[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW253064B - - Google Patents

Download PDF

Info

Publication number
TW253064B
TW253064B TW082107864A TW82107864A TW253064B TW 253064 B TW253064 B TW 253064B TW 082107864 A TW082107864 A TW 082107864A TW 82107864 A TW82107864 A TW 82107864A TW 253064 B TW253064 B TW 253064B
Authority
TW
Taiwan
Prior art keywords
substrate
film
reaction chamber
item
garden
Prior art date
Application number
TW082107864A
Other languages
English (en)
Original Assignee
Materials Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materials Research Corp filed Critical Materials Research Corp
Application granted granted Critical
Publication of TW253064B publication Critical patent/TW253064B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

<53064 A6 B6 娌濟部中央標攀局員工消费合作杜印* 五、發明説明(1 ) 發明鮪爾 本發明係關於用Μ製造半導體晶圖之化學蒸氣沈積(下 文簡稱CVD)方法,且更特定言之,係驩於用Μ沈積薄膜在 鼷察化之晶圓基板上之方法,此方法可達到掸高薄膜沈稹 率以及反應物轉化率,而不會犧牲薄_的品質。 發明酋醫 在半導體裝置的製造中,某些塗覆的方法是利用化學蒸 氣沈積(下文簡稱CVD)而予以完成的,CVD方法有兩種一 般的型式為全覆式與«揮式CVD 。在全覆式CVD中•所痛 的薄膜塗層是沈積於半導體#圜的整儸暴露表面上。而在 «擇式CVD中所需的薄__層則是塗佈於接觸孔或是通孔 的暴露表面上,其中,接觴孔或通孔是穿越半導||晶園上 的闼緣曆;而此是,例如*為了使横跨絕緣曆之間能夠互 相連接而提供導電材料的插頭。 CVD方法所需的最終结果時常是用以填充孔洞或通路, 且用Μ形成半導賵晶圓上曆與曆之間互相連接。埴可由兩 種方式來達成:1)利用堪擇式沈《,將所两的薄膜塗層只 形成於晶圓表面上的選定部份以及2)具後績蝕刻之全覆式 薄_沈積。因為_薄腆塗覆之CVD之直接堪擇式塗佈可能 是不可靠的,失敗的•與/或緩慢的,而其因此在Μ昂貴 機械設備之高產出及有效使用為重要的商業角度下是不合 所痛的,所以選擇式塗層經常是利用全覆式沈積•而後再 從不箝永久性塗復的區域予以向後蝕刻°當使用全覆式 CVD •接著再由沈稹的材料向後触刻時•在此全覆式塗覆 (請面之注$項再瑱寫本買) Λ •装. 訂· 本度適w中國國家榫準(CN\S〉甲4规格(2丨0 X 2町公) 82.0. 40,000 <53064 A6 B6 五、發明説明(2 中*高度的厚度均勻性是需要的•特別是在沈積的材料中 將予以蝕刻的區域。如果在回蝕匾域内薄賴塗覆的厚度是 不規則的•則蝕刻方法可能會«擇性地傷害到下唐,或可 能等致殘餘塗覆餘留的區域。热知之先前技韉的全覆式 CVD方法產生有限的均匀性與/或以有限的速度產生塗佈 的基板。於是需要具可接受的厚度均勻性與K相對較高的 速度之全覆式塗層之塗佈方法。 為了要使塗層,例如是利用CVD的梅塗層*均勻地塗佈 至半導《晶圓,希望能夠確保均勻地供應反應氣《於晶圓 的鳌個表面上,且能夠從塗If的表面均勻地將酯氣與反應 副龕物移除。在此方面,先前技藝的CVD方法只能表現差 強人意。於是痛要能夠更有效率地且更均勻地供&反應氣 膀至CVD方法塗覆晶圆表面·且將反應副產物自塗覆晶圓 表面移除之方法,而不論是全覆式或是選擇式。 在使用热知的反應器之CVD方法裡,反應氣髑的氣流中 之援流將會阻礙塗覆方法的效率輿均匀性,且會使沈橫與 反應室内污染物之璣移惡化。P是霈要可改良氣流*且能 狗將氣流中之擾流減低之CVD方法。 在選擇式及全覆式CVD兩種方法中,特別是轉CVD方法 *六氟化轉(WFe)是充當作反應氣»。六氟化鎢是非常貴 的,所Μ,當反應氣黷的使用效率低時,就如先前技Μ的 方法*整個方法的成本將大大地埔加。例如•某些先前技 «的CVD方法被認為具有WFe的使用效率低至約20%,或 更低,所以,WPe之成本經常超JICVD方法的整涸成本之 -4- (請面之注$項再?F寫本買) •—裝. 訂· 鳗濟部中央標準局Λ工消费合作杜印« 本《張&度適用中Η國家棵準(CNS)甲4现格(210 X 297公釐) 82.6. 4〇.〇0〇 ^53064 A6 B6 »濟部中央螵準局貝工消*含作杜印* 五、發明説明(3 ) 30%。於是霈要更有效宰地消耗(轉化)反應氣體(例如 是VFe)之CVD方法。 使用轉盤CVD反應器Μ達到在平的,未棋型基板上的沈 稹薄膜特性之改良控制係巳經可見。巳經有實例可以證明 ,在整届晶圓之直徑上良好的厚度均勻性是可Κ借肋於轉 盤反應器而達成的•這是由於它具有控制整個晶園表面上 的瑾界曆厚度之能力。此類邊界厚度的控制是轉盤糸統的 嫌何設計中之基本特色。相反地,其它热知類型通常使用 於沈稹薄腆在矽晶圖之CVD反應器,則在氣流方向中於整 個特定晶圓上具有連績變化时邊界曆。愛替矽降科技公司 (Epsilon Technology, Inc.)巳經展示出將轉盤反應器使 用於矽晶圓上之磊晶矽CVD之功效。然而,咸信&有一種 先前的方法可以實用於圖化案之晶圓上,因此,不論是使 用全覆式或是選擇式沈積,埋未曾證寅可將高品質的薄腆 均勻地沈積在晶圓上K填充棋型孔或通路。於是痛要用於 選擇式及全覆式沈積導電暦於棋型半導髑基板上的CVD方 法·其可表現均勻的厚度、良好的步階覆藎、均勻的電阻 率Μ及其它所脣的薄膜品霣。 發明鏟诚 本發明之CVD方法咸信是雔夠克眼或排除先前技藝的 CVD方法所具有的缺點。更特定言之,在本發明之CVD方 法裡,所薷的姐成物薄膜利用CVD · Μ較Κ前的熟知方法 更為經濟的方式沈憒在圖案化之晶圓基板上•且是以雙高 的沈積速率與臀大的反麻為基底來進行的,因而 (請面之注再項寫本K ) •装· 訂· 本疋度適用中囲國家梂準(CN,S)甲4规格(210 X 297公缝) 82.6. 40,000 43064 A6 ________B6_ 五、發明説明(4 ) (請面之注項再壜寫本頁) 獲致离品質的薄鎮。當在此使用“薄臢,’一詞時.其可意 指全覆式薄膜抑或埋擇式沈積薄膜。 因為画莱化之晶園基板包括棋型孔洞或通路,達成完整 且均匀的步階覆蓋是絕對必要的,而不至於產生铕有無效 匾域的半導體晶園•其無效區域易於減低製成品的品質與 可靠度。本發明之方法將可提供絕佳的$ 與厚度均 匀性於沈_稹的figjj曆。使用本發明之方法所沈«的薄膜亦 在《阻率、結晶性、晶粒大小、應力、顆粒計數、表面粗 樺度Μ及反射性方面具有高品質。 使用本發明之方法所得到額外旦或許甚至是較重要的有 益之结果是在於改良之加工晶圃的速率Κ及降低反應物材 料的耗用量,其是源於重大改良的沈積速率與反&物轉化 ,一 ----------------------' 率。這些優點對於圈案化之晶圃的加工速率有很大貢獻, 同時,由於提高轉化效率也降低了反應物材料的整個耗用 1 ° 在它的廣泛應用範園裡,本發明之方法是使用於稹體霣 路或其它半導體裝置的製造,Μ形成全覆式薄膜,且其跟 著回蝕Μ在圃察化之晶圃基板上形成互聯線路、接點與通 路。亦可將所需的線路、接點及插頭只埋揮式沈積在所需 *濟邹中夹標率碣费工消费合作社印製 的件。’ } 膜條核}矽 薄些成矽化 積某上-氧 沈在面如二 式,表例* 揮上《 ί如 埋型導的例 是典在霣< 或。只導緣 式成料是豳 覆完材上是 全 Μ的型上 Μ得積典型 是而沈部典 管件因底面 不條及的表 。 應此孔上 上反,通露 路制式或外 通控擇孔之 或由埋接圃 點可生在晶 接制發然當 的控下既且 82.6. 40,000 本纸张&度通用中國國家樣準(CNS)甲4規格(210 X 297公釐)
-C 53064 Α6 Β6 tt濟部中央樣率屬員工消#合作杜印製 五、發明説明(5 ) 時•因而沈積的薄臢只在接黏或通路的底部成核與生長。 本發明之方法預期在沈積全覆式或埋揮式的元素薄_、 化合物薄_、合金薄鎮以及固態溶液薄_於_案化之晶圓 基板上具有應用性。更特定言之,本發明預期可Μ沈積諸 如鵠、網、鋁、矽與肽之元素薄_。本發明更預期可Μ沈 稹諸如一氮化钛(ΤίΝ),二矽化钛(TiSU) ·二矽化搞 (WSU),二氧化矽(Si〇2)M及四氮化三矽(SUN*)之化合 物薄膜。而所預期的合金薄腰則是鋁矽合金與鋁、網與砂 之合金。最後,本發明預期可K沈積諸如磷矽黢鹽玻璃( 簡稱PSG)與_瞵矽酸81玻璃Γ籣稱BPSG)之固態溶液薄臢 〇 在廣泛的方面中·本發明之方法包括在CVD反ji室內, 以一個軸旋轉圖案化之晶圓基板|且將反應氣體導入CVD 反應室内,並K大致垂直於圖|案化之晶圓基板之旋轉面的 方向導向横型基板。反應室維持在一倨有效氣懕,而圖案 化之晶固基板加熱至一個有效湛度,Μ使所痛的薄臢能夠 利用化學蒸氣沈積沈稹於·案化之晶圚基板上。_在一届 平面上依其中心_旋轉棋型半導體晶園,其沈積速度可W -* _ 3倍高於傅統CVD反應器所能達到的效果,且反應物轉化 <.* .11 率可得到二倍於規今所能達到的。包括絕佳的通路填充在 内的高品霣薄膜,即使當通路的嫌横比(亦即,轉接孔深 度對寬度之比)是高時,亦可達成。除了得到离品質的薄 膜外•其沈積速率與反應物轉化率較其它類型之方法中所 得到的更高。此導致生產嫌上高的晶圓產出及降低搮作成 (請背面之注Ϊ項再塡*本Ϊ -裝· 訂· H. 本紙張尺Λ適用中a國家樣準(CNS)甲4規格(210 X 297公* ) 82.6. 40,000 A6 B6 五、發明説明(6 ) 本〇 在CVD反應室内特定之搮作氣壓之加工參數與圈案化之 晶圓基板的加热溫度是所需全覆式抑或選揮式沈積以及將 予Μ沈稹之薄贓姐成物的函數。僅借由達到高品質全覆式 雄為例子·反應器較佳是維持在10至2 40托耳(torr)的範 围,且其晶圓較佳是加熱至約425 t至525 t:範圃之溫度 。當埋擇式鏑沈稹是符合所需時•則在反應室的氣壓較佳 是維持在約0.1至1托耳的範圓,且其圖察化之晶圓基板 較佳是加热至介於約250 t:至300 t:之間。在全覆式抑或 埋揮式鎢沈積之任一種例子中·,其晶圓基板較佳地是以約 100-1500轉數/分(Γρ«>範麵之速率旋轉,且反應氣體的 、-- - — .—- ^ 氣流速率是在約0.5-5.0標準升/分(standard jiters per ·ίηιιΙβ,簡稱slpn)之範園内。 然而,本發明的範園並不僅只限於任何特定的轉盤反應 器形式,在本方法發展的同時•一棰轉盤反應器裝置也巳 經發展出,它特別《合於實規本發明之方法。此轉盤反應 器亦在共同申請中,一般指定的專利申請案檷題為“半導 髑晶圓加工之工具棋姐中•餽CVD反應器之旋轉式基座” *發明者為羅伯特F.福斯特(Robert F. Foster)*海倫 E.瑙伯尼(Helen E. Rebenne),瑞尼E.李白蘭克 (Rene E. LeBlanc),卡兒 L.懷特(Carl L. White) Μ 及瑙克特歡洛拉(RikhU Arora)·申請日期同此箱·其專 利說明軎據此特別地併於本文供作參考。 在實際揷作本發明之方法裡•將欲加工的國案化之晶圓 本《張又度遘用中®國家標準(CNS)甲4规格(210 X 297公釐) (請面之注$項再?F寫本黃) •裝‘ 訂· 經濟部中夹標毕局Λ工消费含作杜印« 82.6. 40,000 253〇64 Α6 Β6 五、發明説明(7 ) 放在當作基座之可旋_的圖盤或淺底盤上。將反應氣體等 混合,並進入反應品|向下通往旋轉基座及晶園。基座的 雎轉相對於氣體琨合物而言具有抽氣的功能•能夠將氣體 抽往晶園表面。在其表面處*氣»以實質上均匀的方式包 外Jft射狀的流《 I圓表面*然後,向下通β基座俩面,再 1 — **·,— —-,一··”一..... …一* —... ··— 至排氣口。氣體是利用抽氣機•經由排氣管將其抽離反應 室。晶圃是經由基座而受熱,而基座可以由位於基座姐件 内的發熱元件霣阻式加热。在接近晶钃的热表面處,建立 起一邊界層(boundary layer),它減慢反應氣SI擴敝到進 行反應之表面。反應氣«擴«Γ至此邊界曆,吸附到晶圓表 面*並反應以形成所痛的薄険與附帶的副產物。副產物再 自表面予Μ脫附(desorb),再經由邊界層擴败到#由流動 氣«中的動量予K帶走之氣流中。 薄膜沈積在晶圓表面的速率是控制在表面上的反應物濃 度Μ及表面湛度。表面上之反應物《度亦即有W於瑾界暦 厚度•其主要控制於基座/晶圓姐合的旋轉速率。也躭是 ,瑾界層厚度一般是β著轉速的增加而減低。一般而言, 邊界》愈薄*則反應物到晶圖表面的流通量愈快·且副產 物離開表面的流通量也躭愈快。由於反應物至晶圚表面與 副產物離開晶画表面的流通量增加,因此,沈積速率與較 大的反應物轉化率越高。再者*薄膜沈稹於晶園表面的均 勻度是直接取決於同一地匾邊界雇的均勻度。 本發明的這些或其它目的、儍黏及特色將在參考所附的 圈形下可解說得更詳盡。 -9- (請^8=^面之注$項再填寫本頁) —裝· 訂· 經濟部中*螵準局貝工消费含作杜印製 冬Κ张疋度適用中國國家樣準(CNS)甲4规格(210 X 297公釐) 82.6. 40,000 53064 A6 B6 經濟部中央標芈局W工消費合作社印製 五、發明説明(8 ) BB宗銳明 本國是CVD.反應器的剖面圈•其對於本發明的實際搡作 上有相當幫助。 窈明銳诚 本《是Μ描鎗方式表示轉盤式反應器的Μ鐽部份*其逋 用於寅際探作本發明之方法。反應室(10)有位於其内的旋 轉基座(12),用Μ支撐其上的圃案化之晶圓基板(14)。晶 圓基座是借由一馬達(未示出)傅動軸(16)Μ順時針方向 旋轉。基座(12)並附帶有溫度控制器裝置,Κ加热晶園至 所需的溫度。反應室備有排氣口(18),經由此,反應氣體 之副產物與未反應的起始材料可予Μ排出。 反應氣賭係供應至位於接近反應室上方的儲存榷(22) · Μ混合之。將混合後的反懕氣體向下流向晶圚•其晶圓是 由基座所旋轉*氣流且以大致垂直於晶圖旋轉面的方向通 往晶圓。如圖中氣流之虛線所示,當氣體接近晶圃表面時 •其Μ均勻的方式向外放射狀的流過整個晶圓表面•然後 ,再向下通過基座的側面·並通往排氣口(18)。如先前所 描述的,基座的旋轉會將反應氣體抽往晶固表面《並在整 個晶圓表面建立起幾乎均勻的邊界層。 實驗已經證實本發明是儍於先前技藝中的CVD方法•且 此實驗已經用於例證用於在上述的轉盤式反應器中Μ高反 應物轉化率達成髙的鎢薄膜沈積率之方法之功效。在此實 驗裡· 一直徑150毫米的圖案化之晶圓基板是由材料研發 公司(Naterials Research Corporation)提供 * W 用於測 -10- .&度通用中國國家標準(CNS)甲4规格(21〇 X 297公璉) 82.6. 40,000 (請先閱讀背面之注意事項再螭寫本頁) -裝· 訂· -泉- 53064 A6 B6 五、發明説明(9 ) 試步階覆 法達成。 的薄膜為 1)晶画溫 70托耳; 流速設為 下文簡稱 積時間大 相對於約 始材料之 晶圓之電 標準偏差 其它相 由材料研 蓋與其它薄膜 晶圓具有1微 經由濺鍍法的 度在425 至 3)基座轉速約 配合轉速且估 s 1 ρ m ) ; 5 )通 約7 5秒。所得 1 . 3微米/分 轉化率是在約 阻率平均在8 . 。步階覆蓋是 似的測試實驗 發公司所提供 特性之目的,其可利用 米對1微米之通路尺寸 鎢化鈦(TiW)。其搡作 525它之範圍;2)反應 在750轉/分;4)通入 計約在卜2 s 1 p ra (每分 入之氣體溫度約是25它 到的鋳薄膜之厚度是1 . 的沈積速率。六氟化鋳 25%至-5 5%之範圍内。 1微軟姆-公分,並具 100 % 〇 结果收集在表I中,其 之晶圚上進行。 表工 本發明之力 ,且在其下 條件如下: 室氣歴約在 之反應氣體 鐘檷準升, ;以及6 )沈 6微米,此 (WFa)的起 其所製成的 有_6,8 %的 中,測試是 (請奋*=*:面之注項再y寫本I) .裝· 訂. 經濟部中喪標準肩Λ工消费合作杜印製 參數 晶囬代號 1 2 3 4 5 薄膜沈積率 (微米/分) 0.58 0.3 0.6 2.5 3.5 均句性(1σ) 土 10 ±6 ±2 <±2 <土2 反豺性 (%) 60 60 60 60 60 電阻率 (微歐姆-公分) <9 <9 <9 <9 <9 晶ffl溫度 (°C) 525 450 450 450 450 反應室氣壓 (托耳). 70 70 7 0 70 7 0 WF6轉化率 (%) 55 36 25 50 55 11- 82.6. 40,〇〇〇 253064 Α6 Β6 熳濟部中央樣準场典工消费含作杜印製 五、發明説明(】0 ) 烴由比較,典型上使用晶圓不旋轉之CVD方法所塗佈的 拽薄臢以及使用氫氣(Hz),矽烷(SifU),或兩者兼之堪原 六氟化銪(WFe)而所得的鎢薄膜,能產生离品質之薄醎, 但仍»典型上受制於相對地較低的沈積速率Μ及較低的 WFe轉化率。且更特定言之,在所热知的CVD方法中,沒 有利用旋轉基座及晶ffl的情況下•沈積速率是g〇.5撤米 /分之大小,且WF6的轉化率S 30%之大小。如表I所示 ,使用本發^之方法所沈積的練薄腰巳纆逹到上至3.5微 米/分的沈稹速率•與上至5 5%的WFe轉化,並且沒有降 低薄_品質。此外•本方法食期具有一僩較廣的工作視窗 (灌度與壓力)Μ達到相對於先前技藝之方法高品»的鋳 薄膜。 ^ 本發明之方法已經表規出可以在某一個搡作條件範圃下 •達到高品霣的全覆式鎢沈稹薄膜•其操作條件的範围[用 Μ示範本發明可應用在較大的工作視窗。埴些搡作條件如 下:1)晶圚溫度約介於425 1C至525 t: ; 2)氣壓約介於 10至240托耳;3)基座轉速約介於100轉/分至1 500轉/ 分;4)通入之氣體流速約介於0.5至5.0 S1P1#; 5)通入的 氣體溫度約在25C。請注意,本發明之方法中,當晶圓Μ 高速旋轉時所使用的轉盤式反應器提供了額外的好處。換 句話說,晶圓之高速旋轉加強了氣《分佈均勻性,Μ及在 反應室內活性棰類的控制。此相較於典型的CVD方法導致 了反應器效率的增加,且減少薄膜沈積在不需要的地方( 亦即,反應器壁上)。 -12- 本♦久張尺度適用中a國家標準(CNS)甲4规格(210 X 297公釐) 82.6. 40.000 (請面之注¾再埃寫本買) .裝· 訂. A6 B6 經濟部中央镲準房興工消费含作杜印製 五、發明説明(11 ) 當寧願需要沈積埋揮式鎢薄膜而不願全覆式沈積的情況 下,可Μ預期的是溫度與氣靨之操作參數須予Μ更改。更 特定言之,選擇式鴆沈稹有利地在約250 C至300 1C之間 的晶圓灌度以及約在0.1托耳至10托耳之間的氣壓下實雎 。請注意,在本發明之方法裡•可理解增加的反應物轉化 率可Μ減低通邊抽氣条铳中未反應的反應物量•其必須在 排放至大氣前予以淨化。 本發明之方法對於採用壤揮式_或任何其它所》的薄膜 沈積在案化之晶圈基板上的接點或通路是特別有益的。 轉盤式方法是理想的方法用Κ達成埋揮式沈積,此乃因氣 流方向是在晶圓周圃。特別地是,咸信當薄膜沈憒在邮近 於晶圃邊緣的基座上時,在傅铳的反應器中,薄$沈稹之 埋擇性可能流失在晶圓上,而此薄膜魷扮演著成核位置, Μ使接著的薄膜沈稹在晶圆的平坦表面上。在轉盤式方法 中,埴種現象咸信是相當不可能有的,此乃因在晶圓表面 的氣流方向是放射狀向外的。因此,在晶圃*緣與基座表 面之間的界面,氣《是以離開晶圓的方向流動,因而在基 座生長之薄_很難生長至晶圃上。再者,在轉盤裡*少有 反應物材料能夠使薄膜沈憒在基座上,此乃因當氣體反應 物到逹暴Β的基座表面時•幾乎已烴消耗光了。 如本文所描述的,本發明之方法是想像可以包含各式各 樣在半辱賵裝置中有用之薄膜之全覆式Μ及«揮式沈積兩 者。當有W於全覆式绚沈憤的實施例己烴攞出時,逋些實 施例並不意圖限制本發明所定義於所附的申請專利範園内 -13- 本吆张尸、度適用中國國家樣準(CNS)甲4规格(210 X 297公釐) 82.6. 40,000 (請^iWe面之注項再寫本買) 裝. 訂· —^. 253〇64 A6 B6 五 '發明説明(〗2 ) (請^51!^面之注f項再蟥寫本霣) 的任何領域。使用旋轉式圓案化之基圓基板是在此方法的 所有應用中一般常見的,不管是壤揮式亦或全覆式沈稹, Sit ’使用轉盤的好處將呈現於此方法所有預期的應用裡 °而且’這是真實的,因為旋轉式晶圈方法是獨特地能夠 均勻地供應氣體反應器到晶圓表面•且"冲洗”副產物離 開晶圓表面·而逋是由於氣流的流體動力學之故。因此. 不考慮反應氣髑之姐成物時,旋轉晶圜的方法可κ得到均 勻的邊界麕厚度,且將氣相中的播流降至最低。埴些因素 皆對如本文討論的方法中所達成的有益的结果有所頁獻。 經濟部中央縹準馮貝工消费含作杜印* 在使用上文的具«實施例中> 所描述的旋轉基座時,為了 要達到最班宜的加工均勻性,CVD方法應該搡作於使其轉 速能夠達到最高沈積速率以及反應物轉化,且不犧牲薄_ 均勻性或特性之條件下。為了要產生這些條件•政射吠向 外流經基座表面的氣《之總霣最流率是相配於相等的氣« 之質矗流率,後者之氣«是沿著一粬從進氣頭通往且向著 基座表面。此袖向流速是由通入之氣II的嘖速所供應,且 予Μ控制的。如果通入之氣«流逋太低,則基座將欠缺流 體*然而,如果通入之氣«流速太高•則液《將回再至接 近基座表面。在瑄兩者中,其速度分佈圓可不是具有通當 的形狀,Μ在接近基座表面處給予均勻的界面曆厚度,也 因而無法完全發揮旋轉的益處。在一定的灌度、壓力、通 入的氣髑la成物Μ及基座轉逋下,僅有一種通入氣《流速 或窄範圈的通入氣體流速是可以給予最《宜的操作。此流 速通常是指對於給予的姐合條件"相®的流速”。它們可 一 1 4 - 82.6. 40,000 本疋度適用中B國家標準(CNS)甲4规格(210 X 297公釐) A6 B6 253064 五、發明説明(13 ) 借由理論上或是實驗上各方法及各反應器而予K決定,較 佳是先由理論上·再由實驗做·寅或是微謂。對於全覆式 及«擇式鎢CVD ,通入之氣體流逋通常落於從0.5 Sip·到 5.0 sip·的範園内,且在上文討输的潙度、氣壓、氣體姐 成物以及轉速下。例如,對於全覆式鎢薄祺沈積而言,在 425 Ό、80托耳W及750轉/分下經發規較佳的為WFe具 有0.1 slp«i,H2是2.0 sip·,嫌流速是2.1 sip·。對於選 擇式鎢CVD而言,則在280 t、5托耳Μ及250轉/分下 纆發現較佳的為SiH4是0· 1 sip·,VFe是0. 15 sip*以及 H2是2.75 sip* ·鐮流速是3二OsIp*。一般而言,當溫度 、轉速或黏度壜加時•或當氣壓降低•其它參數保持固定 時,流速亦須增加。 1 (請&讀背*之注4m-項再填寫本I) _裝. 訂. 經濟部中夹«率场興工消费含作杜印製 Ί5- 82.6. 40,000 本Η張疋度適用中國國豕樣準(CNS)甲4規格(210 χ 297公釐〉

Claims (1)

  1. A7 B7 C7 D7 253064 六、中請專利範® L 一種使用化學蒸氣沈《將一薄膜沈積在一案化之晶圓 基板上之方法,其包括下列步驟: 在一 CVD反應室内,K其一袖為基準旋轉一圓察化之 蠡圓基板; 導引反應氣體至CVD反應室内,且以大致垂直於圈案 化之基圓基板旋轉面的方向通往圖案化之晶圓基板. 此反應室維持在一個有效氣壓•且案化之晶圚基板加 熱至一個有效溫度·Μ使一高品質的薄謓借由化學蒸氣 沈積沈積在圈案化之晶園基板上0 2· 根據申請專利範園第1項之方法•其中•該薄膜是堪自 包括元素薄膜、化合物薄_、合金薄膜Κ及固蘇溶液薄 麟。 ' 3- 根據申請專利範画第2項之方法,其中,該薄膜是一種 S自包括轉、網、鋁、矽以及钛之元素薄膜。 ♦· 根據申請專利範園第2項之方法,其中,該薄膜是一棰 埋自包括一氮化钛,二矽化钕·二矽化餽·二氧化矽以 及氮化矽之化合物薄膜。 & 根據申請專利範園第2項之方法•其中,該薄鎮是一棰 堪自包括鋁/矽合金與鋁/綱/矽合金之合金薄_。 a 根據申請專利範_第2項之方法,其中,該薄膜是一棰 堪自包括磷矽酸鹽玻搞與硎碘矽醸鹽玻璃之固態溶液薄 膜。 7. 根據申請専利範園第3項之方法,其中*該元素薄縝是 一全覆式轉薄_。 -16- 本紙張尺度適用中國國家樣準(CNS)甲<1規格(210x297公*) (沐先岣琦背面之ί±意事項再填寫本Irj k. 經濟部中央櫺準爲β工消费合作社印製 ,線· 253064 A7 B7 C7 D7 經濟部十央標苹局A工消费合作社印製 六、中請專則範® a 根據申請専利範圏第7項之方法•其中•反應室的氣壓 維持在約10至2 40托耳的範園内。 a 根據申嫌專利範圈第8項之方法•其中·ϋ菜化之晶圚 基板是加热至一價在約425 Ό至525 t:的範圃内之溫度 〇 ία 稂«申請專利範園第9項之方法,其中,案化之晶園 基板是Μ—個在約100-1500轉/分的範_内之速率旋轉 〇 11 根據申誚専利範画第10項之方法•其中•反應氣《是W 一 β在約0.5-5.0禰準升/分的範麵内之流速供應至反 應室。 12 根據申請專利範蘭第3項之方法,其中,該元素膜是 一種沈憤在圖茱化之晶園基板的棋型届域内之選擇式薄 _。 ia 根據申謫專利範圍第12項之方法,其中,反應室的氣歷 維持在約0.1-10托耳的範園内。 H. 根據申請専利範圃第13項之方法,其中,圈案化之晶圆 基板是加熱至一個在約250- 300 t:的範園内之溫度。 1& 根據申誚専利範_第14項之方法•其中,矚察化之晶圃 基板是Μ —個在約100-1500轉/分的範園内之速率旋轉 〇 1& 根據申請専利範圃第15項之方法*其中,反應氣體是Μ 一届在約0.5-5.0檷準升/分的範園内之流速供應至反 應室。 -17- 本蚨張尺度逋用中a Β家樣準(CNS)甲4規格(210x297公处) (請先閉讀背面之注意事項再填鸾本頁 •打. ^53064 A7 B7 C7 D7_ 六、申請專利範丨B (靖先聞磧背面之注意事項再填寫本頁) 17. 一種使用化學蒸氣沈積將一全覆式鵁薄膜沈稹在一圓案 化之晶圓基板上之方法,其包括下列步驟: 在一CVD反應室内,Μ其一 _為基準K在約100-15 00轉/分的範圃内之速率旋轉圏案化之晶圃基板。 導引氣體反應物至CVD反應室内,且Κ大致垂直於圃 菜化之晶圃基板旋轉面的方向Κ在約0.5-5.0檷準升/ 分的範蘭内之流速逋往晒案化之晶圆基板•其反懕室維 持在一個在約10-240托耳的範園内之歷力,且圖察化之 晶圖基板加热至一個在約425 =至525¾的範圍内之溫度 ,以使一高品質的全覆式鵠》膜借由化學蒸氣沈稹沈稹 在圓茱化之晶園基板上。 ia 一種使用化學蒸氣沈積將一 S擇式搞薄腰沈積在1一圖察 化之晶圓基板上之方|法•其包括下列步嫌: 在一 CVD反懕室内,Μ — _為基準以在約100-1 500轉 /分的範圃内之速率旋轉圖案化之晶圓基板; 级濟部屮央搮準局βζ工消费合作社印製 導引氣艚反應物至CVD反應室内,且以大致垂直於鼷 茱化之晶圓基板旋轉面的方向以在約0.5-5.0樓準升/ 分的範画内之流速通往國案化之晶圓基板,其反應室維 持在一個約0.1-10托耳的範画內之壓力,且國案化之晶 圓基板加热至一髑在約250-'300 t:的範内之溫度,以 使一离品質的堪擇式铕薄棋借由化學蒸氣沈稹沈稹在圈 案化之晶圓基板上。 本紙張尺度遑用中國Β家櫺準(CNS)甲4規格(210χ297&*>
TW082107864A 1992-06-15 1993-09-24 TW253064B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/898,492 US5434110A (en) 1992-06-15 1992-06-15 Methods of chemical vapor deposition (CVD) of tungsten films on patterned wafer substrates

Publications (1)

Publication Number Publication Date
TW253064B true TW253064B (zh) 1995-08-01

Family

ID=25409541

Family Applications (1)

Application Number Title Priority Date Filing Date
TW082107864A TW253064B (zh) 1992-06-15 1993-09-24

Country Status (9)

Country Link
US (1) US5434110A (zh)
EP (1) EP0644952B1 (zh)
JP (1) JP3282813B2 (zh)
KR (1) KR100294566B1 (zh)
AU (1) AU4531693A (zh)
CA (1) CA2137567A1 (zh)
DE (1) DE69301031T2 (zh)
TW (1) TW253064B (zh)
WO (1) WO1993025722A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758036A (ja) * 1993-08-16 1995-03-03 Ebara Corp 薄膜形成装置
US5665640A (en) 1994-06-03 1997-09-09 Sony Corporation Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
US5975912A (en) 1994-06-03 1999-11-02 Materials Research Corporation Low temperature plasma-enhanced formation of integrated circuits
AU1745695A (en) 1994-06-03 1996-01-04 Materials Research Corporation A method of nitridization of titanium thin films
US5628829A (en) 1994-06-03 1997-05-13 Materials Research Corporation Method and apparatus for low temperature deposition of CVD and PECVD films
US5610106A (en) * 1995-03-10 1997-03-11 Sony Corporation Plasma enhanced chemical vapor deposition of titanium nitride using ammonia
US5567483A (en) * 1995-06-05 1996-10-22 Sony Corporation Process for plasma enhanced anneal of titanium nitride
US5811762A (en) * 1996-09-25 1998-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Heater assembly with dual temperature control for use in PVD/CVD system
US5963836A (en) * 1996-12-03 1999-10-05 Genus, Inc. Methods for minimizing as-deposited stress in tungsten silicide films
US6335280B1 (en) * 1997-01-13 2002-01-01 Asm America, Inc. Tungsten silicide deposition process
US5834371A (en) * 1997-01-31 1998-11-10 Tokyo Electron Limited Method and apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof
US5989652A (en) * 1997-01-31 1999-11-23 Tokyo Electron Limited Method of low temperature plasma enhanced chemical vapor deposition of tin film over titanium for use in via level applications
US6271121B1 (en) 1997-02-10 2001-08-07 Tokyo Electron Limited Process for chemical vapor deposition of tungsten onto a titanium nitride substrate surface
US5906866A (en) * 1997-02-10 1999-05-25 Tokyo Electron Limited Process for chemical vapor deposition of tungsten onto a titanium nitride substrate surface
US5926737A (en) * 1997-08-19 1999-07-20 Tokyo Electron Limited Use of TiCl4 etchback process during integrated CVD-Ti/TiN wafer processing
US6161500A (en) * 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US5976990A (en) * 1998-01-09 1999-11-02 Micron Technology, Inc. Method for optimization of thin film deposition
US6289842B1 (en) 1998-06-22 2001-09-18 Structured Materials Industries Inc. Plasma enhanced chemical vapor deposition system
US6302057B1 (en) 1998-09-15 2001-10-16 Tokyo Electron Limited Apparatus and method for electrically isolating an electrode in a PECVD process chamber
US6245668B1 (en) 1998-09-18 2001-06-12 International Business Machines Corporation Sputtered tungsten diffusion barrier for improved interconnect robustness
JP3069336B2 (ja) * 1998-12-04 2000-07-24 キヤノン販売株式会社 成膜装置
US6173673B1 (en) 1999-03-31 2001-01-16 Tokyo Electron Limited Method and apparatus for insulating a high power RF electrode through which plasma discharge gases are injected into a processing chamber
JP2001060564A (ja) * 1999-08-23 2001-03-06 Nec Corp 半導体装置の製造方法
CN100358098C (zh) 2005-08-05 2007-12-26 中微半导体设备(上海)有限公司 半导体工艺件处理装置
US8859417B2 (en) 2013-01-03 2014-10-14 Globalfoundries Inc. Gate electrode(s) and contact structure(s), and methods of fabrication thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930319B1 (zh) * 1969-08-29 1974-08-12
US4794019A (en) * 1980-09-04 1988-12-27 Applied Materials, Inc. Refractory metal deposition process
JPS5772318A (en) * 1980-10-24 1982-05-06 Seiko Epson Corp Vapor growth method
US4565157A (en) * 1983-03-29 1986-01-21 Genus, Inc. Method and apparatus for deposition of tungsten silicides
US4851295A (en) * 1984-03-16 1989-07-25 Genus, Inc. Low resistivity tungsten silicon composite film
JPS61275135A (ja) * 1985-03-11 1986-12-05 アプライド マテリアルズ インコ−ポレ−テツド 硼燐珪酸塩ガラスの形成方法
US4654509A (en) * 1985-10-07 1987-03-31 Epsilon Limited Partnership Method and apparatus for substrate heating in an axially symmetric epitaxial deposition apparatus
US4789771A (en) * 1985-10-07 1988-12-06 Epsilon Limited Partnership Method and apparatus for substrate heating in an axially symmetric epitaxial deposition apparatus
US4798165A (en) * 1985-10-07 1989-01-17 Epsilon Apparatus for chemical vapor deposition using an axially symmetric gas flow
JPS632330A (ja) * 1986-06-23 1988-01-07 Fujitsu Ltd 化学気相成長方法
DE3751755T2 (de) * 1986-06-30 1997-04-03 Nihon Sinku Gijutsu K K Verfahren und Vorrichtung zum Abscheiden aus der Gasphase
US4772356A (en) * 1986-07-03 1988-09-20 Emcore, Inc. Gas treatment apparatus and method
US4800105A (en) * 1986-07-22 1989-01-24 Nihon Shinku Gijutsu Kabushiki Kaisha Method of forming a thin film by chemical vapor deposition
US4839145A (en) * 1986-08-27 1989-06-13 Massachusetts Institute Of Technology Chemical vapor deposition reactor
US4868003A (en) * 1986-11-26 1989-09-19 Optical Coating Laboratory, Inc. System and method for vacuum deposition of thin films
JPS63137158A (ja) * 1986-11-27 1988-06-09 Nissin Electric Co Ltd アルミ薄膜の作製方法
US4976996A (en) * 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
US4996942A (en) * 1987-03-31 1991-03-05 Epsilon Technology, Inc. Rotatable substrate supporting susceptor with temperature sensors
US4821674A (en) * 1987-03-31 1989-04-18 Deboer Wiebe B Rotatable substrate supporting mechanism with temperature sensing device for use in chemical vapor deposition equipment
US4993355A (en) * 1987-03-31 1991-02-19 Epsilon Technology, Inc. Susceptor with temperature sensing device
US4828224A (en) * 1987-10-15 1989-05-09 Epsilon Technology, Inc. Chemical vapor deposition system
US4846102A (en) * 1987-06-24 1989-07-11 Epsilon Technology, Inc. Reaction chambers for CVD systems
JPH02295116A (ja) * 1989-05-10 1990-12-06 Mitsubishi Electric Corp 半導体製造装置
JPH0687463B2 (ja) * 1989-08-24 1994-11-02 株式会社東芝 半導体気相成長装置
JPH0394061A (ja) * 1989-09-07 1991-04-18 Nisshin Steel Co Ltd タングステンルツボの製造方法
US5068124A (en) * 1989-11-17 1991-11-26 International Business Machines Corporation Method for depositing high quality silicon dioxide by pecvd
US5106453A (en) * 1990-01-29 1992-04-21 At&T Bell Laboratories MOCVD method and apparatus
US5040046A (en) * 1990-10-09 1991-08-13 Micron Technology, Inc. Process for forming highly conformal dielectric coatings in the manufacture of integrated circuits and product produced thereby
JPH0613701A (ja) * 1992-06-25 1994-01-21 Fujitsu Ltd 半導体レーザの製造方法

Also Published As

Publication number Publication date
CA2137567A1 (en) 1993-12-23
JP3282813B2 (ja) 2002-05-20
EP0644952B1 (en) 1995-12-13
KR100294566B1 (ko) 2001-09-17
DE69301031D1 (de) 1996-01-25
JPH07507842A (ja) 1995-08-31
AU4531693A (en) 1994-01-04
WO1993025722A1 (en) 1993-12-23
DE69301031T2 (de) 1996-09-05
EP0644952A1 (en) 1995-03-29
US5434110A (en) 1995-07-18

Similar Documents

Publication Publication Date Title
TW253064B (zh)
TW294827B (zh)
TW396579B (en) Elimination of titanium nitride film deposition in tungsten plug technology using PE-CVD-TI and insitu plasma nitrudation
JP4919535B2 (ja) ハロゲン化タンタル前駆物質からの熱的CVD TaNフイルムのプラズマ処理
TW439151B (en) Method for forming conductive layer using atomic layer deposition process
CN1150348C (zh) 自钽卤化物前体获得整体式的钽和钽氮化物膜的化学气相沉积方法
CN1351677A (zh) 从钽卤化物前体得到的钽氮化物膜的等离子增强的化学气相沉积方法
JP2000133715A (ja) 半導体素子のタングステン膜製造方法
TW200931522A (en) Methods to obtain low k dielectric barrier with superior etch resistivity
JPS60221395A (ja) ダイヤモンド薄膜の製造方法
JPS59179775A (ja) タングステン シリサイドをデポジションする装置
JPS60213046A (ja) 基板上にポリサイド構造を形成する方法
JP3645682B2 (ja) Cu成膜用CVD装置
JP4864368B2 (ja) 気相堆積方法
TW543115B (en) Method and apparatus for forming an interlayer insulating film, and semiconductor device
JP2007023388A (ja) 窒化ジルコニウム被膜の製造方法及び窒化ジルコニウム被膜の使用
TW200536020A (en) A method of forming a tantalum-containing gate electrode structure
TW501256B (en) Method of manufacturing a copper metal wiring in a semiconductor device
JPH0519520B2 (zh)
JPH06283453A (ja) 半導体装置製造方法
JPH0717479B2 (ja) ダイヤモンド膜の製造方法
TW200538573A (en) A method for processing a substrate
TW201250045A (en) Method of depositing silicon oxide film and silicon nitride film, film forming apparatus, and method of manufacturing semiconductor device
JP3176840B2 (ja) 半導体装置の製造方法
TW515044B (en) Method for forming metal line of semiconductor device