使得當元件打開(turned 〇n)時在其中不會形成寄生 ,、而石夕鍺層1 4的厚度12須夠厚,如1 〇 〇埃使其能容納 大部分的可動載子(γ· —C. Yeo et ai.,”Enhanced530385, description of the invention (4) conditions, brother ^ ^ ^ ^ ^ ^ ^ ^ stretch conditions, and the silicon germanium layer 14 is in a biaxial compressive strain / where: to obtain a strain balanced structure. As shown in the figure: epitaxial growth of a second silicon layer 16 on the silicon germanium layer 14 is shown in the third example. The thickness t3 of the second silicon layer 16 is equal to the thickness 1: 1 of the silicon layer 12 and silicon. # 二 、 The thickness ΐ2 is equivalent, so that the second silicon layer 16 series should be more hidden under biaxial stretching. In the case of a 1-channel element, the thickness t3 of the second silicon layer 16 must be sufficient so that parasitics do not form therein when the element is turned on, and the thickness 12 of the stone germanium layer 14 must be Thick enough, such as 100 angstroms, to accommodate most of the movable carriers (γ · —C. Yeo et ai., "Enhanced
Performance in sub-100 nm CMOSFETs using strained epitaxial s i 1 i con-german i umf, , IEEE International Electron Device Meeting Technical Digest, pp· 753-756,San Francisco, CA,Dec· 20 0 0·)。而矽鍺層 14係處於雙軸壓縮應變情況之下且能夠大幅增加電洞的傳 輸性質(S· Kaya et al·,n Indication of velocity overshoot in strained Si0.8Ge0·2 p-channel MOSFETs”, Semiconductor Science and Technology, vol· 15, pp· 573, 2000·) 〇Si(卜x)Ge(x)層 14 中之Ge 的莫 耳分率x須夠高以增進p通道元件之效能,但不能太高以控 制接面漏電流及防止應變鬆弛問題。Si(1_x)Ge⑴層14中之 Ge的莫耳分率X可介於〇. 1至〇. 5之間。 在η通道元件的情況中,第二矽層16是作為通道用, 由於第二矽層1 6係處於雙軸拉伸應變情況之下且能夠大幅Performance in sub-100 nm CMOSFETs using strained epitaxial s i 1 i con-german i umf,, IEEE International Electron Device Meeting Technical Digest, pp. 753-756, San Francisco, CA, Dec. 20 0 0 ·). The SiGe layer 14 is under biaxial compressive strain and can greatly increase the transmission properties of holes (S. Kaya et al., N Indication of velocity overshoot in strained Si0.8Ge0 · 2 p-channel MOSFETs ", Semiconductor Science and Technology, vol. 15, pp. 573, 2000.) The Mo fraction x of Ge in Si (Bux) Ge (x) layer 14 must be high enough to improve the performance of the p-channel device, but not too much. High to control junction leakage current and prevent strain relaxation problems. The Mohr fraction X of Ge in the Si (1_x) Ge⑴ layer 14 may be between 0.1 and 0.5. In the case of n-channel elements, The second silicon layer 16 is used as a channel, because the second silicon layer 16 is under a biaxial tensile strain and can greatly
530385530385
增加遷移率及傳輸性質(Rim K. et al.,"Fabrication and analysis of deep submicron strained-Si n-M0SFETs\ IEEE Trans. Elect. Dev., vol. 47, no. 7’ ΡΡ·1406,jul· 2000·)。第二矽層16在關03區域的厚 度t3須夠厚,如1〇()埃使其能容納η通道元件大部分的可動 載子。 關於第二石夕層1 6對於η通道元件及ρ通道元件的厚度需 求,對於ρ通道元件而言,第二矽層16的厚度t3須夠薄, 如20埃,以防止在PM0S元件中形成寄生電容。對於n通道 元件而言,NM0S區域的厚度t3須夠厚,如丨00埃使其能容 納η通道元件大部分的反向電荷(電子)。要使得第^矽層 16能具有兩個厚度,可藉由下述方法來達成,先在⑽㈧製 程中成長厚度13a之第二矽層16,然後,於PM〇s區域覆蓋 一罩幕層18,如氧化矽層,接著再於CMOS所暴露之區域選 擇性蠢bb成長第二石夕層16至厚度t3b,如第4圖所示。 之後’睛參照第5圖,去除罩幕層1 8。其次,再進行 一般CMOS元件之製程,首先如第6圖所示,藉由圖案化製 程定義出PM0S元件區及NM0S元件區。 然後,請參照第7圖,於第二矽層丨6上形成閘極絕緣 層22,例如使用化學氣相沈積法於第二矽層16上沈 矽層。 、 最後,請參照第8圖,於閘極絕緣層22上形成閘極電 極24,再分別於閘極電極24兩側之ρ-井區域—井區域進 行η型和P型離子摻雜(未顯示),以及於閘極電極24 =側璧Increased mobility and transmission properties (Rim K. et al., &Quot; Fabrication and analysis of deep submicron strained-Si n-M0SFETs \ IEEE Trans. Elect. Dev., Vol. 47, no. 7 'PP · 1406, jul · 2000 ·). The thickness t3 of the second silicon layer 16 in the Guan 03 region must be sufficiently thick, such as 10 Å, so that it can accommodate most of the movable carriers of the n-channel element. Regarding the thickness requirements of the second stone layer 16 for the n-channel element and the p-channel element, for the p-channel element, the thickness t3 of the second silicon layer 16 must be thin enough, such as 20 angstroms, to prevent formation in the PMOS device. Parasitic capacitance. For an n-channel element, the thickness t3 of the NMOS region must be sufficiently thick, such as 00 Angstroms to enable it to accommodate most of the reverse charges (electrons) of the n-channel element. To enable the second silicon layer 16 to have two thicknesses, it can be achieved by the following method. First, the second silicon layer 16 with a thickness of 13a is grown in the fabrication process, and then a mask layer 18 is covered in the PM0s area. , Such as a silicon oxide layer, and then selectively grow the second stone layer 16 to a thickness t3b in the area exposed by the CMOS, as shown in FIG. 4. After that, referring to FIG. 5, the mask layer 18 is removed. Secondly, the general CMOS device manufacturing process is performed. First, as shown in FIG. 6, the PMOS device area and the NMOS device area are defined by a patterning process. Then, referring to FIG. 7, a gate insulating layer 22 is formed on the second silicon layer 6. For example, a chemical vapor deposition method is used to sink the silicon layer on the second silicon layer 16. Finally, referring to FIG. 8, a gate electrode 24 is formed on the gate insulating layer 22, and η-type and P-type ion doping (not in the (Shown), and the gate electrode 24 = side 璧
530385 五、發明說明(6) 形成間隙壁26,例如使用化學氣相 為間隙壁2 6。 積套形成氮化矽層作 /頁/主思的是’在上述應變平蜂 石夕層1 2間之介而v /百杳5处丄口 ’於絕緣層11及 曰丛#权 面須盡可此地無拘束以使矽声1 2鈐扑料甘 日日格吊數0要使得絕緣層11及矽層i 2間之八:*匕、良八 於調整以使碎層12能改變其晶格;可;地易 打斷或鬆弛絕緣層11及矽層1 2間介面之鍵二二原子以 在磊晶成長矽鍺層14之前或後施行。、、、D 述方法可530385 V. Description of the invention (6) The spacer 26 is formed, for example, a chemical vapor is used as the spacer 26. The formation of the silicon nitride layer is / page / The main idea is 'in the above-mentioned strain flat beestone layer 12 and the v / 100 杳 5 mouths' in the insulating layer 11 and Yue ## As far as possible, there is no restriction to make the silicon sound 1 2 1 钤 料 料 料 甘 日 0 to make the insulation layer 11 and the silicon layer i 2 eight: * dagger, good eight to adjust so that the broken layer 12 can change its Lattice; Yes; Ground is easy to break or relax the bond of the interface between the insulating layer 11 and the silicon layer 12 to two atoms to perform before or after the epitaxial growth of the silicon germanium layer 14. The methods described in
本發月之特徵係利用具有 S 膜層間在鬆弛肤離之石姑你ffl 日日吊數之各半導體薄 半導體作用’使得具有較小晶格常數之 導體屬膜層疋處於拉伸應變情 常數之半導齅鴒胳爲s占 而具有較大晶格 b ^ 溥層疋處於壓縮應變情況之下。顯銬妯, 此應變平衡結構並不限制使 I ^然地 矽鍺/·····矽/矽鍺/矽/二氧 百夕/ /石夕鍺/二氧化石夕之至少兩層以石夕錯/石夕 至本.^ ’以上之結構即可實現本發明。 ’^明中所應用之物f材料,並不限於實施例所引 ”各種具恰當特性之物質和形成方法所置換, 毛月之結構空間亦不限於實施例引用之尺寸大小。、 ^、第8圖中可以看出’具有壓縮應變矽鍺層能夠大幅 =口 “ /同的傳輸性質以增加p通道元件之趨動電流,而具 一拉伸應變矽層能夠產生電子速度飛速效應以增加η通& =件之趨動電流,進而增進場效電晶體元件之效能。 貫施例2 在本發明實施例2中,所形成之具有拉伸應變之矽層The feature of this month is the use of the semiconductor thin semiconductor effect with the S film layer to relax the skin between the layers and the number of days. The conductor layer with a smaller lattice constant is in the tensile strain constant. The semiconducting electrode is s-occupied and has a large lattice b ^ 溥 layer 疋 under compressive strain. Obviously, this strain balance structure is not limited to at least two layers of silicon germanium / ···· silicon / silicon germanium / silicon / dioxin xixi // shixi germanium / dioxide xixi Shi Xicuo / Shi Xizhi Ben. ^ 'The above structure can implement the present invention. The materials used in the Ming are not limited to those cited in the examples, "the various materials with appropriate characteristics and formation methods are replaced, and the structural space of Maoyue is not limited to the dimensions cited in the examples." It can be seen in the figure that the silicon-germanium layer with compressive strain can have a large transmission rate to increase the driving current of the p-channel element, and the silicon layer with a tensile strain can produce a rapid electron velocity effect to increase η Pass & = actuating current of the pieces, thereby improving the performance of field effect transistor components. Throughout Example 2 In Example 2 of the present invention, a silicon layer having tensile strain is formed.
530385530385
及具有壓縮應變之矽鍺層,是忽略實施例丨中之絕緣層u 及矽層1 2間之介面是否無拘束地易於調整。 首先請參照第9圖,在一半導體基底6〇上形成一埋 :緣層61及-矽鍺層62,本實施例則以-絕緣層上有石夕鍺 曰SiGe on insulator)之晶圓做為啟始材料。石夕鍺層μAnd the silicon germanium layer with compressive strain is ignoring whether the interface between the insulating layer u and the silicon layer 12 in the embodiment 丨 is easy to adjust without restriction. First, referring to FIG. 9, a buried layer is formed on a semiconductor substrate 60: an edge layer 61 and a silicon-germanium layer 62. In this embodiment, a wafer with SiGe on insulator on the insulating layer is used. Is the starting material. Shixi germanium layer μ
之鍺3里為xl而厚度為“。埋藏絕緣層61一般是由氧化矽 所構成。本實施例尚有另一選擇為,以一絕緣層上有矽層 (S(H)之晶圓做為啟始材料,在一半導體基底9〇上形成一曰 埋藏絕緣層91及一矽層92,矽層92之厚度小於1〇〇 A。埋 藏絕緣層9 1 一般是由氧化矽所構成。之後,於矽層92上磊 晶成長一矽鍺層94,之後再利用擴散製程將鍺擴散進入矽 層92而至氧化矽層9丨之介面,以改變區域鍵結,而形成絕 緣層上有石夕鍺層之基底(SiGe — on-insuiat〇r),如第圖 所示。由於鍺擴散至氧化矽層9丨之介面,使得初始矽層92 之晶格常數,矽鍺層92之鍺的莫耳分率為χΐ,所以可形成 類似石夕鍺層62之Si(1_xl)Ge(xl)層。 、之後請參照第11圖,於Si(卜xl)Ge(xl)層62或94(為簡化 說明起見’以下僅以Si(1_xl)Ge(xl)層62作代表來說明)上磊 晶成長一第二Si(1_x2)Ge(x2)層 64,其中第二Si(1_x2)Ge(x2)層 64 之錯含量為x2而厚度為t7。第二Si(ix2)Ge(x2)層64之鍺的莫 耳分率x2是大於χΐ,如此使得第二31(^2)(^(必層64係處於 雙軸壓縮應變情況之下。此應變強度是相當於在一矽基質 層上成長一假晶的(Pseudomorphical ) Sin_(x2_xl)]Ge(x2_xl) 層’而此石夕基質層與絕緣層(氧化石夕層)之介面鍵結是堅固The germanium 3 is xl and the thickness is ". The buried insulating layer 61 is generally composed of silicon oxide. Another option for this embodiment is to use a wafer with a silicon layer (S (H) on the insulating layer) As a starting material, a buried insulating layer 91 and a silicon layer 92 are formed on a semiconductor substrate 90. The thickness of the silicon layer 92 is less than 100 A. The buried insulating layer 91 is generally composed of silicon oxide. A silicon-germanium layer 94 is epitaxially grown on the silicon layer 92, and then a diffusion process is used to diffuse germanium into the silicon layer 92 to the interface of the silicon oxide layer 9 丨 to change the regional bonding and form a stone on the insulating layer. The substrate of the SiGe layer (SiGe — on-insuiat〇r) is shown in the figure. Because the germanium diffuses to the interface of the silicon oxide layer 9 丨, the lattice constant of the initial silicon layer 92 and the germanium of the silicon germanium layer 92 are The Mohr fraction is χΐ, so a Si (1_xl) Ge (xl) layer similar to the Shixi germanium layer 62 can be formed. Please refer to FIG. 11 later on the Si (Buxl) Ge (xl) layer 62 or 94 ( For the sake of simplicity, the following description is only based on the Si (1_xl) Ge (xl) layer 62.) A second Si (1_x2) Ge (x2) layer 64 is epitaxially grown on the second Si (1_x2) Ge. (x 2) The error content of layer 64 is x2 and the thickness is t7. The molar fraction x2 of germanium in the second Si (ix2) Ge (x2) layer 64 is greater than χΐ, so that the second 31 (^ 2) (^ ( The required layer 64 is under the condition of biaxial compressive strain. This strain strength is equivalent to growing a pseudomorphical Sin_ (x2_xl)] Ge (x2_xl) layer on a silicon matrix layer, and this stone matrix layer Interface bonding with insulating layer (stone oxide layer) is strong
530385 五、發明說明(8) 的而並非是無拘束地易於調整。然而,此第二^。 層64是處於雙軸壓縮應變情況之下,而忽略絕緣層“及矽 層62間之介面鍵結是否無拘束地易於調整。 接著,於第二矽鍺層64上磊晶成長一第二矽層16,如 第3圖所示,此應變強度是相當於在一Si(^)Ge(x"基質層 上成長一假晶的(pseudomorphical)矽層,而此si(卜χ1) Ge(xn基質層與絕緣層(氧化矽層)之介面鍵結是堅固的而並 非^疋無拘束地易於調整。若Si(i xi)Ge(⑴基質層與絕緣層 (氧化石夕層)之介面鍵結是完全或部分無拘束地易於調整, 則最=上層矽層之拉伸應變程度會降低。然而,此第二石夕層 66 (最上層矽層)是處於雙軸拉伸應變情況之下,而忽略絕 緣層61及矽層62間之介面鍵結是否無拘束地易於調^。 綜上所述’本實施例2之說明中,可形成具有拉伸應 變之石夕層及具有壓縮應變之矽鍺層,而忽略埋藏絕緣層〜 (氧化矽層)61及最底層矽層62間之介面是否無拘束地^於 調整。由於第二矽層66對於η通道元件及p通道元件的厚度 需求亦須具有兩個厚度,所以接著依照第4至8圖,進行g 前一實施例之各項製程步驟與程序,以完成⑽⑽元件之製 作。再者,本發明中所應用之物質材料,並不限於實施例 所引述者,其能由各種具恰當特性之物質和形成方法=置 換,且本發明之結構空間亦不限於實施例引用之尺/ 小。 才大 第8圖所示 不發明尚提出,味穴,,..... ........…丨行〜、丨《丨丨、从 〇疋件,女 ,此CMOS元件具有以下次元件。第一元530385 V. The description of invention (8) is not easy to adjust without restriction. However, this second ^. The layer 64 is under a biaxial compressive strain condition, ignoring whether the interface bond between the insulating layer “and the silicon layer 62 is easy to adjust freely. Then, a second silicon is epitaxially grown on the second silicon germanium layer 64. Layer 16, as shown in FIG. 3, the strain strength is equivalent to growing a pseudomorphical silicon layer on a Si (^) Ge (x " matrix layer, and the si (Buχ1) Ge (xn The interface bond between the matrix layer and the insulating layer (silicon oxide layer) is strong and not easy to adjust freely. If Si (i xi) Ge (the interface bond between the matrix layer and the insulating layer (stone oxide layer)) The knot is completely or partially free to adjust easily, so the tensile strain of the uppermost silicon layer will be reduced. However, the second stone layer 66 (the uppermost silicon layer) is under the condition of biaxial tensile strain While ignoring whether the interface bonding between the insulating layer 61 and the silicon layer 62 is easy to adjust without restriction ^ In summary, in the description of this embodiment 2, a stone layer with tensile strain and a compressive strain can be formed. Whether the interface between the buried insulation layer ~ (silicon oxide layer) 61 and the bottommost silicon layer 62 is ignored Unconstrained adjustment. Since the second silicon layer 66 also has two thicknesses for the thickness requirements of the n-channel element and the p-channel element, the processes of the previous embodiment are then performed in accordance with Figures 4 to 8 Steps and procedures to complete the production of the element. Furthermore, the material materials used in the present invention are not limited to those cited in the examples, they can be replaced by various substances with appropriate characteristics and formation methods = replacement, and the present invention The structural space is also not limited to the ruler / small referenced in the examples. Cai Da Figure 8 shows that the invention is not yet proposed, taste points, ........丨 丨 From a female, this CMOS device has the following sub-components.
0503-7196TWF(N) ; TSMC200M254 ; ycchen.ptd * 丁 Ί 尔0503-7196TWF (N); TSMC200M254; ycchen.ptd * Ding Yier
530385 五、發明說明(9) —絕緣層上有矽層基底1〇。 第一元件係為一石夕接 矽層1 2上,其中7 鳍層1 4係使用上述方法磊晶成長於 “14係處;雙==雙軸拉伸應變情況之下而石夕 構。 坚細應變情況之下,以獲得應變平衡結 中箆第::广係為一第二矽層1 6,成長於矽鍺層1 4上,其 一戸:曰具有一第一厚度適用於一 PM0S元件,及一第 一厗度適用於一NM0S元件。 A ^ ^CM〇S兀件尚具有以下次元件:一閘極絕緣層22,形 ;一石夕層16上;一閘極電極24,形成於閘極絕緣層22 上 〇 本發明另提出一種具有應變平衡結構之CM0S元件,如 f 8圖所示,此CM〇s元件具有以了次元件。第一元件係為 絕緣層上有矽鍺層基底6 〇,此基底6 〇係忽略絕緣層61及 石夕鍺層6 2間介面是否無拘束地易於調整。 第二元件係為一第二矽鍺層6 4係使用上述方法磊晶成 長於矽鍺層62上,其中第二矽鍺層64之鍺的莫耳分率是大 於矽鍺層62,使得矽鍺層62係處於雙軸拉伸應變情況之下 而第二矽鍺層6 4係處於雙軸壓縮應變情況之下,以獲得應 變平衡結構。 & 第三元件係為一第二矽層66,成長於第二矽鍺層64 上,其中第二矽層66具有一第一厚度適用於一 PM0S元件, 及一第二厚度適用於一 NM0S元件。 此C Μ 0 S元件尚具有以下次元件:一閘極絕緣層2 2,形530385 V. Description of the invention (9)-There is a silicon substrate 10 on the insulating layer. The first element system is a silicon layer connected to a silicon layer 12, among which 7 fin layers 1 and 4 are epitaxially grown at the "14 series" using the above method; double == biaxial tensile strain and Shi Xi structure. In the case of fine strain, a strain-balanced junction can be obtained: the first is a second silicon layer 16 that is grown on the silicon germanium layer 14; the first is that it has a first thickness and is suitable for a PM0S device , And a first degree is suitable for a NMOS device. The A ^ CM0S element also has the following sub-elements: a gate insulation layer 22, a shape; a stone layer 16; a gate electrode 24, formed on The gate insulation layer 22 is provided. The present invention further proposes a CMOS device with a strain-balanced structure. As shown in FIG. 8, the CMOS device has a secondary element. The first element is a silicon germanium layer on the insulation layer. The substrate 60, which ignores whether the interface between the insulating layer 61 and the stone germanium layer 62 is easy to adjust freely. The second element is a second silicon germanium layer 64, which is epitaxially grown using the above method. On the silicon germanium layer 62, the mole fraction of germanium of the second silicon germanium layer 64 is greater than that of the silicon germanium layer 62, so that the silicon germanium layer 62 The second silicon germanium layer 64 is under a biaxial tensile strain condition and the second silicon germanium layer 64 is under a biaxial compressive strain condition to obtain a strain balanced structure. &Amp; The third element system is a second silicon layer 66, which is grown in the first On the two silicon germanium layers 64, the second silicon layer 66 has a first thickness suitable for a PMOS device, and a second thickness suitable for a NMOS device. This CMOS device also has the following sub-components: a gate Insulation layer 2 2, shape
0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第13頁 53〇3850503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 13 53〇385
成於第二石夕層16上 一閘極電極24 形成於閘極絕緣層22 本發明中所應用之物皙士 # τ ^ 者,其能由各種具恰冬::材f ’並不限於實施例所引述 本發明之結構空間亦^物質和形成方法所置換,且 雖然本發明已以:;:;f例引用之尺寸大小。 限制本發明,任何孰習揭露如上,然其並非用以 當視後附之申請專利範二斤=者=本發明之保護範圍A gate electrode 24 formed on the second stone layer 16 is formed on the gate insulation layer 22. The material used in the present invention # τ ^ can be composed of a variety of materials: The structure space of the present invention cited in the examples is also replaced by the substance and the formation method, and although the present invention has been described with :; The invention is limited, and any practice is disclosed as above, but it is not intended to be used as an attached patent application.
530385 圖式簡單說明 為讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明 如下: 第1至8圖係表示根據本發明之實施例1之具有應變平 衡結構之CMOS元件的製程剖面圖。 第9至11圖係表示根據本發明之實施例2之具有應變平 衡結構之CMOS元件的製程剖面圖。 【符號說明】 1 0〜絕緣層上有矽層基底; 11、6 1、9 1〜絕緣層; 12〜石夕層;62、92〜砍錯層; 1 6、6 6〜第二矽層; 1 8〜罩幕層; 2 2〜閘極絕緣層; 2 4〜閘極電極; 2 6〜間隙壁; 94、64第二矽鍺層。530385 Brief description of the drawings In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, the following describes the preferred embodiments and the accompanying drawings in detail, as follows: Figures 1 to 8 show A cross-sectional view of a manufacturing process of a CMOS device having a strain balance structure according to Embodiment 1 of the present invention. 9 to 11 are cross-sectional views showing the manufacturing process of a CMOS device having a strain-balanced structure according to Embodiment 2 of the present invention. [Symbol description] There is a silicon layer base on the insulating layer of 10 ~ 11; 11, 6 and 9 1 ~ insulating layer; 12 ~ Shixi layer; 62, 92 ~ cut the wrong layer; 16, 6 ~ 6 second silicon layer ; 1 8 ~ mask layer; 2 2 ~ gate insulation layer; 2 4 ~ gate electrode; 2 6 ~ spacer wall; 94, 64 second silicon germanium layer.
0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第15頁0503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 15
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91105975A TW530385B (en) | 2002-03-27 | 2002-03-27 | CMOS with strain-balanced structure and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91105975A TW530385B (en) | 2002-03-27 | 2002-03-27 | CMOS with strain-balanced structure and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW530385B true TW530385B (en) | 2003-05-01 |
Family
ID=28788559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91105975A TW530385B (en) | 2002-03-27 | 2002-03-27 | CMOS with strain-balanced structure and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW530385B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7538351B2 (en) | 2005-03-23 | 2009-05-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming an SOI structure with improved carrier mobility and ESD protection |
US7605042B2 (en) | 2005-04-18 | 2009-10-20 | Toshiba America Electronic Components, Inc. | SOI bottom pre-doping merged e-SiGe for poly height reduction |
US7812340B2 (en) | 2003-06-13 | 2010-10-12 | International Business Machines Corporation | Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same |
CN104139301A (en) * | 2014-07-31 | 2014-11-12 | 佛山市德赛格精工机械有限公司 | Turning, milling and drilling combined integrated machine tool |
-
2002
- 2002-03-27 TW TW91105975A patent/TW530385B/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7812340B2 (en) | 2003-06-13 | 2010-10-12 | International Business Machines Corporation | Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same |
US8409974B2 (en) | 2003-06-13 | 2013-04-02 | International Business Machines Corporation | Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same |
US7538351B2 (en) | 2005-03-23 | 2009-05-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming an SOI structure with improved carrier mobility and ESD protection |
US7605042B2 (en) | 2005-04-18 | 2009-10-20 | Toshiba America Electronic Components, Inc. | SOI bottom pre-doping merged e-SiGe for poly height reduction |
CN104139301A (en) * | 2014-07-31 | 2014-11-12 | 佛山市德赛格精工机械有限公司 | Turning, milling and drilling combined integrated machine tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI332269B (en) | High speed lateral heterojunction misfets realized by 2-dimensional bandgap engineering and methods thereof | |
US7566606B2 (en) | Methods of fabricating semiconductor devices having strained dual channel layers | |
US6703688B1 (en) | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits | |
TWI225283B (en) | Strained semiconductor on insulator substrate and method of forming the same | |
US6830976B2 (en) | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits | |
US6723661B2 (en) | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits | |
US6724008B2 (en) | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits | |
JP4678877B2 (en) | Silicon devices on Si: C-OI and SGOI and manufacturing methods | |
US6593641B1 (en) | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits | |
US6677192B1 (en) | Method of fabricating a relaxed silicon germanium platform having planarizing for high speed CMOS electronics and high speed analog circuits | |
US6646322B2 (en) | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits | |
US6936869B2 (en) | Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys | |
TW439300B (en) | Semiconductor device and method for fabricating the same | |
TWI230433B (en) | Isolation structures for imposing stress patterns | |
JP3372158B2 (en) | Semiconductor device and manufacturing method thereof | |
US7528056B2 (en) | Low-cost strained SOI substrate for high-performance CMOS technology | |
KR102472672B1 (en) | Strained stacked Nanosheet FETs and/OR quantum well stacked nanosheet | |
US20050233552A1 (en) | Strained channel on insulator device | |
KR20020008789A (en) | Mosfet with strained channel layer | |
JP2001257351A (en) | Semiconductor device and its manufacturing method | |
US9165945B1 (en) | Method for fabricating semiconductor structures including transistor channels having different strain states, and related semiconductor structures | |
WO2006007394A2 (en) | Strained tri-channel layer for semiconductor-based electronic devices | |
EP1364411A1 (en) | Relaxed silicon germanium platform for high speed cmos electronics and high speed analog circuits | |
JPH1092947A (en) | Semiconductor device and manufacture thereof | |
TW530385B (en) | CMOS with strain-balanced structure and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |