TW426972B - Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor - Google Patents
Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor Download PDFInfo
- Publication number
- TW426972B TW426972B TW88116564A TW88116564A TW426972B TW 426972 B TW426972 B TW 426972B TW 88116564 A TW88116564 A TW 88116564A TW 88116564 A TW88116564 A TW 88116564A TW 426972 B TW426972 B TW 426972B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- patent application
- scope
- type
- effect transistor
- Prior art date
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
五、發明說明(1) 5-1發明領域: 426972 * 本發明係有關於一種製造互補式金氧半場效電晶體( CMOS )的方法,特別是有關於一種製造互補式金氧半場效 電晶體使用矽-硼層(Si-β iayer)形成一源極/汲極延伸接 面的方法。 5-2發明背景:V. Description of the invention (1) 5-1 Field of the invention: 426972 * The present invention relates to a method for manufacturing a complementary metal-oxide-semiconductor field-effect transistor (CMOS), and more particularly to a method for manufacturing a complementary metal-oxide-semiconductor half-field-effect transistor. A method for forming a source / drain extension interface using a silicon-boron layer (Si-β iayer). 5-2 Background of the Invention:
近來,由於巨大型積體電路(ultra large scaU integration, ULSI)形成於半導體基板上具有引人注目的 半導體技術,使得在單一晶片上的積體電路密度增加。此 積體電路密度增加的結果,造成個別元件的尺寸減小,和 增加元件群的密度。近來,高解析度的微影技術、非等 ,蝕刻技術、及其他半導體技術的革新,有顯著的進步, 糟以達成兀件尺寸的減小、然而,未來需要更高的電 度,在芈導體製程技術上和在電子元件的上, 附加的要求。 择·攻 一金氧半場效電晶體(M0SFET) ___ =知的^ —般而言,於一相當薄的閘氡化層之上,放 =矽化金屬(p〇lysUic〇n)材料,藉以製造: 的。完成多晶石夕化金屬材料和薄的閣氧q 圖案後,形成一閘極導體,此閘極導體鄰近於源極/^Recently, as ultra-large scaU integration (ULSI) is formed on a semiconductor substrate with attractive semiconductor technology, the density of the integrated circuit on a single wafer has increased. As a result of the increase in the density of the integrated circuit, the size of individual components is reduced, and the density of the component group is increased. Recently, innovations in high-resolution lithography technology, non-equivalent technology, etching technology, and other semiconductor technologies have made significant progress. It is worse to reduce the size of components. However, higher electrical power is required in the future. Conductor technology and additional requirements for electronic components. Select and attack a metal-oxide-semiconductor field-effect transistor (M0SFET) ___ = Known ^ In general, on a relatively thin gated layer, put = silicon metal (p0lysUicOn) material to manufacture : of. After the polycrystalline silicon metal material and the thin oxygen q pattern are completed, a gate conductor is formed, and the gate conductor is adjacent to the source / ^
第5頁Page 5
五、發明說明(2) 穿#6U.後’植入一摻雜雜質的材料,☆閘極導體和源 極/汲極¥蟑上。假如使用摻雜雜質的材料,形成n型的源 極/汲極區域,這樣結果的金氧半場效電晶體稱之為n型金 氧半場效電晶體π件(η通道)。相對地,假如使用摻雜雜 質的材料,形成一Ρ型的源極/汲極區域,這樣結果的金氡 半場效電晶體稱之為一Ρ型金氧半場效電晶體元件(ρ通道) 使用微影技術(photo 1 ithography technique)形成閘 極導體和鄰近的源極/汲極區域。透過一厚的場氧化層, 在窗口出現閘極導體和源極/汲極區域。形成電晶體的那 些窗口’稱之為主動區域(active regi〇n)。因此,主動 區域的範圍,介於場氧化層之間。於場氧化層之上,安排 a屬内連線去連接多晶石夕閘極導體和源極/沒極區域,藉 以形成一完整的電路結構。 胃 積體電路利用η通道元件、ρ通道元件、或兩者組成的 元件於單一基板之上。當形成兩者型式元件時,基本上元 件必須各別植入不同摻雜雜質的源極/汲極區域。在源極/ 汲極區域植入η型雜質形成一η通道元件,而在源極/汲極 區域植入ρ型雜質形成一 ρ通道元件,唯一的問題相關於每 一元件。如此增加密度,將使得問題更加惡化。元件發現 不良,可調整製程參數和製程步驟。在大多數的例子之中 ,由於每種型式元件的單一性問題,使得η通道的製程不V. Description of the invention (2) After wearing # 6U., Implant a material doped with impurities, ☆ gate conductor and source / drain electrode. If an impurity-doped material is used to form an n-type source / drain region, the resulting metal-oxide-semiconductor field-effect transistor is called an n-type metal-oxide-semiconductor field-effect transistor π (n-channel). In contrast, if impurity-doped materials are used to form a P-type source / drain region, the resulting gold-alloy half-field-effect transistor is called a P-type metal-oxide half-field-effect transistor element (ρ channel). The photolithography technique forms a gate conductor and adjacent source / drain regions. Through a thick field oxide layer, gate conductors and source / drain regions appear in the window. Those windows' forming the transistor are called active regions. Therefore, the range of the active region is between the field oxide layer. Above the field oxide layer, an internal interconnect is arranged to connect the polycrystalline silicon gate conductor and the source / non-electrode area, thereby forming a complete circuit structure. Gastric integrated circuits use η-channel elements, ρ-channel elements, or both components on a single substrate. When forming both types of elements, basically the elements must be implanted with source / drain regions of different doped impurities. Implanting n-type impurities in the source / drain region forms an n-channel element, and implanting p-type impurities in the source / drain region forms a p-channel element. The only problem is related to each element. Such an increase in density will make the problem worse. The component is found to be defective, and the process parameters and process steps can be adjusted. In most cases, due to the singularity of each type of component, the manufacturing process of the η channel is not
第6頁Page 6
五、發明說明(3) 4阖道的製程°首先先討論n 通 道 的 製 程 接 著 再 討 論 ρ通道的製程 一η通道元件對於所謂的短通道效應 (short channel effect)特別 敏 感。源極和ί及極 區 域 之 間 的 距 離 通 常 根 據實際的通道 長 度(physical channel length) 〇 然 而 ϊ 源極和没極在 離 子佈植和擴散程 序 之 後 源 極 和 汲 極 區 域 之間的距離變 得 小於實際的通道 長 度 ί 此 乃 稱 之 為 有 效 通 道長度(ef fee t i ve channel 1 en gth) 〇 在 超 大 型 積 體 電 路 設計之中,實 際 的通道變短,使 得 短 通 道 效 應 變 成 一 個 更 加明顯的問題 0 一般而言 短通道效應將影 響 元 件 的 操 作 , 藉 以 降 低 元件的臨界電 壓 (threshold vo 1tage) 和 增 加 次 臨 界 電 流 (sub-threshold current)。像 有 效 通 道 長 度 變 得 十 分 的 短,則源極和 汲 極區域相對的空 乏 區 域 可 以 向 前 延 伸 至 另 一端,產生實 際 的通道區域《因 此 一 些 通 道 將 部 份 地 空 乏,對於閘極 電 壓沒有任何影響 0 這 結 果 使 得 需 要 較 低 的 閘極電荷,去 反 轉具有一短的有 效 通 道 長 度 電 晶 體 的 通 道 。相對於臨界 電 壓的下降,其次 臨 界 電 流 的 流 量 也 應 具 有 此一概念。即 使 當閘極電壓低於 臨 界 量 時 源 極 和 汲 極 之 間的電流存在 於 電晶體’具有一 相 當 短 的 有 效 通 道 長 度 然而,增 加 次5品界電流主要 的 兩 個 原 因 是 貫 穿(punchV. Description of the invention (3) The process of the 4 channel ° First, the process of the n channel is discussed first, and then the process of the ρ channel is discussed. The η channel element is particularly sensitive to the so-called short channel effect. The distance between the source and ί and the electrode region is usually based on the actual channel length. However, the distance between the source and the drain region after the ion implantation and diffusion process becomes Less than the actual channel length. This is called the effective channel length (ef fee ti ve channel 1 en gth). In the design of very large integrated circuits, the actual channel becomes shorter, making the short channel effect a more obvious Problem 0 Generally speaking, the short-channel effect will affect the operation of the device, thereby reducing the threshold voltage (threshold vo 1tage) and increasing the sub-threshold current of the device. As the effective channel length becomes very short, the empty region opposite the source and drain regions can be extended forward to the other end, resulting in the actual channel region. Therefore, some channels will be partially empty, so there is nothing to the gate voltage. Effect 0 This result requires a lower gate charge to invert the channel with a short effective channel length transistor. Relative to the decrease of the critical voltage, the second critical current flow should also have this concept. Even when the gate voltage is lower than the threshold, the current between the source and the drain exists in the transistor ’, which has a relatively short effective channel length. However, the two main reasons for increasing the sub-5 current are the penetration.
五 明(4) (drain-induced barrier 於寬的汲極空乏區域,當 時。汲極電場可能貫穿源 面的位能障。貫穿電流和 相對於貫穿電流,汲極導 基板表面。一汲極電壓的 ’這樣的結果在基板表面 在通道附近的梦一二氧化 控制短通道效應的方法, 幸地,增加基板雜質有害 throu多U為σ汲極導致阻障下降 lowering )。貫穿的結果是源自 供給一反向偏壓給汲極井二極體 極區域’藉以降低源極至基板接 基板材料相連於基板表面之下。 致阻障下降引起電流幾乎發生在 應用可能造成基板表面位能下降 具有一較低的位能障,這將造成 石夕表面的次臨界電流增加。一種 為增加元件基板的雜質濃度。不 於確保元件增加位能梯度。 增加位能梯度產生一額外的效應,此效應稱之為熱載 體效應(hot carrier effect)。熱載體效應的現象是藉由 增加載體(電子或電洞)的動能,加速通過大的位能梯度, 接著在閘極氧化層之中變成缺陷。最大的位能梯度通常根 據最大電場,此最大電場發生於接近飽和操作期間。特別 是’在接近通道汲極的橫向接面’電場效應更為明顯。 、 以n通道元件為例’電場產生電子動能於汲極,造成 ,道電子打入閘極。電子—電子之間的動能隨機散射,使 得電子變得十分的”熱”。這些熱電子有足夠的能量去產生 電子電洞對’這將影響砂原子的離子化。當電洞流入恭 板產生一基板電流於元件之中’加入通道電子的流量,將Wu Ming (4) (drain-induced barrier in a wide drain empty area, at that time. The drain electric field may penetrate the potential barrier of the source surface. Through-current and relative to the through-current, the drain-conductive substrate surface. A drain voltage The result of this method is to control the short channel effect on the substrate surface near the channel. Fortunately, increasing substrate impurities is harmful to the Trouble, and the sigma drain leads to lowering of the barrier). The result of the penetration is derived from the supply of a reverse bias to the drain well diode region ', thereby reducing the source to substrate connection. The substrate material is connected below the substrate surface. The current caused by the barrier drop almost occurs in the application. It may cause the surface potential of the substrate to decrease. With a lower potential barrier, this will cause the subcritical current on the surface of the stone to increase. One is to increase the impurity concentration of the element substrate. It is necessary to ensure that the component increases the potential energy gradient. Increasing the potential energy gradient creates an additional effect, which is called the hot carrier effect. The phenomenon of heat carrier effect is to increase the kinetic energy of the carrier (electron or hole), accelerate through a large potential energy gradient, and then become a defect in the gate oxide layer. The maximum potential energy gradient is usually based on the maximum electric field, which occurs during near-saturation operation. In particular, the electric field effect is more pronounced 'at the lateral junction near the drain of the channel'. Taking the n-channel element as an example, the electric field generates the kinetic energy of the electrons at the drain, causing the electrons to enter the gate. Electron-electron kinetic energy is randomly scattered, making the electrons very "hot". These hot electrons have enough energy to generate electron hole pairs, which will affect the ionization of sand atoms. When the hole flows into the plate, a substrate current is generated in the component.
第8頁 造是 色 次角 一的 第子。 流電質 電和本 板洞的 基電同 ,了相 中除有 之,具 件例程 元為過 於件造 。 元製 子道的 電通本 生Ρ基 產以, XJ- 〇^I (50Γ >子體以 §a離載的 _響熱反 滅影出相 …載體效應的發生為當一些熱载體射入接近汲極接面 =閑極氧化層0寺,熱載體將破壞閉極氧化層,造成缺 k的開極氧化層。一般在間極氧化層的缺 L即使這些電子缺陷在初始時為電洞所=支;=: 累積的時間,將影響0通道元件和p通道元件的正臨界漂移 :就我們所知,熱電子的遷移率遠超過熱電洞。在n通道 =件和p通道疋件之中,熱載體效應造成—巨大的臨界斜 竿。因此’ 一 P通道元件將經歷負臨界斜率。 .φ除了修正製造電晶體的結構之外,次臨界電流和臨界 ,移=問題,將導致短通道效應和熱載體效應保持原狀。 服k些問題,必須選擇任一汲極結構使用雙重擴散的汲 極(DDD)或輕微摻雜的汲極(LDD)。上述之兩種型式的結構 具有相同的目的’就是去吸收於没極之中的一些位能,藉 以7低最大電場。雙重擴散的汲極結構的流行性已讓步給 輕微推雜的没極結構’這是因為雙重擴散的汲極會造成不 可接叉的深接面和有害的接面電容β 一傳統的輕微摻雜的汲極是藉由一低濃度的雜質自行 對準閉極電極,接著於兩已形成的側壁間隙壁之上,藉由Page 8 is the first son of the color angle. The galvanic mass is the same as the base power of this board hole, except that the component routines are too manufactured. The Dentsu Bunsen P-based product of the elementary system is produced by XJ- 〇 ^ I (50Γ > daughter body with §a off-load _ loud heat anti-extinction shadow phase ... the carrier effect occurs when some heat carriers shoot Into the drain junction = the free oxide layer 0, the heat carrier will destroy the closed electrode layer, resulting in an open electrode layer lacking k. Generally, the lack of L in the interlayer oxide layer, even though these electronic defects are initially electrical. Hole = branch; =: The accumulated time will affect the positive critical drift of the 0-channel element and the p-channel element: as far as we know, the mobility of the hot electron far exceeds that of the thermal hole. In the n-channel = and p-channel channels Among them, the heat carrier effect is caused by a huge critical oblique rod. Therefore, a P-channel element will experience a negative critical slope. In addition to modifying the structure of the transistor, sub-critical current and criticality, shift = problem, will cause The short channel effect and the heat carrier effect remain the same. For some problems, you must choose either of the drain structures to use a double-diffused drain (DDD) or a lightly doped drain (LDD). The two types of structures mentioned above have The same purpose 'is to absorb some of the poles Potential energy, with a low maximum electric field of 7. The popularity of the double-diffused drain structure has given way to a slightly doped non-polar structure. This is because the double-diffused drain can cause irreversible deep junctions and harmful junctions. Area capacitance β A traditional lightly doped drain electrode is self-aligned to a closed electrode by a low concentration of impurities, and then on two formed sidewall gaps, by
一較高的^質自行對準閘極電極。接近閘極邊緣的通道, 第一次植入劑量的用途在源極和汲極兩區域產生—輕微摻 雜的截面。第二次植入劑量的空間,藉由側壁間隙壁的厚 度,植入劑量距通道有一段距離。第一次和第二次植入的 結果,一雜質梯度發生在源極和通道之間的接面,和發生 在〉及極和通道之間的接面是一樣的。 適當地定義輕微摻雜的汲極結構必須具有一最小的熱 載體效應,但不能損失額外的源極/汲極電阻。此外一輕 Ί政換雜的 >及極植入於通道的附近,不幸地加入了電阻進入 源極/汲極路徑。加入的電阻,—般稱之為寄生電阻,這 寄生電阻具有很多有害的效應。首先,寄生電阻可能降低 飽和電流。其次,寄生電阻可能降低整個電晶體的速度。 適當地設計輕微摻雜的源極/汲極,克服上述的問題 ’藉以應用於η通道電晶體和p通道電晶體。然而,一種方 法將使用於互補式金氧半場效電晶體(CMOS)製造過程之中 。使用現存之製程技術,製造互補式金氧半場效電晶體。 依據很多現有的製程技術’改善互補式金氧半場效電晶體 ’藉以達成所期望具有低電阻(low resistance)和超淺接 面(ultra shallow junction)的互補式金氧半場效電晶體 5-3發明目的及概述:A higher quality self-aligns the gate electrode. Channels close to the edge of the gate, the use of the first implant dose produces a slightly doped cross section in both the source and drain regions. The space for the second implant dose is a distance from the channel by the thickness of the side wall gap. As a result of the first and second implants, an impurity gradient occurs at the junction between the source and the channel, as well as at the junction between the source and the channel. Properly defined lightly doped drain structures must have a minimal heat carrier effect without losing additional source / drain resistance. In addition, a simple change of the > and the electrodes are implanted near the channel, unfortunately adding a resistor into the source / drain path. The added resistance, commonly called parasitic resistance, has many harmful effects. First, parasitic resistance may reduce saturation current. Second, parasitic resistance may reduce the speed of the entire transistor. Appropriately designing a lightly doped source / drain to overcome the above-mentioned problems is used to apply to n-channel transistors and p-channel transistors. However, one method will be used in the manufacturing process of complementary metal-oxide-semiconductor field-effect transistor (CMOS). Use existing process technology to manufacture complementary metal-oxide-semiconductor half-field-effect transistors. Based on many existing process technologies to 'improve complementary metal-oxide-semiconductor half-effect transistors' to achieve the desired low-resistance and ultra shallow junction complementary metal-oxide-semiconductor half-effect transistors 5-3 Purpose and summary of the invention:
第10頁 S' 五、發明說明(7^ 鑒於上述之發明背景中,提供一種形成低電阻(1 resistance)和超淺接面(ultra shallow junction)的互 補式金氧半場效電晶體(CMOS )的方法。此外,典型的互 補式金乳半場效電晶體的結構包含P型井互補式金氧半場 效電晶體(p-we 11 CMOS) 、η型井互補式金氧半場效電晶 體(p-we 1 1 CMOS )、和雙井互補式金氧半場效電晶體( twin-wel 1 CMOS)。然而’在本實施例中僅詳細描述^型井 互補式金氧半場效電晶體,至於其他兩種互補式金氧半場 效電晶體的結構亦包含在其中。在本實施例中,此製造方 法步驟如下。首先,於一 Ρ型雜質的單晶矽基板之上或之 中’提供一互補式金氧半場效電晶體的區域。然後,於— Ρ型半導體基板(p-type semiconductor substrate)之中 ’形成一 η型井區域(nieli regi〇n)。之後,於p型半導 體基板和一部份的η型井區域之中,形成一相當深的淺 渠隔離(STI),藉以形成一ρ型金氧半場效電晶體主動區域 (PMOSFET active region)和一η型金氧半場效電晶體主 =⑽SFET active region)。於?型金氧半場效電晶體 主動區域和η型金氧半場效電晶體主動區域之中,形 ?道。之後,於ρ型金氧半場效電晶體主動區域和㈣ 半%效電晶體主動區域之上,形成一閘極氧化層 e 〇X1de layer)。然後,於閘極氧化層之上 閘極Cpolysilicon gate)。接荖,钻方,々L積^日日矽 ^ ,, 接者餘刻多晶矽閘極和閘 和氧化層’ I皆以形成ρ型金氧半場效電晶體閘 PMOSFET gate pattern)於ρ 型金氧丰 ρ 0 案( 兔氧牛%效電晶體主動區域Page 10 S 'V. Description of the invention (7 ^ In view of the above background of the invention, a complementary metal-oxide-semiconductor field-effect transistor (CMOS) with a low resistance (1 resistance) and an ultra shallow junction is provided. In addition, the structure of a typical complementary gold emulsion half field effect transistor includes a P-well complementary metal-oxide half-field-effect transistor (p-we 11 CMOS) and an n-well complementary metal-oxide half-field-effect transistor (p -we 1 1 CMOS), and twin-wel 1 CMOS half field effect transistor (twin-wel 1 CMOS). However, in this embodiment, only the ^ -well complementary CMOS half field effect transistor is described in detail, as for other The structures of two complementary metal-oxide-semiconductor field-effect transistors are also included. In this embodiment, the steps of this manufacturing method are as follows. First, a complementary crystal is provided on or in a single crystal silicon substrate of a P-type impurity. Region of a metal oxide half field effect transistor. Then, an n-type well region (nieli region) is formed in a p-type semiconductor substrate. Then, a p-type semiconductor substrate and a In some n-well areas, A relatively deep shallow trench isolation (STI) is formed to form a p-type metal-oxide-semiconductor field-effect transistor active region (PMOSFET active region) and an n-type metal-oxide-semiconductor field-effect transistor (= SFET active region). to? In the active region of the metal oxide semiconductor field-effect transistor and the active region of the n-type metal oxide semiconductor field-effect transistor, the shape is formed. Then, a gate oxide layer (e × 1de layer) is formed on the active region of the p-type metal-oxide-semiconductor half field effect transistor and the active region of the half-effect half transistor. Then, the gate is above the gate oxide layer (Cpolysilicon gate). Next, polycrystalline silicon gates, gates, and silicon wafers are formed, and the polycrystalline silicon gates, gates, and oxide layers are formed in the remainder of the year to form a p-type metal-oxide-semiconductor field-effect transistor (PMOSFET gate pattern). Oxygen ρ 0 case (Rabbit Oxygen Oxide Active Crystal Active Area
第11頁 五、 之上和二,半場效電晶體閘極圖案(NM0SFET gate pattern) 曰,氡半場效電晶體主動區域之上。於p型 氧半場效=$主動區域和一部份的淺丨冓渠隔離之上,带 成一第二已:義光阻層。之後,⑯η型金氧半場效電晶於 主動區域之,植人一η-型雜質,藉以形成一 型輕微^ 雜的源極/ 汲極(1 ightly doped source/drain)。然後, 移除第-已^義光阻層。於淺溝渠隔離、η型金氧半 電晶體閘極圖案、ρ型金氧半場效電晶體閘極圖案、η型金 氧半場故電晶體主動區域 '和ρ型金氧半場效電晶體主動 區域之上,>儿積一第一介電層。於第一介電層之上,形成 一第二已定義光阻層。之後,於ρ型金氧半場效電晶體主 動區域和一部份的淺溝渠隔離之上,第一次蝕刻一部份的 第"電層。然後,在—部份的第一介電層餘刻步驟期間 ’、於D型金氧半場效電晶體主動區域之上,形成—補償間 隙壁(offset spacer)。接著,移除第二已定義光阻層。 於—部份的淺溝渠隔離、P型金氧半場效電晶體主動區域 P型金氧半場效電晶體閘極圖案、補償間隙壁、和第一 1電層之上,>儿積一矽'蝴層(siHcon~boron layer)。氧 化矽-硼層形成一硼矽玻璃層,並第一次擴散硼原子於p型 金氣半場效電晶體主動區域之中,藉以形成一 ρ-型輕微摻 雜的源極/汲極。之後’於硼矽玻璃層上,沈積一第二介 電層。接著’蝕刻一部份的第二介電層、一部份的硼矽玻 j層、和第二次蝕刻一部份的第一介電層,藉以形成一第 —蝴石夕玻璃間隙壁(first BSG spacer)和一第二硼矽玻璃Page 11 V. Above and II. Half field effect transistor gate pattern (NM0SFET gate pattern) It is said that the above half field effect transistor is above the active area. Above the p-type oxygen half field effect = $ active area and a part of the shallow trench isolation, a second layer has been formed: a photoresist layer. After that, the ⑯η-type metal-oxide half-field effect transistor is implanted in the active region and implanted with an η-type impurity, thereby forming a type 1 lightly doped source / drain. Then, the -th photoresist layer is removed. In shallow trench isolation, n-type metal-oxide-semiconductor gate pattern, p-type metal-oxide-semiconductor field-effect transistor gate pattern, n-type metal-oxide-semiconductor half-field transistor active region and p-type metal-oxide-semiconductor half-effect transistor active region Above, > a first dielectric layer. A second defined photoresist layer is formed on the first dielectric layer. After that, a part of the " electrical layer " is etched for the first time above the active area of the p-type metal-oxide-semiconductor half field effect transistor and part of the shallow trench. Then, an offset spacer is formed over the active region of the first dielectric layer in a portion of the D-type metal oxide half field effect transistor. Then, the second defined photoresist layer is removed. On-part of the shallow trench isolation, P-type CMOS half-effect transistor active area, P-type MOSFET half-gate transistor gate pattern, compensation gap, and the first layer above the electrical layer, > silicon 'Butterfly layer (siHcon ~ boron layer). The silicon oxide-boron layer forms a borosilicate glass layer, and for the first time diffuses boron atoms into the active region of the p-type gold gas half field effect transistor, thereby forming a p-type slightly doped source / drain. After that, a second dielectric layer is deposited on the borosilicate glass layer. Next, a portion of the second dielectric layer, a portion of the borosilicate glass j layer, and a portion of the first dielectric layer are etched a second time to form a first-butterfly glass spacer ( first BSG spacer) and a second borosilicate glass
第12頁Page 12
A 五、發明說^ ^- * 間隙壁(second BSG spacer)。之後,於p型金氣半場效電 Β曰體主動區域之中’植入—ρ+型雜質,藉以形成一 ρ+型重 換雜的源極 / 波極(heavj_iy doped source/drain)。接著 於n型金氧半場效電晶體.主動區域之中.,植入一 n+型雜 質,藉以形成一 n+型重摻雜的源極/汲極。最後,回火 =:石夕玻璃間隙壁’於第—硼矽玻璃間隙壁的下方區 金ί Ϊ 3 :原子’藉以形成一源極/汲極延伸接面於~P型 金氣+場效電晶體之中。 5~4圖式簡單說明: 製造ΐ補= = :程::::明之實施例去 主要部分之代表符號 10 15 20 25 30 35 40 45 50 Ρ型半導體基板 η型井區域 淺溝渠隔離 通道 閘極氧化層 多晶矽閘極 η型金氧半場效電晶體閘極圖索 ρ型金氧半場效電晶體閘極圖案 η型輕微摻雜的源極/汲極A V. Invention ^ ^-* Second BSG spacer. After that, a p-type impurity is implanted in the p-type gold gas half-field-effect electric field B-body active region to form a pj-type doped source / drain. Next, an n + type impurity is implanted in the n-type metal-oxide-semiconductor half-field-effect transistor. Active area to form an n + type heavily doped source / drain. Finally, tempering =: Shi Xi glass gap wall 'in the lower area of the first-borosilicate glass gap wall gold ί 3: Atoms to form a source / drain extension interface to ~ P type gold gas + field effect Transistor. 5 ~ 4 diagrams simple explanation: Manufacturing replenishment = =: Cheng :::: Ming symbol to the main part of the representative symbol 10 15 20 25 30 35 40 45 50 P-type semiconductor substrate n-well area shallow trench isolation channel gate N-type metal-oxide-semiconductor half-field-effect transistor gate electrode pattern, p-type metal-oxide-semiconductor half-field-effect transistor gate pattern, n-type lightly doped source / drain
明說明(10) 贫/ 2 第一已定義光阻層 60 60A 65 70 80 85 90 95 100 105 110 120 500 505 第一介電層 第一已定義光阻層 補償間隙壁 石夕-蝴層 硼矽破璃層 P_型輕微摻雜的源極/汲極 第二介電層 第一硼矽玻璃間隙壁 第二硼矽玻璃間隙壁 P+型重摻雜的源極/汲極 n+型重摻雜的源極/汲極 源極/沒極延伸接面 P型金氧半場效電晶體主動區域 η型金氧半場效電晶體主動區域 5-5發明詳細說明 一種製造互補式金氧半場效電晶體使用硼矽玻璃形成 ρ裂金氧半場效電晶體源極/汲極延伸接面的方法,詳細描 述如下°典型的互補式金氧半場效電晶體的結構包含Ρ型 井互補式金氧半場效電晶體(p-well CMOS)、η型井互補式 金氧半場效電晶體(p_well CM〇s)、和雙井互補式金氧半 場效電晶體(twin-well CMOS)。然而,在本實施例中僅詳Description (10) Poor / 2 The first defined photoresist layer 60 60A 65 70 80 85 90 95 100 105 110 120 500 505 The first dielectric layer The first defined photoresist layer compensates the gap stone-Butterfly layer boron Silicon broken layer P_ type lightly doped source / drain second dielectric layer first borosilicate glass spacer wall second borosilicate glass spacer wall P + type heavily doped source / drain n + type heavily doped Miscellaneous source / drain source / non-extended junction P-type metal oxide half field effect transistor active area η type metal oxide half field effect transistor active area The crystal uses borosilicate glass to form a p-split metal-oxide-semiconductor field-effect transistor source / drain extension junction. The details are described below. The structure of a typical complementary metal-oxide-semiconductor half-field-effect transistor includes a P-well complementary metal-oxide half-field P-well CMOS, η-well complementary metal-oxide-semiconductor half-field-effect transistor (p_well CMOS), and twin-well complementary metal-oxide-semiconductor half-field-effect transistor (t-well CMOS). However, in this embodiment, only the details
第14頁 (π) -〜 ---------- ^ ^井互補式金氣半場效電晶體’至於其他兩種互 ^ —半場效電晶體的結構亦包含在其中。第一圖至第 Ο β的圖式所示,根據本發明之實施例去製造互補式金氧 半場效電晶體流程的截面圖。 依據第一圖的圖式所示,於一<1〇〇>晶格指向的ρ型單 晶矽基板之上或之中,提供一互補式金氧半場效電晶體的 區域。此ρ型半導體基板(p_type sejniconductor substrate ) 10具有一濃度大約小於每立方公分1 · OE 1 5個 原子。然後’形成一0¾井區域(n_weU regi〇n)15,使用 磷(P)為一離子源的離子佈植程序,於一能量大約1 〇 至200KeV之間’植入一劑量大約每平方公分丨.〇E 12至丨.〇 E 13之間個原子’接著,使用一驅入(drj^e_in)程序於一 溫度大約1 0 00度,形成一濃度大約每立方公分l 〇E 16個 原子的η型井區域15 ’於ρ型半導體基板10之上。之後,於 Ρ型半導體基板10和一部份的η型井區域15周圍,形成一相 當深的淺溝渠隔離(ST Ϊ ) 2 0,去隔離各元件區域之間的漏 電流’藉以形成一 ρ型金氧半場效電晶體主動區域( PMOSFET active region) 500和一η型金氧半場效電晶體主 動區域(NMOSFET active regi〇n) 5 0 5。於ρ型金氧半場效 電晶體主動區域5 0 0和η型金氧半場效電晶體主動區域5〇5 之中’使用硼(Β)或氟化硼(BF2)為一離子源的離子佈植程 序,於一能量大約1 〇KeV,植入一劑量大約每平方公分j 〇 E 12個原子,形成一通道(channel)25。之後,於ρ型金氧Page 14 (π)-~ ---------- ^ ^ Well complementary gold gas half field effect transistor 'As for the other two types of inter ^^ half field effect transistor structures are also included. The first drawings to the 0th β diagrams are cross-sectional views of a process for manufacturing a complementary metal-oxide-semiconductor half field effect transistor according to an embodiment of the present invention. According to the diagram in the first figure, a region of a complementary metal-oxide-semiconductor field-effect transistor is provided on or in a p-type single crystal silicon substrate with a < 100 > crystal lattice orientation. The p-type semiconductor substrate (p_type sejniconductor substrate) 10 has a concentration of less than about 1 · OE 1 5 atoms per cubic centimeter. Then 'form a 0¾ well area (n_weU regi0n) 15 and implant a dose of about 10 to 200KeV using an ion implantation procedure using phosphorus (P) as an ion source'. .〇E 12 to 丨 .EE 13 atoms'. Next, a drj ^ e_in program was used at a temperature of about 1000 degrees to form a concentration of about 10 oe / cm3 16 atoms. The n-type well region 15 ′ is above the p-type semiconductor substrate 10. Then, a relatively deep shallow trench isolation (ST Ϊ) 20 is formed around the P-type semiconductor substrate 10 and a part of the n-type well region 15 to isolate the leakage current between the element regions to form a ρ. A PMOSFET active region 500 and a n-type NMOSFET active region 5 0 5. In the active region 50 of the p-type metal-oxide-semiconductor field-effect transistor and the active region 505 of the n-type metal-oxide-semiconductor half-field-effect transistor, an ion cloth using boron (B) or boron fluoride (BF2) as an ion source is used. The implantation procedure involves implanting a dose of about 12 atoms per square centimeter at 10 KeV at an energy of about 10 KeV to form a channel 25. P-type metal oxide
(12) (12)(12) (12)
區 /體主動區域5 Ο 0和η型金氧半場效電晶體主動 域505之上’使用熱氧化法(thermal oxidation),此熱氧 化法包含一乾式氧化法(dry ox i da t ion)和一濕式氧化法 (wet oxidation),形成一閘極氧化層(gate oxide layer )30。然後,於閘極氧化層3〇之上,沉積一多晶矽閘極(Area / body active area 5 0 0 and n-type metal-oxide half field effect transistor active area 505 'uses thermal oxidation, which includes a dry oxidation method (dry ox i da t ion) and A wet oxidation method forms a gate oxide layer 30. Then, on the gate oxide layer 30, a polycrystalline silicon gate (
polysilicon gate ) 35,使用矽曱烷(si lane)作為一來源 氣體’以低壓化學氣相沉積(LPCVD)技術,於一溫度大約 600度至6 5 0度之間,形成多晶矽層,其厚度大約為1〇〇〇埃 至2500埃之間。接著’蝕刻多晶矽閘極35和閘極氧化層3〇 ’藉以形成P型金氧半場效電晶體問極圖案(PMOSFET gate patter η) 4 5於p型金氧半場效電晶體主動區域5〇〇之上和一 η型金氧半場效電晶體閘極圖案(NM〇SFET gate pattern) 40於n型金氧半場效電晶體主動區域5〇5之上D 依據弟一圖的圖式所示’於p型金氧半場效電晶體主 動區域500和一部份的淺溝渠隔離2 〇之上,形成一第一已 定義光阻層50A。之後,於n型金氧半場效電晶體主動區域 505之中’使用麟(ρ)或碎(as)為一離子源的離子佈植程序 於能量大約小於3 0 K e V,植入一劑量大約每平方公分 1. 〇 E 1 4至5. 0 E 1 5之間個原子,形成一 n-型輕微摻雜的源 極/ 及極(lightly doped source/drain)50。然後,移除 第一已定義光阻層50A。 f 依據第三圖的圖式所示,於淺溝渠隔離2〇、 ^型金氧polysilicon gate) 35, using si lane as a source gas, using low pressure chemical vapor deposition (LPCVD) technology, forming a polycrystalline silicon layer at a temperature of about 600 degrees to 650 degrees, with a thickness of about It is between 1000 Angstroms and 2500 Angstroms. Then 'etch the polysilicon gate 35 and the gate oxide layer 30' to form a P-type MOSFET half-field transistor transistor pattern (PMOSFET gate patter η) 4 5 in the active region of the p-type MOSFET half-field transistor 500. Above and an n-type metal-oxide-semiconductor half-field-effect transistor gate pattern (NM0SFET gate pattern) 40 above the active region 50 of the n-type metal-oxide-semiconductor half-field effect transistor. A first defined photoresist layer 50A is formed on the p-type metal-oxide-semiconductor field-effect transistor active region 500 and a portion of the shallow trench isolation 20. After that, in the active region 505 of the n-type metal-oxide-semiconductor field-effect transistor, an ion implantation procedure using lin (ρ) or broken (as) as an ion source is implanted at a energy of less than 30 K e V, and a dose is implanted. There are between about 1.0E 1 to 5.0 E 1 5 atoms per square centimeter, forming an n-type lightly doped source / drain 50. Then, the first defined photoresist layer 50A is removed. f According to the diagram in the third figure, isolate 20, ^ type metal oxide in shallow trenches.
第16頁Page 16
t明說明(13) 宰45合體Λ極:案4〇、P型金氧半場效電晶體間極圖 系4b、η型金氧半場效雷曰触 ^ 場效電晶體主動區域5〇〇曰曰之L動區域505、和。型金氧半 第-介讓包含=;久,.;冗積一第一介電層6〇 ’此 η .+ ·』、巩化矽(slllc〇n oxide)、氮化矽( • , . Γ1 6 、或氧化矽/ 氮化矽(silicon oxide/ 化二η 。其沉積方法與條件如下。在沉積二氧 二了,,用正砂酸乙醋(TE〇s)作為一來源氣體,以低壓 二氣j /儿積(LPCVD)技術’於一溫度大約5〇〇度至8〇〇度 、S ]沉積二氧化矽,其厚度大約50埃至300埃之間。在 沈,氮化矽日^•,使用低壓化學氣相沉積(LpcVD)技術,於 恤度大約750度’沈積氮化矽,其厚度大約5〇埃至3〇〇埃 之間。在沈積氧化矽/氮化矽時,使用低壓化學氣相沉積( LPCVD)技術’於一溫度大約5〇〇度至8〇〇度之間,沈積氧化 矽/氮化矽,其厚度大約1 0 G埃至3 0 0埃之間。 —依據第四圖的圖式所示,於第一介電層60之上,形成 一第二已定義光阻層6〇A。之後,於p型金氧半場效電晶體 主動區域500和—部份的淺溝渠隔離20之上,使用CHF3作 為触刻劑的反應性離子蝕刻(RIE)技術’第一次蝕刻一部 份的第一介電層6 〇 ^然後,在一部份的第一介電層6 〇蝕刻 步驟期間’於P型金氧半場效電晶體主動區域5〇〇之上,形 成一補償間隙壁(Of fset spacer)65。接著,移除第二已 定義光阻層60A。Explanation of t (13) Zai 45 combination Λ pole: Case 40, P-type metal-oxide half-field effect transistor interpole diagram 4b, n-type metal-oxide half-field effect thunder ^ field effect transistor active area 50 Said L moving area 505, and. -Type metal-oxygen semi-dielectric-concentration contains =; long,.; Redundant one first dielectric layer 60 ′, this η. + · ", Slllcon oxide, silicon nitride (•,. Γ16, or silicon oxide / silicon nitride. The deposition method and conditions are as follows. After dioxane is deposited, ethyl ethanoate (TE0s) is used as a source gas. Low-pressure two-gas j / child product (LPCVD) technology 'deposits silicon dioxide at a temperature of about 500 to 800 degrees Celsius, with a thickness of about 50 to 300 angstroms. In Shen, silicon nitride ^ •, using low-pressure chemical vapor deposition (LpcVD) technology, to deposit silicon nitride at a thickness of about 750 degrees, with a thickness of about 50 angstroms to 300 angstroms. When depositing silicon oxide / silicon nitride Using Low Pressure Chemical Vapor Deposition (LPCVD) technology 'to deposit silicon oxide / silicon nitride at a temperature of about 500 degrees to 800 degrees, with a thickness of about 10 G angstroms to 300 angstroms — According to the diagram in the fourth figure, a second defined photoresist layer 60A is formed on the first dielectric layer 60. Then, the active region 500 of the p-type metal-oxide-semiconductor half field effect transistor is formed. On top of a part of the shallow trench isolation 20, reactive ion etching (RIE) technology using CHF3 as a contact etcher 'etches a portion of the first dielectric layer 6 for the first time. Then, a portion During the etching process of the first dielectric layer 600, a compensation flank (Of fset spacer) 65 is formed over the active area of the P-type metal-oxide-semiconductor field-effect transistor 500. Then, the second defined light is removed. Resist layer 60A.
第17頁 *1 (14) 、據第五圖的圖式所示’於一部份的淺溝渠隔離2 o、 P型金氧半場效電晶體主動區域500、P型金氧半場效電晶 體閘極圖案45、補償間隙壁65、和第一介電層60之上,使 用SiH4和匕116作為一來源氣體,以超高真空化學氣相沉積( UHV/CVD)技術,沉積矽-硼層(Si-B layer)70 ’其厚度大 約1 0 0埃至3 0 0埃之間。 依據第六圖的圖式所示’使用一快速熱製程(RTP), 於一溫度大約8 0 0度至1 〇 〇 〇度之間’氧化矽-硼層7 0 (如第 五圖的圖式所示(,其時間大約1 〇秒至6 0秒之間,以形成 一硼矽玻璃層80,並第一次擴散硼原子於p型金氧半場效 電晶體主動區域5 0 0之中’藉以形成一 P—型輕微摻雜的源 極/沒極8 5。其中,删原子具有一濃度大約每立方公分5. 〇 E 21個原子。之後,於硼矽玻璃層80上,沈積一第二介電 層90。此第二介電層90包含二氧化石夕(silicon oxide)或 氮化矽層(silicon nitride)。使用正石夕酸乙酯(te〇S)作 為一來源氣體,以低壓化學氣相沉積(LPCVD)技術,於— 溫度大約500度至800度之間,沈積二氧化矽,其厚度大約 50 0埃至2000埃之間。使用低壓化學氣相沉積(LPCVD)技術 ’於一溫度大.約7 5 0度,沈積氮化矽層,其厚度大約5 〇 〇埃 至2 0 0 0埃之間。 依據第七圓的圖式所示’使用CHF3作為蝕刻劑的反應 性離子蝕刻(RIE)技術,蝕刻一部份的第二介電層9〇、Page 17 * 1 (14) According to the diagram in the fifth figure, 'isolated in a part of the shallow trench 2 o, P-type metal-oxide-semiconductor field-effect transistor active area 500, P-type metal-oxide-semiconductor half-field effect transistor On the gate pattern 45, the compensation spacer 65, and the first dielectric layer 60, a silicon-boron layer is deposited using SiH4 and dagger 116 as a source gas and using ultra-high vacuum chemical vapor deposition (UHV / CVD) technology. (Si-B layer) 70 'its thickness is between 100 angstroms and 300 angstroms. According to the diagram of the sixth figure, 'using a rapid thermal process (RTP), at a temperature of about 800 degrees to 1000 degrees', the silicon oxide-boron layer 70 (as shown in the fifth figure) As shown in the formula (its time is about 10 seconds to 60 seconds, to form a borosilicate glass layer 80, and the first diffusion of boron atoms in the active area of the p-type metal-oxygen half field effect transistor 5 0 0 'Thereby forming a P-type lightly doped source / imaging electrode 85. Among them, the deleted atom has a concentration of about 5.0 oE / 21 cm / cm3. Then, on the borosilicate glass layer 80, a A second dielectric layer 90. The second dielectric layer 90 includes a silicon oxide or a silicon nitride layer. Ethyl orthoester is used as a source gas. Low pressure chemical vapor deposition (LPCVD) technology is used to deposit silicon dioxide at a temperature of about 500 degrees to 800 degrees, with a thickness of about 50 to 2000 angstroms. Using low pressure chemical vapor deposition (LPCVD) technology 'At a high temperature. About 750 degrees, a silicon nitride layer is deposited to a thickness of about 500 angstroms to 2000 angstroms. Basis As shown in 'CHF3 as an etchant using reactive ion etching (RIE) technique, the second dielectric layer is etched circle of seven figures a part of the 9〇,
第18頁 Λ 五 部份的硼矽玻璃層80、和第二次蝕刻一部份的第一介電層 60 ’藉以形成一第一棚石夕玻璃間隙壁(first BSG spacer) 95和一第二硼矽玻璃間隙壁(second BSG spacer) 100。 依據第八圖的圖式所示,於P型金氧半場效電晶體主 動區域500之中,使用硼(B)或氟化硼(BF2)作為一離子源 的離子饰植程序,於一能量大約1 K e V至8 0 K e V之間,植入 一劑量大約每平方公分1. 0 E 1 5至1 · 0 E 1 6之間個原子,藉 以形成一 p+型重摻雜的源極/汲極(heav i 1 y doped source /drain) 1 05。之後’於n型金氧半場效電晶體主動區域5〇5 之中,使用磷(P)或砷(As)為一離子源的離子佈植程序, 於一能量大約小於1 0 K e V至8 0 K e V之間,植入一劑量大約每 平方公分1. 0E 15至1. 0E 16之間個原子,藉以形成一n+型 重摻雜的源極/汲極110。 依據第九圖的圖式所示’回火第一 ^ 朋石夕玻璃間隙壁g 5 ,使用一快速熱製程(RTP)’於一溫度大約9 5 0度至1 〇 5 〇度 之間,第二次擴散硼原子於第一硼矽玻璃間隙壁9 5的下方 區域,其時間大約1 0秒至6 0秒之間。藉以,於_ p塑金氧 半場效電晶體之中,形成一源極/汲極延伸接面(s〇urce/ drain extension junction)120 。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之Page 18 Λ Five portions of borosilicate glass layer 80, and a second portion of first dielectric layer 60 'are etched to form a first shed glass spacer 95 and a first BSG spacer Second borosilicate glass spacer (second BSG spacer) 100. According to the diagram of the eighth figure, in the active region 500 of the P-type metal-oxide-semiconductor field-effect transistor 500, an ion implantation procedure using boron (B) or boron fluoride (BF2) as an ion source is performed at an energy. Between about 1 K e V and 80 K e V, a dose of about 1.0 E 1 5 to 1 · 0 E 1 6 per square centimeter is implanted to form a p + -type heavily doped source Pole / drain (heav i 1 y doped source / drain) 1 05. Afterwards, in the active region of the n-type metal-oxide-semiconductor field-effect transistor 505, an ion implantation procedure using phosphorus (P) or arsenic (As) as an ion source is performed at an energy of less than 10 K e V to Between 80 KeV, a dose of about 1.0E 15 to 1.0E 16 atoms per square centimeter is implanted to form an n + -type heavily doped source / drain 110. According to the diagram of the ninth figure, 'Tempering the first ^ Peng Shixi glass partition wall g 5 using a rapid thermal process (RTP)' at a temperature of about 950 degrees to 105 degrees, The second diffusion of boron atoms in the region below the first borosilicate glass spacer 95 is between about 10 seconds and 60 seconds. Thereby, a source / drain extension junction 120 is formed in the _p plastic gold-oxygen half field effect transistor. The above descriptions are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all others that do not depart from the disclosure of the present invention
第19頁Page 19
第20頁Page 20
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88116564A TW426972B (en) | 1999-09-28 | 1999-09-28 | Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88116564A TW426972B (en) | 1999-09-28 | 1999-09-28 | Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
TW426972B true TW426972B (en) | 2001-03-21 |
Family
ID=21642413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW88116564A TW426972B (en) | 1999-09-28 | 1999-09-28 | Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW426972B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7547951B2 (en) | 2005-06-30 | 2009-06-16 | Samsung Electronics Co., Ltd. | Semiconductor devices having nitrogen-incorporated active region and methods of fabricating the same |
CN112885561A (en) * | 2019-11-29 | 2021-06-01 | 株式会社村田制作所 | Coil component |
-
1999
- 1999-09-28 TW TW88116564A patent/TW426972B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7547951B2 (en) | 2005-06-30 | 2009-06-16 | Samsung Electronics Co., Ltd. | Semiconductor devices having nitrogen-incorporated active region and methods of fabricating the same |
CN112885561A (en) * | 2019-11-29 | 2021-06-01 | 株式会社村田制作所 | Coil component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4493536B2 (en) | Semiconductor device and manufacturing method thereof | |
US6184097B1 (en) | Process for forming ultra-shallow source/drain extensions | |
CN100470737C (en) | Manufacturing method of semiconductor element | |
TW200400569A (en) | Semiconductor device having a retrograde dopant profile in a channel region and method for fabricating the same | |
TW200939353A (en) | Method for fabricating super-steep retrograde well MOSFET on SOI or bulk silicon substrate, and device fabricated in accordance with the method | |
US20220102553A1 (en) | Damage implantation of cap layer | |
US6734109B2 (en) | Method of building a CMOS structure on thin SOI with source/drain electrodes formed by in situ doped selective amorphous silicon | |
JP2006059843A (en) | Semiconductor device and its manufacturing method | |
KR20010025030A (en) | Method of manufacturing a mis field-effect transistor | |
EP0459398B1 (en) | Manufacturing method of a channel in MOS semiconductor devices | |
TW200414321A (en) | Method for fabricating semiconductor device | |
JPH0645343A (en) | Semiconductor device having borosilicate glass spacer and manufacturing method thereof | |
TW426972B (en) | Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor | |
KR100556350B1 (en) | Semiconductor device and manufacturing method | |
TWI639195B (en) | Stress memory technology for transistor devices | |
TW201013846A (en) | Depletion-free MOS using atomic-layer doping | |
US7915128B2 (en) | High voltage semiconductor devices | |
KR100336572B1 (en) | Method for forming semiconductor device with gate electrode using poly silicon-germanium | |
KR100519507B1 (en) | Method for Forming Semi-conductor Device | |
US7297605B2 (en) | Source/drain extension implant process for use with short time anneals | |
KR100288686B1 (en) | Semiconductor device manufacturing method | |
TW442919B (en) | Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor | |
KR100705233B1 (en) | Method of manufacturing semiconductor device | |
KR100853982B1 (en) | 3D field effect transistor and its manufacturing method | |
KR100604046B1 (en) | Manufacturing Method of Semiconductor Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |