TW432510B - Method for producing device having wavy titanium silicide - Google Patents
Method for producing device having wavy titanium silicide Download PDFInfo
- Publication number
- TW432510B TW432510B TW88114004A TW88114004A TW432510B TW 432510 B TW432510 B TW 432510B TW 88114004 A TW88114004 A TW 88114004A TW 88114004 A TW88114004 A TW 88114004A TW 432510 B TW432510 B TW 432510B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- item
- titanium
- patent application
- metal
- Prior art date
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
43 25 1ο 五、發明說明(1) 5-1發明領域: 本發明係有關於一種可形成鈦自行對準矽化物( titanium sal icide)之半導體結構的製造方法,本發明特 別是關係到一種具有波浪式欽自行對準砂化物之半導體元 件的製造方法,其可避免細線效應(thin line effect)。 5-2發明背景: 隨著積體電路技術的成長,元件的尺寸逐漸地縮小, 使單位晶圓面積内的容量更大,同時加快元件的操作速度 ,提昇元件的性能。但是當製程技術達到〇. 2 5微米以下時 ’由内連線所造成的時間延遲,將變成影響元件操作速度 、單位面積容量大小、可靠度好壞與良率高低的最主要因 素。在0. 2 5微米的元件尺寸大小時,5 0 %的元件速度延遲 ’將來自於由内連線所造成的時間延遲(RC time delay.) 。由内連線所造成的時間延遲,為導線的電阻值(R )與導 線間之介電層的電容值(C )所得之乘積,因此使用較低電 阻值的金屬做為導線可以減少内連線的時間延遲,進而加 快元件的操作速度,提昇元件的性能。 目前的製程技術採用自行對準矽化物(salicide)來降 低導線的阻值。自行對準矽化物係將矽與貴重金屬反應而 成’其應用很廣泛。特別是在金屬氧化半導體電晶體中,43 25 1ο V. Description of the invention (1) 5-1 Field of the invention: The present invention relates to a method for manufacturing a semiconductor structure capable of forming titanium self-aligned silicide (titanium salicide). The present invention relates particularly to a method having The manufacturing method of the wave-type self-aligning semiconductor device for sanding can avoid thin line effect. 5-2 Background of the Invention: With the development of integrated circuit technology, the size of components is gradually shrinking, making the capacity per unit wafer area larger, at the same time speeding up the operation speed of components, and improving the performance of components. But when the process technology reaches below 0.25 microns, the time delay caused by the interconnect will become the most important factor affecting the operating speed of the component, the capacity of the unit area, the reliability of the product, and the yield rate. At a component size of 0.25 micron, a component speed delay of 50% ′ will come from the RC time delay. The time delay caused by the interconnection is the product of the resistance value (R) of the wire and the capacitance value (C) of the dielectric layer between the wires. Therefore, using a metal with a lower resistance value as the wire can reduce the interconnection The time delay of the line accelerates the operation speed of the component and improves the performance of the component. Current process technology uses self-aligned salicide to reduce the resistance of the wire. Self-aligned silicides are formed by reacting silicon with precious metals ’and are widely used. Especially in metal oxide semiconductor transistors,
第4頁 43 25 1 Ο 五、發明說明(2) 形成一層鈥自行對準矽化物於多晶矽閘極電極、源極區域 與汲極區域’以增加矽與金屬連線的電性接觸。Page 4 43 25 1 0 V. Description of the invention (2) Form a layer of self-aligned silicide on the polysilicon gate electrode, source region and drain region 'to increase the electrical contact between the silicon and the metal connection.
; 金屬飲係目前積體電路技術中最常被用來形成自行對 準矽化物的金屬。然而,在進入〇. 18微米的元件尺寸大小 或更小尺寸世代時’由於幾何結構的限制,鈦自行對準矽 化物不再能降低閘極電極、源極區域與没極區域的電阻值 6因為片電阻(sheet resistance)係與閘極長度成反比, 因此當線見縮小至0. 1 8微米或更小時,片電阻將變得非常 大,而此現象一般被稱為"細線效應(thiη 1 ine effect)” 。請參閱第一圖所示’石夕基材12上形成有一習知之半導體 元件1 0,而細線效應的產生是在閘極電極〗6與源極/汲極 區域18上形成鈦自行對準矽化物之後。半導體元件10進 一步包括一絕緣區2 0、一側壁2 2以及一閘極氧化層2 4。鈦 自行對準矽化物1 4彎曲的部份對傳導方面並沒有多大的貢 獻’在線寬尺寸大時’此彎曲部份的影響不大,然而當線 寬進入深次微米時’此彎曲部份將嚴重影響元件的有效線 寬。線寬的減小’進一步使得片電阻值變得更大,而加大 時間延遲,降低元件速度。Metal drinks are currently the most commonly used in integrated circuit technology to form self-aligning silicide metals. However, when entering the element size or smaller generation of 0.18 microns, due to geometrical constraints, the self-aligned titanium silicide can no longer reduce the resistance values of the gate electrode, source region, and non-electrode region. Because the sheet resistance is inversely proportional to the gate length, when the line size is reduced to 0.18 microns or less, the sheet resistance will become very large, and this phenomenon is generally called " fine line effect ( thiη 1 ine effect) ". Please refer to the first figure, 'a conventional semiconductor element 10 is formed on the shixi substrate 12, and the thin line effect is generated at the gate electrode 6 and the source / drain region 18' After the titanium self-aligned silicide is formed on the semiconductor device, the semiconductor device 10 further includes an insulating region 20, a sidewall 22, and a gate oxide layer 24. The titanium self-aligns the curved portion of the silicide 14 to the conductive side and There is not much contribution 'when the line width is large', the effect of this curved part is not great, but when the line width enters the deep submicron, 'this curved part will seriously affect the effective line width of the device. The reduction of line width' Make the chip Value becomes greater, and increase the time delay, the speed reducing element.
除了鈦自行對準妙化物之外,始自行對準砂化物現在 亦被研究用於閘極電極與源極/没極區域以降低片電阻。 在線寬縮小至0. 1 8微米時,鈷自行對準矽化物似乎是取代 鈦自行對準石夕化物的最佳選擇。然而,钻自行對準發化物In addition to the self-aligned titanium compound, the self-aligned sand compound has also been studied for gate electrode and source / dead regions to reduce chip resistance. When the line width is reduced to 0.18 micrometers, cobalt self-aligned silicide appears to be the best choice to replace titanium self-aligned silicide. However, the drill aligns itself with the hair product
第5頁 4 3 251 ΟPage 5 4 3 251 Ο
五、發明說明(3) 與目月11的積體電路製程並不相容 5-3發明目的及概述: 本發明提供一種可增加鈦自行對準矽化物與矽層之間 的接觸區域之半導體元件的製造方法以避免細線效應的產 生’使鈇自行對準矽化物的製程可以繼續應用於深次微米 世代。本發明之一實例為形成一多晶矽層於閘極電極、源 極區域及没極區域之表面上,以形成波浪式鈦自行對準矽 化物。閘極電極上具有波浪式鈦自行對準矽化物之元件的 有效線寬比閘極電極上具有習知鈦自行對準矽化物之元件 的有效線寬來得大。因而,可以解決習知鈥自行對準矽化 物之細線效應與高電阻的問題。 達到上 及汲極 導體元 矽基材 結構包括有.一閘 一導電層於閘極 著’濺鍍一金屬 阻障層 即去除 應物; ,本發明提供一 面上形成有波浪 方法, 形成有 其至少包 一半導體 源極區域及一 極區域 晶圓表 之上方 未反應 火上述 為了 源極區域 化物之半 先提供一 ;形成一 度下;隨 之金屬反 述之目的 區域之表 件的製造 ,其上已 極電極、 電極、源 層於整個 於金屬層 阻障層、 最後,回 及汲極區 面上,尤 ;回火此 之金屬與 之金屬矽 種於閘極 式欽自行 括下列步 結構,該 汲極區域 域之表面 其是在導 金屬層於 金屬矽化 化物於第 對準石夕 驟:首 半導體 ;形成 上;接 電層上 第一溫 物以外 一溫度V. Description of the invention (3) Incompatible with the integrated circuit manufacturing process of Meizuru 11 5-3 Purpose and summary of the invention: The present invention provides a semiconductor which can increase the contact area between self-aligned titanium silicide and silicon layer. The device manufacturing method avoids the occurrence of thin line effects. The process of making plutonium self-aligned with silicide can continue to be applied to the deep sub-micron generation. An example of the present invention is to form a polycrystalline silicon layer on the surface of the gate electrode, the source region and the non-electrode region to form a wavy titanium self-aligned silicide. The effective line width of a device with a wavy titanium self-aligned silicide on the gate electrode is larger than the effective line width of a device with a conventional titanium self-aligned silicide on the gate electrode. Therefore, it is possible to solve the problems of the fine-line effect and high resistance of the self-aligned silicide. The silicon substrate structure of the upper and drain conductor elements includes: a gate, a conductive layer on the gate electrode, and a metal barrier layer is sputtered to remove the object; the invention provides a method for forming a wave on one side, and forming the same At least one semiconductor source region and one electrode region above the wafer table are not reacted. The above-mentioned one is provided for the half of the source region compound; forming one degree; and subsequently the manufacture of the watch region of the target region of the metal is described below. The upper electrode, the electrode, and the source layer are all on the barrier layer of the metal layer, and finally, return to the surface of the drain region, especially; tempering the metal and the metal silicon seed in the gate type include the following step structure , The surface of the drain region is at the metal-conducting layer and the metal silicide at the first alignment step: the first semiconductor; forming; a temperature other than the first temperature on the electrical connection layer
43 25 1 Ο 五、發明說明(4) 下。 5-4圖式簡單說明: 第一圖為具有習知鈦自行對準矽化物之半導體結構的 剖面示意圖。 第二Α至第二G圖為本發明較佳實施例之剖面流程示意 圖。 主要部分之代表符號: 1 0習知半導體元件 12矽基材 1 4鈦自行對準矽化物 1 6 閘極電極 1 8 源極/汲極區域 2 0 絕緣區 2 2側壁 2 4閘氧化層 2 0 0 半導體結構 2 1 0間極電極 2 1 5 源極區域 2 2 0 汲極區域43 25 1 〇 5. Description of the invention (4). Figure 5-4 is a simple explanation: The first figure is a schematic cross-sectional view of a semiconductor structure with a conventional titanium self-aligned silicide. The second A to G diagrams are schematic cross-sectional flow diagrams of the preferred embodiment of the present invention. Representative symbols of main parts: 1 0 conventional semiconductor elements 12 silicon substrate 1 4 titanium self-aligned silicide 1 6 gate electrode 1 8 source / drain region 2 0 insulation region 2 2 sidewall 2 4 gate oxide layer 2 0 0 Semiconductor structure 2 1 0 Inter electrode 2 1 5 Source region 2 2 0 Drain region
4-3 25 1 Ο 五、發明說明(5) ----- 2 2 5 絕緣區 2 3 0侧壁 235閘氧化層 240多晶矽層 245鈦金屬層 2 5 0氣化欽層 255相態C49之鈦矽化物結構 260相態C54之鈦矽化物結構 發明詳細說明: 請參閱第二Α圖至第二G圖所示’其係本發明較佳實胞 例之剖面流程示意圖。這些圖僅將本發明之流程主要步驟 依序畫出。 ’ 清參閱第二A圖,本發明首先提供一石夕基材2〇5,其上 已形成有一半導體結構2〇〇,該半導體結構2〇()包括有二多 晶石夕閘極電極21 0、一源極區域2 1 5及一汲極區域22〇。此 半導體結構2 0 0進一步包括一絕緣區2 2 5、一側壁2 3 0以及 一閘極氧化層235。其中絕緣區225可為場氧化層(field oxide)或淺溝槽隔離(shaii〇w trench isolation, STI) 接者整個舶圓在進4于下一步驟前先清洗(pre_ciean)乾 淨。4-3 25 1 〇 5. Description of the invention (5) ----- 2 2 5 Insulation area 2 3 0 Side wall 235 Gate oxide layer 240 Polycrystalline silicon layer 245 Titanium metal layer 2 5 0 Gasification layer 255 Phase state C49 The detailed description of the invention of the titanium silicide structure of the titanium silicide structure 260 phase C54: Please refer to the second diagram A to the second diagram G ', which is a schematic cross-sectional flow chart of a preferred embodiment of the present invention. These figures only show the main steps of the process of the present invention in sequence. '' Referring to FIG. 2A, the present invention first provides a Shixi substrate 200, on which a semiconductor structure 200 has been formed, and the semiconductor structure 20 () includes two polycrystalline stone gate electrodes 21 0 , A source region 2 15 and a drain region 22 o. The semiconductor structure 2000 further includes an insulating region 2 2 5, a sidewall 2 3 0, and a gate oxide layer 235. The insulation region 225 may be a field oxide layer or a shallow trench isolation (STI), and the entire circle is cleaned (pre_ciean) before proceeding to the next step.
43251〇 五、發明說明⑹ 在晶圓清洗完後,如第二Β圖所示,形成一多晶石夕層 240於多晶矽閘極電極210、源極區域215及汲極區域22〇之 裸露表面上。多晶矽層240係包含選擇性半球形晶粒 ( selective hemispherical grain, s~HSG)石夕’此選擇性 半球形晶粒矽240係以低壓化學氣相沈積法(LPCVD)在攝氏 500度至600度的溫度範園由非晶石夕(amorph〇us_si)轉換成 多晶矽(poly-Si )所沈積而成,其厚度範圍約為3〇〇埃至 600 埃。 Θ 再請參閱第二C圖,一鈦金屬層245被;賤鐘於整個晶圓 表面上’尤其是在多晶石夕廣240之表面上。.鈦金屬層245係 以磁控直流藏鍍法(magnetron DC sputtering)濺鍍沈積 而成,其厚度約介於200埃和1000埃之間。接著,如第二d 圖所示’形成一層厚度約介於5 0 0埃和1 5 0 0埃之間的氮化 鈦層250於鈦金屬層245之上方,其用以防止鈦金屬層245 進行氧化。此外’氮化鈦層2 5 0係以氮化金屬鈦之方法或 在濺鍍過程中加以反應來形成。 請參閱第二E圖,於攝氐400度至700度的溫度範圍内 對鈦金屬層245進行第一次快速回火步驟(rapid thermal process,RTP)處理,藉此在矽基材2 0 5上之閘極電極210 、源極區域21 5及汲極區域220上生成相態C49之鈦金屬矽 化物結構255。在形成C49之鈦金屬矽化物後,以乾式蝕刻 法去除氮化鈦層,該乾式蝕刻法之反應氣體係選自於由43251 05. Description of the invention ⑹ After the wafer is cleaned, a polycrystalline silicon layer 240 is formed on the exposed surfaces of the polycrystalline silicon gate electrode 210, the source region 215, and the drain region 22 as shown in the second B diagram. on. Polycrystalline silicon layer 240 contains selective hemispherical grain (s ~ HSG) Shi Xi 'This selective hemispherical grain silicon 240 is produced by low pressure chemical vapor deposition (LPCVD) at 500 ° C to 600 ° C The temperature range of Fangyuan Park is formed by the conversion of amorphous silicon (polymorphous silicon) into amorphous silicon (poly-Si), and its thickness ranges from about 300 angstroms to 600 angstroms. Θ Please refer to FIG. 2C again. A titanium metal layer 245 is used on the entire surface of the wafer ', especially on the surface of the polycrystalline stone Xiguang 240. The titanium metal layer 245 is deposited by magnetron DC sputtering, and its thickness is between 200 and 1000 angstroms. Then, as shown in the second figure d ', a layer of titanium nitride 250 with a thickness between 500 Angstroms and 150 Angstroms is formed over the titanium metal layer 245, which is used to prevent the titanium metal layer 245 Carry out oxidation. In addition, the 'titanium nitride layer 250 is formed by a method of nitrided metal titanium or a reaction during a sputtering process. Please refer to the second figure E. The titanium metal layer 245 is subjected to the first rapid thermal process (RTP) treatment in a temperature range of 400 ° to 700 °. A titanium metal silicide structure 255 in a phase state of C49 is formed on the gate electrode 210, the source region 215, and the drain region 220. After the titanium metal silicide of C49 is formed, the titanium nitride layer is removed by dry etching. The reaction gas system of the dry etching method is selected from
第9頁 4325 1 Ο _ 五、發明說明(7) BC13/C1s、CC14以及SFe所組成的族群中的元素。未反應之 鈦金屬及鈦矽化物以外之鈦反應物亦被去除,但係以濕式 蝕刻法進行,其蝕刻液包括硫酸與過氧化氫之混合物。藉 此,相態C49之金屬矽化物結構255得以被裸露出來,如第 二F圖所示。 最後,於攝氐700度至950度的溫度範圍内對該相態 C49之鈦金屬矽化物進行第二次快速回火步驟處理,第二 次快速回火步驟的溫度比第一次快速回火步驟為高。藉此 將阻值較高之C49鈦金屬矽化物轉換成C54相態之鈦金屬矽 化物結構2 6 0 ’其阻值較低,如第二g圖所示。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾’均應包含在下述之申請 專利範圍内。Page 9 4325 1 Ο _ V. Description of the invention (7) Elements in the group consisting of BC13 / C1s, CC14 and SFe. Unreacted titanium metal and titanium reactants other than titanium silicide are also removed, but are performed by a wet etching method, and the etching solution includes a mixture of sulfuric acid and hydrogen peroxide. Thereby, the metal silicide structure 255 of the phase C49 can be exposed, as shown in the second F diagram. Finally, in the temperature range of 700 ° to 950 ° C, the titanium metal silicide of the phase C49 is subjected to a second rapid tempering step. The temperature of the second rapid tempering step is faster than the first rapid tempering step. Steps are high. In this way, the C49 titanium metal silicide with a higher resistance value is converted into a C54 phase titanium metal silicide structure 2 6 0 ′, which has a low resistance value, as shown in the second g diagram. The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the patent application of the present invention; any other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be included in the following Within the scope of patent application.
第10頁Page 10
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88114004A TW432510B (en) | 1999-08-17 | 1999-08-17 | Method for producing device having wavy titanium silicide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88114004A TW432510B (en) | 1999-08-17 | 1999-08-17 | Method for producing device having wavy titanium silicide |
Publications (1)
Publication Number | Publication Date |
---|---|
TW432510B true TW432510B (en) | 2001-05-01 |
Family
ID=21641933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW88114004A TW432510B (en) | 1999-08-17 | 1999-08-17 | Method for producing device having wavy titanium silicide |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW432510B (en) |
-
1999
- 1999-08-17 TW TW88114004A patent/TW432510B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI231570B (en) | Dual fully-silicided gate MOSFETs | |
US5089432A (en) | Polycide gate MOSFET process for integrated circuits | |
KR100966384B1 (en) | Nickel silicide method and structure | |
IE48724B1 (en) | A method of making a conductor pattern on a semiconductor body | |
JP2000174274A (en) | Formation of self-aligned silicide of semiconductor device | |
US5888903A (en) | Self-aligned silicide process | |
TW200301937A (en) | Silicon on insulator device with improved heat removal and method of manufacture | |
US6432817B1 (en) | Tungsten silicide barrier for nickel silicidation of a gate electrode | |
US6627527B1 (en) | Method to reduce metal silicide void formation | |
TW432510B (en) | Method for producing device having wavy titanium silicide | |
JP2970620B2 (en) | Method for manufacturing semiconductor device | |
EP1772899A1 (en) | Method for forming a silicide gate | |
TW586152B (en) | Semiconductor device and manufacturing method thereof | |
US6764912B1 (en) | Passivation of nitride spacer | |
TWI312536B (en) | Method for fabricating semiconductor device having stack-gate structure | |
US6730587B1 (en) | Titanium barrier for nickel silicidation of a gate electrode | |
JPH09232254A (en) | Electrode material and its manufacture | |
CN100431112C (en) | Method for fabricating silicate metal | |
TWI220535B (en) | A novel process for preparation of the metal silicide | |
TWI225284B (en) | Method of using self-aligned metal silicide bridging to form interconnects | |
TW558759B (en) | Method of forming and etching resistor protection oxide layer | |
TWI292928B (en) | Manufacturing method of semiconductor device | |
TW492084B (en) | Manufacturing method of the semiconductor device having self-aligned metal source/drain | |
TWI232507B (en) | Method for fabricating silicide | |
TW411511B (en) | Self-aligned silicide technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |