[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW202426672A - Rigid sapphire based direct patterning deposition mask - Google Patents

Rigid sapphire based direct patterning deposition mask Download PDF

Info

Publication number
TW202426672A
TW202426672A TW112133757A TW112133757A TW202426672A TW 202426672 A TW202426672 A TW 202426672A TW 112133757 A TW112133757 A TW 112133757A TW 112133757 A TW112133757 A TW 112133757A TW 202426672 A TW202426672 A TW 202426672A
Authority
TW
Taiwan
Prior art keywords
substrate
mask
etching
sapphire
deposition
Prior art date
Application number
TW112133757A
Other languages
Chinese (zh)
Inventor
阿曼庫瑪 P 高斯
林浩
費德瑞奇 維詹
伊葉思 I 海魯林
趙方超
凱瑞 泰斯
提摩西 康西丁
勞利 史西克萊斯
Original Assignee
美商伊麥傑公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/236,243 external-priority patent/US20240081135A1/en
Application filed by 美商伊麥傑公司 filed Critical 美商伊麥傑公司
Publication of TW202426672A publication Critical patent/TW202426672A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A direct patterning deposition mask for OLED deposition is provided where the mask includes a sapphire substrate; and a Silicon Nitride (SiN) membrane. The sapphire substrate thickness may be between 0.7 and 2 mm. The sapphire substrate may have a diameter in the range of 200mm diameter to 300mm diameter. Warpage of the substrate is preferably less than 10um.

Description

剛性藍寶石基底之直接圖案化沉積光罩Direct patterning deposition mask on rigid sapphire substrate

本申請案針對於直接圖案化沉積(dPd)。更特定而言,本發明針對於顯示器中之dPd技術。This application is directed to direct patterned deposition (dPd). More specifically, the invention is directed to dPd technology in displays.

遮蔭光罩基底之沉積係一程序,藉由該程序將一材料層沉積至一基板之表面上使得該層之所要圖案在沉積程序本身期間被界定。此沉積技藝有時被稱作「直接圖案化」。Deposition of shadow mask backing is a process by which a layer of material is deposited onto the surface of a substrate such that the desired pattern of the layer is defined during the deposition process itself. This deposition technique is sometimes referred to as "direct patterning".

在一典型遮蔭光罩沉積程序中,所要材料在位於距基板一定距離處之一源處汽化,其中一遮蔭光罩定位於該基板與該源之間。隨著材料之汽化原子朝向基板行進,該等汽化原子穿過恰好定位於基板表面前面的遮蔭光罩中之一組穿孔。穿孔(亦即,孔口)配置成基板上之材料之所要圖案。因此,遮蔭光罩阻擋除穿過穿孔之汽化原子外之所有汽化原子通過,穿過穿孔之汽化原子以所要圖案之形式沉積在基板表面上。遮蔭光罩基底之沉積類似於用於在衣物上形成圖案(例如,均勻的數字等)之絲網技藝或用於開發藝術品之模板印刷。In a typical shadow mask deposition process, the desired material is vaporized at a source located at a distance from the substrate, with a shadow mask positioned between the substrate and the source. As the vaporized atoms of the material travel toward the substrate, they pass through a set of perforations in the shadow mask positioned just in front of the substrate surface. The perforations (i.e., orifices) are configured in the desired pattern of material on the substrate. Thus, the shadow mask blocks the passage of all vaporized atoms except those that pass through the perforations, which are deposited on the substrate surface in the desired pattern. The deposition of shadow mask bases is similar to the screen technology used to form patterns (e.g., uniform numbers, etc.) on clothing or stencil printing used to develop artwork.

遮蔭光罩基底之沉積多年來在積體電路(IC)產業中用於在基板上沉積材料之圖案,此部分歸因於其避免了在一材料層已沉積之後需要對其進行圖案化的事實。因此,使用遮蔭光罩基底之沉積消除了將已沉積材料暴露於刺激性化學品(例如,基於酸之蝕刻劑、苛性光微影術開發化學品等)以對其進行圖案化之需要。另外,遮蔭光罩基底之沉積較少需要對基板進行搬運及處理,藉此降低基板斷裂之風險並提高製作良率。此外,諸如有機材料等諸多材料不能在遭遇光微影化學品時不受損壞,此使藉由遮蔭光罩來沉積此等材料成為一必要。Shadow mask deposition has been used for many years in the integrated circuit (IC) industry to deposit patterns of material on substrates, in part due to the fact that it avoids the need to pattern a layer of material after it has been deposited. Thus, using shadow mask deposition eliminates the need to expose the deposited material to harsh chemicals (e.g., acid-based etchants, caustic photolithography development chemicals, etc.) in order to pattern it. Additionally, shadow mask deposition requires less handling and processing of the substrate, thereby reducing the risk of substrate cracking and improving manufacturing yields. Additionally, many materials, such as organic materials, cannot withstand photolithography chemistries without being damaged, necessitating the deposition of such materials through a shadow mask.

一高品質dPd光罩係用於dPd製造、特別係用於OLED微顯示器之一關鍵固定物。A high-quality dPd mask is a key fixture in dPd manufacturing, especially for OLED microdisplays.

藉由使用利用模版微影術對OLED之直接圖案化,可製作高效、高解析度OLED微顯示器。用於OLED之色彩發射器沉積使用可具有奈米尺度特徵之一遮蔭光罩。遮蔭光罩具有匹配微顯示器之底層電晶體之精確度及準確度且以較高解析度建立色彩發射器。By using direct patterning of OLEDs using stencil lithography, efficient, high-resolution OLED microdisplays can be made. Deposition of color emitters for OLEDs uses a shadow mask that can have nanoscale features. The shadow mask has the precision and accuracy to match the underlying transistors of the microdisplay and creates the color emitters at higher resolution.

如圖1中可見,如所知,一平整基板(諸如一矽晶圓)用於構建一遮蔭光罩。使用化學汽相沉積(CVD)在基板之兩側上沉積一薄膜(諸如氮化矽)。此氮化矽層可充當一側上之一蝕刻屏障以及另一側上之一懸空式膜片。亦已使用氧化矽、氧化鋁或其他薄膜材料替代氮化矽。薄膜之一側經蝕刻以將基板暴露以進行一後續穿基板蝕刻程序。舉例而言,氮化矽可使用光微影術來被圖案化且經乾式蝕刻來移除氮化矽。薄膜之另一側使用微影術來被圖案化且經蝕刻來建立所要遮蔭光罩圖案。再次,此另一側可使用光微影術與乾式蝕刻。當然,可使用其他圖案化方法。美國專利第9,385,323號(Chan等人)詳細闡述了此先前技術程序。As can be seen in FIG. 1 , as is known, a flat substrate (such as a silicon wafer) is used to construct a shadow mask. A thin film (such as silicon nitride) is deposited on both sides of the substrate using chemical vapor deposition (CVD). This silicon nitride layer can act as an etch barrier on one side and a suspended diaphragm on the other side. Silicon oxide, aluminum oxide, or other thin film materials have also been used instead of silicon nitride. One side of the film is etched to expose the substrate for a subsequent through-substrate etch process. For example, the silicon nitride can be patterned using photolithography and dry etched to remove the silicon nitride. The other side of the film is patterned using lithography and etched to create the desired shadow mask pattern. Again, this other side may use photolithography and dry etching. Of course, other patterning methods may be used. U.S. Patent No. 9,385,323 (Chan et al.) describes this prior art process in detail.

穿基板蝕刻使薄膜自由懸垂,此使得膜能夠用作一遮蔭光罩。可使用例如氫氧化鉀來蝕刻基板。Through-substrate etching leaves the film free-hanging, which enables the film to be used as a shadow mask. The substrate can be etched using, for example, potassium hydroxide.

可透過遮蔭光罩執行圖案化蒸發。將一微顯示器基板放置成接近或接觸遮蔭光罩。可將該設置引入至一沉積系統中來使材料蒸發。在蒸發之後,在基板上將存在一經圖案化材料。此在圖2中圖解說明。Patterned evaporation can be performed through a shadow mask. A microdisplay substrate is placed close to or in contact with the shadow mask. The setup can be introduced into a deposition system to evaporate the material. After evaporation, a patterned material will be present on the substrate. This is illustrated in FIG2 .

關於dPd技術存在兩個主要挑戰。第一,dPd光罩必須製造得儘可能平整。按慣例,一矽(Si)晶圓已用作框架材料。參見圖3。沉積一SiN (氮化矽)膜,然後製作一高解析度圖案。參見圖4,其繪示用於一dPd程序之一典型1 µm SiN光罩。然而,由於Si晶圓之有限剛性(最多35 µm翹曲度,因在積體電路(IC)產業中0.7 mm Si係典型的),在dPd光罩製作之後剩餘一明顯翹曲度及彎曲度。因此,Si基底之dPd光罩翹曲度可高達30 µm至40 µm (參見圖5,其繪示跨越一8英吋晶圓量測之dPd光罩翹曲度之一實例,其中一SiN膜片位於一Si框架之頂部上)。下文表1展示跨越一8英吋晶圓之dPd光罩翹曲度之一實例,其中一個氮化矽膜片在圖5之點1至點4處位於一Si框架之頂部上:There are two main challenges with dPd technology. First, the dPd mask must be made as flat as possible. Conventionally, a silicon (Si) wafer has been used as the frame material. See Figure 3. A SiN (silicon nitride) film is deposited and then a high-resolution pattern is made. See Figure 4, which shows a typical 1 µm SiN mask used for a dPd process. However, due to the finite rigidity of the Si wafer (up to 35 µm warp, as 0.7 mm Si is typical in the integrated circuit (IC) industry), a significant warp and bow remains after the dPd mask is made. Therefore, the dPd mask warp on Si substrates can be as high as 30 µm to 40 µm (see Figure 5, which shows an example of dPd mask warp measured across an 8-inch wafer, where a SiN diaphragm is located on top of a Si frame). Table 1 below shows an example of dPd mask warp across an 8-inch wafer, where a silicon nitride diaphragm is located on top of a Si frame at points 1 to 4 of Figure 5:

位置 Location 光罩1 (RG) µm Mask 1 (RG) µm 光罩2 (B) µm Mask 2 (B) µm 1 1 38.8 38.8 30.4 30.4 2 2 39.7 39.7 32 32 3 3 36.7 36.7 30.67 30.67 4 4 38.8 38.8 33 33 surface 11

此高光罩翹曲度可在有機沉積期間在光罩與晶圓之間產生大的間隙且在橫向沉積中導致不想要的羽化。所沉積材料傾向在穿過遮蔭光罩之後橫向擴展(被稱作「羽化」)。羽化隨基板與遮蔭光罩之間的分隔量值而增加。為減輕羽化,在不損害固持基板及遮蔭光罩之卡盤的完整性之情況下使此分隔保持儘可能小。更進一步,此分隔跨越沉積區域之任何不均勻性將引起羽化量上之變化。此不均勻性可起因於例如基板與遮蔭光罩之間的平行度之一缺失、基板及遮蔭光罩中之一者或兩者之彎曲或下垂及諸如此類。此外,一遮蔭光罩必須僅在其周界處被支撐以避免阻擋去往穿孔圖案之汽化原子通過。因此,遮蔭光罩之中央可由於重力下垂,此進一步加劇了羽化問題。參見圖6,其繪示針對兩個沉積角度隨晶圓至光罩間隙自1微米至10微米變化所計算的羽化距離之一實例。This high mask warp can create a large gap between the mask and the wafer during organic deposition and cause unwanted feathering in lateral deposition. The deposited material tends to spread laterally after passing through the shadow mask (referred to as "feathering"). Feathering increases with the amount of separation between the substrate and the shadow mask. To reduce feathering, this separation is kept as small as possible without compromising the integrity of the chuck holding the substrate and shadow mask. Furthermore, any non-uniformity in this separation across the deposition area will cause variations in the amount of feathering. This non-uniformity can arise from, for example, a loss of parallelism between the substrate and the shadow mask, bending or sagging of one or both of the substrate and shadow mask, and the like. In addition, a shadow mask must be supported only at its periphery to avoid blocking the passage of vaporized atoms to the perforated pattern. As a result, the center of the shadow mask can sag due to gravity, which further exacerbates the feathering problem. See FIG. 6 , which shows an example of feathering distance calculated for two deposition angles as the wafer-to-mask gap varies from 1 micron to 10 microns.

一第二挑戰係關於基板之可製造性。為了將SiN膜片及剛性基板兩者整合在一起以製成一dPd光罩,應針對基板蝕刻、化學相容性等設計一適合程序。應考量基板性質及程序整合。A second challenge is about the manufacturability of the substrate. In order to integrate both SiN membrane and rigid substrate to make a dPd mask, a suitable process should be designed for substrate etching, chemical compatibility, etc. Substrate properties and process integration should be considered.

本發明針對於一種用於OLED沉積之直接圖案化沉積光罩,其中該光罩包含一藍寶石基板及一個氮化矽(SiN)膜片。藍寶石基板厚度可係例如介於0.7 mm與2 mm之間。藍寶石基板(晶圓)直徑可係例如200 mm直徑或300 mm直徑。一藍寶石晶圓圖案化程序較佳地與SiN膜片程序相容。該基板之翹曲度可被限制成例如小於10 um。該光罩改良了OLED像素沉積羽化及OLED效能。The present invention is directed to a direct patterned deposition mask for OLED deposition, wherein the mask comprises a sapphire substrate and a silicon nitride (SiN) membrane. The sapphire substrate thickness may be, for example, between 0.7 mm and 2 mm. The sapphire substrate (wafer) diameter may be, for example, 200 mm diameter or 300 mm diameter. A sapphire wafer patterning process is preferably compatible with the SiN membrane process. The curvature of the substrate may be limited to, for example, less than 10 um. The mask improves OLED pixel deposition feathering and OLED performance.

本發明亦提供一種用於蝕刻一藍寶石基板之程序,該程序包含以下步驟中之至少兩者:機械鑽鑿;濕式蝕刻;乾式蝕刻;及雷射誘導蝕刻加濕式蝕刻。The present invention also provides a process for etching a sapphire substrate, the process comprising at least two of the following steps: mechanical drilling; wet etching; dry etching; and laser induced etching plus wet etching.

相關申請案之交叉參考Cross-reference to related applications

本申請案主張2022年9月6日提出申請之標題為剛性藍寶石基底之直接圖案化沉積光罩(Rigid Sapphire Based Direct Patterning Deposition Mask)之尚在申請中之美國臨時專利申請案第63/403,964號之優先權。This application claims priority to the pending U.S. Provisional Patent Application No. 63/403,964 filed on September 6, 2022, entitled "Rigid Sapphire Based Direct Patterning Deposition Mask".

本發明針對於用於OLED沉積之一直接圖案化沉積光罩。該光罩包含一藍寶石基板及一個氮化矽(SiN)膜片。為了降低光罩翹曲度,本發明針對於將藍寶石作為用於SiN沉積及圖案化之基底材料。參見圖7,其繪示用於將一藍寶石晶圓製造成一dPd光罩基底材料之一方法。已在LED產業中廣泛使用具有極佳剛性之藍寶石晶圓。藍寶石晶圓具有大致係Si晶圓兩倍高之一楊氏模數(如下文表2中所展示,表2展示藍寶石性質及矽性質與氮化矽、金剛石及不變鋼的比較)。    楊氏模數(Gpa) CTE (ppm/C) SiN 290 3.3 Si 168.9 2.6-3.3 藍寶石 340-400 5.5 金剛石 1220 0.8 不變鋼(Fe64Ni36) 137 1.2 2 The present invention is directed to a direct patterned deposition mask for OLED deposition. The mask includes a sapphire substrate and a silicon nitride (SiN) membrane. In order to reduce the warp of the mask, the present invention is directed to using sapphire as a base material for SiN deposition and patterning. See Figure 7, which shows a method for making a sapphire wafer into a dPd mask base material. Sapphire wafers with excellent rigidity have been widely used in the LED industry. Sapphire wafers have a Young's modulus that is approximately twice as high as that of Si wafers (as shown in Table 2 below, which shows a comparison of sapphire properties and silicon properties with silicon nitride, diamond and stainless steel). Young's modulus (Gpa) CTE (ppm/C) S N 290 3.3 Si 168.9 2.6-3.3 Sapphire 340-400 5.5 Diamond 1220 0.8 Stainless steel (Fe64Ni36) 137 1.2 Table 2

基於在表3 (下文)中展示之一調查,1.3 mm厚的藍寶石翹曲度可被控制成< 8 µm,表3繪示矽晶圓翹曲度之實例,其係與繪示藍寶石晶圓翹曲度之表4 (下文)相比而言。    規格 平均值 S.D. N 最小值 最大值 彎曲度(µm) <35 1.009 0.649 125 -1.028 2.663 翹曲(µm) <35 6.150 1.734 125 3.070 14.970 3 8英吋直徑藍寶石晶圓;1.3t SSP    直徑 厚度 彎曲度 翹曲 顆粒    200+/-0.25 mm直徑 1.3+/-0.025 mm 0+/-6 µm </= 5 µm ----- 1 199.91 1.307 -3.40 4.32 91 2 199.91 1.306 -3.13 5.45 122 3 199.91 1.308 -3.79 6.55 187 4 199.91 1.310 -4.03 6.01 70 5 199.91 1.305 -4.90 7.10 59 6 199.91 1.307 0.84 2.61 1.38 4 Based on an investigation shown in Table 3 (below), which shows an example of silicon wafer warp, compared to Table 4 (below), which shows sapphire wafer warp, the warp of 1.3 mm thick sapphire can be controlled to < 8 µm. Specifications average value SD N Minimum Maximum Curvature(µm) <35 1.009 0.649 125 -1.028 2.663 Curvature(µm) <35 6.150 1.734 125 3.070 14.970 table 3 8-inch diameter sapphire wafer; 1.3t SSP Diameter thickness Curvature Curve Particles 200+/-0.25 mm diameter 1.3+/-0.025 mm 0+/-6 µm </= 5 µm ----- 1 199.91 1.307 -3.40 4.32 91 2 199.91 1.306 -3.13 5.45 122 3 199.91 1.308 -3.79 6.55 187 4 199.91 1.310 -4.03 6.01 70 5 199.91 1.305 -4.90 7.10 59 6 199.91 1.307 0.84 2.61 1.38 Table 4

然而,針對藍寶石,典型乾式蝕刻僅給出一nm(s)/min蝕刻速率。基本上,此意味著需要一2至3周的週期來結束一個晶圓之蝕刻,此係不實用的。替代地,新開發之高溫濕式蝕刻可給出um(s)/min蝕刻速率,此將晶圓之蝕刻時間減少至1天或更少。However, for sapphire, typical dry etching only gives an etching rate of nm(s)/min. Basically, this means that a cycle of 2 to 3 weeks is required to complete the etching of one wafer, which is not practical. Alternatively, the newly developed high-temperature wet etching can give an etching rate of um(s)/min, which reduces the etching time of a wafer to 1 day or less.

過去,針對蝕刻浴已存在一190℃極限。藍寶石蝕刻速率隨溫度幾何性地增加。可期望達成一300度的溫度之一蝕刻浴。In the past, there has been a 190°C limit for etch baths. Sapphire etch rates increase geometrically with temperature. It is desirable to achieve an etch bath temperature of 300°C.

在相對高的溫度(諸如300度)下進行濕式蝕刻期間,將利用SiN遮蔽之晶圓放置於具有蝕刻劑及緩衝劑之一混合物之一高溫處理槽中。在浸沒之前,一電漿增強化學汽相程序將一個二氧化矽光罩添加至藍寶石基板上,且微影術將所需圖案暴露。混合物處於例如260℃至300℃之溫度下。During wet etching at relatively high temperatures (e.g., 300 degrees), the wafer masked with SiN is placed in a high temperature treatment tank with a mixture of etchant and buffer. Prior to immersion, a plasma enhanced chemical vapor phase process adds a silicon dioxide mask to the sapphire substrate, and lithography exposes the desired pattern. The mixture is at a temperature of, for example, 260°C to 300°C.

White Knight的Accubath™石英槽及特殊設計之自動化站台使藍寶石濕式蝕刻安全、可靠且適合用於大批量製造。參見https://wkfluidhandling.com/resources/sapphire-etching/。White Knight's Accubath™ quartz cells and specially designed automated stations make sapphire wet etching safe, reliable and suitable for high-volume manufacturing. See https://wkfluidhandling.com/resources/sapphire-etching/.

高溫濕式蝕刻程序就速度、成本及可擴縮性而言具有超出乾式蝕刻之優點。High temperature wet etching processes have advantages over dry etching in terms of speed, cost and scalability.

在本發明中,藍寶石基板厚度較佳地介於0.7 mm與2 mm之間。藍寶石基板較佳地具有在200 mm直徑至300 mm直徑之範圍中之一直徑。基板之翹曲度較佳地<10 um。In the present invention, the thickness of the sapphire substrate is preferably between 0.7 mm and 2 mm. The sapphire substrate preferably has a diameter in the range of 200 mm diameter to 300 mm diameter. The curvature of the substrate is preferably <10 um.

根據本發明之另一例示性實施例,如所知,選擇性雷射誘導蝕刻(SLE)可在一個兩步驟程序中使用。在一第一步驟中,藉由雷射輻射將藍寶石在內部改質來提高化學可蝕刻性。為防止在脆性材料中形成裂縫,使用短脈衝持續時間(fs-ps)及一小的焦體積(幾µm 3)。在雷射改質期間,藍寶石之結晶度降級(例如,自晶體降級至非晶體)。在一第二步驟中,藉由濕式蝕刻將經改質藍寶石移除,諸如利用一種氫氧化鉀(KOH)蝕刻。 According to another exemplary embodiment of the invention, selective laser induced etching (SLE) can be used in a two-step process, as known. In a first step, sapphire is modified internally by laser irradiation to improve chemical etchability. To prevent crack formation in the brittle material, short pulse durations (fs-ps) and a small focal volume (a few µm 3 ) are used. During laser modification, the crystallinity of the sapphire is degraded (e.g., from crystalline to amorphous). In a second step, the modified sapphire is removed by wet etching, such as using a potassium hydroxide (KOH) etch.

在該第一步驟中,將超短脈衝化雷射輻射聚焦至一定體積的基板中。脈衝能量基於一多光子程序僅吸收進焦體積中。該程序在不使基板開裂之情況下使其改質,藉此改變基板之化學性質。以此方式,可對材料進行選擇性化學蝕刻。In this first step, ultrashort pulsed laser radiation is focused into a certain volume of the substrate. The pulse energy is absorbed only into the focal volume based on a multiphoton process. This process modifies the substrate without cracking it, thereby changing the chemical properties of the substrate. In this way, selective chemical etching of materials can be performed.

另外,相對於藍寶石蝕刻可使用數種蝕刻方法之一組合。舉例而言,機械鑽鑿、雷射處理、KOH蝕刻、高溫濕式蝕刻(上文所闡述)、基於Cl 2之電感耦合電漿(ICP)蝕刻及Cl 2、BCl 3、ICP反應離子蝕刻(RIE)、20C蝕刻。下文表5展示數種藍寶石薄化與蝕刻方法之一比較。 蝕刻方法 蝕刻速率 蝕刻500 µm厚度之時間 機械鑽鑿 約數分鐘至幾十分鐘 雷射處理,然後30wt% KOH (超音波浴、80C) 10微米/分鐘 50分鐘 高溫濕式蝕刻;硫酸及磷酸,260-300C >1微米/分鐘 8.3小時 Cl 2+ ICP 0.1微米/分鐘 83.3小時(3.5天) Cl 2、BCl 3、ICP +RIE,20C 0.43微米/分鐘 192小時(8天) In addition, a combination of several etching methods can be used for sapphire etching. For example, mechanical drilling, laser processing, KOH etching, high temperature wet etching (described above), Cl2 -based inductively coupled plasma (ICP) etching and Cl2 , BCl3 , ICP reactive ion etching (RIE), 20C etching. Table 5 below shows a comparison of several sapphire thinning and etching methods. Etching method Etching rate Etching time for 500 µm thickness Mechanical Drill high About a few minutes to several tens of minutes Laser treatment, then 30wt% KOH (ultrasonic bath, 80C) 10 microns/min 50 minutes High temperature wet etching; sulfuric acid and phosphoric acid, 260-300C >1 micron/min 8.3 hours Cl 2 + ICP 0.1 micron/min 83.3 hours (3.5 days) Cl 2 , BCl 3 , ICP +RIE, 20C 0.43 μm/min 192 hours (8 days)

圖8繪示用於製成一藍寶石基底之SiN光罩之一程序之一實例。該程序利用具有SiN膜片之一藍寶石基板來開始。藉由機械鑽鑿、濕式蝕刻、乾式蝕刻、選擇性且雷射誘導蝕刻加濕式蝕刻中之一或多者而將一圖案放置於SiN膜片上。將光阻劑施加至基板,自膜片的與該圖案相對之表面移除藍寶石(機械薄化) (例如,自1.3 mm藍寶石移除0.8 mm),然後進行雷射處理加濕式蝕刻以移除藍寶石之一剩餘0.5 mm。FIG8 shows an example of a process for making a SiN mask for a sapphire substrate. The process begins with a sapphire substrate with a SiN membrane. A pattern is placed on the SiN membrane by one or more of mechanical drilling, wet etching, dry etching, selective and laser induced etching plus wet etching. Photoresist is applied to the substrate, sapphire is removed from the surface of the membrane opposite the pattern (mechanical thinning) (e.g., 0.8 mm from 1.3 mm sapphire), and then laser processing wet etching is performed to remove a remaining 0.5 mm of sapphire.

應理解,本揭示內容僅教示圖解說明性實施例之一項實例,且熟習此項技術者可在閱讀此揭示內容之後容易構想本發明之諸多變化,並且本發明之範疇由以下申請專利範圍判定。It should be understood that the present disclosure teaches only one example of illustrative embodiments, and that a person skilled in the art can easily conceive of many variations of the present invention after reading this disclosure, and that the scope of the present invention is determined by the following claims.

圖1係用於一先前技術氮化矽膜片之主要製作步驟之一實例,該等主要製作步驟包含(1)矽晶圓;(2)氮化矽沉積;(3)後側微影術;(4)前側微影術;及(5)自後側穿晶圓蝕刻。FIG. 1 is an example of the major fabrication steps for a prior art silicon nitride membrane, which include (1) silicon wafer; (2) silicon nitride deposition; (3) back side lithography; (4) front side lithography; and (5) back side through wafer etching.

圖2係圖解說明透過一遮蔭光罩之沉積之一簡化視圖。FIG. 2 is a simplified view illustrating deposition through a shadow mask.

圖3係用於一dPd程序之一典型先前技術1 µm SiN光罩之一俯視平面圖。FIG. 3 is a top plan view of a typical prior art 1 µm SiN mask used for a dPd process.

圖4係圖解說明一SiN光罩橫截面之一先前技術實例之一簡化視圖。FIG. 4 is a simplified view illustrating a prior art example of a SiN mask cross section.

圖5係跨越一8英吋晶圓量測之dPd質量翹曲度之一實例之一簡化視圖,其中一SiN膜片位於一Si框架之頂部上,如在表1 (上文)中所展示。FIG. 5 is a simplified view of an example of dPd quality warp measured across an 8-inch wafer with a SiN membrane on top of a Si frame as shown in Table 1 (above).

圖6係針對兩個沉積角度隨一晶圓至光罩間隙自1 µm至10 µm變化所計算的羽化距離之一實例之一圖示繪示。FIG. 6 is a graphical representation of an example of calculated feathering distance for two deposition angles as a wafer-to-mask gap is varied from 1 µm to 10 µm.

圖7係用於氮化矽膜片之主要製造步驟之一簡化視圖,該等主要製造步驟包含(1)藍寶石晶圓;(2)氮化矽沉積;(3)後側微影術;(4)前側微影術;及(5)自後側穿藍寶石晶圓濕式蝕刻。FIG. 7 is a simplified view of the major manufacturing steps for a silicon nitride diaphragm, which include (1) sapphire wafer; (2) silicon nitride deposition; (3) back-side lithography; (4) front-side lithography; and (5) wet etching through the sapphire wafer from the back side.

圖8繪示用於製成一藍寶石基底之SiN光罩的一程序之一實例之簡化步驟。FIG. 8 illustrates simplified steps of an example of a process for making a SiN mask for a sapphire substrate.

Claims (5)

一種用於OLED沉積之直接圖案化沉積光罩,該光罩包括: (a)    一藍寶石基板;及 (b)    氮化矽(SiN)膜片。 A direct patterning deposition mask for OLED deposition, the mask comprising: (a)    a sapphire substrate; and (b)    a silicon nitride (SiN) membrane. 如請求項1之直接圖案化沉積光罩,其中藍寶石基板厚度介於0.7 mm與2 mm之間。A direct patterned deposition mask as claimed in claim 1, wherein the thickness of the sapphire substrate is between 0.7 mm and 2 mm. 如請求項1之直接圖案化沉積光罩,其中該藍寶石基板具有在200 mm直徑至300 mm直徑之範圍中之一直徑。A direct patterned deposition mask as claimed in claim 1, wherein the sapphire substrate has a diameter in the range of 200 mm diameter to 300 mm diameter. 如請求項1之直接圖案化沉積光罩,其中該基板之翹曲度<10 um。A direct patterned deposition mask as claimed in claim 1, wherein the curvature of the substrate is less than 10 um. 一種用於蝕刻一藍寶石基板之程序,其包括以下步驟中之至少兩者: (a)    機械鑽鑿; (b)    濕式蝕刻; (c)    乾式蝕刻;及 (d)    雷射誘導蝕刻加濕式蝕刻。 A process for etching a sapphire substrate comprising at least two of the following steps: (a)    mechanical drilling; (b)    wet etching; (c)    dry etching; and (d)    laser induced etching plus wet etching.
TW112133757A 2022-09-06 2023-09-06 Rigid sapphire based direct patterning deposition mask TW202426672A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263403964P 2022-09-06 2022-09-06
US63/403,964 2022-09-06
US18/236,243 2023-08-21
US18/236,243 US20240081135A1 (en) 2022-09-06 2023-08-21 Rigid Sapphire Based Direct Patterning Deposition Mask

Publications (1)

Publication Number Publication Date
TW202426672A true TW202426672A (en) 2024-07-01

Family

ID=88020805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112133757A TW202426672A (en) 2022-09-06 2023-09-06 Rigid sapphire based direct patterning deposition mask

Country Status (2)

Country Link
TW (1) TW202426672A (en)
WO (1) WO2024054353A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142779B2 (en) 2013-08-06 2015-09-22 University Of Rochester Patterning of OLED materials
US11604183B2 (en) * 2017-01-18 2023-03-14 Roche Sequencing Solutions, Inc. Low-noise biomolecular sensors
US11891689B2 (en) * 2020-03-03 2024-02-06 Arizona Board Of Regents On Behalf Of Arizona State University Low-capacitance nanopore sensors on insulating substrates
US11638388B2 (en) * 2020-05-15 2023-04-25 The Hong Kong University Of Science And Technology High-resolution shadow masks

Also Published As

Publication number Publication date
WO2024054353A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
TW201016626A (en) Method for producing processed glass substrate
JP4750093B2 (en) Mask device, method of manufacturing mask device, and method of manufacturing organic light emitting display device using the same
KR102568046B1 (en) High resolution shadow mask
TW201806082A (en) Articles and methods of forming vias in substrates
JP5203340B2 (en) Manufacturing method of semiconductor device
KR20100071909A (en) Pr0cessed substrate and method for manufacturing same
JP6963023B2 (en) How to make a technical mask
TW202426672A (en) Rigid sapphire based direct patterning deposition mask
CN114300354B (en) Manufacturing method of asymmetric semiconductor structure
US20240081135A1 (en) Rigid Sapphire Based Direct Patterning Deposition Mask
JP2009185362A (en) Deposition apparatus and cleaning method of mask
JP2010070415A (en) Method for manufacturing processed glass substrate
WO2016155149A1 (en) Preparation method for polycrystalline silicon thin film, semiconductor device, display substrate and display device
US11152573B2 (en) Shadow mask comprising a gravity-compensation layer and method of fabrication
JP2005005547A (en) Manufacturing method of thin film member
CN105655248A (en) Alkali corrosion processing method for photoetching alignment mark of non-polished monocrystal-silicon-based device
JP2001052979A (en) Formation method for resist, working method for substrate, and filter structure
JP2008150691A (en) Mask and its manufacturing method
KR20060081562A (en) Method for manufacturing of electro-static chuck
CN113201710A (en) Mask plate, preparation and application thereof
JP4654811B2 (en) Etching mask and dry etching method
KR102137145B1 (en) Etching device, etching method using the same, and manufacturing method for display device
CN115376910B (en) Method for preparing parallel oblique groove patterned silicon substrate
TW201942962A (en) Method of dicing wafer
JP7391792B2 (en) Template, template manufacturing method, and semiconductor device manufacturing method