[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW401652B - The fast-wave oscillation type antenna with multi-layer grounding - Google Patents

The fast-wave oscillation type antenna with multi-layer grounding Download PDF

Info

Publication number
TW401652B
TW401652B TW87120137A TW87120137A TW401652B TW 401652 B TW401652 B TW 401652B TW 87120137 A TW87120137 A TW 87120137A TW 87120137 A TW87120137 A TW 87120137A TW 401652 B TW401652 B TW 401652B
Authority
TW
Taiwan
Prior art keywords
fast
antenna
wave oscillating
ground plane
patent application
Prior art date
Application number
TW87120137A
Other languages
Chinese (zh)
Inventor
Ching-Guang Juang
Tzan-Shi Lin
Original Assignee
Juang Ching Guang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juang Ching Guang filed Critical Juang Ching Guang
Priority to TW87120137A priority Critical patent/TW401652B/en
Priority to JP3357499A priority patent/JP3069342B2/en
Application granted granted Critical
Publication of TW401652B publication Critical patent/TW401652B/en

Links

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

This invention designs the antenna by utilizing the resonance phenomena of the fast-wave leaky mode, the designed antenna has the following advantages: 1. It has relatively small volume; 2. It could be installed on the printing circuit board through the surface mount technology (SMT); 3. It could use the general media with relative dielectric constant value between 2 to 5.

Description

401652 案號 87120137 修正401652 Case No. 87120137 Amendment

M: 讀. 委 貝 明 本 案 改 誚 韻 型 否 變 更 質 内 容 五、發明說明(1) 發明背景 ^ 發明之領域 本發明係關於一種具有多層接地面之快波振盪型天 線,特別是關於一種可利用表面黏著.技術安裝且可使用相 對介電常數很小的介質材料之具有多層接地面的微小型快 波振盪型天線。 習知技術之描述 隨著無線通信手機的廣泛使用,隱藏式天線越來越受 到關注。隱藏式天線由於其體積小,可藉由表面黏著技術 安裝,因此可融入整個射頻電子電路板,故大大地提昇了 其可靠度,增進手機之品質。 常見的隱藏式天線採用金屬貼片狀之微帶線。圖1是 一種金屬貼片微帶天線(patch antenna),其中,介質 基板1 1位於接地面1 2之上,在介質基板1 1之中間位置有一 金屬貼片1 3,且信號之饋入可藉由饋線1 4來進行。這種方 式常見於許多主動天線之設計。 圖2是另一種金屬貼片微帶天線,其結構大部分類似 於圖1 ,其與圖1不同之處是將饋線1 5沿介質基板1 1之表面 延伸,再利用陶瓷基板之通路孔(v i a h ο 1 e )沿邊緣下行。 採用此種饋入方式可製成表面黏著式的天線。 圖3是又另一種習知的金屬貼片微帶天線,其結構大 部分類似於圖1,但其與圖1不同之處是採用探針或同軸線 1 6來饋入信號。該方式很明顯地不適合以表面黏著方式與 其他微波電路銜接,因為同軸電線需要使用微波接頭。M: Read. Vebemin's case to change the rhyme type or not. 5. Description of the invention (1) Background of the invention ^ Field of invention The present invention relates to a fast-wave oscillating antenna with a multi-layer ground plane, and more particularly to a fast-wave oscillating antenna with a multi-layer ground plane. Micro-sized fast-wave oscillating antennas with multi-layered ground planes that can be installed using surface adhesion technology and can use dielectric materials with small relative permittivity. Description of the known technology With the widespread use of wireless communication mobile phones, hidden antennas have received more and more attention. Due to its small size, the concealed antenna can be installed by surface adhesion technology, so it can be integrated into the entire RF electronic circuit board, thus greatly improving its reliability and improving the quality of mobile phones. Common concealed antennas use metal strip microstrip lines. FIG. 1 is a metal patch microstrip antenna (patch antenna), in which the dielectric substrate 11 is located on the ground plane 12 and a metal patch 13 is located in the middle of the dielectric substrate 11 and the signal feed can be This is done by means of feeders 1 4. This approach is common in many active antenna designs. Figure 2 is another metal patch microstrip antenna. Its structure is mostly similar to Figure 1. The difference from Figure 1 is that the feeder 15 is extended along the surface of the dielectric substrate 11 and the via hole of the ceramic substrate is used ( viah ο 1 e) descends along the edge. Using this feeding method, a surface-attached antenna can be made. Fig. 3 is still another conventional metal patch microstrip antenna. Its structure is mostly similar to that of Fig. 1, but it differs from Fig. 1 in that a probe or a coaxial line 16 is used to feed signals. Obviously, this method is not suitable for connecting with other microwave circuits by surface adhesion, because coaxial cables require microwave connectors.

UU

第4頁 1998. 12.31.004 401652 案號 87120137 修正Page 4 1998. 12.31.004 401652 Case No. 87120137 Amendment

M: 讀. 委 貝 明 本 案 改 誚 韻 型 否 變 更 質 内 容 五、發明說明(1) 發明背景 ^ 發明之領域 本發明係關於一種具有多層接地面之快波振盪型天 線,特別是關於一種可利用表面黏著.技術安裝且可使用相 對介電常數很小的介質材料之具有多層接地面的微小型快 波振盪型天線。 習知技術之描述 隨著無線通信手機的廣泛使用,隱藏式天線越來越受 到關注。隱藏式天線由於其體積小,可藉由表面黏著技術 安裝,因此可融入整個射頻電子電路板,故大大地提昇了 其可靠度,增進手機之品質。 常見的隱藏式天線採用金屬貼片狀之微帶線。圖1是 一種金屬貼片微帶天線(patch antenna),其中,介質 基板1 1位於接地面1 2之上,在介質基板1 1之中間位置有一 金屬貼片1 3,且信號之饋入可藉由饋線1 4來進行。這種方 式常見於許多主動天線之設計。 圖2是另一種金屬貼片微帶天線,其結構大部分類似 於圖1 ,其與圖1不同之處是將饋線1 5沿介質基板1 1之表面 延伸,再利用陶瓷基板之通路孔(v i a h ο 1 e )沿邊緣下行。 採用此種饋入方式可製成表面黏著式的天線。 圖3是又另一種習知的金屬貼片微帶天線,其結構大 部分類似於圖1,但其與圖1不同之處是採用探針或同軸線 1 6來饋入信號。該方式很明顯地不適合以表面黏著方式與 其他微波電路銜接,因為同軸電線需要使用微波接頭。M: Read. Vebemin's case to change the rhyme type or not. 5. Description of the invention (1) Background of the invention ^ Field of invention The present invention relates to a fast-wave oscillating antenna with a multi-layer ground plane, and more particularly to a fast-wave oscillating antenna with a multi-layer ground plane. Micro-sized fast-wave oscillating antennas with multi-layered ground planes that can be installed using surface adhesion technology and can use dielectric materials with small relative permittivity. Description of the known technology With the widespread use of wireless communication mobile phones, hidden antennas have received more and more attention. Due to its small size, the concealed antenna can be installed by surface adhesion technology, so it can be integrated into the entire RF electronic circuit board, thus greatly improving its reliability and improving the quality of mobile phones. Common concealed antennas use metal strip microstrip lines. FIG. 1 is a metal patch microstrip antenna (patch antenna), in which the dielectric substrate 11 is located on the ground plane 12 and a metal patch 13 is located in the middle of the dielectric substrate 11 and the signal feed can be This is done by means of feeders 1 4. This approach is common in many active antenna designs. Figure 2 is another metal patch microstrip antenna. Its structure is mostly similar to Figure 1. The difference from Figure 1 is that the feeder 15 is extended along the surface of the dielectric substrate 11 and the via hole of the ceramic substrate is used ( viah ο 1 e) descends along the edge. Using this feeding method, a surface-attached antenna can be made. Fig. 3 is still another conventional metal patch microstrip antenna. Its structure is mostly similar to that of Fig. 1, but it differs from Fig. 1 in that a probe or a coaxial line 16 is used to feed signals. Obviously, this method is not suitable for connecting with other microwave circuits by surface adhesion, because coaxial cables require microwave connectors.

UU

第4頁 1998. 12.31.004 401652 修正 案號 87120137 五、發明說明(2) 研究表明:微帶天線的共振頻率大約反比於(&為相對介 電常數)。由於此條件的限制,圖1至圖3所示的微帶天線 通常需要利用介電常數高於2 0的介質基板,以達到微小化 的目的。此外,研究亦表明:有限大.小的接地面對微帶天 線有很大的影響。因此,接地面必須大於金屬貝占片之面 積,微帶線才能正常工作;如果接地面積太小,則影響到 天線之性能。 6 另外,利用介質材料共振現象,且配合微帶線或開槽 線藕合能量至介質共振器,亦可以設計應用於一般積體電 路中的隱藏式天線。但其尺寸也大致和 > 成反比,故此類 天線亦通常需要利用高介電常數的介質材料。 再觀察用於手機之單極天線的簡化模型,如圖4 ( a )所 示,手機外殼4 1上之單極天線4 2長度約為自由空間波長的 四分之一。圖4 ( b )表示手機的另一種螺旋型天線之簡化模 型,此種螺旋型天線4 3之總長度亦接近自由空間波長λ〇, 因此這兩種天線顯然不適合作為隱藏式微小型手機天線來 使用。 , (f'l 此外,此兩種天線均利用機殼作接地面,其接地面之 面積通常相當大,在一般之設計中約為2名(λ〇為自由空間 波長),隨著這類手機愈來愈小,相對地天線之接地面也 愈來愈小,於是天線的性能就受到影響。 發明概要 有鑑於此,本發明提出·一種特殊設計的微小型天線, 係利用懸空微帶線除了不韓射波模(b 〇 u n d m 〇 d e )外,尚有Page 4 1998. 12.31.004 401652 amendment No. 87120137 V. Description of the invention (2) Research shows that the resonance frequency of the microstrip antenna is approximately inversely proportional to (& is the relative dielectric constant). Due to the limitation of this condition, the microstrip antennas shown in FIGS. 1 to 3 usually need to use a dielectric substrate with a dielectric constant higher than 20 to achieve the purpose of miniaturization. In addition, research has also shown that limited large and small grounds have a great impact on microstrip antennas. Therefore, the ground plane must be larger than the area of the metal shell for the microstrip line to work properly; if the ground area is too small, it will affect the performance of the antenna. 6 In addition, by using the resonance phenomenon of dielectric materials and combining microstrip or slotted lines to couple energy to the dielectric resonator, it can also be designed to be used in hidden antennas in general integrated circuits. But its size is also roughly inversely proportional to >, so this type of antenna usually also needs to use a high dielectric constant dielectric material. Observe again the simplified model of the monopole antenna for the mobile phone. As shown in Fig. 4 (a), the length of the monopole antenna 42 on the mobile phone case 41 is about one quarter of the wavelength of free space. Figure 4 (b) shows a simplified model of another helical antenna for a mobile phone. The total length of this helical antenna 43 is also close to the free space wavelength λ. Therefore, these two types of antennas are obviously not suitable for use as hidden micro-mini mobile phone antennas. . , (f'l In addition, these two antennas use the chassis as the ground plane. The area of the ground plane is usually quite large, about 2 in general design (λ0 is the free space wavelength). Mobile phones are getting smaller and smaller, and the ground plane of the antenna is getting smaller, so the performance of the antenna is affected. SUMMARY OF THE INVENTION In view of this, the present invention proposes a specially designed micro-mini antenna, which uses a suspended microstrip line. In addition to the non-Han radio mode (b 〇undm 〇de), there are still

第5頁 1998.12. 31.005 401652 修正 案號 87120137 五、發明說明(2) 研究表明:微帶天線的共振頻率大約反比於(&為相對介 電常數)。由於此條件的限制,圖1至圖3所示的微帶天線 通常需要利用介電常數高於2 0的介質基板,以達到微小化 的目的。此外,研究亦表明:有限大.小的接地面對微帶天 線有很大的影響。因此,接地面必須大於金屬貝占片之面 積,微帶線才能正常工作;如果接地面積太小,則影響到 天線之性能。 6 另外,利用介質材料共振現象,且配合微帶線或開槽 線藕合能量至介質共振器,亦可以設計應用於一般積體電 路中的隱藏式天線。但其尺寸也大致和 > 成反比,故此類 天線亦通常需要利用高介電常數的介質材料。 再觀察用於手機之單極天線的簡化模型,如圖4 ( a )所 示,手機外殼4 1上之單極天線4 2長度約為自由空間波長的 四分之一。圖4 ( b )表示手機的另一種螺旋型天線之簡化模 型,此種螺旋型天線4 3之總長度亦接近自由空間波長λ〇, 因此這兩種天線顯然不適合作為隱藏式微小型手機天線來 使用。 , (f'l 此外,此兩種天線均利用機殼作接地面,其接地面之 面積通常相當大,在一般之設計中約為2名(λ〇為自由空間 波長),隨著這類手機愈來愈小,相對地天線之接地面也 愈來愈小,於是天線的性能就受到影響。 發明概要 有鑑於此,本發明提出·一種特殊設計的微小型天線, 係利用懸空微帶線除了不韓射波模(b 〇 u n d m 〇 d e )外,尚有Page 5 1998.12. 31.005 401652 Amendment No. 87120137 V. Description of the Invention (2) Research shows that the resonance frequency of the microstrip antenna is approximately inversely proportional to (& is the relative dielectric constant). Due to the limitation of this condition, the microstrip antennas shown in FIGS. 1 to 3 usually need to use a dielectric substrate with a dielectric constant higher than 20 to achieve the purpose of miniaturization. In addition, research has also shown that limited large and small grounds have a great impact on microstrip antennas. Therefore, the ground plane must be larger than the area of the metal shell for the microstrip line to work properly; if the ground area is too small, it will affect the performance of the antenna. 6 In addition, by using the resonance phenomenon of dielectric materials and combining microstrip or slotted lines to couple energy to the dielectric resonator, it can also be designed to be used in hidden antennas in general integrated circuits. But its size is also roughly inversely proportional to >, so this type of antenna usually also needs to use a high dielectric constant dielectric material. Observe again the simplified model of the monopole antenna for the mobile phone. As shown in Fig. 4 (a), the length of the monopole antenna 42 on the mobile phone case 41 is about one quarter of the wavelength of free space. Figure 4 (b) shows a simplified model of another helical antenna for a mobile phone. The total length of this helical antenna 43 is also close to the free space wavelength λ. Therefore, these two types of antennas are obviously not suitable for use as hidden micro-mini mobile phone antennas. . , (f'l In addition, these two antennas use the chassis as the ground plane. The area of the ground plane is usually quite large, about 2 in general design (λ0 is the free space wavelength). Mobile phones are getting smaller and smaller, and the ground plane of the antenna is getting smaller, so the performance of the antenna is affected. SUMMARY OF THE INVENTION In view of this, the present invention proposes a specially designed micro-mini antenna, which uses a suspended microstrip line. In addition to the non-Han radio mode (b 〇undm 〇de), there are still

第5頁 1998.12. 31.005 40.1652 _案號87120137 ^年/上月夕/日 修正_ 五、發明說明(3) 一種和不輕射波模相依存的快波·漏波模,且此兩者之模 電流和橫向電場(磁場)在接近微帶線範圍内都非常相似。 因此,可根據快波洩漏波模所共振的現象來設計一種多層 接地面的快波振盪型天線。 此天線包括一快波振盪裝置和一多層接地裝置,其 中,該快波振盪裝置.包含兩部分,第一部分為形狀呈長方 體的介質;第二部分為攀延在該長方體介質表面上的微帶 線,其攀延方式視所需要之輻射場型而調整,且密集在很 小的介質表面範圍内,該微帶線之一端用以饋入信號,另 -端為斷路。 該多層接地裝置位於該快波振盪裝置之下方,其主要 部分是位在介質下方的複數個平行層,及複數個通路孔 (via hole),且該等平行層所形成之凹槽的所有内表面、 該等通路孔的所有内表面及該多層接地裝置之所有外表面 部分皆為金屬接地面。 由於快波振盪裝置中的微帶線係密集地分佈在很小的 介質表面範圍内,且多層接地裝置使有限空間中的接地面 積大為增加,因此天線之尺寸可大幅地縮小。而且,此天 線能利用表面黏著技術直接安裝在印刷電路板上。更特別 地,本發明之天線不需要使用高介電常數之介質材料,只 要相對介電常數值在2至5之間的一般介質材料即可。 圖式之簡單說明 本發明之目的、優點和特色由以下較佳實施例之詳細 說明中並參考圖式當可更加明白,其中:Page 5 1998.12. 31.005 40.1652 _Case No. 87120137 ^ Year / Last Month / Day Modification_ V. Description of the invention (3) A fast wave and leaky wave mode that depends on the non-light-wave mode, and the two Both the mode current and the transverse electric field (magnetic field) are very similar in the vicinity of the microstrip line. Therefore, a fast-wave oscillating antenna with a multilayer ground plane can be designed based on the phenomenon of the fast-wave leakage mode resonance. The antenna includes a fast-wave oscillating device and a multilayer grounding device. The fast-wave oscillating device includes two parts. The first part is a medium with a rectangular parallelepiped shape; The strip line's climbing method is adjusted according to the required radiation field type and is dense in a small surface area of the medium. One end of the microstrip line is used to feed the signal, and the other end is an open circuit. The multi-layer grounding device is located below the fast-wave oscillating device. The main part of the multi-layer grounding device is a plurality of parallel layers and a plurality of via holes located below the medium. The surface, all the inner surfaces of the via holes and all the outer surface portions of the multilayer grounding device are metal ground planes. Because the microstrip lines in the fast-wave oscillating device are densely distributed over a small surface area of the dielectric, and the multilayer grounding device greatly increases the ground area in a limited space, the size of the antenna can be greatly reduced. Moreover, this antenna can be directly mounted on a printed circuit board using a surface mount technology. More specifically, the antenna of the present invention does not need to use a dielectric material with a high dielectric constant, but only a general dielectric material having a relative dielectric constant value between 2 and 5. Brief Description of the Drawings The objects, advantages and features of the present invention will be more clearly understood from the detailed description of the following preferred embodiments with reference to the drawings, in which:

第 6 頁 1998.12.31.006 40.1652 _案號87120137 ^年/上月夕/日 修正_ 五、發明說明(3) 一種和不輕射波模相依存的快波·漏波模,且此兩者之模 電流和橫向電場(磁場)在接近微帶線範圍内都非常相似。 因此,可根據快波洩漏波模所共振的現象來設計一種多層 接地面的快波振盪型天線。 此天線包括一快波振盪裝置和一多層接地裝置,其 中,該快波振盪裝置.包含兩部分,第一部分為形狀呈長方 體的介質;第二部分為攀延在該長方體介質表面上的微帶 線,其攀延方式視所需要之輻射場型而調整,且密集在很 小的介質表面範圍内,該微帶線之一端用以饋入信號,另 -端為斷路。 該多層接地裝置位於該快波振盪裝置之下方,其主要 部分是位在介質下方的複數個平行層,及複數個通路孔 (via hole),且該等平行層所形成之凹槽的所有内表面、 該等通路孔的所有内表面及該多層接地裝置之所有外表面 部分皆為金屬接地面。 由於快波振盪裝置中的微帶線係密集地分佈在很小的 介質表面範圍内,且多層接地裝置使有限空間中的接地面 積大為增加,因此天線之尺寸可大幅地縮小。而且,此天 線能利用表面黏著技術直接安裝在印刷電路板上。更特別 地,本發明之天線不需要使用高介電常數之介質材料,只 要相對介電常數值在2至5之間的一般介質材料即可。 圖式之簡單說明 本發明之目的、優點和特色由以下較佳實施例之詳細 說明中並參考圖式當可更加明白,其中:Page 6 1998.12.31.006 40.1652 _Case No. 87120137 ^ Year / Last Month / Day Modification_ V. Description of the invention (3) A fast wave and leaky wave mode that depends on the non-light-wave mode, and the two Both the mode current and the transverse electric field (magnetic field) are very similar in the vicinity of the microstrip line. Therefore, a fast-wave oscillating antenna with a multilayer ground plane can be designed based on the phenomenon of the fast-wave leakage mode resonance. The antenna includes a fast-wave oscillating device and a multilayer grounding device. The fast-wave oscillating device includes two parts. The first part is a medium with a rectangular parallelepiped shape; The strip line's climbing method is adjusted according to the required radiation field type and is dense in a small surface area of the medium. One end of the microstrip line is used to feed the signal, and the other end is an open circuit. The multi-layer grounding device is located below the fast-wave oscillating device. The main part of the multi-layer grounding device is a plurality of parallel layers and a plurality of via holes located below the medium. The surface, all the inner surfaces of the via holes and all the outer surface portions of the multilayer grounding device are metal ground planes. Because the microstrip lines in the fast-wave oscillating device are densely distributed over a small surface area of the dielectric, and the multilayer grounding device greatly increases the ground area in a limited space, the size of the antenna can be greatly reduced. Moreover, this antenna can be directly mounted on a printed circuit board using a surface mount technology. More specifically, the antenna of the present invention does not need to use a dielectric material with a high dielectric constant, but only a general dielectric material having a relative dielectric constant value between 2 and 5. Brief Description of the Drawings The objects, advantages and features of the present invention will be more clearly understood from the detailed description of the following preferred embodiments with reference to the drawings, in which:

第 6 頁 1998.12.31.006 401652 _案'號87120137 ”年/>月W日 修正_, 五、發明說明(4) 圖1為一種習知的金屬貼片微帶天線; 圖2為另一種利用通路孔饋入的習知的金屬貼片微帶 天線; 圖3為又一種以探針饋入或同軸線饋入的習知金屬貼 片微帶天線; 圖4 ( a )表示一種習知的手機的單極天線之簡化模型; 圖4 ( b )表示另一種習知的手機的螺旋型天線之簡化模 型; 圖5 ( a )表示懸空式的理想微帶線結構之橫切面圖; 圖5 ( b )為懸空微帶線之不輻射波模和快波洩漏波模之^ 傳播常數; 1 圖6 ( a)為不輻射波模和快波洩漏波模在橫方向之電流 分佈; 圖6 ( b)為不輻射波模和快波洩漏波模在縱方向之電流 分佈; 圖7為懸空微帶線在不同位置(高度)時洩漏波模的模 方向電場場形, 圖8表示懸空式的理想微帶線結構; 圖9 ( a)為具有多層接地面之小型快波振盪型天線的一 個實施例; 圖9(b)為圖9(a)之局部放大圖; Μ 圖9(c)為圖9 (a)之示意圖; 圖1 0 ( a )顯示本發明實·施例之天線安裝於外接電路基 板的情形;Page 6 1998.12.31.006 401652 _ Case 'No. 87120137 "Year / > Month W Day amendment _, V. Description of the invention (4) Figure 1 is a conventional metal patch microstrip antenna; Figure 2 is another use A conventional metal patch microstrip antenna fed by via holes; FIG. 3 is another conventional metal patch microstrip antenna fed by a probe or a coaxial line; FIG. 4 (a) shows a conventional Simplified model of a monopole antenna for a mobile phone; Figure 4 (b) shows a simplified model of another conventional helical antenna for a mobile phone; Figure 5 (a) shows a cross-sectional view of a floating ideal microstrip line structure; Figure 5 (b) is the propagation constant of the non-radiative mode and fast wave leakage mode of the suspended microstrip line; 1 Figure 6 (a) is the current distribution in the transverse direction of the non-radiative mode and fast wave leakage mode; Figure 6 (b) The current distribution in the longitudinal direction of the non-radiated wave mode and the fast wave leakage mode; Figure 7 is the electric field shape of the mode of the leakage wave mode when the floating microstrip line is at different positions (heights). Ideal microstrip line structure; Figure 9 (a) is a practical example of a small fast-wave oscillating antenna with a multilayer ground plane. Fig. 9 (b) is a partial enlarged view of Fig. 9 (a); M Fig. 9 (c) is a schematic diagram of Fig. 9 (a); Fig. 10 (a) shows the antenna of the embodiment of the present invention is installed on The case of an external circuit board;

第7頁 1998.12.31. 007 401652 _案'號87120137 ”年/>月W日 修正_, 五、發明說明(4) 圖1為一種習知的金屬貼片微帶天線; 圖2為另一種利用通路孔饋入的習知的金屬貼片微帶 天線; 圖3為又一種以探針饋入或同軸線饋入的習知金屬貼 片微帶天線; 圖4 ( a )表示一種習知的手機的單極天線之簡化模型; 圖4 ( b )表示另一種習知的手機的螺旋型天線之簡化模 型; 圖5 ( a )表示懸空式的理想微帶線結構之橫切面圖; 圖5 ( b )為懸空微帶線之不輻射波模和快波洩漏波模之^ 傳播常數; 1 圖6 ( a)為不輻射波模和快波洩漏波模在橫方向之電流 分佈; 圖6 ( b)為不輻射波模和快波洩漏波模在縱方向之電流 分佈; 圖7為懸空微帶線在不同位置(高度)時洩漏波模的模 方向電場場形, 圖8表示懸空式的理想微帶線結構; 圖9 ( a)為具有多層接地面之小型快波振盪型天線的一 個實施例; 圖9(b)為圖9(a)之局部放大圖; Μ 圖9(c)為圖9 (a)之示意圖; 圖1 0 ( a )顯示本發明實·施例之天線安裝於外接電路基 板的情形;Page 7 1998.12.31. 007 401652 _ case 'No. 87120137 ”year / > month W amendment _, V. description of the invention (4) Figure 1 is a conventional metal patch microstrip antenna; Figure 2 is another A conventional metal patch microstrip antenna fed by via holes; FIG. 3 is another conventional metal patch microstrip antenna fed by a probe or a coaxial line; FIG. 4 (a) shows a conventional A simplified model of a known monopole antenna for a mobile phone; Fig. 4 (b) shows a simplified model of another conventional helical antenna for a mobile phone; Fig. 5 (a) shows a cross-sectional view of a floating ideal microstrip line structure; Figure 5 (b) shows the propagation constants of the non-radiated mode and fast-wave leakage mode of the suspended microstrip line; 1 Figure 6 (a) shows the current distribution in the transverse direction of the non-radiated mode and fast-wave leakage mode; Figure 6 (b) shows the current distribution in the longitudinal direction of the non-radiated wave mode and the fast wave leakage mode; Figure 7 is the electric field shape in the mode direction of the leakage mode when the floating microstrip line is at different positions (heights), and Figure 8 shows Floating ideal microstrip line structure; Figure 9 (a) is a practical example of a small fast-wave oscillating antenna with a multilayer ground plane. Fig. 9 (b) is a partial enlarged view of Fig. 9 (a); M Fig. 9 (c) is a schematic diagram of Fig. 9 (a); Fig. 10 (a) shows the antenna of the embodiment of the present invention is installed on The case of an external circuit board;

第7頁 1998.12.31. 007 401652 _案號87120137 的年/上月多7日 修正_ 五、發明說明(5) 圖1 0 ( b )顯示外接電路基板上對應於本發明實施例之 天線的部分之線路; 圖1 1為本發明實施例之天線的等效電路; 圖1 2為本發明實施例之單埠史密斯圖(ο n e ρ 〇 r t S m i t h Cli a r t) 的測量結果; 圖13為本發明實施例之單埠散射參數(one port scattering parameter)之測量結果; 圖1 4 ( a )為本發明實施例之天線於共振頻率2 6 0 Μ Η z時 其微帶線(即圖9 ( a )中之A區)之一側面之電流分佈圖; 圖1 4 ( b ) 為本發明實施例之天線於共振頻率2 6 0 Μ Η z時 其微帶線(即圖9(a)中之Α區)之相反側面之^電流分佈圖; 圖1 5為本發明實施例之天線於共振頻率2 6 0 Μ Η z時其在 Υ - Ζ平面之輻射場形。 符號說明 11 介 質 基 板 12 接 地 面 13 金 屬 貼 片 14 /pte. 饋 線 15 連 接 至 通 路 孔 之饋線 16 探 針 或 同 軸 線 饋入 41 手 機 外 殼 42 單 極 天 線 43 螺 旋 .型 天 線 A :快波振盪裝置Page 7 1998.12.31. 007 401652 _ Case No. 87120137 amended by more than 7 days _ V. Description of the invention (5) Figure 10 (b) shows the antenna on the external circuit board corresponding to the antenna of the embodiment of the present invention. Part of the circuit; FIG. 11 is an equivalent circuit of an antenna according to an embodiment of the present invention; FIG. 12 is a measurement result of a port Smith chart (ο ne ρ 〇rt S mith Cli art) according to an embodiment of the present invention; FIG. 13 is The measurement results of the one port scattering parameter of the embodiment of the present invention; FIG. 14 (a) is the microstrip line of the antenna of the embodiment of the present invention at the resonance frequency of 2 60 Μ Η z (ie, FIG. 9 (a) Area A) on one side of the current distribution diagram; Figure 14 (b) is a microstrip line of the antenna of the embodiment of the present invention at a resonance frequency of 2 60 Μ Η z (ie Figure 9 (a) Figure A is the current distribution diagram on the opposite side of Figure A). Figure 15 shows the radiation field shape of the antenna in the Υ-Z plane at the resonance frequency of 2 60 Μ Η z according to the embodiment of the present invention. Explanation of symbols 11 Medium base plate 12 Grounding ground 13 Metal patch 14 / pte. Feeder 15 Feeder connected to the through hole 16 Probe or coaxial cable feed 41 Mobile phone housing 42 Monopole antenna 43 Screws. Type antenna A: Fast-wave oscillator

第8頁 1998.12.31.008 401652 _案號87120137 的年/上月多7日 修正_ 五、發明說明(5) 圖1 0 ( b )顯示外接電路基板上對應於本發明實施例之 天線的部分之線路; 圖1 1為本發明實施例之天線的等效電路; 圖1 2為本發明實施例之單埠史密斯圖(ο n e ρ 〇 r t S m i t h Cli a r t) 的測量結果; 圖13為本發明實施例之單埠散射參數(one port scattering parameter)之測量結果; 圖1 4 ( a )為本發明實施例之天線於共振頻率2 6 0 Μ Η z時 其微帶線(即圖9 ( a )中之A區)之一側面之電流分佈圖; 圖1 4 ( b ) 為本發明實施例之天線於共振頻率2 6 0 Μ Η z時 其微帶線(即圖9(a)中之Α區)之相反側面之^電流分佈圖; 圖1 5為本發明實施例之天線於共振頻率2 6 0 Μ Η z時其在 Υ - Ζ平面之輻射場形。 符號說明 11 介 質 基 板 12 接 地 面 13 金 屬 貼 片 14 /pte. 饋 線 15 連 接 至 通 路 孔 之饋線 16 探 針 或 同 軸 線 饋入 41 手 機 外 殼 42 單 極 天 線 43 螺 旋 .型 天 線 A :快波振盪裝置Page 8 1998.12.31.008 401652 _ case number 87120137 amended by more than 7 days _ V. Description of the invention (5) Figure 10 (b) shows the part of the external circuit substrate corresponding to the antenna of the embodiment of the present invention Circuit; FIG. 11 is an equivalent circuit of an antenna according to an embodiment of the present invention; FIG. 12 is a measurement result of a port Smith chart (ο ne ρ 〇rt S mith Cli art) according to an embodiment of the present invention; FIG. 13 is the present invention Measurement results of one port scattering parameter according to the embodiment; FIG. 14 (a) shows the microstrip line of the antenna according to the embodiment of the present invention at a resonance frequency of 260 MHz (i.e., FIG. 9 (a The area A)) of one side of the current distribution diagram; Figure 14 (b) is a microstrip line of the antenna of the embodiment of the present invention at a resonance frequency of 2 60 Μ Η z (that is, Figure 9 (a) Area A) on the opposite side of the current distribution diagram; Figure 15 shows the radiation field shape of the antenna in the Υ-Z plane at the resonance frequency of 2 60 Μ Η z in the embodiment of the present invention. Explanation of symbols 11 Medium base plate 12 Grounding ground 13 Metal patch 14 / pte. Feeder 15 Feeder connected to the through hole 16 Probe or coaxial cable feed 41 Mobile phone housing 42 Monopole antenna 43 Screws. Type antenna A: Fast-wave oscillator

第8頁 1998.12.31.008 '101652 _案號87120137 ⑺年P月多!曰 修正 五、發明說明(6) AO 、A1 、A2 、A3 :微帶 B :多層接地裝置 B 1〜B 9 :平行層 B10~B17、69:通路孔 1 、2、3、4 :凹槽 C :中空地區 5 1 :天線輸入/輸出端 5 5、5 7 :天線接地端 61 :外接電路基板之輸入/輸出端 65 ' 67 :外接電路基板之接地端 70 金屬接地 81 金屬線 82 介質基板 83 空氣帶 84 接地面 101 :本發明之 天 線 103 :外接電路 基 板 105 :外接電路 基 板之接地面 較佳實施例之詳細說明 圖5 ( a )為懸空式的理想微帶線結構之橫切面圖,其中 各參數為 Λ, = 300 mw 5 ό = 421 .6mm ,w = 1.6mm ,h 二 Q .762 mm ;q = 1.0,= 2.1及= 1 ·0圖5 ( b )顯示對應於圖5 ( a )且假設 所士金屬導體具有無窮大之導電度的懸空微帶線之兩種 模,即&=Λ+_/·〇與r/=A+y·%。其中γ™與η分別為不輻射波Page 8 1998.12.31.008 '101652 _ Case No. 87120137 There are many P months in the next year! Amendment V. Description of the invention (6) AO, A1, A2, A3: Microstrip B: Multilayer grounding device B 1 ~ B 9: Parallel layers B10 ~ B17, 69: Via holes 1, 2, 3, 4: Groove C: Hollow area 5 1: Antenna input / output terminal 5 5, 5 7: Antenna ground terminal 61: Input / output terminal of external circuit board 65 '67: Ground terminal of external circuit board 70 Metal ground 81 Metal wire 82 Dielectric substrate 83 air band 84 ground plane 101: antenna of the present invention 103: external circuit substrate 105: detailed description of a preferred embodiment of the ground plane of the external circuit substrate FIG. 5 (a) is a cross-sectional view of a floating ideal microstrip line structure , Where each parameter is Λ, = 300 mw 5 ό = 421.6mm, w = 1.6mm, h = Q .762 mm; q = 1.0, = 2.1 and = 1 · 0 Figure 5 (b) shows the corresponding to Figure 5 (a) Let us assume that the metal conductor has two modes of a floating microstrip line with infinite conductivity, namely & = Λ + _ / · 〇 and r / = A + y ·%. Where γ ™ and η are non-radiating waves, respectively

第9頁 1998.12.31.009 '101652 _案號87120137 ⑺年P月多!曰 修正 五、發明說明(6) AO 、A1 、A2 、A3 :微帶 B :多層接地裝置 B 1〜B 9 :平行層 B10~B17、69:通路孔 1 、2、3、4 :凹槽 C :中空地區 5 1 :天線輸入/輸出端 5 5、5 7 :天線接地端 61 :外接電路基板之輸入/輸出端 65 ' 67 :外接電路基板之接地端 70 金屬接地 81 金屬線 82 介質基板 83 空氣帶 84 接地面 101 :本發明之 天 線 103 :外接電路 基 板 105 :外接電路 基 板之接地面 較佳實施例之詳細說明 圖5 ( a )為懸空式的理想微帶線結構之橫切面圖,其中 各參數為 Λ, = 300 mw 5 ό = 421 .6mm ,w = 1.6mm ,h 二 Q .762 mm ;q = 1.0,= 2.1及= 1 ·0圖5 ( b )顯示對應於圖5 ( a )且假設 所士金屬導體具有無窮大之導電度的懸空微帶線之兩種 模,即&=Λ+_/·〇與r/=A+y·%。其中γ™與η分別為不輻射波Page 9 1998.12.31.009 '101652 _ Case No. 87120137 There are many P months in the next year! Amendment V. Description of the invention (6) AO, A1, A2, A3: Microstrip B: Multilayer grounding device B 1 ~ B 9: Parallel layers B10 ~ B17, 69: Via holes 1, 2, 3, 4: Groove C: Hollow area 5 1: Antenna input / output terminal 5 5, 5 7: Antenna ground terminal 61: Input / output terminal of external circuit board 65 '67: Ground terminal of external circuit board 70 Metal ground 81 Metal wire 82 Dielectric substrate 83 air band 84 ground plane 101: antenna of the present invention 103: external circuit substrate 105: detailed description of a preferred embodiment of the ground plane of the external circuit substrate FIG. 5 (a) is a cross-sectional view of a floating ideal microstrip line structure , Where each parameter is Λ, = 300 mw 5 ό = 421.6mm, w = 1.6mm, h = Q .762 mm; q = 1.0, = 2.1 and = 1 · 0 Figure 5 (b) shows the corresponding to Figure 5 (a) Let us assume that the metal conductor has two modes of a floating microstrip line with infinite conductivity, namely & = Λ + _ / · 〇 and r / = A + y ·%. Where γ ™ and η are non-radiating waves, respectively

第9頁 1998.12.31.009 _案號 87120137_Μ 年 ^月 3/ 日__ 五、發明說明(7) 模與洩漏波模之傳播常數,凡與A分別為不輻射波模和洩 漏波模之相位常數,%為洩漏波模之衰減常數。 此二種模在橫方向和縱方向之電流分佈如圖6 ( a)和圖 6(b)所示,其模電流(modal currents)在微帶線的縱方向 及橫方向非常相似。換言之,如果其中一個模被激發,另 一個亦會被激發。 除了模電流相似之外,兩者之横向電場/磁場在接近 微帶線範圍内亦非常相似。圖7表示在不同位置之懸空微 帶線之洩漏波模的模方向電場場形,其中各參數為 ~ 299 mm » xn = 303 mm > (2) xb2 = 408 mm ^ xt2 = 412 mm » (3) xb3 = 677 mm » xi3 = 681 mm ; h = 208 .3画,l = 213 .3画由圖7可知,洩漏波模有非 零的衰減常數。 詳細的分析顯示此兩種模互相箱合,即其波導截面積 積分声(„〇χϊϊ丨,产或戸(0ΧΪΪ^产不為零,iw、分別為不輻射波模 與洩漏波模之橫戴面的電埸強度,S(BI)、分別為不輻射波 模與泡漏波模之橫截面的磁場強度。換言之,如果激發習 知的不輻射波模,此不輻射波模在傳播過程中會將部份能 量轉換成泡漏波模,而此泡漏波模在傳播過程中會將能量 送至大氣中。相反地,傳播中的洩漏波模亦會將部份能量 轉換成不韓射波模。 如圖8所示,懸空式的理想微帶線結構係由金屬線 8 1、介質基板82、空氣帶83及接地面84所形成。金屬線8 1 之上方亦為空氣所充滿。Page 9 1998.12.31.009 _ Case No. 87120137_M year ^ 3 / day __ V. Description of the invention (7) The propagation constants of the mode and the leaking wave mode, where and A are the phase constants of the non-radiating and leaking wave modes, respectively. ,% Is the attenuation constant of the leakage mode. The current distributions of these two modes in the horizontal and vertical directions are shown in Fig. 6 (a) and Fig. 6 (b), and their modal currents are very similar in the longitudinal and transverse directions of the microstrip line. In other words, if one mode is excited, the other mode is also excited. In addition to the similar mode currents, the transverse electric / magnetic fields of the two are also very similar in the vicinity of the microstrip line. Figure 7 shows the electric field shape in the mode direction of the leakage mode of the floating microstrip line at different positions, where each parameter is ~ 299 mm »xn = 303 mm > (2) xb2 = 408 mm ^ xt2 = 412 mm» ( 3) xb3 = 677 mm »xi3 = 681 mm; h = 208.3 drawings, l = 213.3 drawings. As can be seen from Figure 7, the leakage mode has a non-zero attenuation constant. A detailed analysis shows that these two modes are boxed together, that is, the waveguide cross-sectional area integral sound („〇χϊϊ 丨, production or 戸 (0χΪΪ ^ production is not zero, iw, respectively, is the transverse direction of the non-radiating mode and the leakage mode). The electrical intensity of the wearing surface, S (BI), is the magnetic field intensity of the cross section of the non-radiative mode and the bubble leak mode. In other words, if the conventional non-radiative mode is excited, this non-radiative mode is propagating. Part of the energy will be converted into a bubble leak mode, and this bubble leak mode will send energy to the atmosphere during the propagation process. Conversely, the leak mode in the transfer will also convert some energy into a Korean As shown in Fig. 8, the ideal ideal microstrip line structure is formed by a metal wire 81, a dielectric substrate 82, an air band 83, and a ground plane 84. Above the metal wire 81 is also filled with air. .

第10頁 1998.12.31.010 _案號 87120137_Μ 年 ^月 3/ 日__ 五、發明說明(7) 模與洩漏波模之傳播常數,凡與A分別為不輻射波模和洩 漏波模之相位常數,%為洩漏波模之衰減常數。 此二種模在橫方向和縱方向之電流分佈如圖6 ( a)和圖 6(b)所示,其模電流(modal currents)在微帶線的縱方向 及橫方向非常相似。換言之,如果其中一個模被激發,另 一個亦會被激發。 除了模電流相似之外,兩者之横向電場/磁場在接近 微帶線範圍内亦非常相似。圖7表示在不同位置之懸空微 帶線之洩漏波模的模方向電場場形,其中各參數為 ~ 299 mm » xn = 303 mm > (2) xb2 = 408 mm ^ xt2 = 412 mm » (3) xb3 = 677 mm » xi3 = 681 mm ; h = 208 .3画,l = 213 .3画由圖7可知,洩漏波模有非 零的衰減常數。 詳細的分析顯示此兩種模互相箱合,即其波導截面積 積分声(„〇χϊϊ丨,产或戸(0ΧΪΪ^产不為零,iw、分別為不輻射波模 與洩漏波模之橫戴面的電埸強度,S(BI)、分別為不輻射波 模與泡漏波模之橫截面的磁場強度。換言之,如果激發習 知的不輻射波模,此不輻射波模在傳播過程中會將部份能 量轉換成泡漏波模,而此泡漏波模在傳播過程中會將能量 送至大氣中。相反地,傳播中的洩漏波模亦會將部份能量 轉換成不韓射波模。 如圖8所示,懸空式的理想微帶線結構係由金屬線 8 1、介質基板82、空氣帶83及接地面84所形成。金屬線8 1 之上方亦為空氣所充滿。Page 10 1998.12.31.010 _ Case No. 87120137_M year ^ 3 / day __ V. Description of the invention (7) The propagation constants of the mode and the leakage wave mode, where and A are the phase constants of the non-radiating mode and the leakage wave mode, respectively. ,% Is the attenuation constant of the leakage mode. The current distributions of these two modes in the horizontal and vertical directions are shown in Fig. 6 (a) and Fig. 6 (b), and their modal currents are very similar in the longitudinal and transverse directions of the microstrip line. In other words, if one mode is excited, the other mode is also excited. In addition to the similar mode currents, the transverse electric / magnetic fields of the two are also very similar in the vicinity of the microstrip line. Figure 7 shows the electric field shape in the mode direction of the leakage mode of the floating microstrip line at different positions, where each parameter is ~ 299 mm »xn = 303 mm > (2) xb2 = 408 mm ^ xt2 = 412 mm» ( 3) xb3 = 677 mm »xi3 = 681 mm; h = 208.3 drawings, l = 213.3 drawings. As can be seen from Figure 7, the leakage mode has a non-zero attenuation constant. A detailed analysis shows that these two modes are boxed together, that is, the waveguide cross-sectional area integral sound („〇χϊϊ 丨, production or 戸 (0χΪΪ ^ production is not zero, iw, respectively, is the transverse direction of the non-radiated mode and the leakage mode The electrical intensity of the wearing surface, S (BI), is the magnetic field intensity of the cross section of the non-radiative mode and the bubble leak mode. In other words, if the conventional non-radiative mode is excited, this non-radiative mode is propagating. Part of the energy will be converted into a bubble leak mode, and this bubble leak mode will send energy to the atmosphere during the propagation process. Conversely, the leak mode in the transfer will also convert some energy into a Korean As shown in Fig. 8, the ideal ideal microstrip line structure is formed by a metal wire 81, a dielectric substrate 82, an air band 83, and a ground plane 84. Above the metal wire 81 is also filled with air. .

第10頁 1998.12.31.010 401652 修正 案號 87120137 五、發明說明(8) 依據以上工作原理和.懸空式的理想微帶線結構來設計 本發明之天線。其係由二大部份組成:一為快波振盪裝 置,一為由多層接地面及通路孔所形成之接地裝置。 圖9 ( a )表示本發明之天線的一個較佳實施例,其中 A部分表示快波振盪裝置,B部分表示多層接地裝置。並 且,為了更清楚地顯示快波振盪裝置之電路,A部分中將 快波振盪裝置電路中的介質抽走。另外,為了方便後面之 說明,設定三度空間之X、Y及Z軸方向分別為天線之長、 寬及高之方向。圖9 (b)是圖9 (a)之局部放大圖。 © 圖8在介質基板及地面之間所形成之空氣帶8 3,相對 應於圖9(b)之中空地區C,其可藉由挖槽或鑄造的方式來 形成。 圖9 ( b )中,快波振盪裝置A由一個長方體介質和微 帶A 1、A 2、A 3等圍繞著長方體介質之表面而形成的螺旋形 金屬微帶線所構成。此螺旋形金屬微帶線之尾端形成共振 所須之斷路。銜接微帶A 1之微帶線另一端A 0用於天線之信 號輸入/輸出端。利用印刷電路板技術或利用鑄造配合蝕 刻的技術,可製成此類快波振盪裝置。 圖9 ( b )中,多層接地裝置B位於該快波振盪裝置之 長方體介質之下方,該裝置的主要部分是在介質下方形成 的複數個平行層B1~B9。在這些平面層下方,為了增加接 地面的表面積,同時考慮天線之機械強度,製作了複數個 通路孔B 1 0 ~ B 1 7,並且使所·有由平行層所形成凹槽1〜4之内 表面、所有通路孔B10〜B17的内表面和此多層接地裝置B的Page 10 1998.12.31.010 401652 Amendment No. 87120137 V. Description of the invention (8) The antenna of the present invention is designed according to the above working principle and a floating ideal microstrip line structure. It consists of two parts: one is a fast-wave oscillation device, and the other is a grounding device formed by multiple layers of ground planes and via holes. Fig. 9 (a) shows a preferred embodiment of the antenna of the present invention, where part A represents a fast-wave oscillating device, and part B represents a multilayer grounding device. And, in order to show the circuit of the fast-wave oscillating device more clearly, the medium in the circuit of the fast-wave oscillating device is removed in Part A. In addition, for the convenience of the following descriptions, the directions of the X, Y, and Z axes of the three-dimensional space are set to the directions of the length, width, and height of the antenna, respectively. Fig. 9 (b) is a partially enlarged view of Fig. 9 (a). © Figure 8 The air zone 83 formed between the dielectric substrate and the ground corresponds to the hollow area C in Figure 9 (b), which can be formed by trenching or casting. In Fig. 9 (b), the fast-wave oscillating device A is composed of a rectangular parallelepiped medium and microstrips A1, A2, A3, etc., which are formed by spiral metal microstrip lines surrounding the surface of the rectangular parallelepiped medium. The trailing end of this helical metal microstrip line forms a break required for resonance. The other end A 0 of the microstrip line connected to the microstrip A 1 is used for the signal input / output end of the antenna. This type of fast-wave oscillating device can be made by using printed circuit board technology or using casting and etching technology. In Fig. 9 (b), the multilayer grounding device B is located below the rectangular parallelepiped medium of the fast-wave oscillating device. The main part of the device is a plurality of parallel layers B1 ~ B9 formed under the medium. Below these plane layers, in order to increase the surface area of the ground plane while taking into account the mechanical strength of the antenna, a plurality of via holes B 1 0 ~ B 1 7 were made, and all the grooves 1 to 4 formed by the parallel layers were made. The inner surface, the inner surfaces of all via holes B10 ~ B17, and the

第11頁 1998.12.31.011 401652 修正 案號 87120137 五、發明說明(8) 依據以上工作原理和.懸空式的理想微帶線結構來設計 本發明之天線。其係由二大部份組成:一為快波振盪裝 置,一為由多層接地面及通路孔所形成之接地裝置。 圖9 ( a )表示本發明之天線的一個較佳實施例,其中 A部分表示快波振盪裝置,B部分表示多層接地裝置。並 且,為了更清楚地顯示快波振盪裝置之電路,A部分中將 快波振盪裝置電路中的介質抽走。另外,為了方便後面之 說明,設定三度空間之X、Y及Z軸方向分別為天線之長、 寬及高之方向。圖9 (b)是圖9 (a)之局部放大圖。 © 圖8在介質基板及地面之間所形成之空氣帶8 3,相對 應於圖9(b)之中空地區C,其可藉由挖槽或鑄造的方式來 形成。 圖9 ( b )中,快波振盪裝置A由一個長方體介質和微 帶A 1、A 2、A 3等圍繞著長方體介質之表面而形成的螺旋形 金屬微帶線所構成。此螺旋形金屬微帶線之尾端形成共振 所須之斷路。銜接微帶A 1之微帶線另一端A 0用於天線之信 號輸入/輸出端。利用印刷電路板技術或利用鑄造配合蝕 刻的技術,可製成此類快波振盪裝置。 圖9 ( b )中,多層接地裝置B位於該快波振盪裝置之 長方體介質之下方,該裝置的主要部分是在介質下方形成 的複數個平行層B1~B9。在這些平面層下方,為了增加接 地面的表面積,同時考慮天線之機械強度,製作了複數個 通路孔B 1 0 ~ B 1 7,並且使所·有由平行層所形成凹槽1〜4之内 表面、所有通路孔B10〜B17的内表面和此多層接地裝置B的Page 11 1998.12.31.011 401652 amendment No. 87120137 V. Description of the invention (8) The antenna of the present invention is designed based on the above working principle and a floating ideal microstrip line structure. It consists of two parts: one is a fast-wave oscillation device, and the other is a grounding device formed by multiple layers of ground planes and via holes. Fig. 9 (a) shows a preferred embodiment of the antenna of the present invention, where part A represents a fast-wave oscillating device, and part B represents a multilayer grounding device. And, in order to show the circuit of the fast-wave oscillating device more clearly, the medium in the circuit of the fast-wave oscillating device is removed in Part A. In addition, for the convenience of the following descriptions, the directions of the X, Y, and Z axes of the three-dimensional space are set to the directions of the length, width, and height of the antenna, respectively. Fig. 9 (b) is a partially enlarged view of Fig. 9 (a). © Figure 8 The air zone 83 formed between the dielectric substrate and the ground corresponds to the hollow area C in Figure 9 (b), which can be formed by trenching or casting. In Fig. 9 (b), the fast-wave oscillating device A is composed of a rectangular parallelepiped medium and microstrips A1, A2, A3, etc., which are formed by spiral metal microstrip lines surrounding the surface of the rectangular parallelepiped medium. The trailing end of this helical metal microstrip line forms a break required for resonance. The other end A 0 of the microstrip line connected to the microstrip A 1 is used for the signal input / output end of the antenna. This type of fast-wave oscillating device can be made by using printed circuit board technology or using casting and etching technology. In Fig. 9 (b), the multilayer grounding device B is located below the rectangular parallelepiped medium of the fast-wave oscillating device. The main part of the device is a plurality of parallel layers B1 ~ B9 formed under the medium. Below these plane layers, in order to increase the surface area of the ground plane while taking into account the mechanical strength of the antenna, a plurality of via holes B 1 0 ~ B 1 7 were made, and all the grooves 1 to 4 formed by the parallel layers were made. The inner surface, the inner surfaces of all via holes B10 ~ B17, and the

第11頁 1998.12.31.011 修正 案號 87120137 五、發明說明(9) 所有外表面皆為金屬接地面’從而形成多層接地裝置B。 其製作可利用印刷電路板之穿孔技術,或利用鑄造配合鍍 金的技術來完成。 圖9 ( b )中,微帶線之端點A 0沿介質表面延伸至輸入/ 輸出端51 ’且與多層接地裝置b之接地端55、57形成共平 面波導的輸入/輸出方式。 圖10(a)示意表示本發明之天線ιοί安裝於一個外接電 路基板1 0 3的情形。參考圖1 〇 ( b ),本發明之天線和外電路 之連接方式為:外電路基板】03之相應位置亦形成共平面 波導之輸入/輸出端61、65、67 ’其中61為信號之輸入/輸 出端’ 6 5、6 7都是接地端。採用表面黏著技術,5 1、5 5、 5J分3 Ϊ Ϊ f 英6 5、6 7 ;並且,同樣採用表面黏著技 面’ U 3 ί f具有接地端和信號輪入/輸出端之側 之金屬几,和外電路基板1〇3之接地面丄及其周邊 圖9U)是圖9(a)之示意圖,參考圖9(c相連^ =的一組設計參數是:微帶之寬度及 與 0.17x1010—0,39 知刀別為 0.39x10 A0 4o.〇3Uo (^t ^ = 4_3χΚΓ3丄與1.47x1ο-3儿(即。 3 ”長和寬分別約為 微帶線的圈數Ν= δΐ Γ4·3Χΐ〇 Λ,/ = 1·47Χΐ0、),〜=3.25,螺旋型 依據以上參數丄 〇·25χ1(Γ64,平均邊長叫:计算本發明之天線之體積約為 化之目的。 約為〇·63Χ·10^。達到天線微小型積體電路Page 11 1998.12.31.011 Amendment No. 87120137 V. Description of the invention (9) All external surfaces are metal ground planes' to form a multilayer grounding device B. The production can be done by the perforation technology of the printed circuit board, or by the technology of casting and gold plating. In Fig. 9 (b), the end point A 0 of the microstrip line extends along the surface of the medium to the input / output terminal 51 'and forms an input / output mode of a coplanar waveguide with the ground terminals 55 and 57 of the multilayer grounding device b. Fig. 10 (a) schematically shows a state in which the antenna of the present invention is mounted on an external circuit board 103. Referring to FIG. 10 (b), the connection method of the antenna and the external circuit of the present invention is: the corresponding position of the external circuit substrate] 03 also forms the input / output terminals 61, 65, 67 of the coplanar waveguide, where 61 is the signal input / Output terminals' 6 5 and 6 7 are ground terminals. Adopt surface adhesion technology, 5 1, 5, 5, and 5J points 3 Ϊ Ϊ f 英 6 5, 6 7; and, also use surface adhesion technology surface 'U 3 ί f has a ground terminal and signal wheel input / output side The metal table and the ground plane of the external circuit board 103 and its surroundings (Fig. 9U) is a schematic diagram of Fig. 9 (a). Refer to Fig. 9 (c). A set of design parameters are: the width of the microstrip and the 0.17x1010—0,39 The known knife is 0.39x10 A0 4o.〇3Uo (^ t ^ = 4_3χΚΓ3 丄 and 1.47x1ο-3 children (that is, 3 ”length and width are about the number of turns of the microstrip line N = δΐ Γ4 · 3 × ΐ〇Λ, / = 1.47 × ΐ0,), ~ = 3.25, the spiral type is based on the above parameter 丄 〇 · 25χ1 (Γ64, the average side length is called: calculate the volume of the antenna of the present invention to reduce the purpose. 〇 · 63Χ · 10 ^. Reach the antenna micro-mini integrated circuit

修正 案號 87120137 五、發明說明(9) 所有外表面皆為金屬接地面’從而形成多層接地裝置B。 其製作可利用印刷電路板之穿孔技術,或利用鑄造配合鍍 金的技術來完成。 圖9 ( b )中,微帶線之端點A 0沿介質表面延伸至輸入/ 輸出端51 ’且與多層接地裝置b之接地端55、57形成共平 面波導的輸入/輸出方式。 圖10(a)示意表示本發明之天線ιοί安裝於一個外接電 路基板1 0 3的情形。參考圖1 〇 ( b ),本發明之天線和外電路 之連接方式為:外電路基板】03之相應位置亦形成共平面 波導之輸入/輸出端61、65、67 ’其中61為信號之輸入/輸 出端’ 6 5、6 7都是接地端。採用表面黏著技術,5 1、5 5、 5J分3 Ϊ Ϊ f 英6 5、6 7 ;並且,同樣採用表面黏著技 面’ U 3 ί f具有接地端和信號輪入/輸出端之側 之金屬几,和外電路基板1〇3之接地面丄及其周邊 圖9U)是圖9(a)之示意圖,參考圖9(c相連^ =的一組設計參數是:微帶之寬度及 與 0.17x1010—0,39 知刀別為 0.39x10 A0 4o.〇3Uo (^t ^ = 4_3χΚΓ3丄與1.47x1ο-3儿(即。 3 ”長和寬分別約為 微帶線的圈數Ν= δΐ Γ4·3Χΐ〇 Λ,/ = 1·47Χΐ0、),〜=3.25,螺旋型 依據以上參數丄 〇·25χ1(Γ64,平均邊長叫:计算本發明之天線之體積約為 化之目的。 約為〇·63Χ·10^。達到天線微小型積體電路Amendment No. 87120137 V. Description of the invention (9) All external surfaces are metal ground planes' to form a multilayer grounding device B. The production can be done by the perforation technology of the printed circuit board, or by the technology of casting and gold plating. In Fig. 9 (b), the end point A 0 of the microstrip line extends along the surface of the medium to the input / output terminal 51 'and forms an input / output mode of a coplanar waveguide with the ground terminals 55 and 57 of the multilayer grounding device b. Fig. 10 (a) schematically shows a state in which the antenna of the present invention is mounted on an external circuit board 103. Referring to FIG. 10 (b), the connection method of the antenna and the external circuit of the present invention is: the corresponding position of the external circuit substrate] 03 also forms the input / output terminals 61, 65, 67 of the coplanar waveguide, where 61 is the signal input / Output terminals' 6 5 and 6 7 are ground terminals. Adopt surface adhesion technology, 5 1, 5, 5, and 5J points 3 Ϊ Ϊ f 英 6 5, 6 7; and, also use surface adhesion technology surface 'U 3 ί f has a ground terminal and signal wheel input / output side The metal table and the ground plane of the external circuit board 103 and its surroundings (Fig. 9U) is a schematic diagram of Fig. 9 (a). Refer to Fig. 9 (c). A set of design parameters are: the width of the microstrip and the 0.17x1010—0,39 The known knife is 0.39x10 A0 4o.〇3Uo (^ t ^ = 4_3χΚΓ3 丄 and 1.47x1ο-3 children (that is, 3 ”length and width are about the number of turns of the microstrip line N = δΐ Γ4 · 3 × ΐ〇Λ, / = 1.47 × ΐ0,), ~ = 3.25, the spiral type is based on the above parameter 丄 〇 · 25χ1 (Γ64, the average side length is called: calculate the volume of the antenna of the present invention to reduce the purpose. 〇 · 63Χ · 10 ^. Reach the antenna micro-mini integrated circuit

:…了―Ι0ί0:52Λ〜…… . _案號87120137_f 7年/二月夕I曰 修正_ 五、發明說明(10) 另外,螺旋型微帶線的長度約為: 5.8χ10'3Λχ57χ2 + 0·17χ10"3^χ57 = 0·667^ 〇 螺旋型微帶線的總面積約為: 0.667々 X 3.9 X10_4 4 = 260 X1 (Γ6 Α2。:… 了 ―Ι0ί0: 52Λ ~ .... _Case No. 87120137_f 7 years / February evening I amended_ V. Description of the invention (10) In addition, the length of the spiral microstrip line is approximately: 5.8χ10'3Λχ57χ2 + 0 · 17χ10 " 3 ^ χ57 = 0 · 667 ^ 〇 The total area of the spiral microstrip line is approximately: 0.667々X 3.9 X10_4 4 = 260 X1 (Γ6 Α2.

I 當微帶線形成共振時,電流強度大致依介於0至7Γ / 2 相角之餘弦函數之形狀分佈在微帶線上(此部分後面再詳 細說明),而餘弦函數之i周期所包圍的面積為三,故螺 旋型微帶線之平均有效面積為: π 26〇χ1〇_622。X互=166x10—6A2。 - π 相當於電荷平均分佈在有效面積ΙόόχΗΓ6^的微帶線之上。 而多層接地裝置的接地面積估算約有90.6χ1(Γ6/1〗。當共振 時,圖9(b)中有正Q電荷(Q為電荷量)流入輸入端51 ,再 經A 0進入螺旋型微帶線,然後充滿微帶線金屬面;同時有 一部分負Q電荷流入接地端5 5、5 7,然後充滿在多層接地 _裝置的所有金屬表面。另有一部分負Q電荷則流入外電路 板接地端6 5、6 7及與其銜接之接地面。故此,共振時,螺 旋型微帶線和多層接地裝置及其輸入之接地端的附近得以 雄持電荷之平衡。可見,在本發明的天線中,接地面無需 做到與現有手機接地面之面積一樣大,但仍然足敷使用。 而且,不需使用高介電常數的介質材料,使用相對介 電常數值相當低如〜在2至5之間的介質材料即可。I When the microstrip line resonates, the current intensity is roughly distributed on the microstrip line according to the shape of the cosine function between the phase angles of 0 to 7Γ / 2 (more detailed later in this section), and the i period surrounded by the cosine function The area is three, so the average effective area of the spiral microstrip line is: π 26〇χ10_622. X mutual = 166x10-6A2. -π is equivalent to that the charge is evenly distributed over the microstrip line of the effective area ΙόόχΗΓ6 ^. The ground area of the multilayer grounding device is estimated to be about 90.6 × 1 (Γ6 / 1). When resonance occurs, a positive Q charge (Q is the amount of charge) flows into the input terminal 51 in Figure 9 (b), and then enters the spiral type through A 0 The microstrip line is then filled with the metal surface of the microstrip line; at the same time, a portion of the negative Q charge flows into the ground terminals 5 5, 5 7 and then fills all the metal surfaces of the multilayer grounding device. Another portion of the negative Q charge flows into the external circuit board The grounding terminals 6 5 and 67 and the grounding surface connected to them. Therefore, near resonance, the spiral microstrip line and the multi-layered grounding device and the grounding terminal of its input can balance the charge. It can be seen that in the antenna of the present invention, The ground plane does not need to be as large as the area of the existing mobile phone ground plane, but it is still sufficient for use. Moreover, it is not necessary to use a dielectric material with a high dielectric constant, and the relative dielectric constant value is quite low, such as ~ 2 to 5 Just the dielectric material.

第13頁 1998.12.31.013 :…了―Ι0ί0:52Λ〜…… . _案號87120137_f 7年/二月夕I曰 修正_ 五、發明說明(10) 另外,螺旋型微帶線的長度約為: 5.8χ10'3Λχ57χ2 + 0·17χ10"3^χ57 = 0·667^ 〇 螺旋型微帶線的總面積約為: 0.667々 X 3.9 X10_4 4 = 260 X1 (Γ6 Α2。Page 13 1998.12.31.013:… ─ Ι0ί0: 52Λ ~ .... _ Case No. 87120137_f 7 years / February evening I amended_ V. Description of the invention (10) In addition, the length of the spiral microstrip line is approximately: 5.8χ10'3Λχ57χ2 + 0 · 17χ10 " 3 ^ χ57 = 0 · 667 ^ 〇 The total area of the spiral microstrip line is approximately: 0.667々X 3.9 X10_4 4 = 260 X1 (Γ6 Α2.

I 當微帶線形成共振時,電流強度大致依介於0至7Γ / 2 相角之餘弦函數之形狀分佈在微帶線上(此部分後面再詳 細說明),而餘弦函數之i周期所包圍的面積為三,故螺 旋型微帶線之平均有效面積為: π 26〇χ1〇_622。X互=166x10—6A2。 - π 相當於電荷平均分佈在有效面積ΙόόχΗΓ6^的微帶線之上。 而多層接地裝置的接地面積估算約有90.6χ1(Γ6/1〗。當共振 時,圖9(b)中有正Q電荷(Q為電荷量)流入輸入端51 ,再 經A 0進入螺旋型微帶線,然後充滿微帶線金屬面;同時有 一部分負Q電荷流入接地端5 5、5 7,然後充滿在多層接地 _裝置的所有金屬表面。另有一部分負Q電荷則流入外電路 板接地端6 5、6 7及與其銜接之接地面。故此,共振時,螺 旋型微帶線和多層接地裝置及其輸入之接地端的附近得以 雄持電荷之平衡。可見,在本發明的天線中,接地面無需 做到與現有手機接地面之面積一樣大,但仍然足敷使用。 而且,不需使用高介電常數的介質材料,使用相對介 電常數值相當低如〜在2至5之間的介質材料即可。I When the microstrip line resonates, the current intensity is roughly distributed on the microstrip line according to the shape of the cosine function between the phase angles of 0 to 7Γ / 2 (more detailed later in this section), and the i period surrounded by the cosine function The area is three, so the average effective area of the spiral microstrip line is: π 26〇χ10_622. X mutual = 166x10-6A2. -π is equivalent to that the charge is evenly distributed over the microstrip line of the effective area ΙόόχΗΓ6 ^. The ground area of the multilayer grounding device is estimated to be about 90.6 × 1 (Γ6 / 1). When resonance occurs, a positive Q charge (Q is the amount of charge) flows into the input terminal 51 in Figure 9 (b), and then enters the spiral type through A 0 The microstrip line is then filled with the metal surface of the microstrip line; at the same time, a portion of the negative Q charge flows into the ground terminals 5 5, 5 7 and then fills all the metal surfaces of the multilayer grounding device. Another portion of the negative Q charge flows into the external circuit board The grounding terminals 6 5 and 67 and the grounding surface connected to them. Therefore, near resonance, the spiral microstrip line and the multi-layered grounding device and the grounding terminal of its input can balance the charge. It can be seen that in the antenna of the present invention, The ground plane does not need to be as large as the area of the existing mobile phone ground plane, but it is still sufficient for use. Moreover, it is not necessary to use a dielectric material with a high dielectric constant, and the relative dielectric constant value is quite low, such as ~ 2 to 5 Just the dielectric material.

第13頁 1998.12.31.013 401052 β年月Page 13 1998.12.31.013 401052 β year month

_案號 87120137 五、發明說明(11) 快波洩漏波模在本發明之天線中的重要作用可 的計算和推斷得知。 面 根據習知的微波線路理論,若’個單模元件的傳輪_ 之斷路端沒有任何邊緣場效應(fringing ^ e f f e c t ),而是純粹的斷路,則只要I γ( \為單模之傳 波長)所對應的頻率之奇數倍頻率即可形成一個共振電 路。並且,對應第一個共振頻率,其共振方程式為: = / , Ν 4 « 4 g ⑴ -其中’ /為微帶線之長度,3 (normalized phase constant 為自由空間波數。 為正規化之相位常數 β . r 0 2π β Κ〇 Κ0 Λ, β_ Case number 87120137 V. Description of the invention (11) The important role of the fast wave leakage mode in the antenna of the present invention can be calculated and inferred. According to the conventional microwave circuit theory, if there is no fringe field effect (fringing ^ effect) at the open end of the transmission wheel of a single-mode element, but a pure open circuit, then as long as I γ (\ is a single-mode transmission The frequency corresponding to the odd multiples of the frequency) can form a resonant circuit. And, corresponding to the first resonance frequency, the resonance equation is: = /, Ν 4 «4 g ⑴-where '/ is the length of the microstrip line, and 3 (normalized phase constant is the number of free space waves. It is the normalized phase Constant β. R 0 2π β Κ〇Κ0 Λ, β

、 圖1 1顯示本發明之天線的等效電路,由斷路3 1 、懸空 式的微帶線32、接地系統33及電源34所組成。應用以上之 微波線路理論,若圖1 1代表對應第一個共振頻率之共振電 路’則微帶線3 2之長度應是j_v 、 本發明人以上述之天線設計參數,利用三度空間的全 波電磁場論計算得苐一共振頻率為2 6 〇 MHz。另一方面, f由上述之設計參數所製成之天線作單埠Sn參數(即散射 ς之測量,可以得到史密斯圖及相對應的&輸入端反 射係數圖,分別如圖1 2及圖丨3所示。 彻此ΐ圖1 2中’向量分析儀從2 4 0 MHz掃瞄至3 0 0 —2。於 時’可以付知在史密斯圖中測量曲線從其最右端即斷 點之附近開始’依順時針方向由接近斷路端點處旋轉Fig. 11 shows an equivalent circuit of the antenna of the present invention, which is composed of an open circuit 3 1, a floating microstrip line 32, a grounding system 33 and a power source 34. Applying the above microwave circuit theory, if FIG. 1 1 represents a resonance circuit corresponding to the first resonance frequency, then the length of the microstrip line 3 2 should be j_v. The inventor uses the antenna design parameters described above to use the full three-degree space Wave electromagnetic field theory calculates that the first resonance frequency is 26 MHz. On the other hand, the antenna made by the above design parameters is used as the port Sn parameter (that is, the measurement of the scattering coefficient), and the Smith chart and the corresponding & input reflection coefficient chart can be obtained, as shown in Figure 12 and Figure丨 3. Hereby, in Figure 12, the 'vector analyzer scans from 240 MHz to 300-2. At that time, you can know that the measurement curve in the Smith chart is from its rightmost end, which is near the breakpoint. Start 'rotate clockwise from near the end of the break

401052 β年月401052 β year month

_案號 87120137 五、發明說明(11) 快波洩漏波模在本發明之天線中的重要作用可 的計算和推斷得知。 面 根據習知的微波線路理論,若’個單模元件的傳輪_ 之斷路端沒有任何邊緣場效應(fringing ^ e f f e c t ),而是純粹的斷路,則只要I γ( \為單模之傳 波長)所對應的頻率之奇數倍頻率即可形成一個共振電 路。並且,對應第一個共振頻率,其共振方程式為: = / , Ν 4 « 4 g ⑴ -其中’ /為微帶線之長度,3 (normalized phase constant 為自由空間波數。 為正規化之相位常數 β . r 0 2π β Κ〇 Κ0 Λ, β_ Case number 87120137 V. Description of the invention (11) The important role of the fast wave leakage mode in the antenna of the present invention can be calculated and inferred. According to the conventional microwave circuit theory, if there is no fringe field effect (fringing ^ effect) at the open end of the transmission wheel of a single-mode element, but a pure open circuit, then as long as I γ (\ is a single-mode transmission The frequency corresponding to the odd multiples of the frequency) can form a resonant circuit. And, corresponding to the first resonance frequency, the resonance equation is: = /, Ν 4 «4 g ⑴-where '/ is the length of the microstrip line, and 3 (normalized phase constant is the number of free space waves. It is the normalized phase Constant β. R 0 2π β Κ〇Κ0 Λ, β

、 圖1 1顯示本發明之天線的等效電路,由斷路3 1 、懸空 式的微帶線32、接地系統33及電源34所組成。應用以上之 微波線路理論,若圖1 1代表對應第一個共振頻率之共振電 路’則微帶線3 2之長度應是j_v 、 本發明人以上述之天線設計參數,利用三度空間的全 波電磁場論計算得苐一共振頻率為2 6 〇 MHz。另一方面, f由上述之設計參數所製成之天線作單埠Sn參數(即散射 ς之測量,可以得到史密斯圖及相對應的&輸入端反 射係數圖,分別如圖1 2及圖丨3所示。 彻此ΐ圖1 2中’向量分析儀從2 4 0 MHz掃瞄至3 0 0 —2。於 時’可以付知在史密斯圖中測量曲線從其最右端即斷 點之附近開始’依順時針方向由接近斷路端點處旋轉Fig. 11 shows an equivalent circuit of the antenna of the present invention, which is composed of an open circuit 3 1, a floating microstrip line 32, a grounding system 33 and a power source 34. Applying the above microwave circuit theory, if FIG. 1 1 represents a resonance circuit corresponding to the first resonance frequency, then the length of the microstrip line 3 2 should be j_v. The inventor uses the antenna design parameters described above to use the full three-degree space Wave electromagnetic field theory calculates that the first resonance frequency is 26 MHz. On the other hand, the antenna made by the above design parameters is used as the port Sn parameter (that is, the measurement of the scattering coefficient), and the Smith chart and the corresponding & input reflection coefficient chart can be obtained, as shown in Figure 12 and Figure丨 3. Hereby, in Figure 12, the 'vector analyzer scans from 240 MHz to 300-2. At that time, you can know that the measurement curve in the Smith chart is from its rightmost end, which is near the breakpoint. Start 'rotate clockwise from near the end of the break

案號 87120137 g?年'上月W曰 修正 五、發明說明(12) 至左方之接近短路點,然後停止於對應3 0 0 MHz之位於史 密斯圖右上方之點。經詳細分析,可知最接近短路端之頻 率是位於相角為180°處之工作頻率259 MHz,此頻率即為 第一共振頻率。與理論計算值相差僅.為1 Μ Η z。 Π) 第一共振頻率可以由圖13更清楚地證實。參考圖13, 共振時S„的數值在259 MHz最小,約為-2. 8dB,其相角為 18 0° 。圖1 1所示的四分之一波長()共振器在共振時, 其輸入端之反射係數必須為負數,即相角必須為 18 0° 。由於此快波洩漏波模呈現損耗,因此Sn的絕對值 將小於1 ,即小於0 d B。 因此,對應第一個共振頻率,將本發明所採用之微帶 線長度/即〇 . 6 6 7 λ。代入(1 )中,得知汐為〇 · 3 7 5。相對於 此 值之洩漏波模的相位速度為: c / β =2. 66c (2) 其中,c為光速,(2 )式表示此洩漏波模的相位速度為光速 的2 · 6 6倍,故其必為一快波(f a s t w a v e )。 更進一步地,利用三度空間的全波電磁場論可計算在 共振頻率26 O'MHz時之微帶線(即圖9(a)中之A區)之一側面 和相反侧面的電流分布,分別如圖1 4 ( a )與圖1 4 ( b )所示。 圖14(a)與圖14(b)顯示在共振頻率260 MHz時,微帶線的 電流在輸入端最大,然後其電流強度逐漸變小,_但方向維 持一直不變,一直朝著斷路端點(即天線共振器之終點), 至斷路端點其電流強度變為零。換言之,模電流之大小在 微帶線上的變化就像一個介於0至(τι / 2 )相角之餘弦函Case number 87120137 g? Year 'last month W said amendment 5. Description of the invention (12) To the left is near the short-circuit point, and then stops at the point at 300 MHz corresponding to the upper right of the Smith chart. After detailed analysis, it can be seen that the frequency closest to the short-circuit end is the operating frequency of 259 MHz at a phase angle of 180 °, and this frequency is the first resonance frequency. The difference from the theoretical calculation is only 1 μΗz. Π) The first resonance frequency can be more clearly confirmed by FIG. 13. Referring to FIG. 13, the value of S ′ at the resonance is the smallest at 259 MHz, which is about −2.8 dB, and its phase angle is 180 °. When the quarter-wavelength () resonator shown in FIG. 1 is at resonance, its The reflection coefficient at the input must be negative, that is, the phase angle must be 180 °. Since the fast-wave leakage mode exhibits losses, the absolute value of Sn will be less than 1, that is, less than 0 d B. Therefore, it corresponds to the first resonance For the frequency, the length of the microstrip line used in the present invention is 0.66 7 λ. Substituting it into (1), we know that the tidal wave is 0.37 5. The phase velocity of the leakage mode relative to this value is: c / β = 2.66c (2) where c is the speed of light, and the formula (2) indicates that the phase speed of this leaky wave mode is 2.66 times the speed of light, so it must be a fast wave. Ground, using the three-dimensional full-wave electromagnetic field theory, the current distribution on one side and the opposite side of the microstrip line (ie, area A in Fig. 9 (a)) at the resonance frequency of 26 O'MHz can be calculated, as shown in the figure. 14 (a) and Fig. 14 (b). Figs. 14 (a) and 14 (b) show that at the resonance frequency of 260 MHz, the current of the microstrip line is the largest at the input, After that, the current intensity gradually decreases, but the direction remains the same, and it is always toward the end of the disconnection (that is, the end point of the antenna resonator), and the current intensity becomes zero to the end of the disconnection. In other words, the magnitude of the mode current is small. The change in the stripline is like a cosine function between 0 and (τι / 2) phase angle

第15頁 1998.12.31.015 案號 87120137 g?年'上月W曰 修正 五、發明說明(12) 至左方之接近短路點,然後停止於對應3 0 0 MHz之位於史 密斯圖右上方之點。經詳細分析,可知最接近短路端之頻 率是位於相角為180°處之工作頻率259 MHz,此頻率即為 第一共振頻率。與理論計算值相差僅.為1 Μ Η z。 Π) 第一共振頻率可以由圖13更清楚地證實。參考圖13, 共振時S„的數值在259 MHz最小,約為-2. 8dB,其相角為 18 0° 。圖1 1所示的四分之一波長()共振器在共振時, 其輸入端之反射係數必須為負數,即相角必須為 18 0° 。由於此快波洩漏波模呈現損耗,因此Sn的絕對值 將小於1 ,即小於0 d B。 因此,對應第一個共振頻率,將本發明所採用之微帶 線長度/即〇 . 6 6 7 λ。代入(1 )中,得知汐為〇 · 3 7 5。相對於 此 值之洩漏波模的相位速度為: c / β =2. 66c (2) 其中,c為光速,(2 )式表示此洩漏波模的相位速度為光速 的2 · 6 6倍,故其必為一快波(f a s t w a v e )。 更進一步地,利用三度空間的全波電磁場論可計算在 共振頻率26 O'MHz時之微帶線(即圖9(a)中之A區)之一側面 和相反侧面的電流分布,分別如圖1 4 ( a )與圖1 4 ( b )所示。 圖14(a)與圖14(b)顯示在共振頻率260 MHz時,微帶線的 電流在輸入端最大,然後其電流強度逐漸變小,_但方向維 持一直不變,一直朝著斷路端點(即天線共振器之終點), 至斷路端點其電流強度變為零。換言之,模電流之大小在 微帶線上的變化就像一個介於0至(τι / 2 )相角之餘弦函Page 15 1998.12.31.015 Case No. 87120137 g 'year' last month W said Amendment 5. Description of the invention (12) To the left near the short-circuit point, and then stop at the point at 300 MHz corresponding to the upper right of the Smith chart. After detailed analysis, it can be seen that the frequency closest to the short-circuit end is the operating frequency of 259 MHz at a phase angle of 180 °, and this frequency is the first resonance frequency. The difference from the theoretical calculation is only 1 μΗz. Π) The first resonance frequency can be more clearly confirmed by FIG. 13. Referring to FIG. 13, the value of S ′ at the resonance is the smallest at 259 MHz, which is about −2.8 dB, and its phase angle is 180 °. When the quarter-wavelength () resonator shown in FIG. 1 is at resonance, its The reflection coefficient at the input must be negative, that is, the phase angle must be 180 °. Since the fast-wave leakage mode exhibits losses, the absolute value of Sn will be less than 1, that is, less than 0 d B. Therefore, it corresponds to the first resonance For the frequency, the length of the microstrip line used in the present invention is 0.66 7 λ. Substituting it into (1), we know that the tidal wave is 0.37 5. The phase velocity of the leakage mode relative to this value is: c / β = 2.66c (2) where c is the speed of light, and the formula (2) indicates that the phase speed of this leaky wave mode is 2.66 times the speed of light, so it must be a fast wave. Ground, using the three-dimensional full-wave electromagnetic field theory, the current distribution on one side and the opposite side of the microstrip line (ie, area A in Fig. 9 (a)) at the resonance frequency of 26 O'MHz can be calculated, as shown in the figure. 14 (a) and Fig. 14 (b). Figs. 14 (a) and 14 (b) show that at the resonance frequency of 260 MHz, the current of the microstrip line is the largest at the input, After that, the current intensity gradually decreases, but the direction remains the same, and it is always toward the end of the disconnection (that is, the end point of the antenna resonator), and the current intensity becomes zero to the end of the disconnection. In other words, the magnitude of the mode current is small. The change in the stripline is like a cosine function between 0 and (τι / 2) phase angle

第15頁 1998.12.31.015 4〇i6B:2 修正 案號 87120137 五、發明說明(13) 數。由此分析可見,這種共振方式必須是洩漏波才能達 成。 綜合以上測量數據及理論計算之結果,可得到結論: 本發明之新型天線主要依靠快波洩漏波模傳導。 Ο 再利用習知的全波積分方程求得本發明實施例之天線 於共振頻率260MHz時其在平行於Y-Z平面之平面上乏輻射 場形,如圖1 5所示,其中Θ角表示在該平面上之某一點至 原點之連線與Z軸之間的角度。參考圖1 5 ,此輻射場與在 無窮大的水平導體接地面上的單極天線之輻射場型非常相 似。 上述為本發明的一個具體實施例,然而,本發明並非 侷限於該實施例。例如,觀察圖9 (a )之天線結構,實際 上,在快波振盪裝置之微帶線和多層接地裝置之外表面之 間充滿空氣,同樣類似圖8之空氣帶8 3 ,因此這個中空地 區C並不是必要的。相應地,有另一種不具有中空地區C之 天線,此情況下,快波振盡裝置A和多層接地裝置B中之介 質直接銜接在一起。 微帶線之形狀亦不限於螺旋型,可以視所要求的輻射 場型,在快波振盪裝置中應用不同的微帶線之形狀。例如 為複數個平行且閉合的環狀金屬微帶線,其設計方法類似 於上述的具體實施例。 再者,本發明之天線也可以使用饋線直接輸入/輸出 的方式。在此情況下,外電路基板之對應天線之輸入/輸 出位置亦形成直接輸入/輸出端之形式。然後,快波振盪Page 15 1998.12.31.015 4〇i6B: 2 Amendment No. 87120137 V. Description of the invention (13). From this analysis, it can be seen that this resonance mode must be a leakage wave to achieve. By combining the above measurement data and the results of theoretical calculations, it can be concluded that the new antenna of the present invention mainly relies on fast-wave leakage mode conduction. 〇 The conventional full-wave integral equation is then used to obtain the antenna field in the embodiment of the present invention at a resonance frequency of 260 MHz, which lacks a radiation field shape on a plane parallel to the YZ plane, as shown in FIG. 15, where the angle Θ represents the The angle between the line from a point on the plane to the origin and the Z axis. Referring to Figure 15, this radiation field is very similar to the radiation field type of a monopole antenna on the ground plane of an infinite horizontal conductor. The above is a specific embodiment of the present invention, however, the present invention is not limited to this embodiment. For example, looking at the antenna structure of Fig. 9 (a), in fact, the air between the microstrip line of the fast-wave oscillating device and the outer surface of the multilayer grounding device is filled with air, similar to the air band 8 3 of Fig. 8, so this hollow area C is not necessary. Correspondingly, there is another type of antenna which does not have a hollow area C. In this case, the dielectrics in the fast wave exhaustion device A and the multilayer grounding device B are directly connected together. The shape of the microstrip line is not limited to the spiral type, and different shapes of the microstrip line can be applied in the fast-wave oscillation device depending on the required radiation field type. For example, it is a plurality of parallel and closed annular metal microstrip lines, and the design method is similar to the specific embodiment described above. Furthermore, the antenna of the present invention can also use the direct input / output method of the feeder. In this case, the input / output position of the corresponding antenna of the external circuit substrate is also formed as a direct input / output terminal. Then, the fast wave oscillates

第16頁 1998.12.31.016 4〇i6B:2 修正 案號 87120137 五、發明說明(13) 數。由此分析可見,這種共振方式必須是洩漏波才能達 成。 綜合以上測量數據及理論計算之結果,可得到結論: 本發明之新型天線主要依靠快波洩漏波模傳導。 Ο 再利用習知的全波積分方程求得本發明實施例之天線 於共振頻率260MHz時其在平行於Y-Z平面之平面上乏輻射 場形,如圖1 5所示,其中Θ角表示在該平面上之某一點至 原點之連線與Z軸之間的角度。參考圖1 5 ,此輻射場與在 無窮大的水平導體接地面上的單極天線之輻射場型非常相 似。 上述為本發明的一個具體實施例,然而,本發明並非 侷限於該實施例。例如,觀察圖9 (a )之天線結構,實際 上,在快波振盪裝置之微帶線和多層接地裝置之外表面之 間充滿空氣,同樣類似圖8之空氣帶8 3 ,因此這個中空地 區C並不是必要的。相應地,有另一種不具有中空地區C之 天線,此情況下,快波振盡裝置A和多層接地裝置B中之介 質直接銜接在一起。 微帶線之形狀亦不限於螺旋型,可以視所要求的輻射 場型,在快波振盪裝置中應用不同的微帶線之形狀。例如 為複數個平行且閉合的環狀金屬微帶線,其設計方法類似 於上述的具體實施例。 再者,本發明之天線也可以使用饋線直接輸入/輸出 的方式。在此情況下,外電路基板之對應天線之輸入/輸 出位置亦形成直接輸入/輸出端之形式。然後,快波振盪Page 16 1998.12.31.016 4〇i6B: 2 Amendment No. 87120137 V. Description of the invention (13). From this analysis, it can be seen that this resonance mode must be a leakage wave to achieve. By combining the above measurement data and the results of theoretical calculations, it can be concluded that the new antenna of the present invention mainly relies on fast-wave leakage mode conduction. 〇 The conventional full-wave integral equation is then used to obtain the antenna field in the embodiment of the present invention at a resonance frequency of 260 MHz, which lacks a radiation field shape on a plane parallel to the YZ plane, as shown in FIG. 15, where the angle Θ represents the The angle between the line from a point on the plane to the origin and the Z axis. Referring to Figure 15, this radiation field is very similar to the radiation field type of a monopole antenna on the ground plane of an infinite horizontal conductor. The above is a specific embodiment of the present invention, however, the present invention is not limited to this embodiment. For example, looking at the antenna structure of Fig. 9 (a), in fact, the air between the microstrip line of the fast-wave oscillating device and the outer surface of the multilayer grounding device is filled with air, similar to the air band 8 3 of Fig. 8, so this hollow area C is not necessary. Correspondingly, there is another type of antenna which does not have a hollow area C. In this case, the dielectrics in the fast wave exhaustion device A and the multilayer grounding device B are directly connected together. The shape of the microstrip line is not limited to the spiral type, and different shapes of the microstrip line can be applied in the fast-wave oscillation device depending on the required radiation field type. For example, it is a plurality of parallel and closed annular metal microstrip lines, and the design method is similar to the specific embodiment described above. Furthermore, the antenna of the present invention can also use the direct input / output method of the feeder. In this case, the input / output position of the corresponding antenna of the external circuit substrate is also formed as a direct input / output terminal. Then, the fast wave oscillates

第16頁 1998.12.31.016 _案號 87120137_年—月 $ / 曰_Iti_ 五、發明說明(14) 裝置的微帶線的用以輸入/輸出信號的一端,採用表面黏 、著方式連接至外電路基板對應之輸入/輸出端。 故在不超出本發明之精神及以下申請專利範圍之情 況,可作種種變化實施。 ηPage 16 1998.12.31.016 _ Case No. 87120137_ Year-Month $ / _ _Iti_ V. Description of the invention (14) The end of the device's microstrip line for input / output signals is connected to the outside with a surface adhesive and adhesive method Input / output terminal corresponding to the circuit board. Therefore, various changes can be implemented without departing from the spirit of the present invention and the scope of patent application below. n

第17頁 1998. 12.31.017 _案號 87120137_年—月 $ / 曰_Iti_ 五、發明說明(14) 裝置的微帶線的用以輸入/輸出信號的一端,採用表面黏 、著方式連接至外電路基板對應之輸入/輸出端。 故在不超出本發明之精神及以下申請專利範圍之情 況,可作種種變化實施。 ηPage 17 1998. 12.31.017 _ case No. 87120137_ year-month $ / _ _Iti_ V. Description of the invention (14) The end of the device's microstrip line for input / output signals is connected by surface adhesion and adhesion To the corresponding input / output terminal of the external circuit board. Therefore, various changes can be implemented without departing from the spirit of the present invention and the scope of patent application below. n

第17頁 1998. 12.31.017Page 17 1998.12.31.017

Claims (1)

.. - · · . . · · · _ 401652 _案號 87120137_年 /> 月 31 日__. 六、申請專利範圍 1. 一種具有多層接地面之快波振盪型天線,此天線 包括一快波振盪裝置和一多層接地裝置,其中: 該快波振盪裝置包含兩部分,第一部分為形狀呈長方 體的介質,第二部分為攀延在該長方.體介質表面上的微帶 線,其攀延方式視所需要之輻射場型而調整,且密集在很 小的介質表面範圍内,此微帶線之一端用以輸入/輸出信 號,另一端為斷路, 該多層接地裝置位於該快波振盪裝置之下方,由複數 個平行層構成,且該等平行層所形成之凹槽的所有内表面 及該多層接地裝置之所有外表面部分皆為金屬接地面, A v由於該快波振盪裝置中的微帶線係非常密集地分佈在f 很小的介質表面範圍内,並且該多層接地裝置使有限空間 中的接地面積大大增加,藉此可將此天線之尺寸作成非常 小 。 2. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其輸入/輸出方式為共平面波導的方式,該 多層接地裝置形成共平面波導的接地端。 3. 如申請專利範圍第2項之具有多層接地面之快波 振盪型天線,其與外電路之連接方式為:外電路基板之相 應位置亦形成對應於共平面波導之輸入/輸出形式,該多 層接地裝置的接地端和該快波振盪裝置之微帶線的信號輸) 入/輸出端,採用表面黏著方式分別連接至外電路基板對 應之接地端與對應之信號輸入/輸出端。 4. 如申請專利範圍第1項之具有多層接地面之俠波..-· ·.. · · _ 401652 _ Case No. 87120137_year / > March 31 __. VI. Application for patent scope 1. A fast-wave oscillating antenna with a multi-layer ground plane, this antenna includes a A fast-wave oscillating device and a multi-layer grounding device, wherein: the fast-wave oscillating device includes two parts, the first part is a medium having a rectangular parallelepiped shape, and the second part is a microstrip line extending on the surface of the rectangular parallelepiped medium The climbing method is adjusted according to the required radiation field type and is dense in a small surface area of the medium. One end of this microstrip line is used for input / output signals and the other end is open circuit. The multilayer grounding device is located in the Below the fast wave oscillating device, it is composed of a plurality of parallel layers, and all the inner surfaces of the grooves formed by the parallel layers and all the outer surface portions of the multilayer grounding device are metal ground planes. The microstrip line system in the oscillating device is very densely distributed in the range of the dielectric surface with a small f, and the multilayer grounding device greatly increases the grounding area in a limited space, thereby making the size of this antenna very small . 2. For the fast-wave oscillating antenna with multi-layer ground plane in item 1 of the scope of patent application, the input / output mode is a coplanar waveguide. The multi-layer grounding device forms the ground terminal of the coplanar waveguide. 3. For the fast wave oscillating antenna with multi-layer ground plane in item 2 of the scope of patent application, the connection method to the external circuit is: the corresponding position of the external circuit substrate also forms the input / output form corresponding to the coplanar waveguide. The grounding terminal of the multi-layer grounding device and the signal input / output terminal of the microstrip line of the fast-wave oscillating device are connected to the corresponding ground terminal and the corresponding signal input / output terminal of the external circuit board respectively by surface adhesion. 4. Xia Bo with multi-layer ground plane, as in the first patent application 第18頁 1998.12.31.018 .. - · · . . · · · _ 401652 _案號 87120137_年 /> 月 31 日__. 六、申請專利範圍 1. 一種具有多層接地面之快波振盪型天線,此天線 包括一快波振盪裝置和一多層接地裝置,其中: 該快波振盪裝置包含兩部分,第一部分為形狀呈長方 體的介質,第二部分為攀延在該長方.體介質表面上的微帶 線,其攀延方式視所需要之輻射場型而調整,且密集在很 小的介質表面範圍内,此微帶線之一端用以輸入/輸出信 號,另一端為斷路, 該多層接地裝置位於該快波振盪裝置之下方,由複數 個平行層構成,且該等平行層所形成之凹槽的所有内表面 及該多層接地裝置之所有外表面部分皆為金屬接地面, A v由於該快波振盪裝置中的微帶線係非常密集地分佈在f 很小的介質表面範圍内,並且該多層接地裝置使有限空間 中的接地面積大大增加,藉此可將此天線之尺寸作成非常 小 。 2. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其輸入/輸出方式為共平面波導的方式,該 多層接地裝置形成共平面波導的接地端。 3. 如申請專利範圍第2項之具有多層接地面之快波 振盪型天線,其與外電路之連接方式為:外電路基板之相 應位置亦形成對應於共平面波導之輸入/輸出形式,該多 層接地裝置的接地端和該快波振盪裝置之微帶線的信號輸) 入/輸出端,採用表面黏著方式分別連接至外電路基板對 應之接地端與對應之信號輸入/輸出端。 4. 如申請專利範圍第1項之具有多層接地面之俠波Page 18, 1998.12.31.018 ..-· · · · · · · _ 401652 _ Case No. 87120137_year / > March 31 __. VI. Application for patent scope 1. A fast-wave oscillation type with multiple ground planes The antenna includes a fast-wave oscillating device and a multilayer grounding device, wherein: the fast-wave oscillating device includes two parts, the first part is a rectangular parallelepiped medium, and the second part is a rectangular parallelepiped medium. The microstrip line on the surface, its climbing method is adjusted according to the required radiation field type, and is dense within a small surface area of the medium. One end of this microstrip line is used for input / output signals, and the other end is open circuit. The multi-layer grounding device is located below the fast-wave oscillating device and is composed of a plurality of parallel layers, and all inner surfaces of the grooves formed by the parallel layers and all outer surface portions of the multi-layer grounding device are metal ground planes. A v Because the microstrip line system in the fast-wave oscillating device is very densely distributed in the medium surface area where f is very small, and the multilayer grounding device greatly increases the grounding area in a limited space, thereby making it possible to This size is very small antennas made. 2. For the fast-wave oscillating antenna with multi-layer ground plane in item 1 of the scope of patent application, the input / output mode is a coplanar waveguide. The multi-layer grounding device forms the ground terminal of the coplanar waveguide. 3. For the fast wave oscillating antenna with multi-layer ground plane in item 2 of the scope of patent application, the connection method to the external circuit is: the corresponding position of the external circuit substrate also forms the input / output form corresponding to the coplanar waveguide. The grounding terminal of the multi-layer grounding device and the signal input / output terminal of the microstrip line of the fast-wave oscillating device are connected to the corresponding ground terminal and the corresponding signal input / output terminal of the external circuit board respectively by surface adhesion. 4. Xia Bo with multi-layer ground plane, as in the first patent application 第18頁 1998.12.31.018 401652 _案號 87120137_年 β 月令 / a__ 六、申請專利範圍 振盪型天線,其信號輸入/輸出方式係使用饋線直接輸入/ 輸出的方式。 5. 如申請專利範圍第4項之具有多層接地面之快波 振盪型天線,其與外電路之連接方式為:外電路基板之相 應位置亦形成直接入/輸出之形式,該快波振盪裝置之 微帶線的信號輸入/輸出端,採用表面黏著方式連接至外 電路基板對應之輸入/輸出端。 6. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置的微帶線為沿著介質表 面攀延的螺旋型。 7. 如申請專利範圍第6項之具有多層接地面之快波 振盪型天線,其中該螺旋型微帶線之線寬、間隔和長度依 據天線所要求的頻率和輻射場型,在不影響其性能及量產 容易性之下可作適當的改變。 8. 如申請專利範圍第7項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置係利用印刷電路板技術 或鑄造與蝕刻配合的技術形成。 9. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置的微帶線為沿著介質表 面攀延的環狀線圈。 10. 如申請專利範圍第9項之具有多層接地面之快波 振盪型天線,其中該環狀線圈微帶線之線寬、間隔、長度 以及線圈的圈數依據天線所要求的頻率和輻射塲型,在不 影響其性能及量產容易性之下可作適當的改變。Page 18 1998.12.31.018 401652 _ case number 87120137_ year β monthly order / a__ VI. Patent application scope The signal input / output method of the oscillating antenna is the direct input / output method of the feeder. 5. For a fast-wave oscillating antenna with a multi-layer ground plane in item 4 of the scope of patent application, the connection method to the external circuit is: the corresponding position of the external circuit substrate also forms a direct input / output form, and the fast-wave oscillating device The signal input / output terminal of the microstrip line is connected to the corresponding input / output terminal of the external circuit board by means of surface adhesion. 6. The fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the patent application scope, wherein the microstrip line of the fast-wave oscillating device is a spiral type extending along the surface of the dielectric. 7. For a fast-wave oscillating antenna with a multi-layer ground plane, as described in the scope of patent application No. 6, the line width, interval and length of the spiral microstrip line are based on the frequency and radiation field type required by the antenna, without affecting its Appropriate changes can be made based on performance and ease of mass production. 8. The fast-wave oscillating antenna with a multi-layer ground plane as claimed in item 7 of the patent application scope, wherein the fast-wave oscillating device is formed by using a printed circuit board technique or a technique combining casting and etching. 9. The fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the scope of patent application, wherein the microstrip line of the fast-wave oscillating device is a loop coil extending along the surface of the dielectric. 10. For a fast-wave oscillating antenna with a multi-layer ground plane as described in item 9 of the scope of patent application, the line width, interval, length of the loop coil microstrip line and the number of turns of the coil are based on the frequency and radiation required by the antenna. Type can be changed appropriately without affecting its performance and ease of mass production. 第19頁 1998.12.31.019 401652 _案號 87120137_年 β 月令 / a__ 六、申請專利範圍 振盪型天線,其信號輸入/輸出方式係使用饋線直接輸入/ 輸出的方式。 5. 如申請專利範圍第4項之具有多層接地面之快波 振盪型天線,其與外電路之連接方式為:外電路基板之相 應位置亦形成直接入/輸出之形式,該快波振盪裝置之 微帶線的信號輸入/輸出端,採用表面黏著方式連接至外 電路基板對應之輸入/輸出端。 6. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置的微帶線為沿著介質表 面攀延的螺旋型。 7. 如申請專利範圍第6項之具有多層接地面之快波 振盪型天線,其中該螺旋型微帶線之線寬、間隔和長度依 據天線所要求的頻率和輻射場型,在不影響其性能及量產 容易性之下可作適當的改變。 8. 如申請專利範圍第7項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置係利用印刷電路板技術 或鑄造與蝕刻配合的技術形成。 9. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置的微帶線為沿著介質表 面攀延的環狀線圈。 10. 如申請專利範圍第9項之具有多層接地面之快波 振盪型天線,其中該環狀線圈微帶線之線寬、間隔、長度 以及線圈的圈數依據天線所要求的頻率和輻射塲型,在不 影響其性能及量產容易性之下可作適當的改變。Page 19, 1998.12.31.019 401652 _ case number 87120137_ year β monthly order / a__ VI. Patent application scope The signal input / output method of the oscillating antenna is the direct input / output method of the feeder. 5. For a fast-wave oscillating antenna with a multi-layer ground plane in item 4 of the scope of patent application, the connection method to the external circuit is: the corresponding position of the external circuit substrate also forms a direct input / output form, and the fast-wave oscillating device The signal input / output terminal of the microstrip line is connected to the corresponding input / output terminal of the external circuit board by means of surface adhesion. 6. The fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the patent application scope, wherein the microstrip line of the fast-wave oscillating device is a spiral type extending along the surface of the dielectric. 7. For a fast-wave oscillating antenna with a multi-layer ground plane, as described in the scope of patent application No. 6, the line width, interval and length of the spiral microstrip line are based on the frequency and radiation field type required by the antenna, without affecting its Appropriate changes can be made based on performance and ease of mass production. 8. The fast-wave oscillating antenna with a multi-layer ground plane as claimed in item 7 of the patent application scope, wherein the fast-wave oscillating device is formed by using a printed circuit board technique or a technique combining casting and etching. 9. The fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the scope of patent application, wherein the microstrip line of the fast-wave oscillating device is a loop coil extending along the surface of the dielectric. 10. For a fast-wave oscillating antenna with a multi-layer ground plane as described in item 9 of the scope of patent application, the line width, interval, length of the loop coil microstrip line and the number of turns of the coil depend on the frequency and radiation required by the antenna Type can be changed appropriately without affecting its performance and ease of mass production. 第19頁 1998.12.31.019 401652 _案號 87120137_年 月 $ / 曰__ 六、申請專利範圍 11. 如申請專利範圍第1 0項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置係利用印刷電路板技術 或鑄造與钱刻配合'的技術形成。 12. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置中之介質的相對介電常 數的大小介於2至5之間。 13. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置中之介質和該多層接地 裝置中之介質兩者之間為一槽型的中空地區,該槽型中空 地區與該多層接地裝置銜接的内表面為金屬接地面。 14. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置中之介質與該多層接地 裝置中之介質係直接銜接。 15. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該多層接地裝置之平行接地面的層數視 所需之接地面積及結構強度而決定。 16. 如申請專利範圍第1 5項之具有多層接地面之快波 振盪型天線,其中該多層接地裝置之平行接地面層下方的 介質尚具有複數個通路孔以進一步增加接地面積,導通孔 的數目視所需要之接地面積及結構強度而決定。 17. 如申請專利範圍第1 5項之天線,該多層接地裝置 係利用印刷電路板之穿孔技術或鑄造與鍍金配合的技術形 成。 .Page 19 1998.12.31.019 401652 _ Case No. 87120137 _ Month $ / Yue __ VI. Patent application scope 11. If the patent application scope item 10 is a fast-wave oscillating antenna with a multi-layer ground plane, where the fast wave The oscillating device is formed by using printed circuit board technology or the technology of casting and coining. 12. For example, the fast wave oscillating antenna with a multi-layer ground plane in the scope of patent application item 1, wherein the relative dielectric constant of the medium in the fast wave oscillating device is between 2 and 5. 13. For example, a fast-wave oscillating antenna with a multi-layer ground plane in item 1 of the scope of patent application, wherein the medium in the fast-wave oscillating device and the medium in the multi-layer grounding device is a slot-shaped hollow area, The inner surface of the trough hollow area and the multi-layer grounding device are metal grounding surfaces. 14. For a fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the scope of the patent application, the medium in the fast-wave oscillating device is directly connected to the medium in the multi-layer grounding device. 15. For a fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the scope of patent application, the number of layers of the parallel ground plane of the multi-layer grounding device depends on the required ground area and structural strength. 16. For example, a fast-wave oscillating antenna with a multi-layer ground plane according to item 15 of the scope of patent application, wherein the dielectric under the parallel ground plane layer of the multi-layer grounding device still has a plurality of via holes to further increase the ground area. The number depends on the required ground area and structural strength. 17. For the antenna of item 15 in the scope of patent application, the multi-layer grounding device is formed by the punching technology of printed circuit board or the technology of casting and gold plating. . 第20頁 1998. 12.31.020 401652 _案號 87120137_年 月 $ / 曰__ 六、申請專利範圍 11. 如申請專利範圍第1 0項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置係利用印刷電路板技術 或鑄造與钱刻配合'的技術形成。 12. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置中之介質的相對介電常 數的大小介於2至5之間。 13. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置中之介質和該多層接地 裝置中之介質兩者之間為一槽型的中空地區,該槽型中空 地區與該多層接地裝置銜接的内表面為金屬接地面。 14. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該快波振盪裝置中之介質與該多層接地 裝置中之介質係直接銜接。 15. 如申請專利範圍第1項之具有多層接地面之快波 振盪型天線,其中該多層接地裝置之平行接地面的層數視 所需之接地面積及結構強度而決定。 16. 如申請專利範圍第1 5項之具有多層接地面之快波 振盪型天線,其中該多層接地裝置之平行接地面層下方的 介質尚具有複數個通路孔以進一步增加接地面積,導通孔 的數目視所需要之接地面積及結構強度而決定。 17. 如申請專利範圍第1 5項之天線,該多層接地裝置 係利用印刷電路板之穿孔技術或鑄造與鍍金配合的技術形 成。 .Page 20 1998. 12.31.020 401652 _ Case No. 87120137 _ Month $ / Yue __ VI. Patent Application Scope 11. For example, if you apply for a patent No. 10, a fast-wave oscillating antenna with a multi-layer ground plane, where The fast-wave oscillating device is formed by using printed circuit board technology or the technology of casting and coin cutting. 12. For example, the fast wave oscillating antenna with a multi-layer ground plane in the scope of patent application item 1, wherein the relative dielectric constant of the medium in the fast wave oscillating device is between 2 and 5. 13. For example, a fast-wave oscillating antenna with a multi-layer ground plane in item 1 of the scope of patent application, wherein the medium in the fast-wave oscillating device and the medium in the multi-layer grounding device is a slot-shaped hollow area, The inner surface of the trough hollow area and the multi-layer grounding device are metal grounding surfaces. 14. For a fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the scope of the patent application, the medium in the fast-wave oscillating device is directly connected to the medium in the multi-layer grounding device. 15. For a fast-wave oscillating antenna with a multi-layer ground plane as described in item 1 of the scope of patent application, the number of layers of the parallel ground plane of the multi-layer grounding device depends on the required ground area and structural strength. 16. For example, a fast-wave oscillating antenna with a multi-layer ground plane according to item 15 of the scope of patent application, wherein the dielectric under the parallel ground plane layer of the multi-layer grounding device still has a plurality of via holes to further increase the ground area. The number depends on the required ground area and structural strength. 17. For the antenna of item 15 in the scope of patent application, the multi-layer grounding device is formed by the punching technology of printed circuit board or the technology of casting and gold plating. . 第20頁 1998. 12.31.020Page 20 1998.12.31.020
TW87120137A 1998-12-03 1998-12-03 The fast-wave oscillation type antenna with multi-layer grounding TW401652B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW87120137A TW401652B (en) 1998-12-03 1998-12-03 The fast-wave oscillation type antenna with multi-layer grounding
JP3357499A JP3069342B2 (en) 1998-12-03 1999-02-12 Fast wave resonant antenna with multilayer ground plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87120137A TW401652B (en) 1998-12-03 1998-12-03 The fast-wave oscillation type antenna with multi-layer grounding

Publications (1)

Publication Number Publication Date
TW401652B true TW401652B (en) 2000-08-11

Family

ID=21632184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87120137A TW401652B (en) 1998-12-03 1998-12-03 The fast-wave oscillation type antenna with multi-layer grounding

Country Status (2)

Country Link
JP (1) JP3069342B2 (en)
TW (1) TW401652B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493791B (en) * 2009-06-09 2015-07-21 美國博通公司 Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems
TWI558007B (en) * 2011-09-27 2016-11-11 緯創資通股份有限公司 Connector for connecting a coaxial cable and a circuit board and related tranmission cable as well as assembly method therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354393B2 (en) 2004-12-16 2009-10-28 真美 北谷 Laundry case

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493791B (en) * 2009-06-09 2015-07-21 美國博通公司 Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems
US9088075B2 (en) 2009-06-09 2015-07-21 Broadcom Corporation Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems
US9417318B2 (en) 2009-06-09 2016-08-16 Broadcom Corporation Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems
TWI558007B (en) * 2011-09-27 2016-11-11 緯創資通股份有限公司 Connector for connecting a coaxial cable and a circuit board and related tranmission cable as well as assembly method therewith

Also Published As

Publication number Publication date
JP2000174542A (en) 2000-06-23
JP3069342B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
CN100388829C (en) Surface mounted antenna and communication device therewith
US6323824B1 (en) Dielectric resonator antenna
US7161535B2 (en) Electrically small dielectric antenna with wide bandwidth
US7423591B2 (en) Antenna system
JP5189641B2 (en) Strip array antenna
US7592968B2 (en) Embedded antenna
JP2001077623A (en) Antenna superposing resonance structure and multifrequency radio communications equpment including same antenna
IL139184A (en) Antenna
JP3206825B2 (en) Printed antenna
JP4263972B2 (en) Surface mount antenna, antenna device, and wireless communication device
JPH0590828A (en) Antenna device
JP4047283B2 (en) Microwave antenna
TW401652B (en) The fast-wave oscillation type antenna with multi-layer grounding
JP2005020433A (en) Surface mounted antenna, antenna device and radio communication equipment
WO2016101136A1 (en) Multiband dielectric resonance mobile phone terminal antenna
EP1024549B1 (en) Leaky wave antenna with grounding device
JP2004208202A (en) Antenna and communication equipment using the same
JP3347640B2 (en) Transmission line for high frequency
KR100406284B1 (en) Mini-Antenna for International Mobile Telecommunication-2000 Terminal Equipment for Bulk Type Dielectric
JP2004120296A (en) Antenna and antenna device
WO2023221877A1 (en) Antenna structure and electronic device
RU218023U1 (en) Dielectric resonant antenna
RU152427U1 (en) MICRO-STRIP ANTENNA OF METER RANGE WITH CIRCLE POLARIZATION
JP2004173143A (en) Connection part structure between antenna and communication cable
JP2005286484A (en) Microstrip antenna

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees