TW202436210A - Titanium carbide coated carbon material - Google Patents
Titanium carbide coated carbon material Download PDFInfo
- Publication number
- TW202436210A TW202436210A TW113102442A TW113102442A TW202436210A TW 202436210 A TW202436210 A TW 202436210A TW 113102442 A TW113102442 A TW 113102442A TW 113102442 A TW113102442 A TW 113102442A TW 202436210 A TW202436210 A TW 202436210A
- Authority
- TW
- Taiwan
- Prior art keywords
- tantalum carbide
- carbon material
- carbide coating
- tantalum
- gas
- Prior art date
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 76
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 title claims description 15
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims abstract description 215
- 229910003468 tantalcarbide Inorganic materials 0.000 claims abstract description 215
- 239000011248 coating agent Substances 0.000 claims abstract description 104
- 238000000576 coating method Methods 0.000 claims abstract description 104
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 57
- 239000010955 niobium Substances 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 54
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 47
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 45
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000000200 discharge mass spectrometry Methods 0.000 claims abstract description 36
- 229910052742 iron Inorganic materials 0.000 claims abstract description 23
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical group [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 230000007797 corrosion Effects 0.000 abstract description 23
- 238000005260 corrosion Methods 0.000 abstract description 23
- 239000007789 gas Substances 0.000 description 80
- 239000013078 crystal Substances 0.000 description 37
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 18
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 18
- 229910010271 silicon carbide Inorganic materials 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 13
- 238000004544 sputter deposition Methods 0.000 description 13
- 238000005229 chemical vapour deposition Methods 0.000 description 12
- 230000003746 surface roughness Effects 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000010453 quartz Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 7
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910001510 metal chloride Inorganic materials 0.000 description 5
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 5
- 229910002601 GaN Inorganic materials 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- -1 tantalum halide Chemical class 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002822 niobium compounds Chemical class 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Abstract
本發明係一種經碳化鉭被覆之碳材料,其特徵在於包含:以碳為主成分之碳基材,以及被覆碳基材之至少一部分的碳化鉭被覆膜;並且,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量為15質量ppm以上,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量為20質量ppm以下。根據本發明,可提供一種耐蝕性優異的經碳化鉭被覆之碳材料。The present invention is a tantalum carbide coated carbon material, which is characterized by comprising: a carbon substrate with carbon as a main component, and a tantalum carbide coating covering at least a portion of the carbon substrate; and the niobium content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is 15 mass ppm or more, and the iron content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is 20 mass ppm or less. According to the present invention, a tantalum carbide coated carbon material with excellent corrosion resistance can be provided.
Description
本發明係關於一種於碳基材表面被覆碳化鉭膜而成的經碳化鉭被覆之碳材料。The present invention relates to a tantalum carbide-coated carbon material in which a tantalum carbide film is coated on the surface of a carbon substrate.
碳化鉭、碳化鈮等碳化物的熔點高,且化學穩定性、強度、韌性及耐蝕性優異。因此,透過以碳化物塗覆碳基材,可改善碳基材的耐熱性、化學穩定性、強度、韌性、耐蝕性等特性。於碳基材表面被覆碳化物膜而成的經碳化物被覆之碳材料,特別是經碳化鉭被覆之碳材料,係作為SiC(碳化矽)、GaN(氮化鎵)、AlN(氮化鋁)等次世代半導體之單晶製造裝置的構件來使用。Carbides such as tantalum carbide and niobium carbide have high melting points and excellent chemical stability, strength, toughness and corrosion resistance. Therefore, by coating a carbon substrate with carbides, the heat resistance, chemical stability, strength, toughness, corrosion resistance and other properties of the carbon substrate can be improved. Carbide-coated carbon materials, especially tantalum carbide-coated carbon materials, which are formed by coating a carbide film on the surface of a carbon substrate, are used as components of single crystal manufacturing devices for next-generation semiconductors such as SiC (silicon carbide), GaN (gallium nitride), and AlN (aluminum nitride).
次世代半導體的課題在於製造成本相較於以往之Si半導體為高。作為進一步減低該製造成本的方法,例如可舉例藉由HTCVD(High Temperature Chemical Vapor Deposition)法來製造次世代半導體的單晶。該方法中,由於原料氣體在高溫下進行反應,因此要求進一步提高經碳化鉭被覆之碳材料的耐蝕性。例如,在可高速製造SiC之單晶的HTCVD法中,由於係在2000~2500℃的溫度下使用H 2、SiH 4、C 3H 8、HCl等氣體,因此相較於一般的SiC昇華法,對於經碳化鉭被覆之碳材料要求優異的耐蝕性(參照非專利文獻1及2)。 The problem of next-generation semiconductors is that the manufacturing cost is higher than that of conventional Si semiconductors. As a method to further reduce the manufacturing cost, for example, the single crystal of the next-generation semiconductor can be manufactured by the HTCVD (High Temperature Chemical Vapor Deposition) method. In this method, since the raw material gas reacts at a high temperature, it is required to further improve the corrosion resistance of the carbon material coated with tantalum carbide. For example, in the HTCVD method that can manufacture single crystals of SiC at a high speed, since gases such as H2 , SiH4 , C3H8 , and HCl are used at a temperature of 2000~ 2500 °C, the carbon material coated with tantalum carbide is required to have excellent corrosion resistance compared to the general SiC sublimation method (see non-patent documents 1 and 2).
迄今為止,嘗試過以各種方法改善經碳化鉭被覆之碳材料的耐蝕性。例如專利文獻1係藉由在被覆各向同性石墨基材的碳化鉭被膜中以20~1000質量ppm的濃度含有鐵,來提升經碳化鉭被覆之碳材料的耐蝕性。又,專利文獻2係使被覆碳基材的碳化鉭被膜之結晶性降低來提升耐蝕性。 [先前技術文獻] [專利文獻] So far, attempts have been made to improve the corrosion resistance of tantalum carbide coated carbon materials by various methods. For example, Patent Document 1 improves the corrosion resistance of tantalum carbide coated carbon materials by containing iron at a concentration of 20 to 1000 mass ppm in the tantalum carbide film coated on an isotropic graphite substrate. In addition, Patent Document 2 improves the corrosion resistance by reducing the crystallinity of the tantalum carbide film coated on the carbon substrate. [Prior Technical Document] [Patent Document]
[專利文獻1]日本專利第6888330號公報 [專利文獻2]日本專利第3938361號公報 [非專利文獻] [Patent Document 1] Japanese Patent No. 6888330 [Patent Document 2] Japanese Patent No. 3938361 [Non-patent Document]
[非專利文獻1]「SiC晶圓的現狀與展望」, 恩田 正一, DENSO TECHNICAL REVIEW Vol.22, pp41-50(2017). [非專利文獻2]「實現低碳社會之新材料能源半導體計畫」國立研究開發法人新能量・產業技術綜合開發機構 電子・材料・奈米技術部, ppIII-78-81(2015資料5-1). [Non-patent document 1] "Current status and prospects of SiC wafers", Onda Masaichi, DENSO TECHNICAL REVIEW Vol.22, pp41-50(2017). [Non-patent document 2] "New materials, energy and semiconductor projects to achieve a low-carbon society", National Research and Development Agency, Electronics, Materials and Nanotechnology Division, ppIII-78-81(2015 data 5-1).
[發明欲解決之課題][Problems to be solved by the invention]
但是,使用經碳化鉭被覆之碳材料作為次世代半導體之單晶製造裝置的構件時,由於次世代半導體之單晶製造中的經碳化鉭被覆之碳材料的環境非常嚴苛,因此在重複次世代半導體之單晶的製造後,必須更換使用經碳化鉭被覆之碳材料的構件。從次世代半導體之製造成本的觀點來看,更換使用經碳化鉭被覆之碳材料的構件的頻率越少越好。因此,期望進一步改善經碳化鉭被覆之碳材料的耐蝕性。However, when using tantalum carbide coated carbon materials as components of next-generation semiconductor single crystal manufacturing equipment, the environment of the tantalum carbide coated carbon materials in the next-generation semiconductor single crystal manufacturing is very harsh. Therefore, after repeated manufacturing of next-generation semiconductor single crystals, the components using tantalum carbide coated carbon materials must be replaced. From the perspective of the manufacturing cost of next-generation semiconductors, the frequency of replacing components using tantalum carbide coated carbon materials is as low as possible. Therefore, it is desired to further improve the corrosion resistance of tantalum carbide coated carbon materials.
因此,本發明的目的在於提供一種耐蝕性優異的經碳化鉭被覆之碳材料。 [用以解決課題之手段] Therefore, the object of the present invention is to provide a tantalum carbide-coated carbon material having excellent corrosion resistance. [Means for solving the problem]
本發明者為了解決此課題致力研究的結果,發現透過降低碳化鉭被膜中所含之鐵的濃度,且將鈮的含量設為特定範圍內,相較於以往的經碳化鉭被覆之碳材料,可顯著提升經碳化鉭被覆之碳材料的耐蝕性。藉由發展此成果,從而達至完成下述記載之本發明。本發明的主旨如下。 [1] 一種經碳化鉭被覆之碳材料,其特徵在於包含:以碳為主成分之碳基材,以及被覆前述碳基材之至少一部分的碳化鉭被覆膜;並且,藉由輝光放電質譜法所測定之前述碳化鉭被覆膜中之鈮的含量為15質量ppm以上,藉由輝光放電質譜法所測定之前述碳化鉭被覆膜中之鐵的含量為20質量ppm以下。 [2] 如上述[1]記載之經碳化鉭被覆之碳材料,其中,前述碳化鉭被覆膜表面的算術平均粗糙度Ra為0.1μm以上10.0μm以下。 [3] 如上述[1]或[2]記載之經碳化鉭被覆之碳材料,其中,前述碳基材表面的算術平均粗糙度Ra為0.1μm以上9.5μm以下。 [4] 如上述[1]~[3]中之任一項記載之經碳化鉭被覆之碳材料,其中,前述碳化鉭被覆膜中所含之鉭原子數,相對於前述碳化鉭被覆膜中所含之碳原子數而言為0.8倍以上1.2倍以下。 [5] 如上述[1]~[4]中之任一項記載之經碳化鉭被覆之碳材料,其中,前述碳化鉭被覆膜的厚度為10~100μm。 [發明之效果] As a result of the research conducted by the inventors to solve this problem, they found that by reducing the iron concentration contained in the tantalum carbide film and setting the content of niobium within a specific range, the corrosion resistance of the tantalum carbide-coated carbon material can be significantly improved compared to the previous tantalum carbide-coated carbon material. By developing this result, the present invention described below was completed. The gist of the present invention is as follows. [1] A tantalum carbide-coated carbon material, characterized by comprising: a carbon substrate having carbon as a main component, and a tantalum carbide coating coating at least a portion of the carbon substrate; and the niobium content in the tantalum carbide coating is greater than 15 mass ppm as measured by fluorescence discharge mass spectrometry, and the iron content in the tantalum carbide coating is less than 20 mass ppm as measured by fluorescence discharge mass spectrometry. [2] The tantalum carbide-coated carbon material as described in [1] above, wherein the arithmetic mean roughness Ra of the surface of the tantalum carbide coating is greater than 0.1 μm and less than 10.0 μm. [3] A tantalum carbide-coated carbon material as described in [1] or [2] above, wherein the arithmetic mean roughness Ra of the surface of the carbon substrate is not less than 0.1 μm and not more than 9.5 μm. [4] A tantalum carbide-coated carbon material as described in any one of [1] to [3] above, wherein the number of tantalum atoms contained in the tantalum carbide coating is not less than 0.8 times and not more than 1.2 times the number of carbon atoms contained in the tantalum carbide coating. [5] A tantalum carbide-coated carbon material as described in any one of [1] to [4] above, wherein the thickness of the tantalum carbide coating is 10 to 100 μm. [Effect of the Invention]
根據本發明,可提供一種耐蝕性優異的經碳化鉭被覆之碳材料。According to the present invention, a tantalum carbide-coated carbon material having excellent corrosion resistance can be provided.
[經碳化鉭被覆之碳材料][Carbon material coated with titanium carbide]
本發明係一種經碳化鉭被覆之碳材料,其包含:以碳為主成分之碳基材,以及被覆碳基材之至少一部分的碳化鉭被覆膜;並且藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量為15質量ppm以上,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量為20質量ppm以下。藉此,本發明之經碳化鉭被覆之碳材料具有優異的耐蝕性。The present invention is a tantalum carbide coated carbon material, comprising: a carbon substrate with carbon as a main component, and a tantalum carbide coating covering at least a portion of the carbon substrate; and the niobium content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is 15 mass ppm or more, and the iron content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is 20 mass ppm or less. Thus, the tantalum carbide coated carbon material of the present invention has excellent corrosion resistance.
(碳基材) 本發明之經碳化鉭被覆之碳材料中的碳基材係以碳為主成分的基材。碳基材可進一步含有氯。在碳基材的材料中,例如可舉例各向同性石墨、擠出成形石墨、熱分解石墨、碳纖維強化碳複合材料(C/C複合物)等。碳基材的形狀和特性並未特別限定,可因應用途等使用加工成任意形狀者。 (Carbon substrate) The carbon substrate in the tantalum carbide-coated carbon material of the present invention is a substrate having carbon as the main component. The carbon substrate may further contain chlorine. Examples of the carbon substrate material include isotropic graphite, extruded graphite, pyrolytic graphite, and carbon fiber reinforced carbon composites (C/C composites). The shape and properties of the carbon substrate are not particularly limited, and the carbon substrate may be processed into any shape according to the application, etc.
<算術表面粗糙度Ra> 碳基材表面的算術平均粗糙度Ra較佳為0.1μm以上9.5μm以下。由於碳基材的表面粗糙度會反映在碳化鉭被覆膜的表面粗糙度上,因此若碳基材表面的算術平均粗糙度Ra為0.1μm以上9.5μm以下,則容易使碳化鉭被覆膜之表面的算術平均粗糙度Ra成為0.1μm以上10.0μm以下。基於此種觀點,碳基材表面的算術平均粗糙度Ra更佳為1.0μm以上8.0μm以下,再更佳為2.0μm以上6.0μm以下。又,碳基材表面的算術平均粗糙度Ra係基於JIS B 0633:2001(ISO 4288:1996)所測定之值。 <Arithmetic surface roughness Ra> The arithmetic average roughness Ra of the carbon substrate surface is preferably 0.1 μm to 9.5 μm. Since the surface roughness of the carbon substrate is reflected in the surface roughness of the tantalum carbide coating, if the arithmetic average roughness Ra of the carbon substrate surface is 0.1 μm to 9.5 μm, it is easy to make the arithmetic average roughness Ra of the surface of the tantalum carbide coating be 0.1 μm to 10.0 μm. Based on this viewpoint, the arithmetic average roughness Ra of the carbon substrate surface is more preferably 1.0 μm to 8.0 μm, and more preferably 2.0 μm to 6.0 μm. In addition, the arithmetic average roughness Ra of the carbon substrate surface is a value measured based on JIS B 0633:2001 (ISO 4288:1996).
(碳化鉭被覆膜) 本發明之經碳化鉭被覆之碳材料中的碳化鉭被覆膜係以碳化鉭為主成分,並且包含鈮。又,碳化鉭被覆膜不包含鐵,或者碳化鉭被覆膜包含鐵時,碳化鉭被覆膜中之鐵的含量非常少。 (Titanium carbide coating) The titanium carbide coating in the titanium carbide-coated carbon material of the present invention has titanium carbide as a main component and contains niobium. In addition, the titanium carbide coating does not contain iron, or when the titanium carbide coating contains iron, the iron content in the titanium carbide coating is very small.
<鈮的含量> 藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量為15質量ppm以上。若碳化鉭被覆膜中之鈮的含量未滿15質量ppm,則有對於經碳化鉭被覆之碳材料的耐蝕性之鈮的效果變得不充分的情況。其結果,使用經碳化鉭被覆之碳材料作為SiC(碳化矽)、GaN(氮化鎵)、AlN(氮化鋁)等次世代半導體之單晶製造裝置的構件時,有無法充分地減低構件的更換頻率,且無法減低次世代半導體之製造成本的情況。基於此種觀點,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量較佳為20質量ppm以上,更佳為50質量ppm以上,再更佳為100質量ppm以上,又再更佳為200質量ppm以上,又再更佳為300質量ppm以上,又再更佳為400質量ppm以上。又,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量範圍的上限值並未特別限定,但藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量較佳為1000質量ppm以下。又,從進一步改善經碳化鉭被覆之碳材料的耐蝕性的觀點而言,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量更佳為900質量ppm以下,又再更佳為800質量ppm以下,又再更佳為700質量ppm以下,又再更佳為600質量ppm以下,又再更佳為500質量ppm以下。 <Niobium content> The niobium content in the tantalum carbide film measured by fluorescence discharge mass spectrometry is 15 mass ppm or more. If the niobium content in the tantalum carbide film is less than 15 mass ppm, the effect of niobium on the corrosion resistance of the carbon material coated with tantalum carbide may become insufficient. As a result, when the carbon material coated with tantalum carbide is used as a component of a single crystal manufacturing device for next-generation semiconductors such as SiC (silicon carbide), GaN (gallium nitride), and AlN (aluminum nitride), the replacement frequency of the component may not be sufficiently reduced, and the manufacturing cost of the next-generation semiconductor may not be reduced. Based on this viewpoint, the niobium content in the tantalum carbide film measured by fluorescence discharge mass spectrometry is preferably 20 mass ppm or more, more preferably 50 mass ppm or more, further preferably 100 mass ppm or more, further more preferably 200 mass ppm or more, further more preferably 300 mass ppm or more, further more preferably 400 mass ppm or more. In addition, the upper limit of the range of the niobium content in the tantalum carbide film measured by fluorescence discharge mass spectrometry is not particularly limited, but the niobium content in the tantalum carbide film measured by fluorescence discharge mass spectrometry is preferably 1000 mass ppm or less. Furthermore, from the viewpoint of further improving the corrosion resistance of the tantalum carbide coated carbon material, the niobium content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is preferably 900 mass ppm or less, further preferably 800 mass ppm or less, further preferably 700 mass ppm or less, further preferably 600 mass ppm or less, further preferably 500 mass ppm or less.
輝光放電質譜法係指下述方法:透過在氬環境下,以試料為陰極產生輝光放電,於電漿內對試料表面進行濺射,被濺射的試料在輝光放電內離子化,並對生成之離子使用質譜法進行分析的方法。 本說明書中,碳化鉭被覆膜中之鈮的含量為,被濺射之深度方向中之碳化鉭膜之比例為20~80質量%的範圍中之鈮相對於碳化鉭膜之含量的平均值。在被濺射之碳化鉭膜的比例未滿20質量%的範圍內,有可能會受到附著於碳化鉭被覆膜表面之雜質的影響。另一方面,在被濺射之碳化鉭膜的比例大於80質量%的範圍內,有會受到源自碳基材之雜質元素之影響的情形。藉由將使用輝光放電質譜法測定碳化鉭被覆膜中之鈮的含量的範圍設為被濺射之碳化鉭膜的比例為20~80質量%之範圍,可去除附著於碳化鉭被覆膜表面之雜質的影響及源自碳基材之雜質元素的影響。 Fluorescence discharge mass spectrometry refers to the following method: in an argon environment, a sample is used as a cathode to generate a glow discharge, the sample surface is sputtered in plasma, the sputtered sample is ionized in the glow discharge, and the generated ions are analyzed by mass spectrometry. In this manual, the content of niobium in the tantalum carbide film is the average value of the content of niobium relative to the tantalum carbide film in the range of 20-80 mass% of the tantalum carbide film in the depth direction of the sputtered tantalum carbide film. In the range where the proportion of the sputtered tantalum carbide film is less than 20 mass%, it may be affected by impurities attached to the surface of the tantalum carbide film. On the other hand, when the ratio of the sputtered tantalum carbide film is greater than 80% by mass, there is a possibility that it will be affected by impurity elements originating from the carbon substrate. By setting the range of the niobium content in the tantalum carbide coating measured by EDS to the range of 20-80% by mass of the ratio of the sputtered tantalum carbide film, the influence of impurities attached to the surface of the tantalum carbide coating and the influence of impurity elements originating from the carbon substrate can be removed.
具體來說,輝光放電質譜法係使用V. G. Scientific公司製VG9000、ElementGD、Astrum,並藉由Ar +濺射來進行深度方向的分析。 此處,以橫軸為深度方向之濺射次數、以縱軸為雜質濃度進行繪圖時,將鉭的元素濃度開始降低的點視為Ar +到達碳基材的點,亦即,深度方向中之碳化鉭膜被完全濺射的點,並將該點之被濺射之碳化鉭膜的比例設為100質量%。接著,將此時之濺射次數的20~80%的範圍內之濺射次數視為相當於被濺射之碳化鉭膜的比例為20~80質量%之範圍,並以透過該濺射次數中之濺射所測定之碳化鉭被覆膜中之鈮的含量來規定碳化鉭被覆膜中之鈮的含量。例如,在第60次濺射時鉭的元素濃度開始降低的情況,以第60次的濺射設為100質量%碳化鉭膜被濺射。接著,將以相當於被濺射之碳化鉭膜的比例為20~80質量%之範圍的第12次至第48次之範圍的濺射次數所測定的碳化鉭被覆膜中之鈮的含量之平均值,規定為碳化鉭被覆膜中之鈮的含量。 Specifically, the fluorescence discharge mass spectrometry method uses VG9000, ElementGD, and Astrum manufactured by VG Scientific, and performs analysis in the depth direction by Ar + sputtering. Here, when the horizontal axis is the number of sputtering times in the depth direction and the vertical axis is the impurity concentration, the point where the tantalum element concentration begins to decrease is regarded as the point where Ar + reaches the carbon substrate, that is, the point where the tantalum carbide film in the depth direction is completely sputtered, and the proportion of the sputtered tantalum carbide film at this point is set to 100 mass %. Next, the number of sputtering times within the range of 20 to 80% of the number of sputtering times at this time is regarded as equivalent to the ratio of the sputtered tantalum carbide film being in the range of 20 to 80 mass %, and the niobium content in the tantalum carbide coating film measured by the sputtering in the number of sputtering times is used to define the niobium content in the tantalum carbide coating film. For example, when the tantalum element concentration begins to decrease at the 60th sputtering, the 60th sputtering is regarded as 100 mass % of the tantalum carbide film being sputtered. Next, the average value of the niobium content in the tantalum carbide coating film measured at the 12th to 48th sputtering times corresponding to a ratio of the sputtered tantalum carbide film of 20 to 80 mass % is defined as the niobium content in the tantalum carbide coating film.
輝光放電質譜法的分析中,1次濺射所檢測之元素係檢測從該濺射前的表面至藉由該濺射所挖掘之深度之間所含之元素全體所謂的平均值。因此,分析開始後之最表面的分析值中,不僅是最表面附近之碳化鉭膜中含有之元素,亦可能檢測到源自最表面之附著物的元素。同樣地,當濺射深度到達基材之碳材料時,亦可能檢測到源自碳基材之雜質元素。 因此,為了避免最表面之附著物的影響及來自碳基材的影響,碳化鉭被覆膜中所含之雜質濃度的評估,如上述般,係基於被濺射之碳化鉭膜的比例在20~80質量%之範圍內的檢測值來評估。 In the analysis of EDMS, the elements detected by one sputtering are the average values of all elements contained from the surface before the sputtering to the depth dug by the sputtering. Therefore, in the analysis value of the outermost surface after the analysis starts, not only the elements contained in the tantalum carbide film near the outermost surface, but also the elements derived from the outermost surface attachments may be detected. Similarly, when the sputtering depth reaches the carbon material of the substrate, impurity elements derived from the carbon substrate may also be detected. Therefore, in order to avoid the influence of the outermost surface attachments and the influence from the carbon substrate, the evaluation of the impurity concentration contained in the tantalum carbide coating is evaluated based on the detection value of the ratio of the sputtered tantalum carbide film in the range of 20~80 mass %, as described above.
當碳化鉭被覆膜在上述範圍內的含量含有鈮時,經碳化鉭被覆之碳材料表現出優異的耐蝕性的原因尚不清楚,但推測如下。 已知在構成碳化鉭被覆膜之碳化鉭的結晶方位比較均勻且特定之結晶面發達的結晶構造的情況下,化學特性和物理特性會產生各向異性。因此,當經碳化鉭被覆之碳材料在高溫、且於還原性氣體或反應性氣體環境下長時間使用時,碳化鉭被覆膜之化學或物理上較弱的特定部分會成為起點,產生因消耗等造成之裂紋或其他損傷等(例如參照專利文獻2)。 本發明之經碳化鉭膜被覆之碳材料藉由於碳化鉭被覆膜中存在之鈮,因此與以往的材料相比,結晶性成為亂雜的狀態,碳化鉭被覆膜整體成為結晶性低,接近於所謂的非晶質狀態。因此,關於化學特性和物理特性之各向異性亦減少,碳化鉭被覆膜的表面不易存在化學或物理上較弱的部分。其結果,可推測碳化鉭被覆膜的表面即使與還原性氣體或反應性氣體接觸也不易被消耗,不易產生因消耗等造成之裂紋或損傷。並且,認為碳化鉭被覆膜的耐蝕性提升,其結果經碳化鉭被覆之碳材料的耐蝕性亦被改善。又,不拘碳化鉭被覆膜中之鈮的存在形態。鈮可以例如以鈮單體、鈮化合物之任一形態存在於碳化鉭被覆膜中。 The reason why the tantalum carbide-coated carbon material exhibits excellent corrosion resistance when the tantalum carbide coating contains niodium in the above-mentioned range is not clear, but is speculated as follows. It is known that in the case of a crystal structure in which the crystal orientation of tantalum carbide constituting the tantalum carbide coating is relatively uniform and specific crystal planes are developed, chemical and physical properties will be anisotropic. Therefore, when the tantalum carbide-coated carbon material is used for a long time at high temperature and in a reducing gas or reactive gas environment, a chemically or physically weak specific portion of the tantalum carbide coating will become a starting point for cracks or other damage caused by consumption, etc. (for example, refer to Patent Document 2). The carbon material coated with a tantalum carbide film of the present invention has a chaotic crystallinity compared to previous materials due to the presence of niobium in the tantalum carbide film, and the tantalum carbide film as a whole has a low crystallinity, close to a so-called amorphous state. Therefore, the anisotropy of chemical and physical properties is also reduced, and it is not easy for chemically or physically weak parts to exist on the surface of the tantalum carbide film. As a result, it can be inferred that the surface of the tantalum carbide film is not easily consumed even if it comes into contact with reducing gas or reactive gas, and it is not easy to produce cracks or damage caused by consumption. In addition, it is believed that the corrosion resistance of the tantalum carbide film is improved, and as a result, the corrosion resistance of the carbon material coated with tantalum carbide is also improved. Furthermore, the niobium in the tantalum carbide coating is not limited to its existing form. Niobium can exist in the tantalum carbide coating in any form, such as a niobium monomer or a niobium compound.
<鐵的含量> 藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量為20質量ppm以下。若碳化鉭被覆膜中之鐵的含量大於20質量ppm,有經碳化鉭被覆之碳材料的耐蝕性降低的情況。其結果,使用經碳化鉭被覆之碳材料作為次世代半導體之單晶製造裝置的構件時,構件之更換頻率變高,有次世代半導體之製造成本上升的情況。從此種觀點來看,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量較佳為10質量ppm以下,更佳為1質量ppm以下,再更佳為0.1質量ppm以下,又再更佳為0.01質量ppm以下。又,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量範圍之下限值並未特別限定,例如為0質量ppm。又,藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量,可以與藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量相同方式進行測定。 <Iron content> The iron content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is 20 mass ppm or less. If the iron content in the tantalum carbide coating is greater than 20 mass ppm, the corrosion resistance of the tantalum carbide coated carbon material may be reduced. As a result, when the tantalum carbide coated carbon material is used as a component of a single crystal manufacturing device for next-generation semiconductors, the replacement frequency of the component becomes high, and the manufacturing cost of the next-generation semiconductors may increase. From this point of view, the iron content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is preferably 10 mass ppm or less, more preferably 1 mass ppm or less, further preferably 0.1 mass ppm or less, and further preferably 0.01 mass ppm or less. In addition, the lower limit of the range of the niobium content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is not particularly limited, for example, it is 0 mass ppm. In addition, the iron content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry can be measured in the same manner as the niobium content in the tantalum carbide coating measured by fluorescence discharge mass spectrometry.
當碳化鉭被覆膜以超過上述含量的範圍含有鐵時,經碳化鉭被覆之碳材料的耐蝕性變差的原因尚不清楚,但推測如下。 推測當碳化鉭被覆膜中之鐵的含量大於20質量ppm時,則在HTCVD環境之高溫且於還原性氣體或反應性氣體環境下,碳化鉭被覆膜與HCl反應並氣化,碳化鉭被覆膜的緻密性喪失。 When the tantalum carbide coating contains iron in an amount exceeding the above range, the reason why the corrosion resistance of the carbon material coated with tantalum carbide deteriorates is not clear, but it is speculated as follows. It is speculated that when the iron content in the tantalum carbide coating is greater than 20 mass ppm, the tantalum carbide coating reacts with HCl and vaporizes under the high temperature of the HTCVD environment and in a reducing gas or reactive gas environment, and the tightness of the tantalum carbide coating is lost.
<算術平均粗糙度Ra> 碳化鉭被覆膜之表面的算術平均粗糙度Ra較佳為0.1μm以上10.0μm以下。若碳化鉭被覆膜之表面的算術平均粗糙度Ra為0.1μm以上10.0μm以下,可在維持碳化鉭被覆膜的緻密性的同時,提高與基材之密著力。從此種觀點來看,碳化鉭被覆膜之表面的算術平均粗糙度Ra更佳為1.0μm以上8.5μm以下,再更佳為2.0μm以上6.5μm以下。又,碳化鉭被覆膜11之表面的算術平均粗糙度Ra係基於JIS B 0633:2001(ISO 4288:1996)測定之值。 <Arithmetic mean roughness Ra> The arithmetic mean roughness Ra of the surface of the tantalum carbide coating is preferably 0.1 μm to 10.0 μm. If the arithmetic mean roughness Ra of the surface of the tantalum carbide coating is 0.1 μm to 10.0 μm, the adhesion to the substrate can be improved while maintaining the compactness of the tantalum carbide coating. From this point of view, the arithmetic mean roughness Ra of the surface of the tantalum carbide coating is more preferably 1.0 μm to 8.5 μm, and more preferably 2.0 μm to 6.5 μm. In addition, the arithmetic mean roughness Ra of the surface of the tantalum carbide coating 11 is a value measured based on JIS B 0633:2001 (ISO 4288:1996).
碳化鉭被覆膜之表面的算術平均粗糙度Ra,例如可藉由調整碳基材的表面粗糙度來進行調整。例如,當碳化鉭被覆膜的膜厚為20μm左右時,碳基材的表面粗糙度直接成為碳化鉭被覆膜的表面粗糙度。又,在碳基材上形成碳化鉭被覆膜後,可藉由使用研磨劑或銼刀等研磨碳化鉭被覆膜的表面來調整碳化鉭被覆膜之表面的算術平均粗糙度Ra。The arithmetic average roughness Ra of the surface of the tantalum carbide coating can be adjusted, for example, by adjusting the surface roughness of the carbon substrate. For example, when the film thickness of the tantalum carbide coating is about 20 μm, the surface roughness of the carbon substrate directly becomes the surface roughness of the tantalum carbide coating. In addition, after the tantalum carbide coating is formed on the carbon substrate, the arithmetic average roughness Ra of the surface of the tantalum carbide coating can be adjusted by grinding the surface of the tantalum carbide coating with an abrasive or a file.
<厚度> 碳化鉭被覆膜的厚度較佳為10~1000μm。當碳化鉭被覆膜的厚度為10μm以上,可進一步改善經碳化鉭被覆之碳材料的耐蝕性。當碳化鉭被覆膜的厚度為1000μm以下,可縮短碳化鉭被覆膜的成膜時間,能夠改善經碳化鉭被覆之碳材料的生產效率。從此種觀點來看,碳化鉭被覆膜的厚度更佳為20~500μm,再更佳為30~200μm。 <Thickness> The thickness of the tantalum carbide coating is preferably 10~1000μm. When the thickness of the tantalum carbide coating is 10μm or more, the corrosion resistance of the carbon material coated with tantalum carbide can be further improved. When the thickness of the tantalum carbide coating is 1000μm or less, the film forming time of the tantalum carbide coating can be shortened, and the production efficiency of the carbon material coated with tantalum carbide can be improved. From this point of view, the thickness of the tantalum carbide coating is more preferably 20~500μm, and more preferably 30~200μm.
<鉭原子數相對於碳原子數的倍數> 碳化鉭被覆膜中所含之鉭原子數,較佳相對於碳原子數而言為0.8倍以上1.2倍以下。當碳化鉭被覆膜中所含之鉭原子數,相對於碳原子數而言為0.8倍以上1.2倍以下時,可進一步改善經碳化鉭被覆之碳材料的耐蝕性。從此種觀點來看,碳化鉭被覆膜中所含之鉭原子數,相對於碳原子數而言,更佳為0.85倍以上1.15倍以下,再更佳為0.9倍以上1.1倍以下。碳化鉭被覆膜中所含之鉭原子數及碳原子數可從X射線繞射(XRD)測定之波峰強度來推定。 <Multiples of the number of tantalum atoms relative to the number of carbon atoms> The number of tantalum atoms contained in the tantalum carbide coating is preferably 0.8 times or more and 1.2 times or less relative to the number of carbon atoms. When the number of tantalum atoms contained in the tantalum carbide coating is 0.8 times or more and 1.2 times or less relative to the number of carbon atoms, the corrosion resistance of the carbon material coated with tantalum carbide can be further improved. From this point of view, the number of tantalum atoms contained in the tantalum carbide coating is preferably 0.85 times or more and 1.15 times or less relative to the number of carbon atoms, and more preferably 0.9 times or more and 1.1 times or less. The number of tantalum atoms and the number of carbon atoms contained in the tantalum carbide coating can be estimated from the peak intensity measured by X-ray diffraction (XRD).
<XRD半值寬> 碳化鉭被覆膜之X射線繞射線的強度可藉由使用X射線繞射裝置(XRD)之2θ/θ測定(Out-of-Plane)來得到。在2θ=40˚附近可觀測到碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰。 構成碳化鉭被覆膜之微晶的大小可由波峰的半值寬作為指標。該半值寬會因結晶性的降低(接近非晶質)、微晶的微細化、組成的不均等而變大,但如本發明之經碳化鉭被覆之碳材料中的碳化鉭被覆膜般,組成為穩定、結晶性為良好、微晶為一定程度大小的情況下,半值寬會落在一定範圍內。作為特定出本發明之經碳化鉭被覆之碳材料中的碳化鉭被覆膜的一個指標,半值寬為最佳。 <XRD half-value width> The intensity of X-ray diffraction rays of the tantalum carbide coating can be obtained by 2θ/θ measurement (Out-of-Plane) using an X-ray diffraction device (XRD). A peak corresponding to the (200) plane of the tantalum carbide crystal in the tantalum carbide coating can be observed near 2θ=40˚. The size of the crystallites constituting the tantalum carbide coating can be indicated by the half-value width of the peak. The half-value width increases due to the decrease in crystallinity (approaching amorphous), the refinement of the crystallites, and the unevenness of the composition. However, when the composition is stable, the crystallinity is good, and the crystallites are of a certain size, as in the tantalum carbide coating in the tantalum carbide-coated carbon material of the present invention, the half-value width falls within a certain range. As an index for specifying the tantalum carbide coating in the tantalum carbide-coated carbon material of the present invention, the half-value width is optimal.
X射線繞射中之半值寬(FWHM)為,將由X射線繞射光譜之(hkl)面所得之繞射波峰藉由擬Voigt函數(Pseudo Voigt Function)進行擬合(fit)時,波峰的最大值(fmax)的一半之值(fmax/2)中的2θ之角度差。本說明書中,包含後述的實施例,係使用該方法來特定半值寬。由此所得之碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬較佳為0.6˚以下,0.5˚以下,更佳為0.4˚以下。上述半值寬過大時,結晶粒過小且無法充分地阻止裂紋等的傳播,或者低結晶性的非晶質組織在高溫環境下結晶化而導致構造變化,故不佳。上述半值寬的下限值並未特別限定,較佳為0.01˚,更佳為0.1˚。若半值寬過小,則結晶粒變得過大,難以形成以無配向方式積層的粒狀組織。又,當藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量變大時,碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬變大。The half-value width (FWHM) in X-ray diffraction is the angle difference of 2θ in half the value (fmax/2) of the maximum value (fmax) of the peak when the diffraction peak obtained from the (hkl) plane of the X-ray diffraction spectrum is fitted by the pseudo Voigt function. In this specification, including the embodiments described later, the half-value width is specified by this method. The half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystal in the tantalum carbide coating obtained in this way is preferably 0.6˚ or less, 0.5˚ or less, and more preferably 0.4˚ or less. When the half-value width is too large, the crystal grains are too small and the propagation of cracks etc. cannot be sufficiently prevented, or the low-crystallization amorphous structure crystallizes in a high-temperature environment and causes structural changes, which is not good. The lower limit of the half-value width is not particularly limited, and is preferably 0.01˚, and more preferably 0.1˚. If the half-value width is too small, the crystal grains become too large, and it is difficult to form a granular structure that is layered in a non-oriented manner. In addition, when the content of niobium in the tantalum carbide coating measured by fluorescence discharge mass spectrometry increases, the half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystals in the tantalum carbide coating increases.
(經碳化鉭被覆之碳材料的製造方法) 以下,對本發明之加熱用經碳化鉭被覆之碳材料的製造方法之一例進行說明。 本發明的經碳化鉭被覆之碳材料,例如可藉由於碳基材表面形成碳化鉭層來製作。碳化鉭層,例如可藉由化學氣相沉積(CVD)法、燒結法、碳化法等方法在碳基材的表面上形成。其中,由於CVD法可形成均勻且緻密的膜,因此作為碳化鉭層的形成方法較佳。 (Manufacturing method of carbon material coated with tantalum carbide) Hereinafter, an example of the manufacturing method of the carbon material coated with tantalum carbide for heating of the present invention is described. The carbon material coated with tantalum carbide of the present invention can be manufactured, for example, by forming a tantalum carbide layer on the surface of a carbon substrate. The tantalum carbide layer can be formed on the surface of the carbon substrate by methods such as chemical vapor deposition (CVD), sintering, and carbonization. Among them, the CVD method is preferred as a method for forming a tantalum carbide layer because it can form a uniform and dense film.
又,CVD法中,有熱CVD法或光CVD法、電漿CVD法等,例如可使用熱CVD法來形成碳化鉭層。熱CVD法具有裝置構成相對簡單、沒有電漿造成的損傷等優點。使用熱CVD法之碳化鉭被覆膜的形成,例如,可使用如圖1所示之外熱型減壓CVD裝置11來進行。外熱型減壓CVD裝置11中,在具備加熱器13、原料供給部16、排氣部17等之反應室12內,碳基材14係由支撐手段15來支撐。In addition, among the CVD methods, there are thermal CVD methods, photo CVD methods, plasma CVD methods, and the like. For example, thermal CVD methods can be used to form a tantalum carbide layer. The thermal CVD method has advantages such as a relatively simple device structure and no damage caused by plasma. The formation of a tantalum carbide coating using the thermal CVD method can be performed, for example, using an external heating type reduced pressure CVD device 11 as shown in FIG. 1 . In the external heating type reduced pressure CVD device 11, a carbon substrate 14 is supported by a supporting means 15 in a reaction chamber 12 equipped with a heater 13, a raw material supply unit 16, an exhaust unit 17, and the like.
參照圖1及圖2對本發明之經碳化鉭被覆之碳材料的製造方法之一例進行說明。 首先,將碳基材14載置於外熱型減壓CVD裝置11的反應室12內。碳基材14係由具有3個前端為尖頭形狀之支撐部的支撐手段15來支撐。如上所述,碳基材14的表面粗糙度Ra較佳為0.1μm以上9.5μm以下。 An example of a method for manufacturing a tantalum carbide-coated carbon material of the present invention is described with reference to FIG. 1 and FIG. 2. First, a carbon substrate 14 is placed in a reaction chamber 12 of an externally heated reduced-pressure CVD device 11. The carbon substrate 14 is supported by a supporting means 15 having three supporting portions with pointed tips. As described above, the surface roughness Ra of the carbon substrate 14 is preferably greater than 0.1 μm and less than 9.5 μm.
接著,進行反應室12的加熱。例如,在減壓下及溫度1000~2500℃的條件下加熱反應室12。Next, the reaction chamber 12 is heated. For example, the reaction chamber 12 is heated under reduced pressure and at a temperature of 1000 to 2500°C.
接著,在碳基材14的表面上形成碳化鉭層。作為原料氣體,從原料供給部16向反應室12供給如甲烷(CH 4)之包含碳原子之化合物的氣體與如五氯化鉭(TaCl 5)之鹵化鉭氣體。鹵化鉭氣體,例如可藉由使鉭金屬與鹵素氣體反應的方法來產生。例如,在圖2所示之金屬氯化物產生裝置21中,將鉭金屬與少量的鈮金屬25一起填充到容器內24,並透過加熱裝置23加熱至300℃~1200℃。向其中供給氯氣及氯化氫氣體之至少1種的氣體,可使鹵化鉭氣體及鹵化鈮氣體產生。 Then, a tantalum carbide layer is formed on the surface of the carbon substrate 14. As raw material gases, a gas of a compound containing carbon atoms such as methane (CH 4 ) and a tantalum halide gas such as tantalum pentachloride (TaCl 5 ) are supplied from the raw material supply unit 16 to the reaction chamber 12. The tantalum halide gas can be produced, for example, by reacting tantalum metal with a halogen gas. For example, in the metal chloride production device 21 shown in FIG. 2 , tantalum metal and a small amount of niobium metal 25 are filled into a container 24 and heated to 300° C. to 1200° C. by a heating device 23. At least one gas of chlorine gas and hydrogen chloride gas is supplied thereto, so that tantalum halide gas and niobium halide gas can be produced.
接著,將從圖1所示之原料供給部16供給之原料氣體在1000~2500℃之高溫減壓下進行熱CVD反應,在碳基材14上形成含鈮之碳化鉭層。 [實施例] Next, the raw material gas supplied from the raw material supply unit 16 shown in FIG. 1 is subjected to a thermal CVD reaction at a high temperature of 1000 to 2500°C under reduced pressure to form a niobium-containing tantalum carbide layer on the carbon substrate 14. [Example]
以下,示出實施例更具體說明本發明,但本發明並不限定於該等。Hereinafter, the present invention will be described in more detail with reference to embodiments, but the present invention is not limited thereto.
如以下方式製作實施例1~7及比較例1~2的經碳化鉭被覆之碳材料。 (實施例1) 首先,將碳基材14載置於圖1所示之外熱型減壓CVD裝置11的反應室內。使用由各向同性石墨製成之圓筒構件作為碳基材14。碳基材14係由具有3個前端為尖頭形狀之支撐部的支撐手段15來支撐。碳基材14的表面粗糙度Ra為5.0μm。 The tantalum carbide-coated carbon materials of Examples 1 to 7 and Comparative Examples 1 to 2 were prepared as follows. (Example 1) First, a carbon substrate 14 was placed in a reaction chamber of an external thermal reduced pressure CVD device 11 shown in FIG. 1 . A cylindrical member made of isotropic graphite was used as the carbon substrate 14. The carbon substrate 14 was supported by a supporting means 15 having three supporting portions with pointed tips. The surface roughness Ra of the carbon substrate 14 was 5.0 μm.
接著,將反應室12加熱至溫度1550℃之後,將TaCl 5氣體及NbCl 5氣體的混合氣體、CH 4氣體以及Ar氣體混合,並將所得之混合氣體供給至反應室12,在碳基材14的表面上形成碳化鉭層,製作出實施例1之經碳化鉭被覆之碳材料。碳化鉭層的成膜時間為3小時。又,透過質量流量控制器將CH 4氣體及載體氣體(Ar氣體)的流量分別控制為1.0SLM及1.0SLM。 Next, after the reaction chamber 12 is heated to a temperature of 1550°C, a mixed gas of TaCl 5 gas and NbCl 5 gas, CH 4 gas and Ar gas are mixed and the resulting mixed gas is supplied to the reaction chamber 12 to form a tantalum carbide layer on the surface of the carbon substrate 14, thereby producing the tantalum carbide-coated carbon material of Example 1. The film formation time of the tantalum carbide layer is 3 hours. In addition, the flow rates of CH 4 gas and carrier gas (Ar gas) are controlled to 1.0 SLM and 1.0 SLM respectively by mass flow controllers.
TaCl 5氣體及NbCl 5氣體的混合氣體係如以下方式製作。在圖2所示之金屬氯化物產生裝置21中,配置放入有Ta金屬1000g及Nb金屬0.10g的石英製容器24。接著,透過加熱裝置23將Ta金屬及Nb金屬加熱至850℃,並向金屬氯化物產生裝置21供給HCl氣體及Cl 2氣體的混合氣體,使Ta金屬及Nb金屬與HCl氣體及Cl 2氣體的混合氣體(HCl氣體:Cl 2氣體=1:1(莫耳比))進行反應,製作出TaCl 5氣體及NbCl 5氣體的混合氣體。將TaCl 5氣體及NbCl 5氣體的混合氣體控制為0.25SLM,並供給至反應室12內。Ta金屬及Nb金屬係使用純度為99.999%者。碳化鉭層的厚度為40μm。 The mixed gas of TaCl 5 gas and NbCl 5 gas is produced as follows. In the metal chloride production device 21 shown in FIG. 2 , a quartz container 24 containing 1000 g of Ta metal and 0.10 g of Nb metal is arranged. Then, the Ta metal and the Nb metal are heated to 850° C. by the heating device 23, and the mixed gas of HCl gas and Cl 2 gas is supplied to the metal chloride production device 21, so that the Ta metal and the Nb metal react with the mixed gas of HCl gas and Cl 2 gas (HCl gas:Cl 2 gas=1:1 (molar ratio)) to produce the mixed gas of TaCl 5 gas and NbCl 5 gas. The mixed gas of TaCl 5 gas and NbCl 5 gas is controlled to 0.25 SLM and supplied to the reaction chamber 12. Ta metal and Nb metal used have a purity of 99.999%. The thickness of the tantalum carbide layer is 40μm.
(實施例2) 除為了產生TaCl 5氣體及NbCl 5氣體的混合氣體,將Ta金屬1000g及Nb金屬0.50g放入至石英製容器24以外,以與實施例1相同的方法製作實施例2的經碳化鉭被覆之碳材料。 (Example 2) A titanium carbide-coated carbon material of Example 2 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal and 0.50 g of Nb metal were placed in a quartz container 24 in order to generate a mixed gas of TaCl 5 gas and NbCl 5 gas.
(實施例3) 除為了產生TaCl 5氣體及NbCl 5氣體的混合氣體,將Ta金屬1000g及Nb金屬1.00g放入至石英製容器24以外,以與實施例1相同的方法製作實施例3的經碳化鉭被覆之碳材料。 (Example 3) A tantalum carbide-coated carbon material of Example 3 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal and 1.00 g of Nb metal were placed in a quartz container 24 in order to generate a mixed gas of TaCl 5 gas and NbCl 5 gas.
(實施例4) 除為了產生TaCl 5氣體及NbCl 5氣體的混合氣體,將Ta金屬1000g及Nb金屬2.00g放入至石英製容器24以外,以與實施例1相同的方法製作實施例4的經碳化鉭被覆之碳材料。 (Example 4) A tantalum carbide-coated carbon material of Example 4 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal and 2.00 g of Nb metal were placed in a quartz container 24 in order to generate a mixed gas of TaCl 5 gas and NbCl 5 gas.
(實施例5) 除為了產生TaCl 5氣體及NbCl 5氣體的混合氣體,將Ta金屬1000g及Nb金屬3.00g放入至石英製容器24以外,以與實施例1相同的方法製作實施例5的經碳化鉭被覆之碳材料。 (Example 5 ) A titanium carbide-coated carbon material of Example 5 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal and 3.00 g of Nb metal were placed in a quartz container 24 in order to generate a mixed gas of TaCl 5 gas and NbCl 5 gas.
(實施例6) 除為了產生TaCl 5氣體及NbCl 5氣體的混合氣體,將Ta金屬1000g及Nb金屬4.00g放入至石英製容器24以外,以與實施例1相同的方法製作實施例6的經碳化鉭被覆之碳材料。 (Example 6) A tantalum carbide-coated carbon material of Example 6 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal and 4.00 g of Nb metal were placed in a quartz container 24 in order to generate a mixed gas of TaCl 5 gas and NbCl 5 gas.
(實施例7) 除為了產生TaCl 5氣體及NbCl 5氣體的混合氣體,將Ta金屬1000g及Nb金屬5.00g放入至石英製容器24以外,以與實施例1相同的方法製作實施例7的經碳化鉭被覆之碳材料。 (Example 7) A tantalum carbide-coated carbon material of Example 7 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal and 5.00 g of Nb metal were placed in a quartz container 24 in order to generate a mixed gas of TaCl 5 gas and NbCl 5 gas.
(比較例1) 除為了產生TaCl 5氣體及FeCl 3氣體的混合氣體來替代TaCl 5氣體及NbCl 5氣體的混合氣體,而將Ta金屬1000g及Fe金屬5.00g放入至石英製容器24以外,以與實施例1相同的方法製作比較例1的經碳化鉭被覆之碳材料。 (Comparative Example 1) A tantalum carbide - coated carbon material of Comparative Example 1 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal and 5.00 g of Fe metal were placed in a quartz container 24 in order to produce a mixed gas of TaCl 5 gas and FeCl 3 gas instead of a mixed gas of TaCl 5 gas and NbCl 5 gas.
(比較例2) 除為了產生TaCl 5氣體來替代TaCl 5氣體及NbCl 5氣體的混合氣體,而將Ta金屬1000g放入至石英製容器24以外,以與實施例1相同的方法製作比較例2的經碳化鉭被覆之碳材料。 (Comparative Example 2) A tantalum carbide - coated carbon material of Comparative Example 2 was prepared in the same manner as in Example 1, except that 1000 g of Ta metal was placed in the quartz container 24 in order to generate TaCl 5 gas instead of the mixed gas of TaCl 5 gas and NbCl 5 gas.
對於如以上方式製作之實施例1~7及比較例1~2的經碳化鉭被覆之碳材料進行以下評估。The following evaluations were performed on the titanium carbide-coated carbon materials of Examples 1 to 7 and Comparative Examples 1 to 2 prepared in the above manner.
(碳化鉭被覆膜之表面粗糙度Ra) 碳化鉭被覆膜之表面粗糙度Ra係基於JIS B 0633:2001 (ISO 4288:1996)進行測定。 (Surface roughness Ra of tantalum carbide coating) The surface roughness Ra of tantalum carbide coating is measured based on JIS B 0633:2001 (ISO 4288:1996).
(碳基材之表面粗糙度Ra) 碳基材之表面粗糙度Ra係基於JIS B 0633:2001(ISO 4288:1996)進行測定。 (Surface roughness Ra of carbon substrate) The surface roughness Ra of carbon substrate is measured based on JIS B 0633:2001 (ISO 4288:1996).
(碳化鉭被覆膜中之鉭原子數相對於碳原子數的倍數) 碳化鉭被覆膜中所含之鉭原子數及碳原子數係基於X射線繞射(XRD)測定的波峰強度來決定。 (The number of tantalum atoms in the tantalum carbide coating relative to the number of carbon atoms) The number of tantalum atoms and carbon atoms contained in the tantalum carbide coating is determined based on the peak intensity measured by X-ray diffraction (XRD).
(藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量) 依據上述說明書中記載的方法,藉由輝光放電質譜法測定碳化鉭被覆膜中之鈮的含量。 (The content of niobium in the tantalum carbide coating measured by fluorescence discharge mass spectrometry) According to the method described in the above manual, the content of niobium in the tantalum carbide coating was measured by fluorescence discharge mass spectrometry.
(藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量) 依據上述說明書中記載的方法,藉由輝光放電質譜法測定碳化鉭被覆膜中之鐵的含量。 (Iron content in tantalum carbide coating measured by fluorescence discharge mass spectrometry) According to the method described in the above manual, the iron content in tantalum carbide coating was measured by fluorescence discharge mass spectrometry.
(碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬) 依據上述說明書中記載的方法,測定碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬。 (Half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystal in the tantalum carbide coating) The half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystal in the tantalum carbide coating was measured according to the method described in the above manual.
(HTCVD中之耐久性的評估) 於圖3示出HTCVD裝置30的概略圖。首先,在密接於台座35的支撐面之種晶33上使SiC單晶32成長。具體來說,將原料氣體在HTCVD裝置30內的氣體分解室進行熱分解,並供給到種晶33。原料氣體中,使用SiH 4氣體、C 3H 8氣體及HCl氣體,並進一步使用H 2氣體作為載體氣體。將C/Si比設為約1.0,成長壓力設為53kPa。種晶33的表面溫度為2200~2400℃,反應時間設為6小時,氣體分解室之坩堝31的溫度設為2300~2500℃。使用實施例1~7及比較例1~2的經碳化鉭被覆之碳材料作為氣體分解室的坩堝31。重複多次SiC單晶的製造,測定直到經碳化鉭被覆之碳材料因碳化鉭膜之剝離等而變得無法使用為止之SiC單晶的製造次數。 (Evaluation of durability in HTCVD) A schematic diagram of an HTCVD apparatus 30 is shown in FIG3 . First, a SiC single crystal 32 is grown on a seed crystal 33 in close contact with a supporting surface of a pedestal 35. Specifically, a raw material gas is thermally decomposed in a gas decomposition chamber in the HTCVD apparatus 30 and supplied to the seed crystal 33. Among the raw material gases, SiH 4 gas, C 3 H 8 gas and HCl gas are used, and H 2 gas is further used as a carrier gas. The C/Si ratio is set to about 1.0, and the growth pressure is set to 53 kPa. The surface temperature of the seed crystal 33 is 2200~2400°C, the reaction time is set to 6 hours, and the temperature of the crucible 31 of the gas decomposition chamber is set to 2300~2500°C. The carbon material coated with tantalum carbide of Examples 1 to 7 and Comparative Examples 1 to 2 was used as the crucible 31 of the gas decomposition chamber. The production of SiC single crystal was repeated many times, and the number of times the SiC single crystal was produced until the carbon material coated with tantalum carbide became unusable due to peeling of the tantalum carbide film was measured.
(藉由HTCVD法所製作的SiC單晶中之鈮的濃度) 藉由二次離子質譜法(SIMS)算出SiC單晶中之鈮的濃度。 (Concentration of niobium in SiC single crystals produced by HTCVD) The concentration of niobium in SiC single crystals was calculated by secondary ion mass spectroscopy (SIMS).
(藉由HTCVD法所製作的SiC單晶中之鐵的濃度) 藉由二次離子質譜法(SIMS)算出SiC單晶中之鐵的濃度。 (Iron concentration in SiC single crystal produced by HTCVD) The iron concentration in SiC single crystal was calculated by secondary ion mass spectrometry (SIMS).
將評估結果示於表1。又,作為藉由輝光放電質譜法所測定之碳化鉭被覆膜之從表面至深度方向的鉭、碳、鈮及鐵的含量之分佈的一例,將實施例4的碳化鉭被覆膜之測定結果示於圖4。又,作為經碳化鉭被覆之碳材料之XRD測定結果的一例,將實施例4的經碳化鉭被覆之碳材料之XRD測定結果示於圖5。又,將藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量,與碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬之關係示於圖6。又,將藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量,與經碳化鉭被覆之碳材料無法使用為止的SiC單晶的製造次數之關係示於圖7。The evaluation results are shown in Table 1. In addition, as an example of the distribution of the content of tantalum, carbon, niobium and iron in the tantalum carbide coating film from the surface to the depth direction measured by fluorescence discharge mass spectrometry, the measurement result of the tantalum carbide coating film of Example 4 is shown in FIG4. In addition, as an example of the XRD measurement result of the carbon material coated with tantalum carbide, the XRD measurement result of the carbon material coated with tantalum carbide of Example 4 is shown in FIG5. In addition, the relationship between the content of niobium in the tantalum carbide coating film measured by fluorescence discharge mass spectrometry and the half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystal in the tantalum carbide coating film is shown in FIG6. FIG. 7 shows the relationship between the content of niobium in the tantalum carbide coating film measured by fluorescence discharge mass spectrometry and the number of SiC single crystals produced until the tantalum carbide-coated carbon material became unusable.
由表1所示之實施例1~7及比較例1~2的經碳化鉭被覆之碳材料的評估結果及圖7可知,當藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量為15質量ppm以上,且藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量為20質量ppm以下時,經碳化鉭被覆之碳材料無法使用為止的SiC單晶的製造次數變多。由此可知,當藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量為15質量ppm以上,且藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鐵的含量為20質量ppm以下時,經碳化鉭被覆之碳材料的耐蝕性得到改善。From the evaluation results of the tantalum carbide-coated carbon materials of Examples 1 to 7 and Comparative Examples 1 to 2 shown in Table 1 and FIG. 7 , it can be seen that when the content of niobium in the tantalum carbide coating film measured by fluorescence discharge mass spectrometry is greater than 15 mass ppm and the content of iron in the tantalum carbide coating film measured by fluorescence discharge mass spectrometry is less than 20 mass ppm, the number of SiC single crystals produced until the tantalum carbide-coated carbon material cannot be used increases. It can be seen from this that when the content of niobium in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is 15 mass ppm or more and the content of iron in the tantalum carbide coating measured by fluorescence discharge mass spectrometry is 20 mass ppm or less, the corrosion resistance of the carbon material coated with tantalum carbide is improved.
由圖6中所示之藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量,與碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬之關係可知,藉由測定碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬,能夠推得碳化鉭被覆膜中之鈮的含量。From the relationship between the niobium content in the tantalum carbide film measured by fluorescence discharge mass spectrometry and the half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystals in the tantalum carbide film shown in FIG6 , it can be seen that the niobium content in the tantalum carbide film can be inferred by measuring the half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystals in the tantalum carbide film.
11:外熱型減壓CVD裝置 12:反應室 13:加熱器 14:碳基材 15:支撐手段 16:原料供給部 17:排氣部 21:金屬氯化物產生裝置 23:加熱裝置 24:容器(石英製容器) 25:鉭金屬及少量的鈮金屬 30:HTCVD裝置 31:坩堝 32:SiC單晶 33:種晶 35:台座 11: External heating type decompression CVD device 12: Reaction chamber 13: Heater 14: Carbon substrate 15: Support means 16: Raw material supply unit 17: Exhaust unit 21: Metal chloride generation device 23: Heating device 24: Container (quartz container) 25: Tungsten metal and a small amount of Niobium metal 30: HTCVD device 31: Crucible 32: SiC single crystal 33: Seed crystal 35: Pedestal
[圖1]為外熱型減壓CVD裝置之概略圖。 [圖2]為金屬氯化物產生裝置之概略圖。 [圖3]為HTCVD裝置之概略圖。 [圖4]為表示實施例4中之經碳化鉭被覆之碳材料之藉由輝光放電質譜法所得之測定結果的圖。 [圖5]為實施例4的經碳化鉭被覆之碳材料之XRD測定結果。 [圖6]為表示藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量,與碳化鉭被覆膜中之碳化鉭結晶的(200)面所對應之波峰的半值寬之關係的圖。 [圖7]為表示藉由輝光放電質譜法所測定之碳化鉭被覆膜中之鈮的含量,與經碳化鉭被覆之碳材料無法使用為止的SiC單晶的製造次數之關係的圖。 [Figure 1] is a schematic diagram of an external heating type reduced pressure CVD device. [Figure 2] is a schematic diagram of a metal chloride generation device. [Figure 3] is a schematic diagram of an HTCVD device. [Figure 4] is a diagram showing the measurement results of the tantalum carbide coated carbon material in Example 4 obtained by fluorescence discharge mass spectrometry. [Figure 5] is the XRD measurement results of the tantalum carbide coated carbon material in Example 4. [Figure 6] is a diagram showing the relationship between the niobium content in the tantalum carbide coating film measured by fluorescence discharge mass spectrometry and the half-value width of the peak corresponding to the (200) plane of the tantalum carbide crystal in the tantalum carbide coating film. [Figure 7] is a graph showing the relationship between the content of niobium in the tantalum carbide coating measured by fluorescence discharge mass spectrometry and the number of SiC single crystals produced until the tantalum carbide-coated carbon material becomes unusable.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-007989 | 2023-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202436210A true TW202436210A (en) | 2024-09-16 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102675266B1 (en) | Tantalum carbide-coated carbon material, method for manufacturing thereof, and member for semiconductor single crystal manufacturing apparatus | |
EP3466874B1 (en) | Carbon material coated with tantalum carbide | |
Tu et al. | Morphology and mechanical behavior of diamond films fabricated by IH-MPCVD | |
JP5331263B1 (en) | Silicon carbide material and method for producing silicon carbide material | |
CN103270203B (en) | Epitaxial growth method for materials and parts and monocrystalline silicon carbide for monocrystalline silicon carbide epitaxial growth | |
US10358741B2 (en) | Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide | |
JP6609300B2 (en) | Equipment for growing silicon carbide of specific shape | |
CN103282557B (en) | Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide | |
TW202436210A (en) | Titanium carbide coated carbon material | |
WO2024157893A1 (en) | Tantalum carbide-coated carbon material | |
Chen et al. | Factors affecting the growth of SiC nano-whiskers | |
Kim et al. | High‐Temperature Corrosion Resistance of Chemically Vapor Deposited Silicon Carbide against Hydrogen Chloride and Hydrogen Gaseous Environments | |
JP7544671B2 (en) | Tantalum carbide coated carbon material | |
WO2024203034A1 (en) | Metal carbide-coated carbon material | |
JP2003034867A (en) | TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR | |
WO2024228309A1 (en) | Metal carbide-coated carbon material | |
JP3091305B2 (en) | Method for manufacturing silicon carbide film | |
JP2023015602A (en) | Tantalum nitride-coated carbon material and compound semiconductor growth equipment | |
JPH1059770A (en) | Silicon carbide polycrystal material and corrosion resistant member | |
JP2024104002A (en) | Method for producing carbon material coated with tantalum carbide and compound semiconductor growth device | |
Claudel et al. | High-speed growth and characterization of polycrystalline AlN layers by high temperature chemical vapor deposition (HTCVD) | |
JP5724121B2 (en) | Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide | |
JP5707613B2 (en) | Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method | |
JP5724123B2 (en) | Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide | |
JP5793815B2 (en) | Seed material for liquid crystal epitaxial growth of single crystal silicon carbide and liquid crystal epitaxial growth method of single crystal silicon carbide |