TW202425513A - Control device for power conversion apparatus - Google Patents
Control device for power conversion apparatus Download PDFInfo
- Publication number
- TW202425513A TW202425513A TW111147823A TW111147823A TW202425513A TW 202425513 A TW202425513 A TW 202425513A TW 111147823 A TW111147823 A TW 111147823A TW 111147823 A TW111147823 A TW 111147823A TW 202425513 A TW202425513 A TW 202425513A
- Authority
- TW
- Taiwan
- Prior art keywords
- transistor
- miller
- voltage
- power module
- power
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 33
- 239000004065 semiconductor Substances 0.000 claims abstract description 28
- 230000005540 biological transmission Effects 0.000 claims abstract description 17
- 239000003990 capacitor Substances 0.000 claims description 35
- 230000003071 parasitic effect Effects 0.000 claims description 24
- 238000010586 diagram Methods 0.000 description 20
- 230000000694 effects Effects 0.000 description 14
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000004146 energy storage Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Power Conversion In General (AREA)
Abstract
Description
本揭示關於一種用於電源轉換設備的控制裝置,特別有關於一種抑制電源轉換設備之中的功率模組之米勒效應的控制裝置。The present disclosure relates to a control device for a power conversion device, and more particularly to a control device for suppressing the Miller effect of a power module in the power conversion device.
電源轉換設備可作為電源(電網)與再生能源(或負載)之間的轉換媒介,因應於不同功率規格的電源設備或負載設備,電源轉換設備可將電源轉換為特定功率及特定形式的電力。電源轉換設備中的功率模組包括功率半導體元件,其具有切換開關的功能。為了提升電源轉換設備的效能,功率模組必須具備更高的切換速度。在目前的技術中,已導入不同材料的功率半導體元件設置於電源轉換設備的功率模組之中。例如,導入碳化矽(SiC)的功率半導體元件以適應於功率規格為1kW至10MW的設備,碳化矽材料之功率半導體元件可操作到10kHz~100kHz的切換速度。又例如,導入氮化鎵(GaN)的功率半導體元件以適應於功率規格為100W至10kW的設備,氮化鎵材料之功率半導體元件可操作到更高的100kHz~10MHz的切換速度。Power conversion equipment can be used as a conversion medium between power supply (grid) and renewable energy (or load). In response to power supply equipment or load equipment with different power specifications, power conversion equipment can convert power into specific power and specific forms of electricity. The power module in the power conversion equipment includes power semiconductor components, which have the function of switching switches. In order to improve the performance of power conversion equipment, the power module must have a higher switching speed. In current technology, power semiconductor components of different materials have been introduced and set in the power module of the power conversion equipment. For example, power semiconductor components of silicon carbide (SiC) are introduced to adapt to equipment with power specifications of 1kW to 10MW. Power semiconductor components made of silicon carbide material can operate at a switching speed of 10kHz~100kHz. For example, power semiconductor devices using gallium nitride (GaN) are suitable for devices with power specifications ranging from 100W to 10kW. Power semiconductor devices made of gallium nitride material can operate at a higher switching speed of 100kHz~10MHz.
雖然,電源轉換設備的功率模組採用特定材料的功率半導體元件可達到更高的切換速度,然而,功率半導體元件的寄生效應可能減損電源轉換設備的效能。其中,較嚴重的寄生效應係為元件內部的導體之間的寄生電容所致,例如,功率半導體元件內部的金氧半導電晶體(即,MOS電晶體)的寄生電容包括:電晶體的閘極-源極寄生電容Cgs、閘極-汲極寄生電容Cgd (或稱為「米勒(Miller)電容」)以及汲極-源極寄生電容Cds。米勒電容Cgd導致的寄生效應稱為「米勒效應(Miller effect)」。當電晶體進行驅動時,電晶體的閘極-源極寄生電容Cgs達到電晶體的臨界電壓Vth後,電晶體進入導通(turned-on)狀態,則汲極-源極電流Ids的電流值上升,電晶體進入飽和區(saturation region)。由於米勒效應的作用,電晶體的閘極-源極電壓Vgs在一個時間區間(此時間區間稱為「米勒平台」)內保持為定電壓值而不再上升。當汲極-源極電流Ids達到最大電流值,而汲極-源極電壓Vds開始下降,米勒電容Cgd持續被充電(charge),閘極-源極電壓Vgs又上升到驅動電壓的電壓值,此時電晶體進入電阻區(triode region),而汲極-源極電壓Vds降至更低的電壓值,完成功率半導體元件的導通。由上,米勒效應的持續時間(即,米勒平台的時間區間的時間長度)將增加功率半導體元件的導通時間,因此增加了功率半導體元件的切換損耗,而降低了電源轉換設備的轉換效率。Although the power module of the power conversion device uses power semiconductor components made of specific materials to achieve a higher switching speed, the parasitic effects of the power semiconductor components may reduce the performance of the power conversion device. Among them, the more serious parasitic effects are caused by the parasitic capacitance between the conductors inside the component. For example, the parasitic capacitance of the metal oxide semiconductor transistor (i.e., MOS transistor) inside the power semiconductor component includes: the gate-source parasitic capacitance Cgs, the gate-drain parasitic capacitance Cgd (or "Miller capacitance") and the drain-source parasitic capacitance Cds of the transistor. The parasitic effect caused by the Miller capacitance Cgd is called the "Miller effect". When the transistor is driven, the gate-source parasitic capacitance Cgs of the transistor reaches the critical voltage Vth of the transistor, and the transistor enters the turned-on state, then the current value of the drain-source current Ids increases, and the transistor enters the saturation region. Due to the Miller effect, the gate-source voltage Vgs of the transistor remains at a constant voltage value within a time period (this time period is called the "Miller platform") and no longer increases. When the drain-source current Ids reaches the maximum current value, and the drain-source voltage Vds begins to drop, the Miller capacitance Cgd continues to be charged, and the gate-source voltage Vgs rises to the voltage value of the driving voltage. At this time, the transistor enters the resistance region (triode region), and the drain-source voltage Vds drops to a lower voltage value, completing the conduction of the power semiconductor element. From the above, the duration of the Miller effect (i.e., the length of the time interval of the Miller platform) will increase the conduction time of the power semiconductor element, thereby increasing the switching loss of the power semiconductor element and reducing the conversion efficiency of the power conversion equipment.
並且,當電源轉換設備具有更高的換向速度、且電晶體的正閘極電壓/負閘極電壓的幅度之最大額定值(rated value)不同時,電晶體的閘極-源極之間發生的米勒效應可能惡化、且閘極-源極電壓Vgs之中出現的毛刺(glitch)電壓之幅度亦將增加。請參見第1A圖,其繪示習知的電源轉換設備之中的功率模組610之一部分的電路圖。功率模組610包括為半橋式拓撲的功率半導體元件,功率模組610可執行切換開關,據以提供電力轉換功能。在半橋式拓撲的組態中,功率模組610包括互補(complementary)的上臂元件與下臂元件,上臂元件包括電晶體Q11,下臂元件包括電晶體Q12。電晶體Q11的閘極g11與汲極d11之間具有寄生電容Cgd11、閘極g11與源極s11之間具有寄生電容Cgs11、汲極d11與源極s11之間具有寄生電容Cds11。同樣的,電晶體Q12的閘極g12與汲極d12之間具有寄生電容Cgd12、閘極g12與源極s12之間具有寄生電容Cgs12、汲極d12與源極s12之間具有寄生電容Cds12。在上臂元件的電晶體Q11的閘極-源極電壓Vgs11之切換期間,下臂元件的電晶體Q12的米勒電容Cgd12向閘極注入電流,導致閘極路徑之阻抗上產生壓降(voltage drop),使電晶體Q12的閘極-源極電壓Vgs12出現毛刺電壓。Furthermore, when the power conversion device has a higher switching speed and the maximum rated value of the positive gate voltage/negative gate voltage of the transistor is different, the Miller effect between the gate and source of the transistor may deteriorate, and the amplitude of the glitch voltage in the gate-source voltage Vgs will also increase. Please refer to FIG. 1A, which shows a circuit diagram of a portion of a power module 610 in a known power conversion device. The power module 610 includes a power semiconductor element of a half-bridge topology, and the power module 610 can perform a switching switch to provide a power conversion function. In the half-bridge topology, the power module 610 includes complementary upper and lower arm components, the upper arm component includes a transistor Q11, and the lower arm component includes a transistor Q12. The transistor Q11 has a parasitic capacitor Cgd11 between the gate g11 and the drain d11, a parasitic capacitor Cgs11 between the gate g11 and the source s11, and a parasitic capacitor Cds11 between the drain d11 and the source s11. Similarly, there is a parasitic capacitance Cgd12 between the gate g12 and the drain d12 of the transistor Q12, a parasitic capacitance Cgs12 between the gate g12 and the source s12, and a parasitic capacitance Cds12 between the drain d12 and the source s12. During the switching period of the gate-source voltage Vgs11 of the transistor Q11 of the upper arm element, the Miller capacitance Cgd12 of the transistor Q12 of the lower arm element injects current into the gate, causing a voltage drop on the impedance of the gate path, causing a glitch voltage to appear on the gate-source voltage Vgs12 of the transistor Q12.
請參見第1B圖,其繪示第1A圖的功率模組610的電晶體Q11的閘極-源極電壓Vgs11與電晶體Q12的閘極-源極電壓Vgs12的電壓變化的時序圖。電晶體Q11的閘極-源極電壓Vgs11的常規正電壓為+15V,其最高額定值為+20V,閘極-源極電壓Vgs11的常規負電壓為-15V,其最低額定值為-20V。電晶體Q12的閘極-源極電壓Vgs12的常規正/負電壓與最高/最低額定值亦同。在時間點t11、t12、t13及t14可觀察到,米勒效應導致電晶體Q12的閘極-源極電壓Vgs12出現毛刺電壓。電晶體Q12的閘極-源極電壓Vgs12疊加毛刺電壓後可能超過最低額定值。例如,在時間點t12、t14,閘極-源極電壓Vgs12疊加毛刺電壓後達到-20V或更低的電壓值,超過了最低額定值-20V。並且,當閘極-源極電壓Vgs12疊加毛刺電壓後超過電晶體Q12的臨界電壓Vth12時電晶體Q12將導通,此時上臂元件的電晶體Q11及下臂元件的電晶體Q12同時導通,導致功率模組610發生短路而有電路元件被擊穿的風險。Please refer to FIG. 1B, which shows a timing diagram of the voltage change of the gate-source voltage Vgs11 of the transistor Q11 and the gate-source voltage Vgs12 of the transistor Q12 of the power module 610 of FIG. 1A. The normal positive voltage of the gate-source voltage Vgs11 of the transistor Q11 is +15V, and its maximum rated value is +20V, and the normal negative voltage of the gate-source voltage Vgs11 is -15V, and its minimum rated value is -20V. The normal positive/negative voltage and the maximum/minimum rated values of the gate-source voltage Vgs12 of the transistor Q12 are also the same. At time points t11, t12, t13, and t14, it can be observed that the Miller effect causes a glitch voltage to appear in the gate-source voltage Vgs12 of the transistor Q12. The gate-source voltage Vgs12 of the transistor Q12 may exceed the minimum rated value after the glitch voltage is superimposed. For example, at time points t12 and t14, the gate-source voltage Vgs12 reaches a voltage value of -20V or lower after the glitch voltage is superimposed, exceeding the minimum rated value of -20V. Furthermore, when the gate-source voltage Vgs12 plus the glitch voltage exceeds the critical voltage Vth12 of transistor Q12, transistor Q12 will be turned on. At this time, transistor Q11 of the upper arm element and transistor Q12 of the lower arm element are turned on at the same time, causing a short circuit in the power module 610 and the risk of circuit element breakdown.
針對於米勒效應所導致的上述技術問題,本技術領域之技術人員係致力於改良電源轉換設備之電路設計,以有效抑制米勒效應並能夠精準控制功率半導體元件的閘極電壓。In response to the above technical problems caused by the Miller effect, technicians in this technical field are committed to improving the circuit design of power conversion equipment to effectively suppress the Miller effect and accurately control the gate voltage of power semiconductor devices.
根據本揭示之一方面,提供一種用於電源轉換設備的控制裝置。控制裝置包括以下元件。功率模組,具有第一端、第二端與控制端,功率模組包括功率半導體元件。驅動電路,連接於該功率模組的該控制端,用於控制該功率模組的該控制端的電壓。米勒開關電晶體,連接於該功率模組的該控制端,該米勒開關電晶體提供旁路傳輸路徑,以傳導該功率半導體元件切換時產生的米勒電流。米勒開關控制電路,連接於該米勒開關電晶體的閘極與該米勒開關電晶體的汲極,該米勒開關控制電路控制該米勒開關電晶體為導通或斷開的狀態,當該米勒開關電晶體為導通的狀態時,該米勒開關電晶體傳導該米勒電流。可調式電源,連接於該功率模組的該第二端,當該功率模組操作於常規負電壓時,該可調式電源控制該功率模組的該控制端與該第二端之間的電壓差。According to one aspect of the present disclosure, a control device for a power conversion device is provided. The control device includes the following elements. A power module having a first end, a second end and a control end, the power module including a power semiconductor element. A driving circuit connected to the control end of the power module and used to control the voltage of the control end of the power module. A Miller switching transistor connected to the control end of the power module, the Miller switching transistor providing a bypass transmission path to conduct the Miller current generated when the power semiconductor element is switched. The Miller switch control circuit is connected to the gate of the Miller switch transistor and the drain of the Miller switch transistor. The Miller switch control circuit controls the Miller switch transistor to be in an on or off state. When the Miller switch transistor is in an on state, the Miller switch transistor conducts the Miller current. The adjustable power supply is connected to the second end of the power module. When the power module operates at a normal negative voltage, the adjustable power supply controls the voltage difference between the control end and the second end of the power module.
透過閱讀以下圖式、詳細說明以及申請專利範圍,可見本揭示之其他方面以及優點。Other aspects and advantages of the present disclosure will become apparent by reading the following drawings, detailed description, and claims.
本說明書的技術用語係參照本技術領域之習慣用語,如本說明書對部分用語有加以說明或定義,該部分用語之解釋係以本說明書之說明或定義為準。本揭示之各個實施例分別具有一或多個技術特徵。在可能實施的前提下,本技術領域具有通常知識者可選擇性地實施任一實施例中部分或全部的技術特徵,或者選擇性地將這些實施例中部分或全部的技術特徵加以組合。The technical terms in this specification refer to the customary terms in this technical field. If this specification explains or defines some terms, the interpretation of these terms shall be subject to the explanation or definition in this specification. Each embodiment of this disclosure has one or more technical features. Under the premise of possible implementation, a person with ordinary knowledge in this technical field can selectively implement part or all of the technical features in any embodiment, or selectively combine part or all of the technical features in these embodiments.
請參見第2圖,其繪示一比較例的電源轉換設備之中的控制裝置1000a的電路圖。控制裝置1000a包括控制晶片400、驅動電路500及功率模組600。功率模組600作為切換開關,功率模組600之中的功率半導體元件是電晶體Q5,(即,電晶體Q5作為功率開關電晶體)。電晶體Q5的閘極-汲極寄生電容Cgd5(即,米勒電容)導致的米勒電流Im1可能流入驅動電路500。米勒電流Im1流過驅動電路500的電晶體Q2。在此一比較例中,為了抑制米勒電流Im1流入驅動電路500,在控制裝置1000a之中增設電晶體Q6及邏輯電路10。電晶體Q6作為米勒開關電晶體,邏輯電路10控制電晶體Q6的運作,使電晶體Q6作為「米勒開關」(或稱為「米勒鉗位開關」)以抑制米勒效應。電晶體Q6連接於功率模組600的電晶體Q5的閘極g5及源極s5之間,且連接於驅動電路500的電晶體Q2的源極。電晶體Q6可提供米勒電流的旁路(bypass)傳輸路徑,避免米勒電流Im1直接流入驅動電路500的電晶體Q2。Please refer to FIG. 2, which shows a circuit diagram of a
然而,在第2圖的比較例中,無法精準控制米勒開關(即,電晶體Q6)的米勒箝位電壓,亦無法精確控制米勒開關的驅動時間。針對於此,本揭示提出改良式的米勒開關之控制機制,期能精準控制米勒開關的米勒箝位電壓及米勒開關的驅動時間。However, in the comparative example of FIG. 2, the Miller clamping voltage of the Miller switch (i.e., transistor Q6) cannot be accurately controlled, nor can the driving time of the Miller switch be accurately controlled. In view of this, the present disclosure proposes an improved control mechanism for the Miller switch, which is intended to accurately control the Miller clamping voltage of the Miller switch and the driving time of the Miller switch.
第3圖為在電源轉換設備之中,本揭示一實施例的控制裝置1000b的電路圖。第3圖的實施例的控制裝置1000b可對於米勒開關的米勒箝位電壓及米勒開關的驅動時間進行精準控制功率模組。控制裝置1000b包括米勒開關控制電路100、可調式電源200、控制晶片400、驅動電路500及功率模組600。控制晶片400控制驅動電路500對於功率模組600進行驅動。控制電路米勒開關控制電路100及可調式電源200對於米勒開關(即,電晶體Q6)的米勒箝位電壓及米勒開關的驅動時間進行精準控制。FIG. 3 is a circuit diagram of a control device 1000b of an embodiment of the present disclosure in a power conversion device. The control device 1000b of the embodiment of FIG. 3 can accurately control the Miller clamping voltage of the Miller switch and the driving time of the Miller switch. The control device 1000b includes a Miller switch control circuit 100, an adjustable power supply 200, a
米勒開關控制電路100、可調式電源200、控制晶片400、驅動電路500及功率模組600的電性連接方式說明如下。驅動電路500包括電晶體Q1及電晶體Q2。電晶體Q1及電晶體Q2形成反向器(inverter)。電晶體Q1、Q2兩者的閘極共同連接於驅動電路500的輸入端51,電晶體Q1、Q2兩者的汲極共同連接於驅動電路500的輸出端52。驅動電路500的輸入端51連接於米勒開關控制電路100的輸入端11及控制晶片400的輸出端41。驅動電路500的輸出端52經由電阻R
g連接於功率模組600的控制端63。並且,驅動電路500的高電位端53 (即,電晶體Q1的源極)連接於周邊電路350,周邊電路350例如是具有短路保護功能的保護電路。驅動電路500的低電位端54 (即,電晶體Q2的源極)連接於可調式電源200。
The electrical connection method of the Miller switch control circuit 100, the adjustable power supply 200, the
功率模組600包括功率半導體元件,以作為為功率開關,其具有切換功能。當電源轉換設備提供電力至不同功率規格的設備時,功率模組600因應於不同功率進行該關切換。當進行切換時,因應於控制端63接收的電壓,功率模組600為導通(turned-on)的狀態或斷開(turned-off)的狀態。當功率模組600為導通時,功率模組600的第一端61可導通於第二端62。功率模組600的功率半導體元件例如是電晶體(第3圖中未顯示),電晶體的汲極連接於第一端61,電晶體的源極連接於第二端62,電晶體的閘極連接於控制端63。功率模組600的第一端61可連接於周邊電路350。功率模組600的第二端62連接於可調式電源200的輸出端22。功率模組600的控制端63經由電阻R
g連接於驅動電路500的輸出端52,且控制端63經由電晶體Q6連接於米勒開關控制電路100。
The
電晶體Q6作為米勒開關,其提供功率模組600的電晶體的米勒電流Im1的旁路傳輸路徑,米勒電流Im1經由電晶體Q6傳導至米勒開關控制電路100。電晶體Q6的閘極連接於米勒開關控制電路100的輸出端12,電晶體Q6的源極經由電阻Rg連接於驅動電路500的輸出端52。並且,電晶體Q6的源極連接於功率模組600的控制端63,以連接於功率模組600的電晶體的閘極。控制晶片400的輸出端42經由周邊電路350連接於功率模組600的第一端61。Transistor Q6 acts as a Miller switch, which provides a bypass transmission path for Miller current Im1 of the transistor of
第4圖為第3圖的控制裝置1000b之中的米勒開關控制電路100、可調式電源200、驅動電路500及功率模組600的詳細電路圖。如第4圖所示,功率模組600的半導體功率元件包括電晶體Q5。電晶體Q5的閘極g5、汲極d5與源極s5分別連接於功率模組600的控制端63、第一端61及第二端62。電晶體Q5的閘極g5與汲極d5之間具有寄生電容Cgd,汲極d5與源極s5之間具有寄生電容Cds,且閘極g5與源極s5之間具有寄生電容Cgs。FIG. 4 is a detailed circuit diagram of the Miller switch control circuit 100, the adjustable power supply 200, the
可調式電源200包括電阻R1、電容C1及二極體ZD。電阻R1並聯連接於電容C1。電阻R1的第一端與電容C1的第一端共同連接於二極體ZD的陰極。電阻R1的第二端與電容C1的第二端共同連接於接地端GND1,因此,電阻R1的第二端與電容C1的第二端的電位為接地電壓。二極體ZD的陽極接收第一定電壓V1-。第一定電壓V1-低於接地端GND1的接地電壓,第一定電壓V1-為負電壓值。二極體ZD例如為齊納二極體(zener diode),流過二極體ZD的電流為電流i_ZD。電阻R1的第一端、電容C1的第一端與二極體ZD的陰極共同連接於驅動電路500的低電位端54,電阻R1的第一端、電容C1的第一端與二極體ZD的陰極的電位為可調電壓Vadj。電阻R1的第二端與電容C1的第二端共同連接於可調式電源200的輸出端22且連接至功率模組600的第二端62。在運作上,二極體ZD用於調整可調電壓Vadj的電壓值。電容C1具有穩壓的作用,用於穩定電容C1的第一端的可調電壓Vadj的電壓值。電阻R1具有限制電流的作用,用於限制二極體ZD的電流i_ZD的電流量。The adjustable power supply 200 includes a resistor R1, a capacitor C1 and a diode ZD. The resistor R1 is connected in parallel to the capacitor C1. The first end of the resistor R1 and the first end of the capacitor C1 are connected to the cathode of the diode ZD. The second end of the resistor R1 and the second end of the capacitor C1 are connected to the ground terminal GND1, so the potential of the second end of the resistor R1 and the second end of the capacitor C1 is the ground voltage. The anode of the diode ZD receives a first constant voltage V1-. The first constant voltage V1- is lower than the ground voltage of the ground terminal GND1, and the first constant voltage V1- is a negative voltage value. The diode ZD is, for example, a zener diode, and the current flowing through the diode ZD is the current i_ZD. The first end of the resistor R1, the first end of the capacitor C1 and the cathode of the diode ZD are connected to the low potential end 54 of the driving
米勒開關控制電路100包括電晶體Q3、電晶體Q4、電阻R2、電容C2及二極體D1。電晶體Q3、Q4為功率開關,電晶體Q3、Q4形成反向器。電晶體Q3、Q4兩者的閘極共同連接於米勒開關控制電路100的輸入端11,電晶體Q3、Q4兩者的汲極共同連接於節點N34,節點N34為電晶體Q3、Q4形成反向器的輸出端。電晶體Q3的源極連接於接地端GND1,電晶體Q3的源極的電位為接地電壓。電晶體Q4的源極連接於第一節點N1,電晶體Q4的源極的電位為第一定電壓V1-。電阻R2串聯連接於電容C2。電容C2的第一端連接於節點N34,電容C2的第二端連接於電阻R2的第一端。電阻R2的第二端與二極體D1的陰極共同連接於米勒開關控制電路100的輸出端12。二極體D1的陽極連接於第一節點N1,該第一節點N1具有第一定電壓V1-,即,二極體D1的陽極接收第一定電壓V1-。米勒開關控制電路100的輸入端11連接於控制晶片400的輸出端41,米勒開關控制電路100的輸出端12連接於電晶體Q6(即,米勒開關)的閘極。電晶體Q6的源極連接於電晶體Q5的閘極g5,電晶體Q6的汲極接收第一定電壓V1-。在運作上,二極體D1提供電晶體Q4的迴路(loop)傳輸路徑,二極體D1具有放電的作用以對於電晶體Q4進行放電。電容C2具有穩壓的作用,用於穩定節點N34的電位的電壓值。Miller switch control circuit 100 includes transistor Q3, transistor Q4, resistor R2, capacitor C2 and diode D1. Transistors Q3 and Q4 are power switches, and transistors Q3 and Q4 form an inverter. The gates of transistors Q3 and Q4 are commonly connected to the input terminal 11 of Miller switch control circuit 100, and the drains of transistors Q3 and Q4 are commonly connected to node N34, which is the output terminal of the inverter formed by transistors Q3 and Q4. The source of transistor Q3 is connected to the ground terminal GND1, and the potential of the source of transistor Q3 is the ground voltage. The source of transistor Q4 is connected to the first node N1, and the potential of the source of transistor Q4 is the first constant voltage V1-. Resistor R2 is connected in series to capacitor C2. A first end of capacitor C2 is connected to node N34, and a second end of capacitor C2 is connected to a first end of resistor R2. The second end of resistor R2 and the cathode of diode D1 are connected to
驅動電路500包括電晶體Q1及電晶體Q2,電晶體Q1、Q2形成反向器。電晶體Q1、Q2兩者的閘極共同連接於驅動電路500的輸入端51(即,反向器的輸入端)並連接至控制晶片400的輸出端41。電晶體Q1、Q2兩者的汲極共同連接於驅動電路500的輸出端52(即,反向器的輸出端)並經由電阻Rg連接於功率模組600的控制端63。電晶體Q2的源極連接於驅動電路500的低電位端54並連接至電容C1的第一端、電阻R1的第一端與二極體ZD的陰極。電晶體Q1的源極連接於驅動電路500的高電位端53並接收第二定電壓V1+。其中,第二定電壓V1+的電壓值高於第一定電壓V1-。第二定電壓V1+高於接地端GND1的接地電壓,二定電壓V1+為正電壓值。The driving
第5A、5B圖為第4圖的米勒開關控制電路100及可調式電源200的運作示意圖。第6圖為驅動電路500的電晶體Q1、Q2,米勒開關控制電路100的電晶體Q3、Q4,作為米勒開關的電晶體Q6及功率模組600的電晶體Q5之導通或斷開的狀態變化、以及電晶體Q5的閘極-源極電壓Vgs5及電容C2的跨壓VC2的電壓變化的波形圖。請先參見第5A圖與第6圖,電晶體Q1、Q2、Q3及Q4的閘極皆連接於控制晶片400的輸出端41,因此電晶體Q1、Q2、Q3及Q4因應於控制晶片400的輸出端41的電壓Vout而切換於導通狀態或斷開狀態。Figures 5A and 5B are schematic diagrams of the operation of the Miller switch control circuit 100 and the adjustable power supply 200 of Figure 4. Figure 6 is a waveform diagram showing the on/off state changes of transistors Q1 and Q2 of the driving
功率模組600的電晶體Q5類似於第1A圖的下臂元件的電晶體Q12 (圖中未顯示功率模組600的上臂元件)。在時間點t0至時間點t1之間,控制晶片400的輸出端41的電壓Vout為高電壓值,電晶體Q1為導通、電晶體Q2斷開、電晶體Q3為斷開且電晶體Q4為導通。因此,電晶體Q1、電阻Rg、電晶體Q5、電阻R1與二極體ZD形成導通的傳輸路徑P1。電晶體Q5作為功率模組600的下臂元件,因應於控制晶片400的輸出端41的電壓Vout的高電壓值,在時間點t0至時間點t1之間電晶體Q5操作於常規正電壓。例如,電晶體Q5的閘極g5經由傳輸路徑P1之中的電阻Rg與電晶體Q1接收第二定電壓V1+,即,電晶體Q5的閘極g5的電壓相等於第二定電壓V1+。並且,電晶體Q5的源極s5經由傳輸路徑P1連接於接地端GND1,電晶體Q5的源極s5的電壓相等於接地端GND1的接地電壓(接地電壓例如為零電壓值)。據此,電晶體Q5的閘極-源極電壓Vgs5相等於第二定電壓V1+。The transistor Q5 of the
另一方面,電晶體Q4、二極體D1、電阻R2及電容C2形成導通的傳輸路徑P2。在時間點t0至時間點t1之間,由於電容C2的跨壓VC2為零電壓值,因此電晶體Q6為斷開,則傳輸路徑P2為迴路。On the other hand, transistor Q4, diode D1, resistor R2 and capacitor C2 form a conductive transmission path P2. Between time point t0 and time point t1, since the voltage across capacitor C2 VC2 is zero voltage, transistor Q6 is disconnected, and transmission path P2 is a loop.
接下來,參見第5B圖與第6圖,在時間點t1至時間點t3之間控制晶片400的輸出端41的電壓Vout降低為低電壓值,電晶體Q5操作於常規負電壓。因應於低電壓值的電壓Vout,電晶體Q1為斷開、電晶體Q2導通、電晶體Q3為導通且電晶體Q4為斷開。因此,電晶體Q2、電阻Rg、電晶體Q5、電阻R1與二極體ZD形成導通的傳輸路徑P3。Next, referring to FIG. 5B and FIG. 6, between time point t1 and time point t3, the voltage Vout at the output terminal 41 of the
在電晶體Q5操作於常規負電壓的期間內的第一階段(即,時間點t1至時間點t2之間),電容C2的跨壓VC2逐漸上升,跨壓VC2高於零電壓值,因此電晶體Q6為導通。電晶體Q3、電容C2、電阻R2及電晶體Q6形成導通的傳輸路徑P4。電晶體Q5的閘極g5經由導通的電晶體Q6接收第一定電壓V1-,並且電晶體Q5的源極s5仍然經由傳輸路徑P3連接於接地端GND1(電晶體Q5的源極s5的電壓仍然為零電壓值),因此閘極-源極電壓Vgs5相等於第一定電壓V1-。由上,在時間點t1至時間點t2之間,藉由米勒開關控制電路100控制電晶體Q6為導通,使電晶體Q5的閘極-源極電壓Vgs5控制為相等於第一定電壓V1-,以抑制閘極-源極電壓Vgs5發生的突刺電壓。In the first stage (i.e., between time point t1 and time point t2) when transistor Q5 operates at a normal negative voltage, the voltage VC2 across capacitor C2 gradually increases and is higher than the zero voltage value, so transistor Q6 is turned on. Transistor Q3, capacitor C2, resistor R2, and transistor Q6 form a conductive transmission path P4. The gate g5 of transistor Q5 receives the first constant voltage V1- through the turned-on transistor Q6, and the source s5 of transistor Q5 is still connected to the ground terminal GND1 through the transmission path P3 (the voltage of the source s5 of transistor Q5 is still zero voltage), so the gate-source voltage Vgs5 is equal to the first constant voltage V1-. From the above, between the time point t1 and the time point t2, the Miller switch control circuit 100 controls the transistor Q6 to be turned on, so that the gate-source voltage Vgs5 of transistor Q5 is controlled to be equal to the first constant voltage V1-, so as to suppress the spike voltage generated by the gate-source voltage Vgs5.
米勒開關控制電路100控制電晶體Q6為導通的時間(即,時間點t1與時間點t2之間的時間差△t)稱為電晶體Q5的閘極-源極電壓Vgs5的「米勒開關驅動時間t miller」,或可稱為「米勒鉗位時間」。米勒開關驅動時間t miller相等於時間點t1與時間點t2之間的時間差△t,如式(1)所示: (1) The time that the Miller switch control circuit 100 controls the transistor Q6 to be turned on (i.e., the time difference Δt between time point t1 and time point t2) is called the "Miller switch driving time t miller " of the gate-source voltage Vgs5 of the transistor Q5, or can be called the "Miller clamping time". The Miller switch driving time t miller is equal to the time difference Δt between time point t1 and time point t2, as shown in formula (1): (1)
式(1)的「Vth6」是作為米勒開關的電晶體Q6的臨界電壓、「V1+」為第二定電壓、「R_2」為電阻R2的電阻值、「C_2」為電阻C2的電容值。米勒開關控制電路100之中的電阻R2、電容C2與二極體D1形成充放電迴路,本揭示的米勒開關控制電路100可因應不同需求(例如,因應於不同功率規格的電源轉換設備)對於米勒開關驅動時間t miller進行調整,藉由調整電阻R2的電阻值R_2及電容C2的電容值C_2以改變米勒開關驅動時間t miller。 "Vth6" in formula (1) is the critical voltage of transistor Q6 as a Miller switch, "V1+" is the second constant voltage, "R_2" is the resistance value of resistor R2, and "C_2" is the capacitance value of resistor C2. The resistor R2, capacitor C2 and diode D1 in the Miller switch control circuit 100 form a charge-discharge loop. The Miller switch control circuit 100 disclosed in the present invention can adjust the Miller switch driving time t miller in response to different requirements (for example, in response to power conversion devices with different power specifications), and the Miller switch driving time t miller can be changed by adjusting the resistance value R_2 of the resistor R2 and the capacitance value C_2 of the capacitor C2.
接下來,在電晶體Q5操作於常規負電壓的期間內的第二階段(即,時間點t2至時間點t3之間),電容C2的跨壓VC2逐漸上升,跨壓VC2高於電晶體Q6的臨界電壓Vth6,因此電晶體Q6為斷開。由於電晶體Q6為斷開,電晶體Q5的閘極g5經由傳輸路徑P3接收二極體ZD的陰極的可調電壓Vadj。由上,在時間點t2至時間點t3之間,藉由米勒開關控制電路100控制電晶體Q6為斷開,使電晶體Q5的閘極-源極電壓Vgs5控制為相等於可調電壓Vadj;此時的閘極-源極電壓Vgs5稱為「米勒箝位電壓V miller」,如式(2)所示: (2) Next, in the second stage (i.e., between time point t2 and time point t3) during which transistor Q5 operates at a normal negative voltage, the cross voltage VC2 of capacitor C2 gradually increases, and the cross voltage VC2 is higher than the critical voltage Vth6 of transistor Q6, so transistor Q6 is disconnected. Since transistor Q6 is disconnected, the gate g5 of transistor Q5 receives the adjustable voltage Vadj of the cathode of diode ZD via the transmission path P3. From the above, between time point t2 and time point t3, the Miller switch control circuit 100 controls transistor Q6 to be off, so that the gate-source voltage Vgs5 of transistor Q5 is controlled to be equal to the adjustable voltage Vadj; the gate-source voltage Vgs5 at this time is called "Miller clamping voltage V miller ", as shown in formula (2): (2)
式(2)的V
ZD為二極體ZD的負向偏壓(reverse bias)。本揭示的可調式電源200可因應不同需求對於米勒箝位電壓V
miller進行調整,藉由調整二極體ZD的負向偏壓V
ZD(或者,選擇具有不同負向偏壓V
ZD的不同二極體ZD)以改變可調電壓Vadj的電壓值,據以改變閘極-源極電壓Vgs5的米勒箝位電壓V
miller。在功率模組600的電晶體Q5操作於常規負電壓的期間,可調式電源200用於控制功率模組600的控制端63與第二端62之間的電壓差(即,電晶體Q5的閘極-源極電壓Vgs5),使控制端63與第二端62之間的電壓差為適當的米勒箝位電壓V
miller。
V ZD in equation (2) is the reverse bias of the diode ZD. The adjustable power supply 200 disclosed herein can adjust the Miller clamp voltage V miller according to different requirements, by adjusting the negative bias V ZD of the diode ZD (or selecting a different diode ZD with a different negative bias V ZD) to change the voltage value of the adjustable voltage Vadj, thereby changing the Miller clamp voltage V miller of the gate-source voltage Vgs5. When the transistor Q5 of the
由上,在電晶體Q5操作於常規負電壓的期間內的第一階段(即,時間點t1至時間點t2之間),電晶體Q5的閘極-源極電壓Vgs5控制為相等於第一定電壓V1-。在第二階段(即,時間點t2至時間點t3之間),電晶體Q5的閘極-源極電壓Vgs5控制為相等於可調電壓Vadj。據此,電晶體Q5操作於常規負電壓時,閘極-源極電壓Vgs5具有兩個階段的電壓轉態。From the above, in the first stage (i.e., between time point t1 and time point t2) during the period when transistor Q5 operates at a normal negative voltage, the gate-source voltage Vgs5 of transistor Q5 is controlled to be equal to the first constant voltage V1-. In the second stage (i.e., between time point t2 and time point t3), the gate-source voltage Vgs5 of transistor Q5 is controlled to be equal to the adjustable voltage Vadj. Accordingly, when transistor Q5 operates at a normal negative voltage, the gate-source voltage Vgs5 has a voltage transition state of two stages.
而後,進行週期性的操作,在時間點t3至時間點t4之間,控制晶片400的輸出端41的電壓Vout提升為高電壓值,電晶體Q5操作於常規正電壓。在時間點t4至時間點t6之間,控制晶片400的輸出端41的電壓Vout再次降低為低電壓值,電晶體Q5操作於常規負電壓。Then, a periodic operation is performed. Between time point t3 and time point t4, the voltage Vout of the output terminal 41 of the
第7圖為本揭示的功率模組600的電晶體Q5的閘極-源極電壓Vgs5的電壓變化與第1A圖之習知的功率模組610的電晶體Q12的閘極-源極電壓Vgs12的電壓變化的比較圖。習知的功率模組610的電晶體Q12的閘極-源極電壓Vgs12的電壓變化表示為第7圖中的虛線部分,從虛線部分觀察到電晶體Q12的米勒效應導致的毛刺電壓疊加於閘極-源極電壓Vgs12,使閘極-源極電壓Vgs12由原本的常規負電壓為-15V驟增或驟減。其中,疊加毛刺電壓後而驟減的閘極-源極電壓Vgs12可能低於負電壓的最低額定值為-20V而導致電路元件的損毀。FIG. 7 is a comparison diagram of the voltage variation of the gate-source voltage Vgs5 of the transistor Q5 of the
相對的,本揭示的功率模組600的電晶體Q5的閘極-源極電壓Vgs5在米勒開關驅動時間t
miller的範圍內(即,第7圖所示的時間差△t之內)被控制為相等於第一定電壓V1-。並且,在米勒開關驅動時間t
miller之後,閘極-源極電壓Vgs5增加了電壓差△V而成為米勒箝位電壓V
miller(米勒箝位電壓V
miller相等於可調電壓Vadj)。
In contrast, the gate-source voltage Vgs5 of the transistor Q5 of the
根據第7圖的比較,習知的功率模組610的米勒效應導致的毛刺電壓致使電晶體Q12的閘極-源極電壓Vgs12發生驟增或驟減。相對的,在本揭示的功率模組600之中,電晶體Q5的閘極-源極電壓Vgs5可控制為介於第一定電壓V1-與米勒箝位電壓V
miller之間,有效抑制了米勒效應。
According to the comparison of FIG. 7 , the glitch voltage caused by the Miller effect of the conventional power module 610 causes the gate-source voltage Vgs12 of the transistor Q12 to increase or decrease sharply. In contrast, in the
第8A圖為本揭示的控制電路700應用於電源轉換設備2000的示意圖。電源轉換設備2000包括電源2100、功率模組620、儲能元件2200、負載2300及控制電路700。電源2100例如為大型之固定的電網設備。儲能元件2200例如為小型(甚至為可攜式)的電池裝置。功率模組620設置於電源2100與儲能元件2200之間,功率模組620作為切換開關。因應於不同功率規格的電源2100、儲能元件2200及負載2300,功率模組620對於電源2100提供的電力進行轉換,以產生特定功率及特定形式的電力並提供至儲能元件2200。FIG. 8A is a schematic diagram of the control circuit 700 disclosed herein applied to a power conversion device 2000. The power conversion device 2000 includes a power source 2100, a power module 620, an energy storage element 2200, a load 2300, and a control circuit 700. The power source 2100 is, for example, a large fixed grid device. The energy storage element 2200 is, for example, a small (even portable) battery device. The power module 620 is disposed between the power source 2100 and the energy storage element 2200, and the power module 620 serves as a switching switch. In response to the different power specifications of the power source 2100 , the energy storage element 2200 , and the load 2300 , the power module 620 converts the power provided by the power source 2100 to generate specific power and specific form of power and provide it to the energy storage element 2200 .
控制電路700的功能相同於第3、4圖的實施例的米勒開關控制電路100與可調式電源200的功能。連接於功率模組620。當功率模組620運作時,功率模組620之中的功率半導體元件可能肇因於米勒效應而導致功率模組620的短路或誤動作。控制電路700對於功率模組620之中的功率半導體元件進行米勒鉗位控制以抑制米勒效應,例如:將功率模組620之中的功率半導體元件的閘極-源極電壓控制於適當的米勒箝位電壓V miller,且將米勒開關控制於操作在適當的米勒開關驅動時間t miller。 The function of the control circuit 700 is the same as that of the Miller switch control circuit 100 and the adjustable power supply 200 of the embodiment of FIGS. 3 and 4. The control circuit 700 is connected to the power module 620. When the power module 620 is in operation, the power semiconductor elements in the power module 620 may be short-circuited or malfunction due to the Miller effect. The control circuit 700 performs Miller clamp control on the power semiconductor elements in the power module 620 to suppress the Miller effect, for example, controlling the gate-source voltage of the power semiconductor elements in the power module 620 to an appropriate Miller clamp voltage V miller , and controlling the Miller switch to operate at an appropriate Miller switch driving time t miller .
著請參見第8B圖,其繪示為第8A圖的電源轉換設備2000之一實施例的方塊圖。本實施例的功率模組620包括六個功率開關元件,控制電路700包括六個單元710~760。功率模組620的每個功率開關元件具有切換開關的功能,功率模組620的每個功率開關元件由控制電路700的單元710~760之對應一者來控制。例如,控制電路700的單元710、720分別控制功率模組620的一組功率開關元件,該組功率開關元件作為功率模組620的上臂元件與下臂元件。類似的,控制電路700的單元730、740分別控制功率模組620的另一組功率開關元件,控制電路700的單元750、760分別控制功率模組620的又一組功率開關元件。Please refer to FIG. 8B, which is a block diagram of an embodiment of the power conversion device 2000 of FIG. 8A. The power module 620 of this embodiment includes six power switch elements, and the control circuit 700 includes six units 710-760. Each power switch element of the power module 620 has the function of switching a switch, and each power switch element of the power module 620 is controlled by a corresponding one of the units 710-760 of the control circuit 700. For example, the units 710 and 720 of the control circuit 700 respectively control a group of power switch elements of the power module 620, and the group of power switch elements serves as the upper arm element and the lower arm element of the power module 620. Similarly, units 730 and 740 of the control circuit 700 respectively control another set of power switch elements of the power module 620, and units 750 and 760 of the control circuit 700 respectively control yet another set of power switch elements of the power module 620.
雖然本發明已以較佳實施例及範例詳細揭示如上,可理解的是,此些範例意指說明而非限制之意義。可預期的是,所屬技術領域中具有通常知識者可想到多種修改及組合,其多種修改及組合落在本發明之精神以及後附之申請專利範圍之範圍內。Although the present invention has been disclosed in detail with preferred embodiments and examples, it is understood that these examples are intended to be illustrative rather than restrictive. It is expected that a person with ordinary knowledge in the art can think of various modifications and combinations, which fall within the spirit of the present invention and the scope of the attached patent application.
1000b,1000a:控制裝置 2000:電源轉換設備 2100:電源 2200:儲能元件 2300:負載 10:邏輯電路 100:米勒開關控制電路 200:可調式電源 350:周邊電路 400:控制晶片 500:驅動電路 600,610,620:功率模組 700:控制電路 710~760:單元 11,51:輸入端 12,22,41,42,52:輸出端 61:第一端 62:第二端 53:高電位端 54:低電位端 63:控制端 C1,C2,C3:電容 R1,R2,Rg:電阻 ZD,D1,D2:二極體 i_ZD:電流 Vout,Vadj:電壓 P1,P2,P3,P4:傳輸路徑 Vth6:臨界電壓 Q1,Q11,Q12,Q2,Q3,Q4,Q5,Q6:電晶體 g11,g12,g5:閘極 d11,d12,d5:汲極 s11,s12,s5:源極 Cgd11,Cgs11,Cds11,Cgd12,Cgs12,Cds12:寄生電容 Cgd,Cgs,Cds:寄生電容 Cgd5閘極-汲極寄生電容 N34:節點 Vgs5,Vgs11,Vgs12:閘極-源極電壓 Vds5:汲極-源極電壓 VC2:跨壓 △V:電壓差 △t:時間差 t11,t12,t13,t14:時間點 V1-:第一定電壓 V1+:第二定電壓 GND1:接地端 Im1:米勒電流 1000b,1000a:control device 2000:power conversion device 2100:power supply 2200:energy storage element 2300:load 10:logic circuit 100:Miller switch control circuit 200:adjustable power supply 350:peripheral circuit 400:control chip 500:drive circuit 600,610,620:power module 700:control circuit 710~760:unit 11,51:input end 12,22,41,42,52:output end 61:first end 62:second end 53:high potential end 54:low potential end 63:control end C1,C2,C3:capacitors R1,R2,Rg:resistors ZD,D1,D2:diodes i_ZD:currents Vout,Vadj:voltages P1,P2,P3,P4:transmission paths Vth6:critical voltages Q1,Q11,Q12,Q2,Q3,Q4,Q5,Q6:transistors g11,g12,g5:gates d11,d12,d5:drains s11,s12,s5:sources Cgd11,Cgs11,Cds11,Cgd12,Cgs12,Cds12:parasitic capacitances Cgd,Cgs,Cds:parasitic capacitances Cgd5 gate-drain parasitic capacitance N34: node Vgs5, Vgs11, Vgs12: gate-source voltage Vds5: drain-source voltage VC2: cross voltage △V: voltage difference △t: time difference t11, t12, t13, t14: time point V1-: first constant voltage V1+: second constant voltage GND1: ground terminal Im1: Miller current
第1A圖為習知的電源轉換設備之中的功率模組之一部分的電路圖。 第1B圖為第1A圖的功率模組的兩個電晶體的閘極-源極電壓的電壓變化的時序圖。 第2圖為一比較例的電源轉換設備之中的控制裝置的電路圖。 第3圖為在電源轉換設備之中,本揭示一實施例的控制裝置的電路圖。 第4圖為第3圖的控制裝置之中的米勒開關控制電路、可調式電源、驅動電路及功率模組的詳細電路圖。 第5A、5B圖為第4圖的米勒開關控制電路及可調式電源的運作示意圖。 第6圖為驅動電路的電晶體、米勒開關控制電路的電晶體、作為米勒開關的電晶體及功率模組的電晶體之導通或斷開的狀態變化、以及電晶體的閘極-源極電壓及電容的跨壓的電壓變化的波形圖。 第7圖為本揭示的功率模組的電晶體的閘極-源極電壓的電壓變化與第1A圖之習知的功率模組的電晶體的閘極-源極電壓的電壓變化的比較圖。 第8A圖為本揭示的控制電路應用於電源轉換設備的示意圖。 第8B圖為第8A圖的電源轉換設備之一實施例的方塊圖。 FIG. 1A is a circuit diagram of a portion of a power module in a known power conversion device. FIG. 1B is a timing diagram of the voltage change of the gate-source voltage of two transistors in the power module of FIG. 1A. FIG. 2 is a circuit diagram of a control device in a power conversion device of a comparative example. FIG. 3 is a circuit diagram of a control device of an embodiment of the present disclosure in a power conversion device. FIG. 4 is a detailed circuit diagram of a Miller switch control circuit, an adjustable power supply, a drive circuit, and a power module in the control device of FIG. 3. FIG. 5A and FIG. 5B are schematic diagrams of the operation of the Miller switch control circuit and the adjustable power supply of FIG. 4. FIG. 6 is a waveform diagram showing the on/off state change of the transistor of the driving circuit, the transistor of the Miller switch control circuit, the transistor as the Miller switch, and the transistor of the power module, as well as the gate-source voltage of the transistor and the voltage change of the cross-voltage of the capacitor. FIG. 7 is a comparison diagram of the voltage change of the gate-source voltage of the transistor of the power module disclosed in the present invention and the voltage change of the gate-source voltage of the transistor of the known power module of FIG. 1A. FIG. 8A is a schematic diagram of the control circuit of the present invention applied to a power conversion device. FIG. 8B is a block diagram of an embodiment of the power conversion device of FIG. 8A.
1000b:控制裝置 1000b: Control device
100:米勒開關控制電路 100: Miller switch control circuit
200:可調式電源 200:Adjustable power supply
400:控制晶片 400: Control chip
500:驅動電路 500:Drive circuit
600:功率模組 600: Power module
11,51:輸入端 11,51: Input port
12,22,41,42,52:輸出端 12,22,41,42,52: output port
61:第一端 61: First end
62:第二端 62: Second end
63:控制端 63: Control terminal
53:高電位端 53: High potential end
54:低電位端 54: Low potential end
C3:電容 C3: Capacitor
Rg:電阻 Rg: resistance
Q1,Q2,Q6:電晶體 Q1, Q2, Q6: transistors
V1+:第二定電壓 V1+: Second constant voltage
GND1:接地端 GND1: ground terminal
Im1:米勒電流 Im1: Miller current
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111147823A TWI846201B (en) | 2022-12-13 | 2022-12-13 | Control device for power conversion apparatus |
CN202211680689.8A CN118199378A (en) | 2022-12-13 | 2022-12-22 | Control device for power conversion equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111147823A TWI846201B (en) | 2022-12-13 | 2022-12-13 | Control device for power conversion apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202425513A true TW202425513A (en) | 2024-06-16 |
TWI846201B TWI846201B (en) | 2024-06-21 |
Family
ID=91407249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111147823A TWI846201B (en) | 2022-12-13 | 2022-12-13 | Control device for power conversion apparatus |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118199378A (en) |
TW (1) | TWI846201B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2232199C (en) * | 1997-04-22 | 2000-02-22 | Kabushiki Kaisha Toshiba | Power converter with voltage drive switching element |
CN108988836B (en) * | 2013-12-16 | 2023-02-28 | 台达电子企业管理(上海)有限公司 | Control method and packaging structure of power circuit |
US11652473B2 (en) * | 2016-12-16 | 2023-05-16 | Wolfspeed, Inc. | Power modules having an integrated clamp circuit and process thereof |
US11831307B2 (en) * | 2018-08-08 | 2023-11-28 | Inventchip Technology Co., Ltd. | Power switch drive circuit and device |
-
2022
- 2022-12-13 TW TW111147823A patent/TWI846201B/en active
- 2022-12-22 CN CN202211680689.8A patent/CN118199378A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN118199378A (en) | 2024-06-14 |
TWI846201B (en) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI778574B (en) | Electronic circuit and method of operating an electronic circuit | |
US8723564B2 (en) | Driving circuit | |
KR20120030411A (en) | Gate driver for enhancement-mode and depletion-mode wide bandgap semiconductor jefts | |
JP2011211836A (en) | Switching device driving unit and semiconductor apparatus | |
US20150358003A1 (en) | Level shift circuit | |
CN111555595B (en) | GaN power tube gate drive circuit with controllable opening rate | |
US20220006450A1 (en) | Driver circuit, corresponding device and method of operation | |
US11791815B2 (en) | Driver circuit, corresponding device and method of operation | |
CN101373965B (en) | Switching circuit for power supply switch | |
JP2013009216A (en) | Gate drive circuit | |
CN111555596B (en) | SiC MOSFET grid crosstalk suppression driving circuit with adjustable negative pressure | |
KR102313483B1 (en) | Switching device and power-converting apparatus | |
US6813169B2 (en) | Inverter device capable of reducing through current | |
TWI846201B (en) | Control device for power conversion apparatus | |
CN109861503B (en) | Driving circuit for power device | |
KR20190011494A (en) | GATE DRIVING CIRCUIT FOR SiC MOSFET | |
KR102026929B1 (en) | Gate driving circuit for power switch | |
JP6706876B2 (en) | Power module | |
CN114244339A (en) | Gate drive circuit and electronic device | |
TWI849842B (en) | Control device applied to power conversion apparatus | |
CN111725978A (en) | SiC MOSFET gate drive circuit with negative voltage turn-off and crosstalk suppression functions | |
CN220022605U (en) | Driving circuit and current transformer | |
WO2024189895A1 (en) | Drive circuit and semiconductor device | |
CN114640328B (en) | Temperature-resistant SiC MOSFET driving circuit capable of inhibiting on-current oscillation and control method thereof | |
CN116614121B (en) | Power device for improving electromagnetic compatibility |