[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW432510B - Method for producing device having wavy titanium silicide - Google Patents

Method for producing device having wavy titanium silicide Download PDF

Info

Publication number
TW432510B
TW432510B TW88114004A TW88114004A TW432510B TW 432510 B TW432510 B TW 432510B TW 88114004 A TW88114004 A TW 88114004A TW 88114004 A TW88114004 A TW 88114004A TW 432510 B TW432510 B TW 432510B
Authority
TW
Taiwan
Prior art keywords
layer
item
titanium
patent application
metal
Prior art date
Application number
TW88114004A
Other languages
Chinese (zh)
Inventor
Guo-Chi Lin
Bo-Hung Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88114004A priority Critical patent/TW432510B/en
Application granted granted Critical
Publication of TW432510B publication Critical patent/TW432510B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method for forming a semiconductor device of a wave titanium salicide on the surface of a gate electrode, source region and drain region, comprises at least: providing a silicon substrate formed with a semiconductor structure thereon, the semiconductor structure including a gate electrode, a source region and a drain region; forming a wavy polysilicon layer on the surface of the gate electrode, source region and drain region; sputtering a titanium metal layer on the whole wafer surface, particularly on the polysilicon layer; forming a titanium nitride layer on the titanium metal layer to prevent the titanium metal layer from oxidation; annealing the titanium metal layer to form a wave titanium salicide on the gate and the source/drain region; removing the titanium nitride layer, the unreacted titanium metal and the titanium reactant other than the titanium silicide; and further annealing the titanium silicide to convert it into a C54 phase structure.

Description

43 25 1ο 五、發明說明(1) 5-1發明領域: 本發明係有關於一種可形成鈦自行對準矽化物( titanium sal icide)之半導體結構的製造方法,本發明特 別是關係到一種具有波浪式欽自行對準砂化物之半導體元 件的製造方法,其可避免細線效應(thin line effect)。 5-2發明背景: 隨著積體電路技術的成長,元件的尺寸逐漸地縮小, 使單位晶圓面積内的容量更大,同時加快元件的操作速度 ,提昇元件的性能。但是當製程技術達到〇. 2 5微米以下時 ’由内連線所造成的時間延遲,將變成影響元件操作速度 、單位面積容量大小、可靠度好壞與良率高低的最主要因 素。在0. 2 5微米的元件尺寸大小時,5 0 %的元件速度延遲 ’將來自於由内連線所造成的時間延遲(RC time delay.) 。由内連線所造成的時間延遲,為導線的電阻值(R )與導 線間之介電層的電容值(C )所得之乘積,因此使用較低電 阻值的金屬做為導線可以減少内連線的時間延遲,進而加 快元件的操作速度,提昇元件的性能。 目前的製程技術採用自行對準矽化物(salicide)來降 低導線的阻值。自行對準矽化物係將矽與貴重金屬反應而 成’其應用很廣泛。特別是在金屬氧化半導體電晶體中,43 25 1ο V. Description of the invention (1) 5-1 Field of the invention: The present invention relates to a method for manufacturing a semiconductor structure capable of forming titanium self-aligned silicide (titanium salicide). The present invention relates particularly to a method having The manufacturing method of the wave-type self-aligning semiconductor device for sanding can avoid thin line effect. 5-2 Background of the Invention: With the development of integrated circuit technology, the size of components is gradually shrinking, making the capacity per unit wafer area larger, at the same time speeding up the operation speed of components, and improving the performance of components. But when the process technology reaches below 0.25 microns, the time delay caused by the interconnect will become the most important factor affecting the operating speed of the component, the capacity of the unit area, the reliability of the product, and the yield rate. At a component size of 0.25 micron, a component speed delay of 50% ′ will come from the RC time delay. The time delay caused by the interconnection is the product of the resistance value (R) of the wire and the capacitance value (C) of the dielectric layer between the wires. Therefore, using a metal with a lower resistance value as the wire can reduce the interconnection The time delay of the line accelerates the operation speed of the component and improves the performance of the component. Current process technology uses self-aligned salicide to reduce the resistance of the wire. Self-aligned silicides are formed by reacting silicon with precious metals ’and are widely used. Especially in metal oxide semiconductor transistors,

第4頁 43 25 1 Ο 五、發明說明(2) 形成一層鈥自行對準矽化物於多晶矽閘極電極、源極區域 與汲極區域’以增加矽與金屬連線的電性接觸。Page 4 43 25 1 0 V. Description of the invention (2) Form a layer of self-aligned silicide on the polysilicon gate electrode, source region and drain region 'to increase the electrical contact between the silicon and the metal connection.

; 金屬飲係目前積體電路技術中最常被用來形成自行對 準矽化物的金屬。然而,在進入〇. 18微米的元件尺寸大小 或更小尺寸世代時’由於幾何結構的限制,鈦自行對準矽 化物不再能降低閘極電極、源極區域與没極區域的電阻值 6因為片電阻(sheet resistance)係與閘極長度成反比, 因此當線見縮小至0. 1 8微米或更小時,片電阻將變得非常 大,而此現象一般被稱為"細線效應(thiη 1 ine effect)” 。請參閱第一圖所示’石夕基材12上形成有一習知之半導體 元件1 0,而細線效應的產生是在閘極電極〗6與源極/汲極 區域18上形成鈦自行對準矽化物之後。半導體元件10進 一步包括一絕緣區2 0、一側壁2 2以及一閘極氧化層2 4。鈦 自行對準矽化物1 4彎曲的部份對傳導方面並沒有多大的貢 獻’在線寬尺寸大時’此彎曲部份的影響不大,然而當線 寬進入深次微米時’此彎曲部份將嚴重影響元件的有效線 寬。線寬的減小’進一步使得片電阻值變得更大,而加大 時間延遲,降低元件速度。Metal drinks are currently the most commonly used in integrated circuit technology to form self-aligning silicide metals. However, when entering the element size or smaller generation of 0.18 microns, due to geometrical constraints, the self-aligned titanium silicide can no longer reduce the resistance values of the gate electrode, source region, and non-electrode region. Because the sheet resistance is inversely proportional to the gate length, when the line size is reduced to 0.18 microns or less, the sheet resistance will become very large, and this phenomenon is generally called " fine line effect ( thiη 1 ine effect) ". Please refer to the first figure, 'a conventional semiconductor element 10 is formed on the shixi substrate 12, and the thin line effect is generated at the gate electrode 6 and the source / drain region 18' After the titanium self-aligned silicide is formed on the semiconductor device, the semiconductor device 10 further includes an insulating region 20, a sidewall 22, and a gate oxide layer 24. The titanium self-aligns the curved portion of the silicide 14 to the conductive side and There is not much contribution 'when the line width is large', the effect of this curved part is not great, but when the line width enters the deep submicron, 'this curved part will seriously affect the effective line width of the device. The reduction of line width' Make the chip Value becomes greater, and increase the time delay, the speed reducing element.

除了鈦自行對準妙化物之外,始自行對準砂化物現在 亦被研究用於閘極電極與源極/没極區域以降低片電阻。 在線寬縮小至0. 1 8微米時,鈷自行對準矽化物似乎是取代 鈦自行對準石夕化物的最佳選擇。然而,钻自行對準發化物In addition to the self-aligned titanium compound, the self-aligned sand compound has also been studied for gate electrode and source / dead regions to reduce chip resistance. When the line width is reduced to 0.18 micrometers, cobalt self-aligned silicide appears to be the best choice to replace titanium self-aligned silicide. However, the drill aligns itself with the hair product

第5頁 4 3 251 ΟPage 5 4 3 251 Ο

五、發明說明(3) 與目月11的積體電路製程並不相容 5-3發明目的及概述: 本發明提供一種可增加鈦自行對準矽化物與矽層之間 的接觸區域之半導體元件的製造方法以避免細線效應的產 生’使鈇自行對準矽化物的製程可以繼續應用於深次微米 世代。本發明之一實例為形成一多晶矽層於閘極電極、源 極區域及没極區域之表面上,以形成波浪式鈦自行對準矽 化物。閘極電極上具有波浪式鈦自行對準矽化物之元件的 有效線寬比閘極電極上具有習知鈦自行對準矽化物之元件 的有效線寬來得大。因而,可以解決習知鈥自行對準矽化 物之細線效應與高電阻的問題。 達到上 及汲極 導體元 矽基材 結構包括有.一閘 一導電層於閘極 著’濺鍍一金屬 阻障層 即去除 應物; ,本發明提供一 面上形成有波浪 方法, 形成有 其至少包 一半導體 源極區域及一 極區域 晶圓表 之上方 未反應 火上述 為了 源極區域 化物之半 先提供一 ;形成一 度下;隨 之金屬反 述之目的 區域之表 件的製造 ,其上已 極電極、 電極、源 層於整個 於金屬層 阻障層、 最後,回 及汲極區 面上,尤 ;回火此 之金屬與 之金屬矽 種於閘極 式欽自行 括下列步 結構,該 汲極區域 域之表面 其是在導 金屬層於 金屬矽化 化物於第 對準石夕 驟:首 半導體 ;形成 上;接 電層上 第一溫 物以外 一溫度V. Description of the invention (3) Incompatible with the integrated circuit manufacturing process of Meizuru 11 5-3 Purpose and summary of the invention: The present invention provides a semiconductor which can increase the contact area between self-aligned titanium silicide and silicon layer. The device manufacturing method avoids the occurrence of thin line effects. The process of making plutonium self-aligned with silicide can continue to be applied to the deep sub-micron generation. An example of the present invention is to form a polycrystalline silicon layer on the surface of the gate electrode, the source region and the non-electrode region to form a wavy titanium self-aligned silicide. The effective line width of a device with a wavy titanium self-aligned silicide on the gate electrode is larger than the effective line width of a device with a conventional titanium self-aligned silicide on the gate electrode. Therefore, it is possible to solve the problems of the fine-line effect and high resistance of the self-aligned silicide. The silicon substrate structure of the upper and drain conductor elements includes: a gate, a conductive layer on the gate electrode, and a metal barrier layer is sputtered to remove the object; the invention provides a method for forming a wave on one side, and forming the same At least one semiconductor source region and one electrode region above the wafer table are not reacted. The above-mentioned one is provided for the half of the source region compound; forming one degree; and subsequently the manufacture of the watch region of the target region of the metal is described below. The upper electrode, the electrode, and the source layer are all on the barrier layer of the metal layer, and finally, return to the surface of the drain region, especially; tempering the metal and the metal silicon seed in the gate type include the following step structure , The surface of the drain region is at the metal-conducting layer and the metal silicide at the first alignment step: the first semiconductor; forming; a temperature other than the first temperature on the electrical connection layer

43 25 1 Ο 五、發明說明(4) 下。 5-4圖式簡單說明: 第一圖為具有習知鈦自行對準矽化物之半導體結構的 剖面示意圖。 第二Α至第二G圖為本發明較佳實施例之剖面流程示意 圖。 主要部分之代表符號: 1 0習知半導體元件 12矽基材 1 4鈦自行對準矽化物 1 6 閘極電極 1 8 源極/汲極區域 2 0 絕緣區 2 2側壁 2 4閘氧化層 2 0 0 半導體結構 2 1 0間極電極 2 1 5 源極區域 2 2 0 汲極區域43 25 1 〇 5. Description of the invention (4). Figure 5-4 is a simple explanation: The first figure is a schematic cross-sectional view of a semiconductor structure with a conventional titanium self-aligned silicide. The second A to G diagrams are schematic cross-sectional flow diagrams of the preferred embodiment of the present invention. Representative symbols of main parts: 1 0 conventional semiconductor elements 12 silicon substrate 1 4 titanium self-aligned silicide 1 6 gate electrode 1 8 source / drain region 2 0 insulation region 2 2 sidewall 2 4 gate oxide layer 2 0 0 Semiconductor structure 2 1 0 Inter electrode 2 1 5 Source region 2 2 0 Drain region

4-3 25 1 Ο 五、發明說明(5) ----- 2 2 5 絕緣區 2 3 0侧壁 235閘氧化層 240多晶矽層 245鈦金屬層 2 5 0氣化欽層 255相態C49之鈦矽化物結構 260相態C54之鈦矽化物結構 發明詳細說明: 請參閱第二Α圖至第二G圖所示’其係本發明較佳實胞 例之剖面流程示意圖。這些圖僅將本發明之流程主要步驟 依序畫出。 ’ 清參閱第二A圖,本發明首先提供一石夕基材2〇5,其上 已形成有一半導體結構2〇〇,該半導體結構2〇()包括有二多 晶石夕閘極電極21 0、一源極區域2 1 5及一汲極區域22〇。此 半導體結構2 0 0進一步包括一絕緣區2 2 5、一側壁2 3 0以及 一閘極氧化層235。其中絕緣區225可為場氧化層(field oxide)或淺溝槽隔離(shaii〇w trench isolation, STI) 接者整個舶圓在進4于下一步驟前先清洗(pre_ciean)乾 淨。4-3 25 1 〇 5. Description of the invention (5) ----- 2 2 5 Insulation area 2 3 0 Side wall 235 Gate oxide layer 240 Polycrystalline silicon layer 245 Titanium metal layer 2 5 0 Gasification layer 255 Phase state C49 The detailed description of the invention of the titanium silicide structure of the titanium silicide structure 260 phase C54: Please refer to the second diagram A to the second diagram G ', which is a schematic cross-sectional flow chart of a preferred embodiment of the present invention. These figures only show the main steps of the process of the present invention in sequence. '' Referring to FIG. 2A, the present invention first provides a Shixi substrate 200, on which a semiconductor structure 200 has been formed, and the semiconductor structure 20 () includes two polycrystalline stone gate electrodes 21 0 , A source region 2 15 and a drain region 22 o. The semiconductor structure 2000 further includes an insulating region 2 2 5, a sidewall 2 3 0, and a gate oxide layer 235. The insulation region 225 may be a field oxide layer or a shallow trench isolation (STI), and the entire circle is cleaned (pre_ciean) before proceeding to the next step.

43251〇 五、發明說明⑹ 在晶圓清洗完後,如第二Β圖所示,形成一多晶石夕層 240於多晶矽閘極電極210、源極區域215及汲極區域22〇之 裸露表面上。多晶矽層240係包含選擇性半球形晶粒 ( selective hemispherical grain, s~HSG)石夕’此選擇性 半球形晶粒矽240係以低壓化學氣相沈積法(LPCVD)在攝氏 500度至600度的溫度範園由非晶石夕(amorph〇us_si)轉換成 多晶矽(poly-Si )所沈積而成,其厚度範圍約為3〇〇埃至 600 埃。 Θ 再請參閱第二C圖,一鈦金屬層245被;賤鐘於整個晶圓 表面上’尤其是在多晶石夕廣240之表面上。.鈦金屬層245係 以磁控直流藏鍍法(magnetron DC sputtering)濺鍍沈積 而成,其厚度約介於200埃和1000埃之間。接著,如第二d 圖所示’形成一層厚度約介於5 0 0埃和1 5 0 0埃之間的氮化 鈦層250於鈦金屬層245之上方,其用以防止鈦金屬層245 進行氧化。此外’氮化鈦層2 5 0係以氮化金屬鈦之方法或 在濺鍍過程中加以反應來形成。 請參閱第二E圖,於攝氐400度至700度的溫度範圍内 對鈦金屬層245進行第一次快速回火步驟(rapid thermal process,RTP)處理,藉此在矽基材2 0 5上之閘極電極210 、源極區域21 5及汲極區域220上生成相態C49之鈦金屬矽 化物結構255。在形成C49之鈦金屬矽化物後,以乾式蝕刻 法去除氮化鈦層,該乾式蝕刻法之反應氣體係選自於由43251 05. Description of the invention ⑹ After the wafer is cleaned, a polycrystalline silicon layer 240 is formed on the exposed surfaces of the polycrystalline silicon gate electrode 210, the source region 215, and the drain region 22 as shown in the second B diagram. on. Polycrystalline silicon layer 240 contains selective hemispherical grain (s ~ HSG) Shi Xi 'This selective hemispherical grain silicon 240 is produced by low pressure chemical vapor deposition (LPCVD) at 500 ° C to 600 ° C The temperature range of Fangyuan Park is formed by the conversion of amorphous silicon (polymorphous silicon) into amorphous silicon (poly-Si), and its thickness ranges from about 300 angstroms to 600 angstroms. Θ Please refer to FIG. 2C again. A titanium metal layer 245 is used on the entire surface of the wafer ', especially on the surface of the polycrystalline stone Xiguang 240. The titanium metal layer 245 is deposited by magnetron DC sputtering, and its thickness is between 200 and 1000 angstroms. Then, as shown in the second figure d ', a layer of titanium nitride 250 with a thickness between 500 Angstroms and 150 Angstroms is formed over the titanium metal layer 245, which is used to prevent the titanium metal layer 245 Carry out oxidation. In addition, the 'titanium nitride layer 250 is formed by a method of nitrided metal titanium or a reaction during a sputtering process. Please refer to the second figure E. The titanium metal layer 245 is subjected to the first rapid thermal process (RTP) treatment in a temperature range of 400 ° to 700 °. A titanium metal silicide structure 255 in a phase state of C49 is formed on the gate electrode 210, the source region 215, and the drain region 220. After the titanium metal silicide of C49 is formed, the titanium nitride layer is removed by dry etching. The reaction gas system of the dry etching method is selected from

第9頁 4325 1 Ο _ 五、發明說明(7) BC13/C1s、CC14以及SFe所組成的族群中的元素。未反應之 鈦金屬及鈦矽化物以外之鈦反應物亦被去除,但係以濕式 蝕刻法進行,其蝕刻液包括硫酸與過氧化氫之混合物。藉 此,相態C49之金屬矽化物結構255得以被裸露出來,如第 二F圖所示。 最後,於攝氐700度至950度的溫度範圍内對該相態 C49之鈦金屬矽化物進行第二次快速回火步驟處理,第二 次快速回火步驟的溫度比第一次快速回火步驟為高。藉此 將阻值較高之C49鈦金屬矽化物轉換成C54相態之鈦金屬矽 化物結構2 6 0 ’其阻值較低,如第二g圖所示。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾’均應包含在下述之申請 專利範圍内。Page 9 4325 1 Ο _ V. Description of the invention (7) Elements in the group consisting of BC13 / C1s, CC14 and SFe. Unreacted titanium metal and titanium reactants other than titanium silicide are also removed, but are performed by a wet etching method, and the etching solution includes a mixture of sulfuric acid and hydrogen peroxide. Thereby, the metal silicide structure 255 of the phase C49 can be exposed, as shown in the second F diagram. Finally, in the temperature range of 700 ° to 950 ° C, the titanium metal silicide of the phase C49 is subjected to a second rapid tempering step. The temperature of the second rapid tempering step is faster than the first rapid tempering step. Steps are high. In this way, the C49 titanium metal silicide with a higher resistance value is converted into a C54 phase titanium metal silicide structure 2 6 0 ′, which has a low resistance value, as shown in the second g diagram. The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the patent application of the present invention; any other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be included in the following Within the scope of patent application.

第10頁Page 10

Claims (1)

六'申請專利範圍 1. —種形成金屬氧化半導體結構之方法,其至少包含: 提供一矽基材,其上已形成有該半導體結構,該半導 體結構包括有一閘極電極、一源極區域,以及一 ί及極區域 形成一導電層於該閘極電極、該源極區域,以及該汲 極區域之裸露表面上; 濺鍍一毯覆式金屬層於整個晶圓表面上,尤其是在該 導電層上; 形成一阻障層於該毯覆式金屬層之上方;6 'Application for Patent Scope 1. A method for forming a metal oxide semiconductor structure, at least comprising: providing a silicon substrate on which the semiconductor structure has been formed, the semiconductor structure including a gate electrode and a source region, And a conductive region forms a conductive layer on the exposed surfaces of the gate electrode, the source region, and the drain region; a blanket metal layer is sputtered on the entire wafer surface, especially on the surface of the wafer Forming a barrier layer over the blanket metal layer on the conductive layer; 回火該毯覆式金屬層於第一溫度下以形成一金屬矽化 物層; 去除該阻障層; 去除未反應之金屬及金屬石夕化物以外之金屬反應物; 以及 回火該金屬矽化物層於第二溫度下。 2. 如申請專利範圍第1項之方法,其中上述之半導體結構 進一步包括一侧壁、一絕緣區以及一閘極氧化層。 3. 如申請專利範圍第1項之方法,其中上述之閘極電極至 少包含多晶矽。 4.如申請專利範圍第1項之方法,其中上述之導電層至少 包含選擇性半球形晶粒矽。Tempering the blanket metal layer at a first temperature to form a metal silicide layer; removing the barrier layer; removing unreacted metal and metal reactants other than metal silicide; and tempering the metal silicide The layer is at a second temperature. 2. The method according to item 1 of the patent application, wherein the semiconductor structure further includes a sidewall, an insulating region, and a gate oxide layer. 3. The method according to item 1 of the patent application range, wherein the gate electrode mentioned above contains at least polycrystalline silicon. 4. The method according to item 1 of the patent application range, wherein the conductive layer includes at least selective hemispherical grain silicon. 第11頁 ^ 325 1 Ο ------- 六、申請專利範圍 5如申請專利範圍第4項之方法,其中上述之選擇性半球 形晶粒珍係以化學氣相沈積法在攝氐500度至600度的溫度 範圍所形成》 6·,如申請專利範圍第4項之方法,其中上述之選擇性半球 形晶粒梦之厚度範圍約介於300埃和60 0埃之間。 7·如申請專利範圍第1項之方法,其中上述之金屬層至少 包含鈦。 8.如申請專利範圍第7項之方法,其中上述之金屬層係以 磁控直流濺鍍法沈積而成’且該金屬層之厚度範圍約 2 0 0埃和1 〇 〇 〇埃之間。 9·=申請專利範圍第丄項之方法,其中上述之阻障層至少 包含氮化鈦且該阻障層之厚度範圍約介於500埃和1 500埃 之間。 1 0 _如申请專利範圍第9 以氮化作用方法形成。 11 ·如申請專利範圍第9 以反應ί賤法形成。 項之方法,其中上述之氮化鈦層係 項之方法’其中上述之氮化鈦層係Page 11 ^ 325 1 〇 ------- VI. Application for Patent Scope 5 The method described in item 4 of the scope of patent application, in which the selective hemispherical grains mentioned above are photographed by chemical vapor deposition. Formed in a temperature range of 500 degrees to 600 degrees ". 6. The method according to item 4 of the patent application range, wherein the thickness of the selective hemispherical grain dream is about 300 angstroms and 60 angstroms. 7. The method of claim 1 in which the above-mentioned metal layer contains at least titanium. 8. The method according to item 7 of the scope of patent application, wherein the above-mentioned metal layer is deposited by magnetron DC sputtering method ', and the thickness of the metal layer is between about 2000 angstroms and 1000 angstroms. 9 · = The method according to item 丄 of the patent application range, wherein the above barrier layer includes at least titanium nitride and the thickness of the barrier layer is between about 500 angstroms and 1,500 angstroms. 1 0 _If the patent application scope number 9 is formed by a nitriding method. 11 · If the scope of application for patent No. 9 is formed by the reaction method. Item method, wherein the above-mentioned titanium nitride layer system Item method 'wherein the above-mentioned titanium nitride layer system 第12頁 4325 1 〇Page 12 4325 1 〇 六、申請專利範圍 如申請專利範圍第!項之方法,其中上述之第一溫度的 範圍係為攝氐4〇〇度至700度。 其中上述之第二溫度的 1 3.如申請專利範圍第1項之方法 範圍係為攝氐7〇〇度至950度。 1)如申請專利範圍第17員之方法’其中上述之金屬矽化物 ιχ層係形成於該間極電極、该源極區域與該汲極區域 之上方。 15·如申請專利範圍第14項之方法,其中上述之回火該金 屬石夕化物層之步驟係將金屬矽化物由高阻值之C49相態轉 換成低阻值之C54相態。 ~ 16.如申清專利範圍弟14項之方法,其中上述之金屬梦化 物層至少包含鈦且X之值係選自於由1、2、3以及4所組成 的族群中的整數。Sixth, the scope of patent application The method of item, wherein the range of the first temperature is 400 ° to 700 °. Among them, the above-mentioned second temperature 1 3. The method according to item 1 of the scope of patent application ranges from 700 ° to 950 °. 1) The method according to the 17th member of the scope of patent application, wherein the aforementioned metal silicide layer is formed above the inter electrode, the source region, and the drain region. 15. The method according to item 14 of the scope of patent application, wherein the step of tempering the metal lithotripsy layer described above is to convert the metal silicide from a high-resistance C49 phase to a low-resistance C54 phase. ~ 16. The method according to claim 14 of the patent claim, wherein the above-mentioned metal dream layer contains at least titanium and the value of X is an integer selected from the group consisting of 1, 2, 3, and 4. 第13頁 43251〇 ^、申請專利範圍 --- 1 8.如申叫專利範圍第}項之方法,其中上述之去除未反應 之金屬,金屬矽化物以外之金屬反應物之步驟係以濕式蝕 刻法進订,該濕式蝕刻法之蝕刻液至少包含硫酸 氫之混合物。 年 1 9 一種可增加鈦自行對準矽化物與矽層之間的接觸區域 之半導體το件的製造方法,其亦能避免細線效應以及延續 欽自彳I對準♦化物的應用壽命,該方法至少包含: 提供一碎基材,其上已形成有一半導體結構,該半導 體結構包括有一閘極電極、一源極區域及—汲極區域; 形成一波浪式多晶矽層於該閘極電極、該源極區域及 該没極區域之裸露表面上; 錢鍛一毯覆式鈦金屬層於整個晶圓表面上,尤其是在 該波浪式多晶矽層上; 形成一氮化鈦層於該毯覆式敛金屬層之上方,以防止 該波浪式鈦金屬層氧化; 回火該鈦金屬層於第一溫度下以形成一波浪式鈦矽化 物於該閘極電極、該源極區域及該汲極區域之上方; 去除該氮化鈦層; 去除未反應之鈦金屬及鈦石夕化物以外之鈦反應物;以 及 回火該鈦矽化物於第二溫度下,該第二溫度較該第一 溫度尚。Page 13251 43. Application scope of patents --- 1 8. If the method of applying for the scope of the patent application item}, wherein the above-mentioned steps to remove unreacted metal, metal reactants other than metal silicide are wet The etching method is ordered, and the etchant of the wet etching method contains at least a mixture of hydrogen sulfate. Year 19 A method for manufacturing a semiconductor το device that can increase the contact area between the self-aligned titanium silicide and the silicon layer. It can also avoid the thin line effect and extend the application life of the self-aligned silicon. This method At least including: providing a broken substrate, a semiconductor structure has been formed thereon, the semiconductor structure includes a gate electrode, a source region, and a drain region; forming a wave-shaped polycrystalline silicon layer on the gate electrode, the source On the bare surface of the polar region and the non-polar region; forging a blanket-coated titanium metal layer on the entire wafer surface, especially on the wavy polycrystalline silicon layer; forming a titanium nitride layer on the blanket-type convergence Over the metal layer to prevent the wavy titanium metal layer from being oxidized; tempering the titanium metal layer at a first temperature to form a wavy titanium silicide on the gate electrode, the source region and the drain region Above; removing the titanium nitride layer; removing unreacted titanium metal and titanium reactants other than titanite; and tempering the titanium silicide at a second temperature which is higher than the first temperature Degree yet. 第14頁 432510 六、申請專利範圍 20.如申請專利範圍第19項 構進一步包括一侧壁、一絶絲=法,其中上述之半導體結 緣區以及一閘極氧化層。 21. 如中請專 至少包含多晶矽 利範圍第1 9項之方法,其中 上述之閘極電極 22.如申請專利範圍第19項夕士、+ ^ 晶矽層至少包含選擇性半埭形晶粒矽/、中上述之波浪式多 S形利範圍?22項之方法,"上述之選擇性半 度範;^學4相沈積法在攝氐5GG度至600度的溫 球开/ Ϊ f清專利範圍第22項之方法,其中上述之選擇性半 形0a粒矽之厚度範圍大約介於30 0埃和60〇埃之間。 =.、如申請專利範圍第19項之方法,其中上述之鈦金屬層 的、=磁控直流濺鍍法沈積而成,且該鈦金屬層之厚度範圍 、,、勺介於2 0 0埃和ι 0 0 0埃之間。 •如申靖專利範圍第1 9項之方法,其中上述之氮化鈦層 之厚度範圍約介於5〇〇埃和15〇〇埃之間。 27 如申請專利範圍第26項之方法,其中上述之氮化鈦層 第15頁 六、申請專利範圍 係以氮化作用方法形成。 28_如申請專利範圍第26項之方法,其中上述之氮化鈦層 係以反應濺鍍法形成。 29·如申請專利範圍第19項之方法,其中上述之第一溫度 的範圍係為攝氐4〇〇度至700度。 3 0·如申請專利範圍第1 9項之方法,其中上述之第二溫度 的範圍係為攝氐700度至950度。 31·如申請專利範圍第19項之方法,其中上述之回火該鈦 石夕化物之步驟係用以將鈦矽化物(T i s L )由高阻值之C4 9相 悲轉換成低阻值之C 5 4相態。 32.如申凊專利範圍第1 9項之方法,其中上述之鈦矽化物 的X之值係選自於由1、2、3以及4所組成的族群中的整數 33·如申請專利範圍第19項之方法,其中上述之去除該氮 5:層之步驟係以乾式蝕刻法進行’ 1亥乾式蝕刻法之反應 2 ^係垃自於由BCl3/C12、CC14以及SF6所組成的族群中的Page 14 432510 6. Scope of patent application 20. According to item 19 of the scope of patent application, the structure further includes a side wall, an insulating wire = method, wherein the semiconductor junction region and a gate oxide layer described above. 21. For example, please include at least the method of polysilicon range item 19, in which the above-mentioned gate electrode 22. If you apply for the patent range of item 19, the + ^ silicon layer contains at least selective semi- 埭 -shaped crystal grains Silicon /, the above wave-shaped multi-S-shaped profit range? The method of item 22, " The selectivity half-degree range mentioned above; ^ Learn the 4-phase deposition method at a temperature of 5GG to 600 degrees, and the method of item 22 of the patent scope, wherein the above-mentioned selectivity The thickness of the half-shaped 0a silicon particles ranges between 300 angstroms and 60 angstroms. =. The method according to item 19 of the patent application range, wherein the above-mentioned titanium metal layer is deposited by the magnetron DC sputtering method, and the thickness of the titanium metal layer ranges from 200 to 200 angstroms. And ι 0 0 0 Angstroms. • The method according to item 19 of Shenjing's patent scope, wherein the thickness of the above-mentioned titanium nitride layer is between about 500 angstroms and 15,000 angstroms. 27 The method as claimed in item 26 of the scope of patent application, in which the above-mentioned titanium nitride layer is applied on page 15 6. The scope of patent application is formed by nitriding. 28_ The method of claim 26 in which the above-mentioned titanium nitride layer is formed by a reactive sputtering method. 29. The method according to item 19 of the patent application range, wherein the first temperature range is 400 ° to 700 °. 30. The method according to item 19 of the patent application range, wherein the above-mentioned second temperature range is 700 ° to 950 °. 31. The method according to item 19 of the scope of patent application, wherein the step of tempering the titanite is to convert the titanium silicide (T is L) from a high resistance C4 9 phase to a low resistance The C 5 4 phase state. 32. The method of claim 19 in the patent scope, wherein the value of X of the titanium silicide is an integer selected from the group consisting of 1, 2, 3, and 4. 33. The method of item 19, wherein the step of removing the nitrogen 5: layer described above is performed by dry etching method. 1 The reaction of dry etching method 2 is derived from the group consisting of BCl3 / C12, CC14 and SF6 第16頁 4 3 2 5 1 Ο 六、申請專利範圍 3 4.如申請專利範圍第1 9項之方法,其中上述之去除 應之鈦金屬及鈦矽化物以外之鈦反應物之步驟係以濕 刻法進行,該濕式蝕刻法之蝕刻液包括硫酸與過氧化 混合物。 未反 式蝕 氫之Page 16 4 3 2 5 1 〇 VI. Patent Application Range 3 4. The method of item 19 of the patent application range, wherein the above-mentioned step of removing titanium reactants other than the corresponding titanium metal and titanium silicide is wet The etching method is performed. The etching solution of the wet etching method includes a mixture of sulfuric acid and peroxide. Untrans-etched
TW88114004A 1999-08-17 1999-08-17 Method for producing device having wavy titanium silicide TW432510B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88114004A TW432510B (en) 1999-08-17 1999-08-17 Method for producing device having wavy titanium silicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88114004A TW432510B (en) 1999-08-17 1999-08-17 Method for producing device having wavy titanium silicide

Publications (1)

Publication Number Publication Date
TW432510B true TW432510B (en) 2001-05-01

Family

ID=21641933

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88114004A TW432510B (en) 1999-08-17 1999-08-17 Method for producing device having wavy titanium silicide

Country Status (1)

Country Link
TW (1) TW432510B (en)

Similar Documents

Publication Publication Date Title
TWI231570B (en) Dual fully-silicided gate MOSFETs
US5089432A (en) Polycide gate MOSFET process for integrated circuits
KR100966384B1 (en) Nickel silicide method and structure
IE48724B1 (en) A method of making a conductor pattern on a semiconductor body
JP2000174274A (en) Formation of self-aligned silicide of semiconductor device
US5888903A (en) Self-aligned silicide process
TW200301937A (en) Silicon on insulator device with improved heat removal and method of manufacture
US6432817B1 (en) Tungsten silicide barrier for nickel silicidation of a gate electrode
US6627527B1 (en) Method to reduce metal silicide void formation
TW432510B (en) Method for producing device having wavy titanium silicide
JP2970620B2 (en) Method for manufacturing semiconductor device
EP1772899A1 (en) Method for forming a silicide gate
TW586152B (en) Semiconductor device and manufacturing method thereof
US6764912B1 (en) Passivation of nitride spacer
TWI312536B (en) Method for fabricating semiconductor device having stack-gate structure
US6730587B1 (en) Titanium barrier for nickel silicidation of a gate electrode
JPH09232254A (en) Electrode material and its manufacture
CN100431112C (en) Method for fabricating silicate metal
TWI220535B (en) A novel process for preparation of the metal silicide
TWI225284B (en) Method of using self-aligned metal silicide bridging to form interconnects
TW558759B (en) Method of forming and etching resistor protection oxide layer
TWI292928B (en) Manufacturing method of semiconductor device
TW492084B (en) Manufacturing method of the semiconductor device having self-aligned metal source/drain
TWI232507B (en) Method for fabricating silicide
TW411511B (en) Self-aligned silicide technology

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent