[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW530385B - CMOS with strain-balanced structure and method of manufacturing the same - Google Patents

CMOS with strain-balanced structure and method of manufacturing the same Download PDF

Info

Publication number
TW530385B
TW530385B TW91105975A TW91105975A TW530385B TW 530385 B TW530385 B TW 530385B TW 91105975 A TW91105975 A TW 91105975A TW 91105975 A TW91105975 A TW 91105975A TW 530385 B TW530385 B TW 530385B
Authority
TW
Taiwan
Prior art keywords
layer
strain
silicon
scope
item
Prior art date
Application number
TW91105975A
Other languages
Chinese (zh)
Inventor
Yee-Chia Yeo
Chun-Chieh Lin
Fu-Liang Yang
Mong-Song Liang
Chenming Hu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW91105975A priority Critical patent/TW530385B/en
Application granted granted Critical
Publication of TW530385B publication Critical patent/TW530385B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

A kind of method for manufacturing CMOS device having strain-balanced structure is proposed in the present invention. At first, a silicon-on-insulator (SOI) substrate is provided. Then, a silicon germanium layer is grown on the silicon layer, in which the silicon layer is in the twin-axis tensile strain condition and the silicon germanium layer is in the twin-axis compressive strain condition, so as to obtain a strain-balanced structure. After that, the second silicon layer is formed on the silicon germanium layer, in which the second silicon layer has the first thickness suitable for use in a PMOS device and has the second thickness suitable for use in an NMOS device. A patterning process is then conducted onto the substrate to define a PMOS device region and an NMOS device region. A gate insulation layer is formed on the second silicon layer. Finally, a gate electrode is formed on the gate insulation layer.

Description

530385 五、發明說明(1) 本發明係有關於一種場外雷a減 ^ ^ t 每效電晶體’特別是有關於一癯 具有拉伸應變矽層之n通道元件及 、 通道元件之CMOS(互補式金氧半場#雷θ 鍺0 方法。 、玉軋牛场效電晶體)7〇件及其製造 隨著閘極元件尺寸的縮小化,要使金氧半場效艚 (M0SFET)元件能在低操作電壓下,具有高趨動電流=高 速的效能是相當困難的。因此,許多人在努力尋求改善金 氧半場效電晶體元件之效能的方法。 利用應變引發的能帶結構變型來增加載子的遷移率, 以增加場效電晶體的趨動電流,可改善場效電晶體元件之 效能,且此種方法已被應用於各種元件中。這些元件的矽 通道係處於雙軸拉伸應變的情況。 已有研究指出利用石夕通道處於雙軸拉伸應變的情況中 來增加電子的遷移率(Κ. Ismail et al.,"Electron transport properties in Si/SiGe heterostructures: Measurements and device applications' Appl· Phys· Lett· 63,pp· 660,1 993·),及利用矽鍺通道處於雙軸 壓縮應變的情況中來增加電洞的遷移率(D. K. Nayak et al·,丨丨 Enhancement - mode quantum-well GeSi PM0Sn, IEEE Elect. Dev. Lett· 12, pp· 154, 1991·)。然而, 結合具有雙軸拉伸應變之矽通道之NMOSFETs(N型金氧半場 效電晶體)及具有雙軸壓縮應變之矽鍺通道之PM0SFETs(P 型金氧半場效電晶體)之CMOS製程技術是難以達成的。在 電晶體之製造上有利用厚的緩衝層或複雜多層結構等許多 ΙϋΜΙΙΙΗ 0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第5頁 530385 五、發明說明(2) 應變層製造方法(K· Ismail et al·, IBM,Jul· 1 996,530385 V. Description of the invention (1) The present invention relates to an out-of-field lightning a reduction ^ ^ t per effect transistor 'especially a n-channel element with a strained silicon layer and a CMOS (complementary) channel element Method: Metal oxide half field # Rayθ Germanium 0 method. 70 pieces of jade-rolled cattle field effect transistor) and its manufacturing As the size of the gate element is reduced, it is necessary to make the metal oxide half field effect (M0SFET) element at a low level. Under operating voltage, it is quite difficult to have high actuation current = high speed. Therefore, many people are trying to find a way to improve the performance of metal-oxide-semiconductor field-effect transistor devices. Strain-induced band structure modification is used to increase the mobility of carriers to increase the actuating current of the field effect transistor, which can improve the performance of the field effect transistor element, and this method has been applied to various elements. The silicon channel system of these devices is under the condition of biaxial tensile strain. It has been pointed out that the mobility of electrons is increased by using the Shixi channel in a biaxial tensile strain condition (K. Ismail et al., &Quot; Electron transport properties in Si / SiGe heterostructures: Measurements and device applications' Appl · Phys · Lett · 63, pp · 660, 1 993 ·), and the use of silicon germanium channels in the case of biaxial compressive strain to increase hole mobility (DK Nayak et al ·, 丨 Enhancement-mode quantum-well GeSi PM0Sn, IEEE Elect. Dev. Lett · 12, pp · 154, 1991 ·). However, a CMOS process technology combining NMOSFETs (N-type metal-oxide-semiconductor half-effect transistors) with silicon channels with biaxial tensile strain and PM0SFETs (P-type metal-oxide-semiconductor half-effect transistors) with silicon- germanium channels with biaxial compression strain It is difficult to achieve. In the manufacture of transistors, there are many ΙΜΜΙΙΙΙΗ 0503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 5 530385 for the use of thick buffer layers or complex multilayer structures. · Ismail et al ·, IBM, Jul · 1 996,

Complementary metal-oxide semi conductor transistor logic using strained Si/SiGe heterostructure layers,U.S· Patent No· 553471 3·),此些方法並不易 於整合到傳統之CMOS製程中。 因此,為了製造具有高趨動電流和高速的效能之金氧 半場效電晶體元件’亟待針對上述問題謀求改善之道。 有鑑於此’本發明之目的在提供一種具有應變平衡結 構之CMOS元件結構及其製造方法,其利用形成具有拉伸應 變矽層之η通道元件及具有壓縮應變矽鍺層之p通道元件之 應變平衡結構’以增進場效電晶體元件之效能。 為達成上述目的,本發明提出一種具有應變平衡結構 之CMOS元件的製造方法’首先提供一絕緣層上有石夕層 (soo之基底。其次’於此矽層上成長一矽鍺層,其θ中此 石夕層係處於雙轴拉伸應變情況之丁而此矽鍺層θ係處於雙軸 壓縮應變情況之下,以獲得應變平衡結構。接著,於此矽 鍺層上形成一第二矽層,其中此第二矽層具有一第三厚产 適用於-PM0S元件,及-第二厚度適用於_Ν_元件^ 後,對於此基底施行圖案化製程以定義出一pM〇s元 及 -Ν’:件區。再者’於此第二矽層上形成閘極絕緣;。 最後’於此閘極絕緣層上形成一閘極電極。 本發明另提出一種具有應變平衡結構之cm〇s元件,包 括:一絕緣層上有矽層基底;一矽鍺厣 L ^ ^ ^ ^ ^ . &丄 两禮成長於此絕緣層 上有矽層基底上,其中此矽層係處於雙鉦 !釉拉伸應變情況之Complementary metal-oxide semi conductor transistor logic using strained Si / SiGe heterostructure layers, U.S. Patent No. 553471 3 ·), these methods are not easy to integrate into traditional CMOS processes. Therefore, in order to manufacture a metal-oxide half-field-effect transistor element with high actuating current and high-speed efficiency, it is urgent to seek improvement for the above problems. In view of this, the object of the present invention is to provide a CMOS device structure with a strain-balanced structure and a method for manufacturing the same, which utilize the strain of an n-channel device having a tensile strained silicon layer and a p-channel device with a compressive strained silicon germanium layer. 'Balance structure' to improve the performance of field effect transistor devices. In order to achieve the above-mentioned object, the present invention proposes a method for manufacturing a CMOS device with a strain-balanced structure. 'First, a substrate with a stone layer (soo) on an insulating layer is provided. Second, a silicon-germanium layer is grown on the silicon layer. The Shixi layer is under the condition of biaxial tensile strain and the silicon-germanium layer θ is under the condition of biaxial compressive strain to obtain a strain balanced structure. Then, a second silicon is formed on the silicon-germanium layer. Layer, where the second silicon layer has a third thickness suitable for -PM0S devices, and-after the second thickness is suitable for _N_ devices ^, a patterning process is performed on this substrate to define a pM0s element and -N ': piece area. Furthermore,' gate insulation is formed on this second silicon layer; and finally, a gate electrode is formed on this gate insulation layer. The present invention also proposes a cm with a strain-balanced structure. The s element includes: a silicon substrate on an insulating layer; a silicon germanium 厣 L ^ ^ ^ ^ ^. & 丄 two growths on the silicon substrate on the insulating layer, where the silicon layer is in a double ! The glaze tensile strain

530385 五、發明說明(3) ΐίί:鍺層係處於雙軸壓縮應變情況之下’以獲得應變 矽屏—第二矽層’成長於此矽鍺層1,其中此第二 用::N_第:厚度適用於一職元件’及-第二厚度適 以及_ 疋件;一閘極絕緣層’形成於此第二矽層上; ^ 一閘極電極,形成於此閘極絕緣層上。 曰 汽施例1 其製i ΐ明提供一種具有應變平衡結構之cm〇s元件結構及 半遂=ϊ法。本發明之觀念係應用具有不同晶格常數之各 較=^膜層間在鬆他狀態之互相作用,在鬆他狀態具有 曰日秸之半導體薄膜層是處於壓縮應變情況之下,而且 ,季^小晶格常數之半導體薄膜層是處於壓縮應變情況之:^ 進而形成一具有應變平衡結構。例如,一 之堆疊層結構,在具有不同晶格常數之;層= 壓i i ί弛狀悲之互相作用下’其中石夕錯層係處於雙軸 ι細應蜓情況之下而矽層係處於雙軸拉伸應變情況之下。 夂應變平衡結構可藉由后述說明的方法來製作,首先請 二丨第1圖,在一半導體基底丨〇上形成一埋藏絕緣層11及 半導體層1 2,本實施例則以一絕緣層上有矽層(s i丨i c〇n = n〜insulator,s〇I)之晶圓為例,用以做為啟始材料, :利用植入氧(SIM0X)或是SmartCut®技術來得到隔離,但 ,不以此為限制。半導體層(s〇I層)12 一般是厚度約2〇〇 ^ 的矽材料。埋藏絕緣層1丨一般是由氧化矽所構成。之後, 於矽層12上磊晶成長一矽鍺層14,如第2圖所示,矽鍺層 14的厚度t2是要與矽層12的厚度u相當而使得矽層^係曰處530385 V. Description of the invention (3) ΐίί: The germanium layer is under the condition of biaxial compressive strain 'to obtain a strained silicon screen-the second silicon layer' is grown on this silicon germanium layer 1, where this second use :: N_ No .: the thickness is suitable for the first element and the second thickness is suitable; the gate insulation layer is formed on the second silicon layer; ^ a gate electrode is formed on the gate insulation layer. Said steam application example 1 Its manufacturing method provides a cm0s element structure with a strain-balanced structure and a semi-successive method. The concept of the present invention is to apply the comparisons with different lattice constants to the interaction between the film layers in the loose state, and the semiconductor thin film layer with the Japanese straw in the loose state is under compressive strain. The semiconductor thin film layer with a small lattice constant is in a compressive strain condition: ^ and then a strain-balanced structure is formed. For example, a stacked layer structure of one, under the interaction of different lattice constants; layer = ii the relaxation of the sorrowful sorrowful interaction 'where the Shixi fault layer is under the biaxial condition and the silicon layer is under Under biaxial tensile strain.夂 The strain balance structure can be manufactured by the method described below. First, please refer to Figure 1 to form a buried insulating layer 11 and a semiconductor layer 12 on a semiconductor substrate. In this embodiment, an insulating layer is used. As an example, a wafer with a silicon layer (si 丨 ic〇n = n ~ insulator, so) is used as the starting material: using implanted oxygen (SIM0X) or SmartCut® technology to obtain isolation, However, this is not a limitation. The semiconductor layer (SOI layer) 12 is generally a silicon material having a thickness of about 2000 ^. The buried insulating layer 1 is generally composed of silicon oxide. After that, a silicon germanium layer 14 is epitaxially grown on the silicon layer 12. As shown in FIG. 2, the thickness t2 of the silicon germanium layer 14 is to be equal to the thickness u of the silicon layer 12 so that the silicon layer ^

530385 、發明說明(4) 情、兄^ ^伸應蜒情況之下而矽鍺層1 4係處於雙軸壓縮應變 /凡之:,以獲得應變平衡結構。 圖所^者:於矽鍺層1 4上磊晶成長一第二矽層1 6,如第3 敍Mil,第二矽層16的厚度t3是要與矽層12的厚度1:1及矽 #二、、的厚度ΐ2相當而使得第二矽層1 6係處於雙軸拉伸應 更隱況之下。 在1^通道元件的情況中,第二矽層16的厚度t3須夠 ^丄使得當元件打開(turned 〇n)時在其中不會形成寄生 ,、而石夕鍺層1 4的厚度12須夠厚,如1 〇 〇埃使其能容納 大部分的可動載子(γ· —C. Yeo et ai.,”Enhanced530385, description of the invention (4) conditions, brother ^ ^ ^ ^ ^ ^ ^ ^ stretch conditions, and the silicon germanium layer 14 is in a biaxial compressive strain / where: to obtain a strain balanced structure. As shown in the figure: epitaxial growth of a second silicon layer 16 on the silicon germanium layer 14 is shown in the third example. The thickness t3 of the second silicon layer 16 is equal to the thickness 1: 1 of the silicon layer 12 and silicon. # 二 、 The thickness ΐ2 is equivalent, so that the second silicon layer 16 series should be more hidden under biaxial stretching. In the case of a 1-channel element, the thickness t3 of the second silicon layer 16 must be sufficient so that parasitics do not form therein when the element is turned on, and the thickness 12 of the stone germanium layer 14 must be Thick enough, such as 100 angstroms, to accommodate most of the movable carriers (γ · —C. Yeo et ai., "Enhanced

Performance in sub-100 nm CMOSFETs using strained epitaxial s i 1 i con-german i umf, , IEEE International Electron Device Meeting Technical Digest, pp· 753-756,San Francisco, CA,Dec· 20 0 0·)。而矽鍺層 14係處於雙軸壓縮應變情況之下且能夠大幅增加電洞的傳 輸性質(S· Kaya et al·,n Indication of velocity overshoot in strained Si0.8Ge0·2 p-channel MOSFETs”, Semiconductor Science and Technology, vol· 15, pp· 573, 2000·) 〇Si(卜x)Ge(x)層 14 中之Ge 的莫 耳分率x須夠高以增進p通道元件之效能,但不能太高以控 制接面漏電流及防止應變鬆弛問題。Si(1_x)Ge⑴層14中之 Ge的莫耳分率X可介於〇. 1至〇. 5之間。 在η通道元件的情況中,第二矽層16是作為通道用, 由於第二矽層1 6係處於雙軸拉伸應變情況之下且能夠大幅Performance in sub-100 nm CMOSFETs using strained epitaxial s i 1 i con-german i umf,, IEEE International Electron Device Meeting Technical Digest, pp. 753-756, San Francisco, CA, Dec. 20 0 0 ·). The SiGe layer 14 is under biaxial compressive strain and can greatly increase the transmission properties of holes (S. Kaya et al., N Indication of velocity overshoot in strained Si0.8Ge0 · 2 p-channel MOSFETs ", Semiconductor Science and Technology, vol. 15, pp. 573, 2000.) The Mo fraction x of Ge in Si (Bux) Ge (x) layer 14 must be high enough to improve the performance of the p-channel device, but not too much. High to control junction leakage current and prevent strain relaxation problems. The Mohr fraction X of Ge in the Si (1_x) Ge⑴ layer 14 may be between 0.1 and 0.5. In the case of n-channel elements, The second silicon layer 16 is used as a channel, because the second silicon layer 16 is under a biaxial tensile strain and can greatly

530385530385

增加遷移率及傳輸性質(Rim K. et al.,"Fabrication and analysis of deep submicron strained-Si n-M0SFETs\ IEEE Trans. Elect. Dev., vol. 47, no. 7’ ΡΡ·1406,jul· 2000·)。第二矽層16在關03區域的厚 度t3須夠厚,如1〇()埃使其能容納η通道元件大部分的可動 載子。 關於第二石夕層1 6對於η通道元件及ρ通道元件的厚度需 求,對於ρ通道元件而言,第二矽層16的厚度t3須夠薄, 如20埃,以防止在PM0S元件中形成寄生電容。對於n通道 元件而言,NM0S區域的厚度t3須夠厚,如丨00埃使其能容 納η通道元件大部分的反向電荷(電子)。要使得第^矽層 16能具有兩個厚度,可藉由下述方法來達成,先在⑽㈧製 程中成長厚度13a之第二矽層16,然後,於PM〇s區域覆蓋 一罩幕層18,如氧化矽層,接著再於CMOS所暴露之區域選 擇性蠢bb成長第二石夕層16至厚度t3b,如第4圖所示。 之後’睛參照第5圖,去除罩幕層1 8。其次,再進行 一般CMOS元件之製程,首先如第6圖所示,藉由圖案化製 程定義出PM0S元件區及NM0S元件區。 然後,請參照第7圖,於第二矽層丨6上形成閘極絕緣 層22,例如使用化學氣相沈積法於第二矽層16上沈 矽層。 、 最後,請參照第8圖,於閘極絕緣層22上形成閘極電 極24,再分別於閘極電極24兩側之ρ-井區域—井區域進 行η型和P型離子摻雜(未顯示),以及於閘極電極24 =側璧Increased mobility and transmission properties (Rim K. et al., &Quot; Fabrication and analysis of deep submicron strained-Si n-M0SFETs \ IEEE Trans. Elect. Dev., Vol. 47, no. 7 'PP · 1406, jul · 2000 ·). The thickness t3 of the second silicon layer 16 in the Guan 03 region must be sufficiently thick, such as 10 Å, so that it can accommodate most of the movable carriers of the n-channel element. Regarding the thickness requirements of the second stone layer 16 for the n-channel element and the p-channel element, for the p-channel element, the thickness t3 of the second silicon layer 16 must be thin enough, such as 20 angstroms, to prevent formation in the PMOS device. Parasitic capacitance. For an n-channel element, the thickness t3 of the NMOS region must be sufficiently thick, such as 00 Angstroms to enable it to accommodate most of the reverse charges (electrons) of the n-channel element. To enable the second silicon layer 16 to have two thicknesses, it can be achieved by the following method. First, the second silicon layer 16 with a thickness of 13a is grown in the fabrication process, and then a mask layer 18 is covered in the PM0s area. , Such as a silicon oxide layer, and then selectively grow the second stone layer 16 to a thickness t3b in the area exposed by the CMOS, as shown in FIG. 4. After that, referring to FIG. 5, the mask layer 18 is removed. Secondly, the general CMOS device manufacturing process is performed. First, as shown in FIG. 6, the PMOS device area and the NMOS device area are defined by a patterning process. Then, referring to FIG. 7, a gate insulating layer 22 is formed on the second silicon layer 6. For example, a chemical vapor deposition method is used to sink the silicon layer on the second silicon layer 16. Finally, referring to FIG. 8, a gate electrode 24 is formed on the gate insulating layer 22, and η-type and P-type ion doping (not in the (Shown), and the gate electrode 24 = side 璧

530385 五、發明說明(6) 形成間隙壁26,例如使用化學氣相 為間隙壁2 6。 積套形成氮化矽層作 /頁/主思的是’在上述應變平蜂 石夕層1 2間之介而v /百杳5处丄口 ’於絕緣層11及 曰丛#权 面須盡可此地無拘束以使矽声1 2鈐扑料甘 日日格吊數0要使得絕緣層11及矽層i 2間之八:*匕、良八 於調整以使碎層12能改變其晶格;可;地易 打斷或鬆弛絕緣層11及矽層1 2間介面之鍵二二原子以 在磊晶成長矽鍺層14之前或後施行。、、、D 述方法可530385 V. Description of the invention (6) The spacer 26 is formed, for example, a chemical vapor is used as the spacer 26. The formation of the silicon nitride layer is / page / The main idea is 'in the above-mentioned strain flat beestone layer 12 and the v / 100 杳 5 mouths' in the insulating layer 11 and Yue ## As far as possible, there is no restriction to make the silicon sound 1 2 1 钤 料 料 料 甘 日 0 to make the insulation layer 11 and the silicon layer i 2 eight: * dagger, good eight to adjust so that the broken layer 12 can change its Lattice; Yes; Ground is easy to break or relax the bond of the interface between the insulating layer 11 and the silicon layer 12 to two atoms to perform before or after the epitaxial growth of the silicon germanium layer 14. The methods described in

本發月之特徵係利用具有 S 膜層間在鬆弛肤離之石姑你ffl 日日吊數之各半導體薄 半導體作用’使得具有較小晶格常數之 導體屬膜層疋處於拉伸應變情 常數之半導齅鴒胳爲s占 而具有較大晶格 b ^ 溥層疋處於壓縮應變情況之下。顯銬妯, 此應變平衡結構並不限制使 I ^然地 矽鍺/·····矽/矽鍺/矽/二氧 百夕/ /石夕鍺/二氧化石夕之至少兩層以石夕錯/石夕 至本.^ ’以上之結構即可實現本發明。 ’^明中所應用之物f材料,並不限於實施例所引 ”各種具恰當特性之物質和形成方法所置換, 毛月之結構空間亦不限於實施例引用之尺寸大小。、 ^、第8圖中可以看出’具有壓縮應變矽鍺層能夠大幅 =口 “ /同的傳輸性質以增加p通道元件之趨動電流,而具 一拉伸應變矽層能夠產生電子速度飛速效應以增加η通& =件之趨動電流,進而增進場效電晶體元件之效能。 貫施例2 在本發明實施例2中,所形成之具有拉伸應變之矽層The feature of this month is the use of the semiconductor thin semiconductor effect with the S film layer to relax the skin between the layers and the number of days. The conductor layer with a smaller lattice constant is in the tensile strain constant. The semiconducting electrode is s-occupied and has a large lattice b ^ 溥 layer 疋 under compressive strain. Obviously, this strain balance structure is not limited to at least two layers of silicon germanium / ···· silicon / silicon germanium / silicon / dioxin xixi // shixi germanium / dioxide xixi Shi Xicuo / Shi Xizhi Ben. ^ 'The above structure can implement the present invention. The materials used in the Ming are not limited to those cited in the examples, "the various materials with appropriate characteristics and formation methods are replaced, and the structural space of Maoyue is not limited to the dimensions cited in the examples." It can be seen in the figure that the silicon-germanium layer with compressive strain can have a large transmission rate to increase the driving current of the p-channel element, and the silicon layer with a tensile strain can produce a rapid electron velocity effect to increase η Pass & = actuating current of the pieces, thereby improving the performance of field effect transistor components. Throughout Example 2 In Example 2 of the present invention, a silicon layer having tensile strain is formed.

530385530385

及具有壓縮應變之矽鍺層,是忽略實施例丨中之絕緣層u 及矽層1 2間之介面是否無拘束地易於調整。 首先請參照第9圖,在一半導體基底6〇上形成一埋 :緣層61及-矽鍺層62,本實施例則以-絕緣層上有石夕鍺 曰SiGe on insulator)之晶圓做為啟始材料。石夕鍺層μAnd the silicon germanium layer with compressive strain is ignoring whether the interface between the insulating layer u and the silicon layer 12 in the embodiment 丨 is easy to adjust without restriction. First, referring to FIG. 9, a buried layer is formed on a semiconductor substrate 60: an edge layer 61 and a silicon-germanium layer 62. In this embodiment, a wafer with SiGe on insulator on the insulating layer is used. Is the starting material. Shixi germanium layer μ

之鍺3里為xl而厚度為“。埋藏絕緣層61一般是由氧化矽 所構成。本實施例尚有另一選擇為,以一絕緣層上有矽層 (S(H)之晶圓做為啟始材料,在一半導體基底9〇上形成一曰 埋藏絕緣層91及一矽層92,矽層92之厚度小於1〇〇 A。埋 藏絕緣層9 1 一般是由氧化矽所構成。之後,於矽層92上磊 晶成長一矽鍺層94,之後再利用擴散製程將鍺擴散進入矽 層92而至氧化矽層9丨之介面,以改變區域鍵結,而形成絕 緣層上有石夕鍺層之基底(SiGe — on-insuiat〇r),如第圖 所示。由於鍺擴散至氧化矽層9丨之介面,使得初始矽層92 之晶格常數,矽鍺層92之鍺的莫耳分率為χΐ,所以可形成 類似石夕鍺層62之Si(1_xl)Ge(xl)層。 、之後請參照第11圖,於Si(卜xl)Ge(xl)層62或94(為簡化 說明起見’以下僅以Si(1_xl)Ge(xl)層62作代表來說明)上磊 晶成長一第二Si(1_x2)Ge(x2)層 64,其中第二Si(1_x2)Ge(x2)層 64 之錯含量為x2而厚度為t7。第二Si(ix2)Ge(x2)層64之鍺的莫 耳分率x2是大於χΐ,如此使得第二31(^2)(^(必層64係處於 雙軸壓縮應變情況之下。此應變強度是相當於在一矽基質 層上成長一假晶的(Pseudomorphical ) Sin_(x2_xl)]Ge(x2_xl) 層’而此石夕基質層與絕緣層(氧化石夕層)之介面鍵結是堅固The germanium 3 is xl and the thickness is ". The buried insulating layer 61 is generally composed of silicon oxide. Another option for this embodiment is to use a wafer with a silicon layer (S (H) on the insulating layer) As a starting material, a buried insulating layer 91 and a silicon layer 92 are formed on a semiconductor substrate 90. The thickness of the silicon layer 92 is less than 100 A. The buried insulating layer 91 is generally composed of silicon oxide. A silicon-germanium layer 94 is epitaxially grown on the silicon layer 92, and then a diffusion process is used to diffuse germanium into the silicon layer 92 to the interface of the silicon oxide layer 9 丨 to change the regional bonding and form a stone on the insulating layer. The substrate of the SiGe layer (SiGe — on-insuiat〇r) is shown in the figure. Because the germanium diffuses to the interface of the silicon oxide layer 9 丨, the lattice constant of the initial silicon layer 92 and the germanium of the silicon germanium layer 92 are The Mohr fraction is χΐ, so a Si (1_xl) Ge (xl) layer similar to the Shixi germanium layer 62 can be formed. Please refer to FIG. 11 later on the Si (Buxl) Ge (xl) layer 62 or 94 ( For the sake of simplicity, the following description is only based on the Si (1_xl) Ge (xl) layer 62.) A second Si (1_x2) Ge (x2) layer 64 is epitaxially grown on the second Si (1_x2) Ge. (x 2) The error content of layer 64 is x2 and the thickness is t7. The molar fraction x2 of germanium in the second Si (ix2) Ge (x2) layer 64 is greater than χΐ, so that the second 31 (^ 2) (^ ( The required layer 64 is under the condition of biaxial compressive strain. This strain strength is equivalent to growing a pseudomorphical Sin_ (x2_xl)] Ge (x2_xl) layer on a silicon matrix layer, and this stone matrix layer Interface bonding with insulating layer (stone oxide layer) is strong

530385 五、發明說明(8) 的而並非是無拘束地易於調整。然而,此第二^。 層64是處於雙軸壓縮應變情況之下,而忽略絕緣層“及矽 層62間之介面鍵結是否無拘束地易於調整。 接著,於第二矽鍺層64上磊晶成長一第二矽層16,如 第3圖所示,此應變強度是相當於在一Si(^)Ge(x"基質層 上成長一假晶的(pseudomorphical)矽層,而此si(卜χ1) Ge(xn基質層與絕緣層(氧化矽層)之介面鍵結是堅固的而並 非^疋無拘束地易於調整。若Si(i xi)Ge(⑴基質層與絕緣層 (氧化石夕層)之介面鍵結是完全或部分無拘束地易於調整, 則最=上層矽層之拉伸應變程度會降低。然而,此第二石夕層 66 (最上層矽層)是處於雙軸拉伸應變情況之下,而忽略絕 緣層61及矽層62間之介面鍵結是否無拘束地易於調^。 綜上所述’本實施例2之說明中,可形成具有拉伸應 變之石夕層及具有壓縮應變之矽鍺層,而忽略埋藏絕緣層〜 (氧化矽層)61及最底層矽層62間之介面是否無拘束地^於 調整。由於第二矽層66對於η通道元件及p通道元件的厚度 需求亦須具有兩個厚度,所以接著依照第4至8圖,進行g 前一實施例之各項製程步驟與程序,以完成⑽⑽元件之製 作。再者,本發明中所應用之物質材料,並不限於實施例 所引述者,其能由各種具恰當特性之物質和形成方法=置 換,且本發明之結構空間亦不限於實施例引用之尺/ 小。 才大 第8圖所示 不發明尚提出,味穴,,..... ........…丨行〜、丨《丨丨、从 〇疋件,女 ,此CMOS元件具有以下次元件。第一元530385 V. The description of invention (8) is not easy to adjust without restriction. However, this second ^. The layer 64 is under a biaxial compressive strain condition, ignoring whether the interface bond between the insulating layer “and the silicon layer 62 is easy to adjust freely. Then, a second silicon is epitaxially grown on the second silicon germanium layer 64. Layer 16, as shown in FIG. 3, the strain strength is equivalent to growing a pseudomorphical silicon layer on a Si (^) Ge (x " matrix layer, and the si (Buχ1) Ge (xn The interface bond between the matrix layer and the insulating layer (silicon oxide layer) is strong and not easy to adjust freely. If Si (i xi) Ge (the interface bond between the matrix layer and the insulating layer (stone oxide layer)) The knot is completely or partially free to adjust easily, so the tensile strain of the uppermost silicon layer will be reduced. However, the second stone layer 66 (the uppermost silicon layer) is under the condition of biaxial tensile strain While ignoring whether the interface bonding between the insulating layer 61 and the silicon layer 62 is easy to adjust without restriction ^ In summary, in the description of this embodiment 2, a stone layer with tensile strain and a compressive strain can be formed. Whether the interface between the buried insulation layer ~ (silicon oxide layer) 61 and the bottommost silicon layer 62 is ignored Unconstrained adjustment. Since the second silicon layer 66 also has two thicknesses for the thickness requirements of the n-channel element and the p-channel element, the processes of the previous embodiment are then performed in accordance with Figures 4 to 8 Steps and procedures to complete the production of the element. Furthermore, the material materials used in the present invention are not limited to those cited in the examples, they can be replaced by various substances with appropriate characteristics and formation methods = replacement, and the present invention The structural space is also not limited to the ruler / small referenced in the examples. Cai Da Figure 8 shows that the invention is not yet proposed, taste points, ........丨 丨 From a female, this CMOS device has the following sub-components.

0503-7196TWF(N) ; TSMC200M254 ; ycchen.ptd * 丁 Ί 尔0503-7196TWF (N); TSMC200M254; ycchen.ptd * Ding Yier

530385 五、發明說明(9) —絕緣層上有矽層基底1〇。 第一元件係為一石夕接 矽層1 2上,其中7 鳍層1 4係使用上述方法磊晶成長於 “14係處;雙==雙軸拉伸應變情況之下而石夕 構。 坚細應變情況之下,以獲得應變平衡結 中箆第::广係為一第二矽層1 6,成長於矽鍺層1 4上,其 一戸:曰具有一第一厚度適用於一 PM0S元件,及一第 一厗度適用於一NM0S元件。 A ^ ^CM〇S兀件尚具有以下次元件:一閘極絕緣層22,形 ;一石夕層16上;一閘極電極24,形成於閘極絕緣層22 上 〇 本發明另提出一種具有應變平衡結構之CM0S元件,如 f 8圖所示,此CM〇s元件具有以了次元件。第一元件係為 絕緣層上有矽鍺層基底6 〇,此基底6 〇係忽略絕緣層61及 石夕鍺層6 2間介面是否無拘束地易於調整。 第二元件係為一第二矽鍺層6 4係使用上述方法磊晶成 長於矽鍺層62上,其中第二矽鍺層64之鍺的莫耳分率是大 於矽鍺層62,使得矽鍺層62係處於雙軸拉伸應變情況之下 而第二矽鍺層6 4係處於雙軸壓縮應變情況之下,以獲得應 變平衡結構。 & 第三元件係為一第二矽層66,成長於第二矽鍺層64 上,其中第二矽層66具有一第一厚度適用於一 PM0S元件, 及一第二厚度適用於一 NM0S元件。 此C Μ 0 S元件尚具有以下次元件:一閘極絕緣層2 2,形530385 V. Description of the invention (9)-There is a silicon substrate 10 on the insulating layer. The first element system is a silicon layer connected to a silicon layer 12, among which 7 fin layers 1 and 4 are epitaxially grown at the "14 series" using the above method; double == biaxial tensile strain and Shi Xi structure. In the case of fine strain, a strain-balanced junction can be obtained: the first is a second silicon layer 16 that is grown on the silicon germanium layer 14; the first is that it has a first thickness and is suitable for a PM0S device , And a first degree is suitable for a NMOS device. The A ^ CM0S element also has the following sub-elements: a gate insulation layer 22, a shape; a stone layer 16; a gate electrode 24, formed on The gate insulation layer 22 is provided. The present invention further proposes a CMOS device with a strain-balanced structure. As shown in FIG. 8, the CMOS device has a secondary element. The first element is a silicon germanium layer on the insulation layer. The substrate 60, which ignores whether the interface between the insulating layer 61 and the stone germanium layer 62 is easy to adjust freely. The second element is a second silicon germanium layer 64, which is epitaxially grown using the above method. On the silicon germanium layer 62, the mole fraction of germanium of the second silicon germanium layer 64 is greater than that of the silicon germanium layer 62, so that the silicon germanium layer 62 The second silicon germanium layer 64 is under a biaxial tensile strain condition and the second silicon germanium layer 64 is under a biaxial compressive strain condition to obtain a strain balanced structure. &Amp; The third element system is a second silicon layer 66, which is grown in the first On the two silicon germanium layers 64, the second silicon layer 66 has a first thickness suitable for a PMOS device, and a second thickness suitable for a NMOS device. This CMOS device also has the following sub-components: a gate Insulation layer 2 2, shape

0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第13頁 53〇3850503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 13 53〇385

成於第二石夕層16上 一閘極電極24 形成於閘極絕緣層22 本發明中所應用之物皙士 # τ ^ 者,其能由各種具恰冬::材f ’並不限於實施例所引述 本發明之結構空間亦^物質和形成方法所置換,且 雖然本發明已以:;:;f例引用之尺寸大小。 限制本發明,任何孰習揭露如上,然其並非用以 當視後附之申請專利範二斤=者=本發明之保護範圍A gate electrode 24 formed on the second stone layer 16 is formed on the gate insulation layer 22. The material used in the present invention # τ ^ can be composed of a variety of materials: The structure space of the present invention cited in the examples is also replaced by the substance and the formation method, and although the present invention has been described with :; The invention is limited, and any practice is disclosed as above, but it is not intended to be used as an attached patent application.

530385 圖式簡單說明 為讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明 如下: 第1至8圖係表示根據本發明之實施例1之具有應變平 衡結構之CMOS元件的製程剖面圖。 第9至11圖係表示根據本發明之實施例2之具有應變平 衡結構之CMOS元件的製程剖面圖。 【符號說明】 1 0〜絕緣層上有矽層基底; 11、6 1、9 1〜絕緣層; 12〜石夕層;62、92〜砍錯層; 1 6、6 6〜第二矽層; 1 8〜罩幕層; 2 2〜閘極絕緣層; 2 4〜閘極電極; 2 6〜間隙壁; 94、64第二矽鍺層。530385 Brief description of the drawings In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, the following describes the preferred embodiments and the accompanying drawings in detail, as follows: Figures 1 to 8 show A cross-sectional view of a manufacturing process of a CMOS device having a strain balance structure according to Embodiment 1 of the present invention. 9 to 11 are cross-sectional views showing the manufacturing process of a CMOS device having a strain-balanced structure according to Embodiment 2 of the present invention. [Symbol description] There is a silicon layer base on the insulating layer of 10 ~ 11; 11, 6 and 9 1 ~ insulating layer; 12 ~ Shixi layer; 62, 92 ~ cut the wrong layer; 16, 6 ~ 6 second silicon layer ; 1 8 ~ mask layer; 2 2 ~ gate insulation layer; 2 4 ~ gate electrode; 2 6 ~ spacer wall; 94, 64 second silicon germanium layer.

0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第15頁0503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 15

Claims (1)

530385530385 六、申請專利範圍 k 一—種具有應變平衡結構之CM0S(互補式金氧半 電晶體)元件的製造方法,包括下列步驟: 提供一絕緣層上有石夕層(S〇i)之基底; 於該矽層上成長一矽鍺層,其中該矽層係處於雙軸拉 伸應變情況之下而該矽鍺層係處於雙軸壓縮應變情況之 下,以獲得應變平衡結構; / 於該石夕鍺層上形成一第二矽層,其中該第二矽層具有 一第一厚度之第一區,及一第二厚度之第二區; 對於該基底施行圖案化製程以定義出該第一區為一 PM0S(P型金氧半場效電晶體)元件區及該第二區為一 NM0S(N型金氧半場效電晶體)元件區; 於該第二矽層上形成閘極絕緣層;以及 於該閘極絕緣層上形成一閘極電極。 2·如申請專利範圍第1項所述之具有應變平衡結構之 CMOS元件的製造方法,更包括在成長該石夕鍺層之前或之後 藉由植入原子以打斷或鬆弛該絕緣層上有矽層(s〇I)之基 底之該絕緣層及該矽層間介面之鍵結,使得該絕緣層及該 矽層間之介面易於調整以使該矽層能改變其晶格常數。 3·如申請專利範圍第1項所述之具有應變平衡結構之 CMOS元件的製造方法,更包括在成長該矽鍺層之後藉由植 入原子以打斷或鬆弛該絕緣層上有矽層(S〇 I)之基底之該 絕緣層及該矽層間介面之鍵結,使得該絕緣層及該矽層間 之介面易於調整以使該矽層能改變其晶格常數。 4 ·如申請專利範圍第1項所述之具有應變平衡結構之6. Scope of patent application k. A method for manufacturing a CM0S (Complementary Metal Oxide Semi-Electric Transistor) element with a strain-balanced structure, including the following steps: providing a substrate with a Shi Xi layer (Soi) on an insulating layer; Growing a silicon germanium layer on the silicon layer, wherein the silicon layer system is under a biaxial tensile strain condition and the silicon germanium layer system is under a biaxial compressive strain condition to obtain a strain balanced structure; A second silicon layer is formed on the germanium layer, wherein the second silicon layer has a first region with a first thickness and a second region with a second thickness; a patterning process is performed on the substrate to define the first A region is a PM0S (P-type metal-oxide-semiconductor field-effect transistor) element region and the second region is a NMOS (N-type metal-oxide-semiconductor field-effect transistor) element region; a gate insulating layer is formed on the second silicon layer; And forming a gate electrode on the gate insulating layer. 2. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 1 of the scope of the patent application, further comprising interrupting or relaxing the insulating layer by implanting atoms before or after growing the stone germanium layer. The bonding of the insulating layer and the interface between the silicon layers on the base of the silicon layer (sio) makes it easy to adjust the interface between the insulating layer and the silicon layer so that the silicon layer can change its lattice constant. 3. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 1 of the scope of the patent application, further comprising interrupting or relaxing the silicon layer on the insulating layer by implanting atoms after growing the silicon-germanium layer ( The bonding between the insulating layer and the interlayer interface of the silicon substrate makes the interface between the insulating layer and the silicon layer easy to adjust so that the silicon layer can change its lattice constant. 4 · The strain-balanced structure as described in item 1 of the patent application 0503-7196TW(N) ; TSMC2001-1254 ; ycchen.ptd 第16頁 530385 六、申請專利範圍 CMOS元件的製造方法,其中該第二矽層的形成方法,包括 下列步驟: 於該矽鍺層上形成該第一厚度之該第二矽層; 於PM0S區域覆蓋一罩幕層; 於未覆蓋該罩幕層之暴露區威選擇性磊晶成長該第二 矽層至該二厚度;以及 去除該罩幕層。 5·如申請專利範圍第4項所述之具有應變平衡結構之 CMOS元件的製造方法,其中該罩幕層為一氧化矽層。 6·如申請專利範圍第1項所述之具有應變平衡結構之 CMOS元件的製造方法,其中該其中該第一厚度為1〇 —3〇 埃。 7 ·如申請專利範圍第1項所述之具有應變平衡結構之 CMOS元件的製造方法,其中該其中該第二厚度為1〇〇 — 12〇 埃。 8.如申請專利冑®第i項所述之具有 CMOS元件的製造方法,A中呤Mh艾丁珂、0稱之 沈積法沈積一氧化石夕層閑極絕緣層係使用化學氣相 9 ·如申請專利範圍第1頊张 CMOS元件的製造方法,中、"”有應變平衡結構之 晶法。 八〒成長該秒鍺層係使用選擇性蟲 1 〇 ·如申請專利範圍第1項 CMOS元件的製造方法,其中兮’'之具有應變平衡結構之 於0.1至0.5之間。 錯層中鍺的莫耳分率是介, 0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第17頁 530385 六、申請專利範圍 11 · 一種呈右鹿▲ 包括下列步驟、:應變平衡結構2cM〇S元件的製造方法, 提 底; 於 之鍺的 轴拉伸 情況之 於 具有一 對 PM0S 元 於 於 12 之 CMOS 基底係 調整。 13 之 CMOS 形成方 提 於 於 供 絕、緣JS L 士》 曰 有石夕鍺層(SiGe-on-insulator)之基 該石夕鍺層上& 莫耳分率t成長一第二矽鍺層,其中該第二矽鍺層 應變:ί i於該矽鍺層’使得該矽鍺層係處於雙 下,LV從/ 而該第二矽鍺層係處於雙軸壓縮應變 j獲得應變平衡結構; 口 乂第一石夕錯層卜形Λ、 咕 第-厚产Π士 矽層,其中該第二矽層 於1區,及一第二厚度之第二區; 件區ί;;行圖案化製程以定義出該第-區為-# ^ 第二區為一NM0S元件區; 兮ρ弓j:夕層上形成閑極絕緣層;以及 Λ,緣層均成—問極電極。 元件Λ專造利方範:第乂項所述之具有應變平衡結構 忽略該絕緣岸及:、t ’對於該絕緣層上有矽鍺層 、’ θ及β亥矽鍺層間介面是否無拘束地易於 元如件申二專造利Λ圍第::所述… 法,包括m驟絕緣層上有石夕錯層基底的 供一半導體基底; ί t Ϊ體基底上形成一埋藏絕緣層及-矽;; “石θ上成長該矽鍺層;以及 曰0503-7196TW (N); TSMC2001-1254; ycchen.ptd page 16 530385 6. Method for manufacturing a patent-application CMOS device, wherein the method for forming the second silicon layer includes the following steps: forming on the silicon germanium layer Covering the second silicon layer of the first thickness; covering a mask layer in the PMOS region; selectively epitaxially growing the second silicon layer to the two thicknesses in an exposed area not covering the mask layer; and removing the mask Curtain layer. 5. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 4 of the scope of the patent application, wherein the mask layer is a silicon oxide layer. 6. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 1 of the scope of the patent application, wherein the first thickness is 10 to 30 angstroms. 7. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 1 of the scope of the patent application, wherein the second thickness is 100-120 angstroms. 8. As described in the patent application 胄 ® item i of the manufacturing method with CMOS device, the deposition method of the monolayer oxide monolayer insulation layer is deposited using the chemical vapor phase 9 · For example, the manufacturing method of the first patented CMOS device in the scope of patent application, "Crystal method with strain balance structure". The growth of the second germanium layer using selective worms. The manufacturing method of the device, which has a strain-balanced structure between 0.1 and 0.5. The molar fraction of germanium in the split layer is medium, 0503-7196TWF (N); TSMC2001-1254; ycchen.ptd No. 17 Page 530385 6. Scope of patent application11. A right deer ▲ includes the following steps: a method for manufacturing a 2cMOS device with a strain balance structure, and lifting the bottom; the axial stretching of the germanium is better than having a pair of PM0S elements in the The CMOS base system of 12 is adjusted. The CMOS formation method of 13 is based on the supply and output, and it is based on the SiGe-on-insulator layer. t growing a second silicon germanium layer, wherein the first The strain of the silicon germanium layer: the silicon germanium layer is used to make the silicon germanium layer system under double, LV obtains a strain equilibrium structure from / and the second silicon germanium layer system is under a biaxial compressive strain j; The slab layer Λ, Gudi-thickness Π silicon layer, where the second silicon layer is in area 1, and a second thickness of the second area; the area of the pattern ;; a patterning process is performed to define the The first area is-# ^ The second area is an NMOS device area; Xi ρ arch j: a free-pole insulating layer is formed on the layer; and Λ, the edge layer is formed as an interrogation electrode. The component Λ is specially made to benefit: The strain-balanced structure described in item 忽略 ignores the insulating bank and: t, for whether there is a silicon germanium layer on the insulating layer, and whether the interface between the θ and β silicon germanium layer is unrestricted and easy to apply. The method of Li Λ Wai :: said method, including a semiconductor substrate with a Shi Xi split layer substrate on the m insulating layer; a buried insulating layer and -silicon are formed on the substrate; The silicon germanium layer; and 0503-7196TWF(N) ; TSMC200M254 ; ycchen.ptd0503-7196TWF (N); TSMC200M254; ycchen.ptd 第18頁 530385 六、申請專利範圍 1 ' 利用擴散製程將該矽鍺層之鍺擴散進入該矽層而至該 絕緣層之介面,以改變區域鍵結,而形成該絕緣層上有 鍺層之基底。 14 ·如申請專利範圍第1 3項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該其中該矽層之厚度小於 1 0 0 埃。 ’、 1 5 ·如申請專利範圍第丨丨項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第二矽層的形成方法,包 括下列步驟: 於該矽鍺層上形成該第一厚度之該第二矽層; 於PM0S區域覆蓋一罩幕層; 於未覆蓋該罩幕層之暴露區域選擇性磊晶成長該第二 矽層至該二厚度;以及 去除該罩幕層。 1 6 ·如申請專利範圍第1 5項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該罩幕層為一氧化碎層。 1 7 ·如申請專利範圍第11項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該其中該第一厚度為10-30 埃。 1 8 ·如申請專利範圍第11項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該其中該第二厚度為 1 0 0 - 1 2 0 埃。 1 9 ·如申請專利範圍第11項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該閘極絕緣層係使用化學氣Page 18, 530385 VI. Application Patent Scope 1 ′ The diffusion of the germanium of the silicon germanium layer into the silicon layer to the interface of the insulating layer using a diffusion process to change the regional bonding to form a germanium layer on the insulating layer. Substrate. 14. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 13 of the scope of the patent application, wherein the thickness of the silicon layer is less than 100 angstroms. ', 1 5 · The method for manufacturing a CMOS device with a strain-balanced structure as described in item 丨 丨 of the scope of patent application, wherein the method for forming the second silicon layer includes the following steps: forming the first silicon layer on the silicon germanium layer A thickness of the second silicon layer; covering a mask layer in the PMOS region; selectively epitaxially growing the second silicon layer to the two thicknesses in an exposed area not covered by the mask layer; and removing the mask layer. 16 · The method for manufacturing a CMOS device with a strain-balanced structure as described in item 15 of the scope of the patent application, wherein the mask layer is a broken oxide layer. 1 7 · The method for manufacturing a CMOS device with a strain-balanced structure as described in item 11 of the scope of patent application, wherein the first thickness is 10-30 Angstroms. 18 · The method for manufacturing a CMOS device having a strain-balanced structure as described in item 11 of the scope of the patent application, wherein the second thickness is 100 to 120 Angstroms. 1 9 · The method for manufacturing a CMOS device with a strain-balanced structure as described in item 11 of the scope of patent application, wherein the gate insulating layer uses a chemical gas 0503-7196TWF(N) ; TSMC200M254 ; ycchen.ptd 第 19 頁 530385 六、申請專利範圍 — 相沈積法沈積一氧化矽層。 2 0 ·如申睛專利範圍第1 1項所述之具有應變平衡结構 之CMOS元件的製造方法,其中成長該第二矽鍺 使^ 擇性磊晶法。 亍、彳史用選 21· 一種具有應變平衡結構之CMOS元件的製造方φ, 包括下列步驟: / 提供—絕緣層上有矽層(SOI )之基底; 1該♦層上成長一石夕鍺層,其中該石夕層係處於雙軸拉 伸應變情況之下而該矽鍺層係處於雙軸壓縮應變情況之下 ’以獲得應變平衡結構; 對於該基底施行圖案化製程以定義出一PM0S元件區 一NM0S元件區; 久 於該石夕鍺層上形成閘極絕緣層;以及 於该閘極絕緣層上形成一閘極電極。 22·如申請專利範圍第21項所述之具有應變平衡結構 之CjOS元件的製造方法,更包括在成長該矽鍺層之前或之 後藉由植入原子以打斷或鬆弛該絕緣層上有矽層(so丨)之 基底之該絕緣層及該矽層間介面之鍵結,使得該絕緣層及 該石夕層間之介面易於調整以使該矽層能改變其晶格常數。 23·如申請專利範圍第21項所述之具有應變平衡結構 之CMOS元件的製造方法,更包括在成長該矽鍺層之後藉由 植入原子以打斷或鬆弛該絕緣層上有矽層(s〇〗)之基底之 該絕緣層及該矽層間介面之鍵結,使得該絕緣層及該矽層 間之介面易於調整以使該矽層能改變其晶格常數。0503-7196TWF (N); TSMC200M254; ycchen.ptd page 19 530385 6. Scope of patent application-Phase deposition method to deposit a silicon oxide layer. 2 0. The method for manufacturing a CMOS device having a strain-balanced structure as described in item 11 of the patent scope of Shenyan, wherein the second silicon germanium is grown by a selective epitaxy method.亍 、 彳 史 用 选 21 · A manufacturing method of a CMOS device with a strain-balanced structure φ includes the following steps: / Provide-a substrate with a silicon layer (SOI) on the insulating layer; 1 a silicon germanium layer is grown on this layer Where the Shixi layer is under a biaxial tensile strain condition and the silicon germanium layer is under a biaxial compressive strain condition to obtain a strain balanced structure; a patterning process is performed on the substrate to define a PM0S element An NMOS device region; a gate insulating layer is formed on the stone germanium layer; and a gate electrode is formed on the gate insulating layer. 22. The method for manufacturing a CjOS device with a strain-balanced structure as described in item 21 of the scope of the patent application, further comprising interrupting or relaxing the silicon on the insulating layer by implanting atoms before or after growing the silicon-germanium layer. The bonding of the insulating layer and the interface between the silicon layers on the substrate of the layer (so) makes the interface between the insulating layer and the stone layer easy to adjust so that the silicon layer can change its lattice constant. 23. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 21 of the scope of the patent application, further comprising interrupting or relaxing the silicon layer on the insulating layer by implanting atoms after growing the silicon-germanium layer ( s 〖〗) The bonding of the insulating layer and the interface between the silicon layers of the base makes the interface between the insulating layer and the silicon layer easy to adjust so that the silicon layer can change its lattice constant. 0503-7196TWF(N) ; TSMC200M254 ; ycchen.ptd 530385 六、申請專利範圍 24·如申請專利範圍第21項所述之具有應變平衡結構 ’CMOS元件的製造方法,其中該閘極絕緣層係使用α 相沈積法沈積一氧化矽層。 予乳 25·如申請專利範圍第21項所述之具有應變平 之CMOS元件的贺土生古、土 ^ ^ ^ . ^ iW、、、〇構 磊曰法。 I仏方法,其中成長泫矽鍺層係使用選擇性 26·如申請專利範圍第21 述之 之CMOS元件的魁造方、车甘士 — a处旺丄 衡結構 介於〇·1至0.5之間 層中鍺的莫耳分率是 包括2下7.列;種驟具有應變平衡結構之簡元件咖 底 提供一絕緣層上有矽鍺層(SiGe_〇n_insuiat〇r)之基 於該矽鍺層上成長一第二矽鍺層,1 之鍺的莫耳分率是大於 ,、中A第一石夕鍺層 軸拉伸應變情況之下鍺二使得該石夕錯層係處於雙 情況之下,以獲得應變錯層係處於雙軸壓縮應變 一』底施行圖案化製程以定義出,S元件區及 於該第二矽鍺層上形成閘極絕 於該閉極絕緣層上形成一閘極Τ二:以及 28·如申請專利範圍第27項 之CMOS元件的製造方法,其中,吨之八有應變平衡結構 基底係忽略該絕緣層及該矽鍺屛2於該絕緣層上有矽鍺層 q間介面是否無拘束地易於0503-7196TWF (N); TSMC200M254; ycchen.ptd 530385 6. Patent application scope 24. The method for manufacturing a 'CMOS element with a strain-balanced structure as described in item 21 of the patent application scope, wherein the gate insulating layer uses α A phase deposition method is used to deposit a silicon oxide layer. Breast milk 25. As described in item 21 of the scope of the patent application, He Tusheng ancient and native CMOS elements with strain flattening ^ ^ ^. ^ IW ,,,, and 0 structure. Method I, in which the growth of the silicon germanium layer is selective. 26. For example, the founder of the CMOS device described in the scope of application for patent 21, Chegans — a place with a balance structure between 0.1 to 0.5. The Mohr fraction of germanium in the interlayer is composed of 2 and 7. columns; a simple element with a strain-balanced structure provides a silicon-germanium layer (SiGe_〇n_insuiat〇r) on the insulation layer based on the silicon-germanium A second silicon-germanium layer is grown on the layer. The molar fraction of germanium of 1 is greater than that of the middle A. The first germanium layer under the axial tensile strain of germanium II makes the double-layered stone layer system in a dual-case condition. Next, a patterned process is performed to obtain a strained staggered layer under biaxial compressive strain to define the S element region and the gate formed on the second silicon germanium layer to form a gate on the closed-pole insulating layer. Pole 2: and 28. The manufacturing method of the CMOS device according to item 27 of the patent application scope, wherein the substrate of the strain-balanced structure of the eight tons is ignoring the insulating layer and the silicon-germanium substrate. 2 There is silicon-germanium on the insulating layer. Is the interface between layers q easy and free? 530385530385 調整。 之如/請專利範圍第27項所述之具有應變平衡結構 JCM0S件的製造方法’其中該絕緣層上有石夕鍺層基底的 形成方法,包括下列步驟: 提供一半導體基底; 於該半導體基底上形成一埋藏絕緣層及一矽層; 於邊矽層上成長該矽鍺層;以及 么利用擴政製程將該石夕錯層之鍺擴散進入該石夕層而至該 邑緣層之”面,以改變區域鍵結,而形成該絕緣層上 鍺層之基底。 3〇·如申請專利範圍第29項所述之具有應 之CMOS元件的製造方法,其中該其中該石夕 衡小、。構 1 0 0埃。 于又」y 3 1 ·如申請專利範圍第2 7項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該閘極絕緣層係使用化學 相沈積法沈積一氧化矽層。 ” 3 2 ·如申請專利範圍第2 7項所述之具有應變平衡結構 之CMOS元件的製造方法,其中成長該第二矽鍺係 擇性磊晶法。 ^ 33· —種具有應變平衡結構之CM〇s元件的製造方法, 適用於一半導體基底,包括下列步驟: 於該半導體基底上接續形成一第一薄膜層及一第二薄 膜,,其中該第一薄膜層係處於雙軸拉伸應變情況之下而 該第二薄膜層係處於雙軸壓縮應變情況之下,以獲得應變Adjustment. The method for manufacturing a JCM0S device with a strain-balanced structure as described in / claimed in the Patent Scope No. 27, wherein the method for forming a substrate with a germanium layer on the insulating layer includes the following steps: providing a semiconductor substrate; A buried insulating layer and a silicon layer are formed on the silicon layer; the silicon germanium layer is grown on the side silicon layer; and the germanium layer of the Shixi layer is diffused into the Shixi layer to the Yiyuan layer by the expansion process. " To change the area bonding to form the substrate of the germanium layer on the insulating layer. 30. The manufacturing method of the corresponding CMOS device as described in item 29 of the patent application scope, wherein the Shi Xiheng is small, .Structure 100 angstrom. Yuyou "y 3 1 · The method for manufacturing a CMOS device with a strain-balanced structure as described in item 27 of the patent application scope, wherein the gate insulating layer is deposited using a chemical phase deposition method. Silicon oxide layer. "3 2 · The method for manufacturing a CMOS device with a strain-balanced structure as described in item 27 of the scope of the patent application, wherein the second silicon-germanium selective epitaxy method is grown. ^ 33 · —A kind of strain-balanced structure The manufacturing method of the CMOS device is suitable for a semiconductor substrate, and includes the following steps: A first thin film layer and a second thin film are successively formed on the semiconductor substrate, wherein the first thin film layer is under a biaxial tensile strain And the second thin film layer is under a biaxial compressive strain condition to obtain a strain 530385 -------— —__ 申請專利範圍 平衡結構; 野於該基底施行圖案化製程以定義出一PM0S元件卩芬 一 NM〇S元件區; 千&及 於該第二薄膜層上形成閘極絕緣層;以及 於該閘極絕緣層上形成一閘極電極。 34·如申請專利範圍第33項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層之晶格常數小 於該第二薄膜層之晶格常數。 3 5 ·如申請專利範圍第3 3項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層係為矽、鍺 碎錯層。 4 3 6·如申請專利範圍第33項所述之具有應變平衡結 之CMOS元件的製造方法,其中該第二薄膜層係為矽、、、^ 石夕錯層。 3 7·如申請專利範圍第33項所述之具有應變士 之簡元件的製造方法’其中形成該第二 、厂構 擇性磊晶法。 iπ、 3 8 ·如申明專利範圍第3 3項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該閘極絕緣層係使用化學氣 相沈積法沈積一氧化石夕層。 39· —種具有應變平衡結構之元件的製造方法, 適用於一半導體基底,包括下列步驟: 於該半導體基底上接續形成一第一薄膜層及一第二薄、 膜層’其中該第-薄膜層係處於雙軸壓縮應變情況之下而530385 --------- --__ Balanced structure applying for patent scope; patterning process is performed on the substrate to define a PMOS device and NMOS device area; Thousand & and the second thin film layer A gate insulating layer is formed thereon; and a gate electrode is formed on the gate insulating layer. 34. The method for manufacturing a CMOS device having a strain-balanced structure according to item 33 of the scope of the patent application, wherein a lattice constant of the first thin film layer is smaller than a lattice constant of the second thin film layer. 35. The method for manufacturing a CMOS device having a strain-balanced structure as described in item 33 of the scope of the patent application, wherein the first thin film layer is a silicon and germanium broken layer. 4 3 6. The method for manufacturing a CMOS device with a strain-balanced junction as described in item 33 of the scope of the patent application, wherein the second thin film layer is a silicon, silicon, silicon, or silicon oxide layer. 37. The method for manufacturing a simple element with a strain as described in item 33 of the scope of the patent application, wherein the second and factory selective epitaxy method is formed. iπ, 3 8 · The method for manufacturing a CMOS device having a strain-balanced structure as described in Item 33 of the declared patent scope, wherein the gate insulating layer is formed by depositing a monoxide layer using a chemical vapor deposition method. 39 · —A method for manufacturing a component having a strain balance structure, which is applicable to a semiconductor substrate, including the following steps: A first thin film layer and a second thin film layer are formed on the semiconductor substrate successively, wherein the first thin film Strata under biaxial compressive strain conditions 530385 六、申請專利範圍 該第二薄膜層係處於雙軸拉伸應變情況之下,以獲得應變 平衡結構; 對於該基底施行圖案化製程以定義出一PM0S元件區及 一NM0S元件區; 於該第二薄膜層上形成閘極絕緣層;以及 於為閘極絕緣層上形成一閘極電極。 40·如申請專利範圍第39項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層之晶格常數大 於該第二薄膜層之晶格常數。 41·如申請專利範圍第39項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層係為石夕、鍺或 矽鍺層。 42·如申請專利範圍第39項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第二薄膜層係為矽、鍺或 $夕鍺層。 4 3 ·如申請專利範圍第3 g項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該閘極絕緣層係使用化學氣 相沈積法沈積一氧化;5夕層。 44· 一種具有應變平衡結構之CMOS元件的製造方法, 適用於一半導體基底,包括下列步驟: 於該半導體基底上接續形成一第一薄膜層及一第二薄 膜層’以獲得應變平衡結構; 對於該基底施行圖案化製程以定義出一PM0S元件區及 一NM0S元件區;530385 6. Scope of patent application The second thin film layer is under a biaxial tensile strain condition to obtain a strain balanced structure; a patterning process is performed on the substrate to define a PM0S element region and a NMOS element region; A gate insulating layer is formed on the second thin film layer; and a gate electrode is formed on the gate insulating layer. 40. The method for manufacturing a CMOS device having a strain-balanced structure according to item 39 of the scope of the patent application, wherein a lattice constant of the first thin film layer is greater than a lattice constant of the second thin film layer. 41. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 39 of the scope of application for a patent, wherein the first thin film layer is a Shi Xi, Ge or SiGe layer. 42. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 39 of the scope of the patent application, wherein the second thin film layer is a silicon, germanium or germanium layer. 4 3 · The method for manufacturing a CMOS device with a strain-balanced structure as described in item 3g of the scope of patent application, wherein the gate insulating layer is deposited using a chemical vapor deposition method; 44. A method for manufacturing a CMOS device with a strain-balanced structure, applicable to a semiconductor substrate, including the following steps: forming a first thin-film layer and a second thin-film layer on the semiconductor substrate successively to obtain a strain-balanced structure; The substrate is subjected to a patterning process to define a PMOS device area and a NMOS device area; 530385 六、申請專利範圍 於該第二薄膜層上形成閘極絕緣層;以及 於該閘極絕緣層上形成一閘極電極。 45.如申請專利範圍第44項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層之晶格常數小 於該第二薄膜層之晶格常數。 4 6.如申請專利範圍第44項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層之晶格常數大 於該第二薄膜層之晶格常數。 4 7.如申請專利範圍第44項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層係處於雙軸壓 縮應變情況之下。 48.如申請專利範圍第44項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層係處於雙軸拉 伸應變情況之下。 4 9.如申請專利範圍第44項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第二薄膜層係處於雙軸壓 縮應變情況之下。 50.如申請專利範圍第44項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第二薄膜層係處於雙轴拉 伸應變情況之下。 5 1.如申請專利範圍第44項所述之具有應變平衡結構 之CMOS元件的製造方法,其中該第一薄膜層係為矽、鍺或 ί夕錄層。 5 2.如申請專利範圍第44項所述之具有應變平衡結構530385 6. Scope of patent application: forming a gate insulating layer on the second thin film layer; and forming a gate electrode on the gate insulating layer. 45. The method for manufacturing a CMOS device having a strain-balanced structure according to item 44 of the scope of the patent application, wherein a lattice constant of the first thin film layer is smaller than a lattice constant of the second thin film layer. 4 6. The method for manufacturing a CMOS device having a strain-balanced structure according to item 44 of the scope of the patent application, wherein a lattice constant of the first thin film layer is greater than a lattice constant of the second thin film layer. 4 7. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 44 of the scope of patent application, wherein the first thin film layer is under a biaxial compressive strain condition. 48. The method for manufacturing a CMOS device with a strain-balanced structure according to item 44 of the scope of the patent application, wherein the first thin film layer is under a biaxial tensile strain condition. 4 9. The method for manufacturing a CMOS device with a strain-balanced structure as described in item 44 of the scope of patent application, wherein the second thin film layer is under a biaxial compressive strain condition. 50. The method for manufacturing a CMOS device having a strain-balanced structure according to item 44 of the scope of the patent application, wherein the second thin film layer is under a biaxial tensile strain condition. 5 1. The method for manufacturing a CMOS device having a strain-balanced structure as described in item 44 of the scope of the patent application, wherein the first thin film layer is a silicon, germanium, or silicon layer. 5 2. Strain-balanced structure as described in item 44 of the scope of patent application 0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第25頁 530385 ✓、、申清專利範圍 之CMOS元侔沾制^ r« 的製仏方法,其中該第二薄膜層係為矽、# 4 石夕鍺層。 錯或 5 3 如 _ 明專利範圍第4 4項所述之具有應變平銜姓 之CMOS元件的制、生士 l 衡結構 相沈積、% I 方法,其中該間極絕緣層係使用化學$ 相沈積法沈積一氧化矽層。 予虱 54·—種具有應變平衡結構之CMOS元件,包括: 一絕緣層上有矽層基底; ♦錯層’成長於該絕緣層上有矽層基底上, f::處於雙軸拉伸應變情況之下而該石夕鍺層係處;:該 壓縮應變情況之下,以獲得應變平衡結構;"於雙輕 一第二矽層,成長於該矽鍺層上,其中該第二 有一第一厚度適用於一 PM〇s元件,及一第二厚 曰具 NM0S元件; 卞又避用於一 一閑極絕緣層,形成於該第二矽層上;以及 一閘極電極,形成於該閘極絕緣層上。 55.如申請專利範圍第54項所述之具有 之CMOS元件,其中該其中該第一厚度為1〇_3〇埃^衡結構 •如申明專利範圍第5 4項所述之具有應變平衡結構 之CMOS το件,其中該其中該第二厚度為1〇〇 — 12〇埃。 5 7·如申請專利範圍第54項所述之具有應變平衡結構 之CMOS兀件’其中該閘極絕緣層係使用化學氣相沈積法沈 積一氧化矽層。 58· —種具有應變平衡結構之CM〇s元件,包括: 一絕緣層上有矽鍺層基底;0503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 25 530385 ✓, manufacturing method of applying CMOS element ^ r «for patent application, wherein the second thin film layer is silicon, # 4 Shi Xi germanium layer. False or 5 3 As described in item 4 of the Ming patent, the fabrication of a CMOS device with a strain-level surname, Shengshi balance structure phase deposition, and% I method, wherein the interphase insulating layer uses a chemical phase. A deposition method deposits a silicon oxide layer. Yu Liao 54 · —a CMOS device with a strain-balanced structure, including: an insulating layer with a silicon substrate; ♦ a staggered layer 'grown on the insulating layer with a silicon substrate, f :: under biaxial tensile strain Under the circumstances, the Shixi germanium layer is located: under the compressive strain condition to obtain a strain-balanced structure; " in a double light-second silicon layer, grown on the silicon-germanium layer, wherein the second one has The first thickness is suitable for a PMOS device and a second thick NMOS device; 避 is avoided from being used for a idler insulating layer formed on the second silicon layer; and a gate electrode is formed on The gate is on an insulating layer. 55. The CMOS device described in item 54 of the scope of patent application, wherein the first thickness is 10-30 angstroms. • Structure with strain balance as described in item 54 of the declared patent scope. The CMOS το component, wherein the second thickness is 100-120 angstroms. 57. The CMOS element with a strain-balanced structure as described in item 54 of the scope of the patent application, wherein the gate insulating layer is a silicon oxide layer deposited using a chemical vapor deposition method. 58 · — A CMOS device with a strain-balanced structure, comprising: a silicon germanium layer substrate on an insulating layer; 0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd 第26頁 530385 六、申請專利範圍 一第二硬錯\ 其中該第二矽錯;二成長於該絕緣層上有矽鍺層基底上, 該石夕鍺層係處於i = f =莫耳分率是大於該梦錯層,使得 -於雙,應變情況之下,以獲得應變平衡結構; 層具有一第一 Z 成長於該第二矽鍺層上,其中該第二矽 於一NM0S元件f度適用於一PM〇S元件,及一第二厚度適用 —閑極絕緣層’形成於該第二矽層上;以及 5 g閉極電極,形成於該閘極絕緣層上。 如申請專利範圍第58項所述之具有應變平衡結構 之 I Μ 0 S 7C* ^(半,甘 rl·» r 其' 中’對於該絕緣層上有矽鍺層基底係忽略 ~、、、、、層及該石夕鍺層間介面是否無拘束地易於調整。 6 〇 \如申請專利範圍第5 8項所述之具有應變平衡結構 之M〇S 70件,其中該其中該第一厚度為10-30埃。 6 1 ·如申請專利範圍第58項所述之具有應變平衡結構 之元件’其中該其中該第二厚度為loo —120埃。 62·如申請專利範圍第58項所述之具有應變平衡結構 之CMOS元件,其中該閘極絕緣層係使用化學氣相沈積法沈 積一氧化矽層。 63· —種具有應變平衡結構之CMOS元件,包括: 一絕緣層上有矽層基底; 一石夕鍺層’成長於該絕緣層上有石夕層基底上,其中該 石夕層係處於雙軸拉伸應變情況之下而該石夕鍺層係處於雙軸 壓縮應變情況之下,以獲得應變平衡結構;0503-7196TWF (N); TSMC2001-1254; ycchen.ptd page 26 530385 Sixth, the scope of the application for a patent a second hard error \ wherein the second silicon error; two grown on the insulating layer has a silicon germanium layer substrate, The Shi Xi germanium layer is at i = f = Mohr fraction is greater than the dream cross layer, so that-under double, strain conditions, to obtain a strain balanced structure; the layer has a first Z grown on the second silicon On the germanium layer, the second silicon is suitable for a PMOS device at a f-degree of a NMOS device, and a second thickness is suitable-a free-pole insulating layer is formed on the second silicon layer; and a 5 g closed electrode Is formed on the gate insulating layer. As described in item 58 of the scope of the patent application, I M 0 S 7C * with a strain-balanced structure ^ (half, Gan rl · »r where 'where' is ignored for the silicon germanium layer on the insulating layer ~ ,,,, It is easy to adjust whether or not the interlayer interface of the silicon layer and the germanium layer is free. 6 〇 70 pieces of MOS with strain balance structure as described in item 58 of the patent application scope, wherein the first thickness is 10-30 angstroms. 6 1 · The element with a strain-balanced structure as described in item 58 of the scope of the patent application, wherein the second thickness is loo—120 angstroms. 62. A CMOS device with a strain-balanced structure, wherein the gate insulating layer is a silicon oxide layer deposited using a chemical vapor deposition method. 63 · —A CMOS device with a strain-balanced structure includes: a silicon substrate on an insulating layer; A Shixi germanium layer is grown on the insulating layer with a Shixi layer substrate, wherein the Shixi layer is under a biaxial tensile strain condition and the Shixi germanium layer is under a biaxial compressive strain condition. Obtain a strain-balanced structure; 第27頁 530385 六、申請專利範圍 一 PM0S元件區及一NM0S元件區,位於該基底上; 一閘極絕緣層,形成於該矽鍺層上;以及 —閘極電極,形成於該閘極絕緣層上。 64·如申請專利範圍第63項所述之具有應變平衡結構 之CMOS元件,其中該閘極絕緣層係使用化學氣相沈積法沈 積一氧化石夕層。 'b 65· 一種具有應變平衡結構之CMOS元件,包括: 一絕緣層上有矽鍺層基底; 一第二矽鍺層,成長於該絕緣層上有矽鍺層基底上, 其中該第二矽鍺層之鍺的莫耳分率是大於該矽鍺層,使得 邊石夕錯層係處於雙軸拉伸應變情況之下而該第二矽鍺層係 處於雙軸壓縮應變情況之下,以獲得應變平衡結構; 一PM0S元件區及一NM0S元件區,位於該基底上; 一閘極絕緣層,形成於該第二矽鍺層上;以及 一閘極電極,形成於該閘極絕緣層上。 66·如申請專利範圍第65項所述之具有應變平衡結構 之CMOS元件,其中,對於該絕緣層上有矽鍺層基底係忽略 該絕緣層及該矽鍺層間介面是否無拘束地易於調整。 67·如申請專利範圍第65項所述之具有應變平衡結構 之CMOS元件,其中該閘極絕緣層係使用化學氣相沈積法沈 積一氧化矽層。 68· —種具有應變平衡結構之CM〇s元件,適用於一半 導體基底’包括: 一第一薄膜層,成長於該基底上,其中該第一薄膜層Page 27 530385 VI. Patent application scope A PM0S element area and an NMOS element area are located on the substrate; a gate insulating layer is formed on the silicon germanium layer; and a gate electrode is formed on the gate insulation On the floor. 64. The CMOS device having a strain-balanced structure as described in item 63 of the scope of the patent application, wherein the gate insulating layer is deposited using a chemical vapor deposition method. 'b 65 · A CMOS device with a strain-balanced structure includes: a silicon germanium layer substrate on an insulating layer; a second silicon germanium layer grown on the silicon germanium layer substrate on the insulating layer, wherein the second silicon The molar fraction of germanium in the germanium layer is greater than that of the silicon germanium layer, so that the edge-stone split layer system is under a biaxial tensile strain condition and the second silicon germanium layer system is under a biaxial compressive strain condition. A strain balanced structure is obtained; a PMOS device region and a NMOS device region are located on the substrate; a gate insulating layer is formed on the second silicon germanium layer; and a gate electrode is formed on the gate insulating layer . 66. The CMOS device with a strain-balanced structure according to item 65 of the scope of the patent application, wherein the substrate with a silicon germanium layer on the insulating layer is ignoring whether the insulating layer and the interface between the silicon germanium layer are easy to adjust without restriction. 67. The CMOS device with a strain-balanced structure according to item 65 of the scope of the patent application, wherein the gate insulating layer is a silicon oxide layer deposited using a chemical vapor deposition method. 68 · — A CMOS device with a strain-balanced structure suitable for a semi-conductor substrate ’includes: a first thin film layer grown on the substrate, wherein the first thin film layer 0503-7196W(N) : TSMC200M254 ; ycchen.ptd 第28頁 530385 六、申請專利範圍 係處於雙軸拉伸應變情況之下; 第二薄膜層,成長於該第一薄膜層上,其中該第二 薄膜層係處於壓縮應變情況之下,以獲得應變平衡結構; PM〇S元件區及一關os元件區’位於該基底上; 一閘極絕緣層,形成於該矽鍺層上;以及 一閘極電極,形成於該閘極絕緣層上。 6 9 ·如申請專利範圍第6 8項所述之具有應變平衡結構 之㈠J0S元件的製造方法,其中該第一薄膜層之晶格常數大 於該第二薄膜層之晶格常數。 70·如申請專利範圍第68項所述之具有應變平 之CMOS元件,其中該第一薄膜層係為石夕、錯或石夕錯衡層4 71·如申請專利範圍第68項所述之具有應變平衡結 之CMOS元件,其中該第二薄膜層係為石夕、錯或石夕錯層。。 之如此申請專利範圍第⑽項所述之具有應變平衡^結構 層其中該閑極絕緣層係使用化學氣相沈積法沈 73· 一種具有應變平衡結構之CMOS元件,摘用仏丄 導體基底,包括: 干適用於一半 一第一薄膜層,成長於該基底上; 一第二薄膜層,成長於該第一薄膜層上,其 薄膜層及該第一薄膜層係為一應變平衡結構; κ 一 PM0S元件區及一nm〇s元件區,位於該基底上· 一閘極絕緣層,形成於該矽鍺層上;以及-, 一閘極電極,形成於該閘極絕緣層上。0503-7196W (N): TSMC200M254; ycchen.ptd page 28 530385 6. The scope of patent application is under the condition of biaxial tensile strain; the second thin film layer is grown on the first thin film layer, wherein the second thin film layer The thin film layer is under a compressive strain condition to obtain a strain-balanced structure; a PMOS device region and an OS device region are located on the substrate; a gate insulating layer is formed on the silicon germanium layer; and a gate An electrode is formed on the gate insulating layer. 69. The method for manufacturing a 0JOS device with a strain-balanced structure as described in item 68 of the scope of the patent application, wherein the lattice constant of the first thin film layer is greater than the lattice constant of the second thin film layer. 70 · The CMOS device with strain flatness as described in item 68 of the scope of patent application, wherein the first thin film layer is a shixi, zhao or shixi balance layer 4 71 · As described in item 68 of the scope of patent application A CMOS device with a strain-balanced junction, wherein the second thin film layer is a Shi Xi, Bi or Shi Xi Bi layer. . Therefore, the application of the invention has a strain-balanced ^ structure layer described in item 其中, wherein the idler insulating layer is a chemical vapor deposition method. 73. A CMOS device with a strain-balanced structure, using a plutonium conductor substrate, including : Dry suitable for half a first thin film layer, grown on the substrate; a second thin film layer, grown on the first thin film layer, the thin film layer and the first thin film layer are a strain balanced structure; κ a The PM0S element region and a nmOs element region are located on the substrate. A gate insulating layer is formed on the silicon germanium layer; and-, a gate electrode is formed on the gate insulating layer. 530385530385 夕γμΙ4、如申請專利範圍第73項所述之具有應變平衡結構 S元件,其中该第一晶格常數小於該二 膜層之晶格常數。 隋 寻 75\如申請專利範圍第73項所述之具有應變平衡結構 之CMOS元件,其中該第一薄膜層之晶格常數大於該第二 膜層之晶格常數。 、 76·如申請專利範圍第73項所述之具有應變平衡結構 之CMOS元件,其中該第一薄膜層係處於雙軸壓縮應變情況 之下。 、 77·如申請專利範圍第73項所述之具有應變平衡結構 之CMOS元件,其中該第一薄膜層係處於雙軸拉伸應變情況 之下。, 、曰 7 8 ·如申請專利範圍第7 3項所述之具有應變平衡結構 之CMOS元件,其中該第二薄膜唐係處於雙軸壓縮應變情況 之下。 79·如申請專利範圍第73項所述之具有應變平衡結構 之CMOS元件,其中該第二薄膜層係處於雙軸拉伸應變情況 之下。 8 0 ·如申請專利範圍第7 3項所述之具有應變平衡結構 之CMOS元件,其中該第一薄膜層係為砍、鍺或石夕鍺層。 8 1 ·如申請專利範圍第7 3項所述之具有應篆平衡結構 之CMOS元件,其中該第二薄膜層係為矽、鍺或矽鍺層。 8 2 ·如申請專利範圍第7 3項所述之具有應變平衡結構 之CMOS元件,其中該閘極絕緣層係使用化學氣相'尤積法沈Even γμ4. The S-element with a strain-balanced structure as described in item 73 of the scope of the patent application, wherein the first lattice constant is smaller than the lattice constant of the two film layers. Sui Xun 75 \ The CMOS device with a strain-balanced structure as described in item 73 of the scope of the patent application, wherein the lattice constant of the first thin film layer is greater than the lattice constant of the second film layer. 76. The CMOS device having a strain-balanced structure as described in item 73 of the scope of the patent application, wherein the first thin film layer is under a biaxial compressive strain condition. 77. The CMOS device with a strain-balanced structure as described in item 73 of the scope of the patent application, wherein the first thin film layer is under a biaxial tensile strain condition. The CMOS device having a strain-balanced structure as described in item 73 of the scope of the patent application, wherein the second thin film Tang system is under a biaxial compressive strain condition. 79. The CMOS device having a strain-balanced structure according to item 73 of the scope of the patent application, wherein the second thin film layer is under a biaxial tensile strain condition. 80. The CMOS device having a strain-balanced structure as described in item 73 of the scope of the patent application, wherein the first thin film layer is a chopped, germanium, or stone germanium layer. 8 1 · The CMOS device having a stress-balanced structure as described in item 73 of the scope of the patent application, wherein the second thin film layer is a silicon, germanium, or silicon-germanium layer. 8 2 · The CMOS device with a strain-balanced structure as described in item 73 of the scope of the patent application, wherein the gate insulating layer is deposited using a chemical vapor phase method. 0503-7196TW(N) ; TSMC2001-1254 ; ycchen.ptd 第 30 買 530385 六、申請專利範圍 積一氧化>5夕層。 imi 第31頁 0503-7196TWF(N) ; TSMC2001-1254 ; ycchen.ptd0503-7196TW (N); TSMC2001-1254; ycchen.ptd 30th buy 530385 Sixth, the scope of patent application Plotting > 5th layer. imi page 31 0503-7196TWF (N); TSMC2001-1254; ycchen.ptd
TW91105975A 2002-03-27 2002-03-27 CMOS with strain-balanced structure and method of manufacturing the same TW530385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91105975A TW530385B (en) 2002-03-27 2002-03-27 CMOS with strain-balanced structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91105975A TW530385B (en) 2002-03-27 2002-03-27 CMOS with strain-balanced structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
TW530385B true TW530385B (en) 2003-05-01

Family

ID=28788559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91105975A TW530385B (en) 2002-03-27 2002-03-27 CMOS with strain-balanced structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TW530385B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538351B2 (en) 2005-03-23 2009-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming an SOI structure with improved carrier mobility and ESD protection
US7605042B2 (en) 2005-04-18 2009-10-20 Toshiba America Electronic Components, Inc. SOI bottom pre-doping merged e-SiGe for poly height reduction
US7812340B2 (en) 2003-06-13 2010-10-12 International Business Machines Corporation Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same
CN104139301A (en) * 2014-07-31 2014-11-12 佛山市德赛格精工机械有限公司 Turning, milling and drilling combined integrated machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812340B2 (en) 2003-06-13 2010-10-12 International Business Machines Corporation Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same
US8409974B2 (en) 2003-06-13 2013-04-02 International Business Machines Corporation Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same
US7538351B2 (en) 2005-03-23 2009-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming an SOI structure with improved carrier mobility and ESD protection
US7605042B2 (en) 2005-04-18 2009-10-20 Toshiba America Electronic Components, Inc. SOI bottom pre-doping merged e-SiGe for poly height reduction
CN104139301A (en) * 2014-07-31 2014-11-12 佛山市德赛格精工机械有限公司 Turning, milling and drilling combined integrated machine tool

Similar Documents

Publication Publication Date Title
TWI332269B (en) High speed lateral heterojunction misfets realized by 2-dimensional bandgap engineering and methods thereof
US7566606B2 (en) Methods of fabricating semiconductor devices having strained dual channel layers
US6703688B1 (en) Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
TWI225283B (en) Strained semiconductor on insulator substrate and method of forming the same
US6830976B2 (en) Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6723661B2 (en) Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6724008B2 (en) Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
JP4678877B2 (en) Silicon devices on Si: C-OI and SGOI and manufacturing methods
US6593641B1 (en) Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6677192B1 (en) Method of fabricating a relaxed silicon germanium platform having planarizing for high speed CMOS electronics and high speed analog circuits
US6646322B2 (en) Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6936869B2 (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
TW439300B (en) Semiconductor device and method for fabricating the same
TWI230433B (en) Isolation structures for imposing stress patterns
JP3372158B2 (en) Semiconductor device and manufacturing method thereof
US7528056B2 (en) Low-cost strained SOI substrate for high-performance CMOS technology
KR102472672B1 (en) Strained stacked Nanosheet FETs and/OR quantum well stacked nanosheet
US20050233552A1 (en) Strained channel on insulator device
KR20020008789A (en) Mosfet with strained channel layer
JP2001257351A (en) Semiconductor device and its manufacturing method
US9165945B1 (en) Method for fabricating semiconductor structures including transistor channels having different strain states, and related semiconductor structures
WO2006007394A2 (en) Strained tri-channel layer for semiconductor-based electronic devices
EP1364411A1 (en) Relaxed silicon germanium platform for high speed cmos electronics and high speed analog circuits
JPH1092947A (en) Semiconductor device and manufacture thereof
TW530385B (en) CMOS with strain-balanced structure and method of manufacturing the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent