TW202424876A - Information processing system, information processing method and program product which is applied to a load review based on the credit score and loyalty score estimated for the target user - Google Patents
Information processing system, information processing method and program product which is applied to a load review based on the credit score and loyalty score estimated for the target user Download PDFInfo
- Publication number
- TW202424876A TW202424876A TW112137157A TW112137157A TW202424876A TW 202424876 A TW202424876 A TW 202424876A TW 112137157 A TW112137157 A TW 112137157A TW 112137157 A TW112137157 A TW 112137157A TW 202424876 A TW202424876 A TW 202424876A
- Authority
- TW
- Taiwan
- Prior art keywords
- score
- user
- credit
- target user
- information processing
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 62
- 238000003672 processing method Methods 0.000 title claims description 3
- 238000012552 review Methods 0.000 title description 6
- 238000004364 calculation method Methods 0.000 claims abstract description 42
- 238000010801 machine learning Methods 0.000 claims description 30
- 238000003066 decision tree Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 34
- 238000011156 evaluation Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000003542 behavioural effect Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 208000001613 Gambling Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本揭露係有關於用來算出使用者分數所需之技術。This disclosure relates to the techniques required to calculate user scores.
先前,一種判定裝置,係具備:使用者資訊取得部,係取得表示使用者之行動的行動資訊;和信用度判定部,係基於行動資訊,來判定關於將來之使用者對融資的還款能力的信用度,已被提出(參照專利文獻1)。Previously, a determination device comprising: a user information acquisition unit that acquires action information representing the user's actions; and a credit determination unit that determines the creditworthiness of the user regarding the future ability to repay financing based on the action information has been proposed (see patent document 1).
又,先前,已被輸入之審查申請資訊和本人確認資料來對使用者執行貸款審查的貸款審查裝置,已被提出(參照專利文獻2)。再者,先前,從使用者受理關於金錢之放款的要求,基於使用者屬性資訊及使用者行動資訊之至少1者來進行審查以決定放款條件,將已決定之放款條件通知給使用者,在收到表示使用者接受放款條件之通知的情況下,對使用者依照放款條件而進行金錢的放款,此種資訊處理方法已被提出(參照專利文獻3)。 [先前技術文獻] [專利文獻] In addition, a loan review device that performs a loan review on a user based on input review application information and personal confirmation data has been proposed previously (see Patent Document 2). Furthermore, in the past, an information processing method has been proposed that accepts a request for a loan from a user, conducts a review based on at least one of user attribute information and user action information to determine loan conditions, notifies the user of the determined loan conditions, and, upon receiving a notification indicating that the user accepts the loan conditions, lends money to the user in accordance with the loan conditions (see Patent Document 3). [Prior Art Document] [Patent Document]
[專利文獻1]日本特開2021-174039號公報 [專利文獻2]日本特開2020-003869號公報 [專利文獻3]日本特開2020-102007號公報 [Patent Document 1] Japanese Patent Publication No. 2021-174039 [Patent Document 2] Japanese Patent Publication No. 2020-003869 [Patent Document 3] Japanese Patent Publication No. 2020-102007
[發明所欲解決之課題][The problem that the invention wants to solve]
先前,基於使用者的履歷資料而算出表示使用者之信用度等的使用者分數的技術,已被提出。可是,在彼此互異之多樣種類之服務所聚集而成的商業生態系統(經濟圈)中,僅基於信用分數的使用者評價上,仍有改善的餘地。Previously, technologies have been proposed for calculating user scores that represent user creditworthiness based on user profile data. However, in a business ecosystem (economic circle) where a variety of different services are gathered, there is still room for improvement in user evaluation based solely on credit scores.
本揭露,係有鑑於上記的問題,以改善商業生態系統中的使用者評價之手法為課題。 [用以解決課題之手段] This disclosure is based on the above-mentioned problems and aims to improve the user evaluation methods in the business ecosystem. [Methods to solve the problem]
本揭露之一例,係為一種資訊處理系統,係具備:信用分數推定手段,係用以基於使用者所相關之屬性資料群,來推定要被設定至該使用者的信用分數;和忠誠度分數算出手段,係用以基於所定之商業生態系統中的前記使用者所做的服務利用狀況,而算出該使用者的關於該商業生態系統之忠誠度分數;和綜合分數算出手段,係用以基於針對對象使用者而被推定出來的前記信用分數、及針對該對象使用者而被算出的前記忠誠度分數,而算出該對象使用者的綜合分數。One example of the present disclosure is an information processing system, which has: a credit score estimation means for estimating a credit score to be set for a user based on an attribute data group related to the user; a loyalty score calculation means for calculating the user's loyalty score with respect to a predetermined business ecosystem based on service utilization conditions performed by previous users in the predetermined business ecosystem; and a comprehensive score calculation means for calculating a comprehensive score of a target user based on a previous credit score estimated for the target user and a previous loyalty score calculated for the target user.
本揭露係可作為藉由資訊處理裝置、系統、電腦而被執行的方法或令電腦執行的程式,而加以界定。又,本揭露係也可作為將此種程式記錄至電腦或其他裝置、機械等可讀取之記錄媒體,而加以界定。此處,所謂的電腦等可讀取之記錄媒體,係指將資料或程式等之資訊以電性、磁性、光學性、機械性或化學性作用而加以積存,並可從電腦等加以讀取的記錄媒體。 [發明效果] The present disclosure can be defined as a method executed by an information processing device, system, or computer, or a program executed by a computer. In addition, the present disclosure can also be defined as recording such a program on a recording medium readable by a computer or other device, machine, etc. Here, the so-called recording medium readable by a computer, etc. refers to a recording medium that stores information such as data or programs by electrical, magnetic, optical, mechanical, or chemical action and can be read from a computer, etc. [Effect of the invention]
若依據本揭露,則可改善商業生態系統中的使用者評價之手法。According to this disclosure, the user evaluation method in the business ecosystem can be improved.
以下,將本揭露所涉及之資訊處理裝置、方法及程式產品的實施形態,基於圖式而加以說明。但是,以下所說明的實施形態,係僅為例示實施形態,本揭露所涉及之資訊處理裝置、方法及程式產品並非限定於以下所說明的具體構成。在實施之際,可因應實施之態樣而適宜採用具體構成,又,可進行各種的改良或變形。本發明,係可將後述的實施形態、變形例之各者中的構成之至少一部分適宜地相互採用。The following will describe the implementation forms of the information processing device, method and program product involved in the present disclosure based on the drawings. However, the implementation forms described below are only illustrative implementation forms, and the information processing device, method and program product involved in the present disclosure are not limited to the specific configuration described below. During implementation, the specific configuration can be appropriately adopted according to the implementation mode, and various improvements or modifications can be made. The present invention can appropriately adopt at least a part of the configuration of each of the implementation forms and modifications described below.
在本實施形態中是針對,將本揭露所涉及之技術,為了對可利用複數個線上服務之所定之商業生態系統的使用者提示贈禮或是促進服務之利用而做實施之情況的態樣,進行說明。但是,本揭露所涉及之技術,係可廣泛使用於用來決定使用者的分數所需之技術,本揭露的適用對象係不限定於實施形態中所示的例子。In this embodiment, the technology involved in this disclosure is described in order to provide a user of a predetermined business ecosystem that can use multiple online services with a gift or promote the use of services. However, the technology involved in this disclosure can be widely used in the technology required to determine the points of users, and the application of this disclosure is not limited to the examples shown in the embodiment.
<系統的構成>
圖1係為本實施形態所述之資訊處理系統的構成的概略圖。本實施形態所述的資訊處理系統中,資訊處理裝置1、和1或複數個服務提供系統5,係被連接成可相互通訊。使用者,係為藉由服務提供系統5而被提供的所定之商業生態系統中所屬之服務的利用者,藉由從使用者終端向服務提供系統5進行存取以接受服務之提供。此處,本實施形態中所謂的商業生態系統,係可為藉由能夠以共通的使用者ID進行登入之複數個服務而被構成的服務群,亦可為藉由共通的點數等之電子性額值對使用者之賦予或使用者所做之利用為可能的複數個服務而被構成的服務群。
<System Configuration>
Figure 1 is a schematic diagram of the configuration of the information processing system described in this embodiment. In the information processing system described in this embodiment, the
資訊處理裝置1,係為具備:CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、EEPROM(Electrically Erasable and Programmable Read Only Memory)或HDD(Hard Disk Drive)等之記憶裝置14、NIC(Network Interface Card)等之通訊單元15等的電腦。但是,關於資訊處理裝置1的具體的硬體構成,係因應實施的態樣而可適宜地省略或置換、追加。又,資訊處理裝置1係不限定於由單一的框體所成的裝置。資訊處理裝置1,係可藉由使用所謂的雲端或分散運算之技術等的複數個裝置來加以實現。The
服務提供系統5,為具備CPU、ROM、RAM、記憶裝置、通訊單元、輸入裝置、輸出裝置等(圖示省略)的電腦。又,這些系統及終端,係皆不限定由單一的框體所成的裝置。這些系統及終端,係可藉由使用所謂雲端或分散運算之技術等的複數個裝置來加以實現。The
藉由服務提供系統5而被提供的服務係為例如:線上購物服務、線上預約服務、銀行服務、信用卡/後付結帳服務、電子貨幣結帳服務、廣告服務、作業中心服務、或地圖資訊服務等。此外,「後付結帳」係不限於被稱為所謂的Buy Now Pay Later(BNPL)的服務,可包含任何後付所致之商品/服務之購入。又,銀行服務中係包含有:戶頭開設服務、存款管理服務、資金援助(資產管理)服務、及薪資轉帳服務等,可藉由銀行來做提供的各種服務。The services provided by the
藉由服務提供系統5而被提供的服務係不限定於本實施形態中的例示。然後,服務提供系統5,係在服務提供之際,將使用者關連資料,通知給資訊處理裝置1。此處,使用者關連資料中係含有,該當使用者所致之服務的利用履歷資料。服務的利用履歷資料之內容係會隨著服務之內容而有各式各樣,例如,使用者的位置資訊的履歷資料、信用卡利用額/後付結帳利用額的繳款履歷資料、電子貨幣利用履歷資料、交易履歷資料(包含商品等之購入履歷資料)、預約履歷資料、從作業中心對使用者的作業履歷資料等。The services provided by the
圖2係為本實施形態中的信用分數、忠誠度分數及綜合分數之關係的圖示。資訊處理裝置1,係對服務提供系統5,提供用來判斷是否可把對象使用者視為所定之服務或贈禮之提供對象所需之資料。先前,作為用來判斷是否可把對象使用者視為所定之服務或贈禮之提供對象所需之資料,係使用信用分數,關於信用分數的決定方法或利用活用,已經進行過諸多嘗試。可是,在彼此互異之多樣種類之服務所聚集而成的商業生態系統中,關於信用分數的使用者體驗,仍有改善的餘地。因此,在本實施形態中,作為用來判斷是否可把對象使用者視為所定之服務或贈禮之提供對象所需之資料,是提供信用分數及綜合分數。此處,信用分數,係為表示對象使用者之信用力之程度的分數;綜合分數,係為基於信用分數及忠誠度分數而被算出的分數。忠誠度分數,係為表示本實施形態所述的使用者對商業生態系統之忠誠度(loyalty)的分數,例如基於使用者所做的服務利用狀況而被算出。FIG2 is a diagram showing the relationship between the credit score, loyalty score, and comprehensive score in the present embodiment. The
服務提供系統5,係隨應於從資訊處理裝置1所被提供的資料,而可將對對象使用者所被提供的服務之內容或贈禮之內容,進行客製化。例如,資訊處理裝置1,係可隨應於來自服務提供系統5之要求而對服務提供系統5提供對象使用者的信用分數或綜合分數。從資訊處理裝置1對服務提供系統5提供資料的具體形式或手法係無限定。例如,資訊處理裝置1,係可對服務提供系統5,以提供分數之清單等的方式,來提供資料。又,例如,資訊處理裝置1,係亦可以隨應於來自服務提供系統5的指定了使用者ID的個別之查詢而回送對象使用者之分數的方式,來提供資料。The
此處,資訊處理裝置1,係可使得對服務提供系統5所被提供的分數之種類,按照服務的性質而有所不同。具體而言,在本實施形態中是設計成,資訊處理裝置1係針對與授信有關的服務,是對服務提供系統5提供信用分數,針對與授信無關的服務,是對服務提供系統5提供綜合分數。又,在本實施形態中,忠誠度分數係不會被單獨提供給服務提供系統5。這是因為,使用者分數的基礎原則上係為信用分數,忠誠度分數係為在綜合分數內作為對信用分數之加分要素而發揮機能。但是,隨著實施形態不同,亦可設計成,會把忠誠度分數單獨對服務提供系統5進行提供。Here, the
又,資訊處理裝置1,係從服務提供系統5,獲得後述的使用者屬性資料。所被獲得的使用者屬性資料,係被使用於用來算出信用分數所需之模型的生成或更新,可使得所被算出的信用分數之精度有所提升。又,藉由獲得各使用者所利用過的服務之資訊,針對各使用者,可將綜合分數的一部分也就是忠誠度分數(隨應於使用者所做的服務之利用而被累積的分數)予以更新。Furthermore, the
甚至,資訊處理裝置1,係對使用者,通知該當使用者的綜合分數。此時,亦可對使用者通知,從資訊處理裝置1或服務提供系統5,對該當使用者所被提供的贈禮之內容、及/或該當使用者做了利用的情況下分數會有所上升的服務之內容。此外,資訊處理裝置1,係不對使用者,通知該當使用者的信用分數。這是因為,原則上信用分數係只在系統內部被參照,是不會對使用者做揭露的分數。Furthermore, the
在本揭露所述之資訊處理裝置中係使用,把使用者屬性資料等當作輸入而會將信用分數(在本實施形態中係為表示後付風險的分數)予以輸出的機器學習模型。此外,這裡作為輸入而被使用的屬性資料中,亦可包含有表示違約(債務不履行)的資料。藉由把各式各樣的屬性資料當作輸入來使用,若依據本揭露所述之資訊處理裝置1,則可算出藉由使用者的全盤屬性都有被統一地反映而被生成的普遍性(universal)且一般化(generalized)的信用分數。已被算出的信用分數,係可使用於後付結帳服務等中的授信審查(後付結帳之認可或拒絕所伴隨之判定),但如上述,在本實施形態中,是還把已被算出之信用分數,也使用在是否把使用者視為所定之贈禮之提供對象的判定上。The information processing device described in the present disclosure uses a machine learning model that takes user attribute data as input and outputs a credit score (a score indicating post-payment risk in the present embodiment). In addition, the attribute data used as input may also include data indicating default (non-performance of debt). By using various attribute data as input, according to the
此處,使用者屬性資料中係包含有事實屬性資料及推定屬性資料。屬性資料係含有例如:以分數(例如0以上1以下的連續值)或標籤(例如相應於有無或是非的二值)等之資料形式而被表示的資料。但是,屬性資料的格式係不限定於本揭露中的例示。又,屬性資料中係可包含有例如:線上服務利用狀況、包含點數在內的電子性額值之利用狀況。又,線上服務利用狀況中係可包含有:線上購物服務或線上預約服務中的取消數、取消率、及訂購數之至少任一者。Here, the user attribute data includes factual attribute data and inferred attribute data. Attribute data includes, for example, data represented in the form of scores (e.g., continuous values above 0 and below 1) or labels (e.g., binary values corresponding to presence or absence or no). However, the format of attribute data is not limited to the examples in this disclosure. Furthermore, the attribute data may include, for example, online service usage status, and usage status of electronic credits including points. Furthermore, online service usage status may include at least one of the number of cancellations, cancellation rate, and number of orders in online shopping services or online reservation services.
事實屬性資料係為,基於藉由使用者本身提供而被獲得的使用者提供資料或針對使用者而被收集的履歷資料等,關於該當使用者而可確認是屬於事實的表示事實屬性(factual attribute)的資料。作為使用者提供資料係可舉出例如:含有藉由使用者本身而被登錄的姓名或郵件位址、電話號碼、住址、工作地點、就學地點等的登錄資料、或使用者本身對問卷等做回答之結果所得到的資料。作為履歷資料係可舉出例如,上述的藉由服務提供系統5而被提供的電子商務交易服務之利用履歷資料。事實屬性資料,係為把前述的使用者提供資料或履歷資料,轉換成適合於市場行銷及/或分析目的資料形式而成的資料為佳。例如,作為可根據利用履歷資料而獲得的事實屬性資料,除了可舉出使用者所頻繁利用的商品/服務之類型/類別或品牌以外,還可舉出使用者所頻繁造訪的商業區或娛樂區、觀光區等。Factual attribute data is data that indicates factual attributes that can be confirmed to be facts about the user based on user-provided data obtained by the user himself or biographical data collected for the user. User-provided data includes, for example, registration data containing the name or email address, phone number, address, workplace, school location, etc. registered by the user himself, or data obtained by the user himself answering a questionnaire. Biographical data includes, for example, the above-mentioned use history data of the e-commerce transaction service provided by the
又,推定屬性資料係為表示,基於使用者提供資料或履歷資料、事實屬性資料等而藉由推定所被獲得的表示推定屬性(inferred attribute)的資料。於本實施形態中,推定屬性資料係包含,使用機器學習技術而被推定或預測的使用者之性格等。推定屬性資料係為,在被使用於目標市場選擇的情況下,對使用者的行動(舉動)會造成影響的屬性所相關的資料為佳。In addition, the inferred attribute data is data indicating inferred attributes obtained by inference based on user-provided data, resume data, factual attribute data, etc. In this embodiment, the inferred attribute data includes the user's personality, etc., which is inferred or predicted using machine learning technology. The inferred attribute data is preferably data related to attributes that will affect the user's behavior (action) when used in target market selection.
於本實施形態中,各屬性資料係被設定有權重。權重,係在信用分數的算出時使用屬性資料之際,表示屬性資料與信用分數之相關性之高低,藉由後述的機器學習部24而每次評價信用分數的適切性時,模型的參數就會被調整成,使得信用分數變成更加適切的值。與各屬性資料相對應的權重,作為例子,是相當於與後述的決定模型等之信用分數算出所需之模型中的各節點(各迴歸樹)相對應的權重,在信用分數被算出的過程中,會被適宜地決定。此外,信用分數,作為例子,是基於各節點的權重而被決定。In this embodiment, each attribute data is set with a weight. The weight indicates the degree of correlation between the attribute data and the credit score when the attribute data is used in the calculation of the credit score. Each time the appropriateness of the credit score is evaluated by the
此處,屬性資料群中係可包含有:人口統計屬性、行為屬性、或心理統計屬性。人口統計屬性係為例如:使用者的性別(gender)、家庭組成、年齡等;行為屬性,係可基於服務的利用履歷資料,而為例如:電子現金利用有無、固定限額繳款利用有無、所定之戶頭所涉及之入出金履歷、包含賭博或彩券的某些商品/服務所涉及之商務交易履歷(可包含線上市集等中的線上交易履歷)、使用到位置資訊或場所資訊的使用者之移動履歷等;心理統計屬性係為例如涉及賭博或彩券之興趣等。但是,可利用之使用者的屬性,係不限定於本實施形態中的例示。例如,來自客服中心服務等之「客服(去電等)所需的時間」、「信用卡利用額/後付結帳利用額」,也可當作屬性來使用。人口統計屬性及行為屬性,係可視為事實屬性。心理統計屬性,係可視為推定屬性。此外,與人口統計屬性類似的屬性係可為,基於以使用者提供資料或履歷資料為根據的事實屬性而被推定出來的推定屬性。同樣地,與行為屬性類似的屬性係可為,基於以使用者提供資料或履歷資料為根據的事實屬性而被推定出來的推定屬性。心理統計屬性係可為,根據以使用者所致之意思輸入之結果作為一例而含有的使用者提供資料而得的事實屬性。Here, the attribute data group may include: demographic attributes, behavioral attributes, or psychographic attributes. Demographic attributes include, for example, the user's gender, family composition, age, etc. Behavioral attributes may be based on the service usage history data, such as: whether electronic cash is used, whether fixed-limit payment is used, deposit and withdrawal history of a specified account, business transaction history of certain goods/services including gambling or lottery (may include online transaction history in online bazaars, etc.), and movement history of users using location information or venue information, etc. Psychographic attributes include, for example, interests in gambling or lottery, etc. However, the attributes of users that can be used are not limited to the examples in this embodiment. For example, "Time required for customer service (outbound calls, etc.)" and "Credit card usage amount/postpaid bill usage amount" from customer service center services can also be used as attributes. Demographic attributes and behavioral attributes can be considered factual attributes. Psychographic attributes can be considered inferred attributes. In addition, attributes similar to demographic attributes may be inferred attributes based on factual attributes based on user-provided data or resume data. Similarly, attributes similar to behavioral attributes may be inferred attributes based on factual attributes based on user-provided data or resume data. Psychographic attributes may be factual attributes obtained based on user-provided data as an example of a result of intention input by the user.
圖3係為本實施形態所述之資訊處理裝置1的機能構成之概略的圖示。資訊處理裝置1,係藉由將記憶裝置14中所被記錄的程式,讀出至RAM13中,並藉由CPU11來加以執行,以控制資訊處理裝置1中所具備的各硬體,藉此而成為具備事實屬性決定部21、推定屬性決定部22、信用分數推定部23、機器學習部24、忠誠度分數算出部25、綜合分數算出部26、贈禮決定部27、服務特定部28、及通知部29的資訊處理裝置而發揮機能。此外,在本實施形態及後述的其他實施形態中,資訊處理裝置1所具備的各機能,係藉由通用處理器也就是CPU11而被執行,但這些機能的部分或全部係亦可藉由1或複數個專用處理器而被執行。Fig. 3 is a schematic diagram of the functional configuration of the
事實屬性決定部21,係基於使用者本身所被提供的使用者提供資料及/或該當使用者的履歷資料,來決定關於該當使用者可確認是事實的事實屬性資料。於本實施形態中,事實屬性決定部21係採用:將使用者提供資料及/或履歷資料加以統計、參照地圖等之其他資料而決定相符的屬性、將使用者提供資料及/或履歷資料直接拿來使用等之手法,來決定該當使用者所相關之事實屬性資料。此外,在本實施形態中雖然是採用,將使用者所相關之事實屬性資料,基於使用者提供資料及/或該使用者之履歷資料而加以決定的方法,但使用者所相關之事實屬性資料亦可用其他方法而加以取得。The fact
推定屬性決定部22,係至少基於含有藉由事實屬性決定部21而針對對象使用者而被決定之1或複數個事實屬性資料的使用者關連資料,來決定針對該當使用者而被推定之推定屬性資料。於本實施形態中,推定屬性決定部22係基於,藉由把含有對象使用者所相關之1或複數個事實屬性資料的使用者關連資料,輸入至屬於機器學習模型的屬性推定模型所得到之輸出值,來決定推定屬性。此外,於本實施形態中,來自屬性推定模型之輸出值係為表示對象使用者具有所定之推定屬性的蓋然性的值,推定屬性決定部22,係在從屬性推定模型所得之輸出值是落在所定之範圍內的情況下,就決定為對象使用者具有該當推定屬性。在已被決定為對象使用者具有所定之推定屬性的情況下,推定屬性決定部22,係將針對對象使用者而被推定之屬性資料之標籤,設定成表示屬性之有無或屬性之種類的值。又,推定屬性資料亦可不是用標籤而是用分數來表示。此情況下,推定屬性決定部22,係對針對對象使用者而被推定出來的屬性資料之分數,設定表示已被推定出來的屬性可被適用之程度(機率)的值。該當程度,係可為屬性推定模型的輸出值。The estimated
信用分數推定部23,係基於含有對象使用者所相關之事實屬性及推定屬性的屬性資料群,來推定對象使用者的信用分數(在本實施形態中係為基於後付風險而被算出的信用分數)。此處,所謂後付風險係為,在對象使用者利用了後付結帳的情況下,將後付結帳之結算不被該當對象使用者正常履行之風險,以某種指標(在本實施形態中係為隨應於後付風險之大小而變化的信用分數)來加以表示。此時,信用分數推定部23,係亦可對已被決定之事實屬性及/或推定屬性施行某些加工(正規化或排名化、標籤化等)以作為屬性資料群之一部分,亦可把使用已被決定之事實屬性及/或推定屬性而被算出之其他種類之分數(例如所謂信用分數等)或標籤,當作屬性資料群之全部或部分。此處,其他種類的分數或標籤之算出中,亦可有其他機器學習模型介入。The credit
圖4係為本實施形態所述之信用分數推定處理的簡略圖。於本實施形態中,信用分數推定部23,係藉由將使用者的屬性資料群輸入至信用分數推定模型,以推定(算出)該當使用者的信用分數。於本實施形態中,信用分數推定模型的輸出值,作為例子,係為以400為最小值,以800為最大值而被正規化/規格化的信用分數。FIG4 is a simplified diagram of the credit score estimation process described in this embodiment. In this embodiment, the credit
機器學習部24,係將信用分數推定部23所做的信用分數推定時所被使用的信用分數推定模型,予以生成及/或更新。信用分數推定模型係為,在被輸入了對象使用者所相關之1或複數個屬性資料(屬性資料群)的情況下,會將表示對象使用者利用了後付結帳的情況下後付結帳之結算不被該當對象使用者正常履行之風險之程度的信用分數予以輸出的機器學習模型。藉由使用如此的機器學習模型,在本實施形態中,就可不單只有信用分數,而是將考慮到對後付做了特化之因子的輸出,當作信用分數而獲得。又,在本實施形態中是展示並說明,採用信用分數之值越小則風險越高、信用分數之值越大則風險越低的信用分數的例子,但分數之值的大小與風險之高低的關係亦可顛倒。The
信用分數推定模型的生成及/或更新時,機器學習部24,係按照每一使用者,作成把該當使用者之屬性資料群定義作為輸入值並且把該當使用者所相關之信用分數定義作為輸出值的訓練資料。然後,機器學習部24,係基於該當訓練資料,來生成及/或更新信用分數推定模型。如上述,被輸入至信用分數推定模型的屬性資料群中,係含有已被事實屬性決定部21所決定之事實屬性資料、與基於含有事實屬性資料的使用者關連資料而被推定屬性決定部22所推定出來的推定屬性資料,會和對應的使用者的信用分數做組合,成為訓練資料而被輸入至機器學習部24。於本實施形態中,訓練資料中所被設定的信用分數係為,作為輸入值的相當於使用者屬性之組合的,基於使用者的後付結帳之支付履歷資料而被決定的信用分數。此處,後付結帳之支付履歷資料係包含,表示後付結帳中的違約(債務不履行)之有無或違約額的資料等。此時,信用分數,係可為規則基礎而被決定之信用分數,亦可為被手動設定的(被進行過註解的)信用分數。又,亦可為藉由信用分數推定模型而在過去曾經被輸出之後,藉由管理者等而被修正過的信用分數。When generating and/or updating the credit score estimation model, the
本揭露所涉及之技術在實作時能夠作為信用分數推定模型等而採用的機器學習模型生成/更新之框架,作為例子,是基於集成學習演算法。該當框架中係可採用例如:基於梯度提升決策樹(Gradient Boosting Decision Tree:GBDT)的機器學習框架(例如LightGBM)。換言之,該當框架係可採用,在前後的弱學習器(弱分類器)間會將正確答案與預測值之誤差予以繼承的基於此種決策樹模型的機器學習框架。此處所謂的預測值,作為例子,係指信用分數的預測值。此外,該當框架,係除了LightGBM以外,還可採用XGBoost或CatBoost等之boosting手法。若依據使用決策樹的框架,則相較於使用神經網路的框架,可用較少的參數調整之手續,就能生成/更新具有比較高性能的機器學習模型。但是,本揭露所述之技術在實作時所能夠採用的機器學習模型生成/更新之框架,係不限定於本實施形態中的例示。例如,作為學習器亦可取代梯度提升決策樹而改用隨機森林等其他的學習器,亦可採用神經網路等之不被稱為所謂弱學習器的學習器。又,尤其是在採用神經網路等之不被稱為所謂弱學習器的學習器的情況下,則亦可不採用集成學習。The technology involved in the present disclosure can be used as a framework for generating/updating machine learning models used as credit score estimation models, etc. during implementation. As an example, it is based on an ensemble learning algorithm. In the framework, for example, a machine learning framework based on a gradient boosting decision tree (Gradient Boosting Decision Tree: GBDT) (such as LightGBM) can be used. In other words, the framework can adopt a machine learning framework based on such a decision tree model in which the error between the correct answer and the predicted value is inherited between the previous and subsequent weak learners (weak classifiers). The predicted value here, as an example, refers to the predicted value of the credit score. In addition, in addition to LightGBM, the framework can also adopt boosting techniques such as XGBoost or CatBoost. If a framework using a decision tree is used, a machine learning model with relatively high performance can be generated/updated with fewer parameter adjustments than a framework using a neural network. However, the machine learning model generation/update framework that can be used when implementing the technology described in this disclosure is not limited to the examples in this embodiment. For example, other learners such as random forests can be used instead of gradient boosting decision trees as learners, and learners such as neural networks that are not called so-called weak learners can also be used. In addition, especially when a learner such as a neural network that is not called a so-called weak learner is used, ensemble learning may not be used.
圖5係為於本實施形態中作為信用分數推定模型等而被採用的機器學習模型的決策樹之概念的簡略圖。在採用基於決策樹演算法的梯度提升之機器學習框架的情況下,決策樹的各節點之分歧條件的最佳化會被進行。具體而言,在基於決策樹演算法的梯度提升之機器學習框架中,針對具有從一個母節點所分歧出來的二個子節點之各者所代表之屬性的使用者群,分別算出信用分數,將母節點的分歧條件進行最佳化,以使得該信用分數的差分會變大(例如使得差分變成最大,或變成所定之閾值以上),亦即使得二個子節點能夠明確地分歧。例如,作為節點的分歧條件而被表示的屬性係為年齡的情況下,則亦可將被設定成分歧之閾值的年齡予以變更,或者亦可將分歧條件變更成年齡以外的屬性。如此,藉由將決策樹的全節點的分歧條件做遞迴性的最佳化,就可提升基於屬性資料群的信用分數的推定精度。FIG5 is a simplified diagram of the concept of a decision tree of a machine learning model used as a credit score estimation model in the present embodiment. In the case of using a machine learning framework of gradient boosting based on a decision tree algorithm, optimization of divergence conditions of each node of the decision tree is performed. Specifically, in a machine learning framework of gradient boosting based on a decision tree algorithm, credit scores are calculated for user groups having attributes represented by each of two child nodes diverged from a parent node, and the divergence conditions of the parent node are optimized so that the difference in the credit score becomes larger (for example, the difference becomes the maximum, or becomes above a predetermined threshold), that is, the two child nodes can diverge clearly. For example, if the attribute represented as the divergence condition of the node is age, the age set as the divergence threshold can be changed, or the divergence condition can be changed to an attribute other than age. In this way, by recursively optimizing the divergence conditions of all nodes in the decision tree, the accuracy of credit score estimation based on the attribute data group can be improved.
忠誠度分數算出部25,係基於本實施形態所述的商業生態系統中的使用者所做的服務利用狀況,而將該當使用者的關於該當商業生態系統之忠誠度分數,予以算出。於本實施形態中,忠誠度分數係為以0為最小值、以200為最大值的分數,使用者對於對象之商業生態系統的忠誠度越高,則會以越大的值而被輸出。此處,服務利用狀況,係不限於使用者所做的服務利用之有無,亦可包含有使用者所做的每個服務之交易額及/或登入頻繁度等之商業指標。忠誠度分數算出部25係可例如,基於所定之閾值,隨應於每一服務的商業指標,而算出最終的忠誠度分數。The loyalty
具體而言,於本實施形態中,忠誠度分數算出部25係使用按照商業生態系統中使用者所能夠利用的每一服務而被預先設定的計算式,來算出該當使用者的忠誠度分數。例如,忠誠度分數算出部25,係藉由將對於在已被設定之對象期間內有對象使用者之利用履歷被記錄的服務而被設定的點數逐一進行加算,以算出對象使用者的忠誠度點數。更具體而言,對服務(1)是設定「加算10點」,對服務(2)是設定「加算20點」,對服務(3)是設定「加算30點」,在對象使用者是在對象期間內利用了服務(1)與服務(3)這件事情有被記錄在使用者資料庫的情況下,忠誠度分數算出部25,係將使用者之利用履歷所被記錄的服務(1)上所被設定的10點、與服務(3)上所被設定的30點,進行加算,而將該當使用者的忠誠度分數設成40。Specifically, in this embodiment, the loyalty
又,忠誠度分數的算出方法,係不限定於上記的例示。例如,亦可使得基於現在的分數(信用分數、忠誠度分數或綜合分數)而被算出之點數,會被加算。具體而言,假設對服務(4)是設定「綜合分數之1%」,在使用者利用了服務(4)這件事情有被記錄在使用者資料庫中的情況下,忠誠度分數算出部25,係將使用者的現在的綜合分數乘以1%而被算出之值,加算至忠誠度分數。Furthermore, the calculation method of the loyalty score is not limited to the above-mentioned example. For example, points calculated based on the current score (credit score, loyalty score or comprehensive score) may be added. Specifically, assuming that "1% of the comprehensive score" is set for service (4), and the fact that the user has used service (4) is recorded in the user database, the loyalty
又,例如,所被加算的點數之值或比率,亦可隨每一使用者而不同。具體而言,假設對服務(5)是設定「首次利用使用者係加算10點,第2次以後利用使用者係加算1點」,在使用者首次利用了服務(5)的情況下,忠誠度分數算出部25係對使用者的忠誠度分數加算10點,在使用者再度利用了服務(5)的情況下,忠誠度分數算出部25係對使用者的忠誠度分數加算1點。除此以外,忠誠度分數的算出方法係可採用各式各樣的方法,不限定於上記的例示。Furthermore, for example, the value or ratio of the points added may also be different for each user. Specifically, assuming that "10 points are added for the first-time user and 1 point is added for the second and subsequent users" for service (5), when the user uses service (5) for the first time, the loyalty
綜合分數算出部26,係基於針對對象使用者而被推定出來的信用分數、及針對該當對象使用者而被算出的忠誠度分數,而算出該當對象使用者的綜合分數。此時,綜合分數算出部26,係以使得綜合分數中忠誠度分數所佔有之權重(比率),會小於綜合分數中信用分數所佔有之權重(比率)的方式,而算出對象使用者的綜合分數。在本實施形態中,針對對象使用者,是藉由將信用分數與忠誠度分數做單純地相加,以算出綜合分數。因此,在本實施形態中,是藉由將忠誠度分數之上限(例如200)設定成,不會超過信用分數(在本實施形態的例子中係為400)之下限之所定比率的值,以使得綜合分數中忠誠度分數所佔有之權重,會小於綜合分數中信用分數所佔有之權重的方式,而算出對象使用者的綜合分數。但是,用來算出綜合分數所需之具體的方法,係不限定於本實施形態中的例示。例如,亦可對信用分數及忠誠度分數之各者乘算彼此互異之權重C及L而算出綜合分數(綜合分數=信用分數*權重C+忠誠度分數*權重L),並將該權重C及L,以使得綜合分數中忠誠度分數所佔有之比率會小於綜合分數中信用分數所佔有之比率的方式來做設定。The comprehensive
贈禮決定部27,係基於對象使用者的綜合分數或該當對象使用者的信用分數,來決定給該當對象使用者之贈禮內容。又,在本實施形態中,是隨應於贈禮的種類,而將判定中所被使用的分數做區分使用。亦即,於本實施形態中,贈禮決定部27,係基於對象使用者的信用分數,來決定有關於授信的給該當對象使用者之贈禮內容,基於該當對象使用者的綜合分數,來決定無關於授信的給該當對象使用者之贈禮內容。藉由如此設計,針對需要僅基於使用者之信用力來決定賦予之可否之種類的贈禮(費用後付之許可、及利息優惠等,有關於授信的贈禮),係基於信用分數來決定贈禮賦予之可否;針對使用者之意思可被反映(使用會被使用者做意圖性變動之分數也無妨)之種類的贈禮(銀行手續費全免等,無關於授信的贈禮),則可基於綜合分數來決定贈禮賦予之可否。The
具體而言,贈禮決定部27,係將按照每一贈禮而被預先設定之閾值、與對象使用者的現在之分數,進行比較,在分數為閾值以上的情況下,對該當對象使用者,決定成可提供該當閾值所涉及之贈禮。例如,對利息優惠之贈禮所被設定之閾值為「信用分數700」的情況下,對信用分數為700以上的使用者,會提供利息優惠之贈禮。此處,由於所被參照的分數係為信用分數,因此即使使用者意圖性地去利用分數提升對象之服務,光就這點是無法提高信用分數的,因此使用者係必須要用其他的方法,來使信用分數被提升。又例如,對銀行手續費全免之贈禮所被設定之閾值為「綜合分數700」的情況下,對綜合分數為700以上的使用者,會提供銀行手續費全免之贈禮。此處,由於所被參照的分數係為綜合分數,因此使用者藉由意圖性地利用分數提升對象之服務,使用者就可意圖性地操作綜合分數,而可收到贈禮。Specifically, the
服務特定部28,係在商業生態系統中使用者所能夠利用的服務之中,特定出在對象使用者做了利用的情況下可使該當對象使用者的忠誠度分數及綜合分數有所提升的服務。具體而言,服務特定部28,係從預先被保持在資料庫中的服務清單,將該當使用者是滿足利用條件,且藉由利用而會被賦予忠誠度分數的這件事情是已被設定的服務,予以抽出。此處,利用條件的具體內容係無限定,但例如,使用者的年齡、居住地、及服務利用登錄之狀況等之使用者屬性,是可當作利用條件而被參照。又,利用條件中亦可包含有,使用者屬性以外之條件(例如服務提供期間)。又,由於信用分數與忠誠度分數係為以彼此互異之手法而被算出的分數,因此對按照每一服務所被設定的忠誠度分數而被加算的值,係可藉由服務提供者或系統管理者,在已被預先設定之值的範圍內,做任意設定。例如,針對特別想要讓使用者來利用的(努力促銷的)服務,係可藉由把忠誠度分數的賦予量設定成較大的值,以提高對使用者的服務之訴求。The
通知部29,係將對象使用者的綜合分數、針對對象使用者而被決定的贈禮內容、及已被服務特定部28所特定的服務,通知給對象使用者。The
圖6係為於本實施形態中對象使用者的使用者終端上所被顯示的第一通知畫面之一例。第一通知畫面,係藉由登入至商業生態系統的使用者所使用的應用程式或瀏覽器而被顯示,含有對象使用者的分數(在圖所示的例子中係為765分)、及會收到優惠(贈禮)的服務之一覽(在圖所示的例子中係為銀行服務及電子貨幣結帳服務)。此外,被通知給使用者的分數,係只有綜合分數,其明細(亦即信用分數及忠誠度分數)係不被通知。例如,圖中所示的分數765分的明細,係為例如信用分數750分與忠誠度分數15分之合計,但是對使用者係不會讓其得知其明細。而且,於第一通知畫面中,使用者,係藉由將位於一覽中的服務顯示部分以輕觸操作或點選操作等進行選擇,就可使得用來瀏覽已被選擇之服務中所會收到的贈禮及分數提升服務所需之第二通知畫面被顯示。FIG6 is an example of the first notification screen displayed on the user terminal of the target user in this embodiment. The first notification screen is displayed through the application or browser used by the user who logs into the business ecosystem, and contains the score of the target user (765 points in the example shown in the figure) and a list of services for which a discount (gift) will be received (banking services and electronic money checkout services in the example shown in the figure). In addition, the score notified to the user is only the comprehensive score, and its details (i.e., credit score and loyalty score) are not notified. For example, the details of the score of 765 points shown in the figure are, for example, the total of a credit score of 750 points and a loyalty score of 15 points, but the user will not be informed of the details. Moreover, in the first notification screen, the user can select the service display portion in the overview by touching or clicking, so that the second notification screen required for browsing the gifts and score-enhancing services that will be received in the selected service can be displayed.
圖7係為於本實施形態中對象使用者的使用者終端上所被顯示的第二通知畫面之一例。關於第二通知畫面也是,和第一通知畫面同樣地,藉由登入至商業生態系統的使用者所使用的應用程式或瀏覽器而被顯示。但是,此處被使用於顯示的應用程式,係亦可為,與讓第一通知畫面做顯示的應用程式不同的應用程式(對應於優惠內容的應用程式)。具體而言,圖7中係圖示了,於圖6的第一通知畫面中,藉由銀行服務之顯示部分被選擇操作而應用程式就遷移至銀行服務用應用程式,藉由銀行服務用應用程式而被顯示出來的第二通知畫面。FIG. 7 is an example of a second notification screen displayed on the user terminal of the target user in the present embodiment. The second notification screen is also displayed by the application or browser used by the user who logs into the business ecosystem, similarly to the first notification screen. However, the application used for display here may be an application different from the application displayed on the first notification screen (an application corresponding to the discount content). Specifically, FIG. 7 illustrates a second notification screen displayed by the banking service application when the display portion of the banking service is selected in the first notification screen of FIG. 6 and the application is migrated to the banking service application.
第二通知畫面係含有:對象使用者的分數、被提供給對象使用者的贈禮(在圖中係作為項目「優惠內容」而顯示)、及能夠使對象使用者之分數有所提升的服務(在圖中係作為項目「想要提高分數?」而顯示)。在圖中所示的例子中,作為項目「優惠內容」係顯示了,銀行服務之利息優惠贈禮及銀行服務之手續費全免贈禮會被提供給對象使用者。然後,作為項目「想要提高分數?」,則是提議了利用資金援助(資產管理)服務(在圖中係顯示為「理財支援」)、或彩券購入服務。藉由利用所被提議的服務,對象使用者的分數就會增加,被提供給該當對象使用者的贈禮就會有增加的可能性,因此如此的顯示,係對想要增加贈禮的使用者,就會成為一種促銷。又,於通知畫面中,使用者,係藉由將贈禮(優惠內容)或分數提升所需之服務顯示部分以輕觸操作或點選操作等進行選擇,就可使得贈禮或服務之詳細介紹畫面、或用來利用贈禮或服務所需之畫面被顯示(圖示省略)。The second notification screen includes: the target user's score, the gift provided to the target user (displayed as the item "Promotional content" in the figure), and the service that can improve the target user's score (displayed as the item "Want to improve the score?" in the figure). In the example shown in the figure, as the item "Promotional content", it is displayed that the target user will be provided with interest rate discounts on banking services and free banking service fees. Then, as the item "Want to improve the score?", it is suggested to use the financial assistance (asset management) service (displayed as "Financial support" in the figure) or the lottery purchase service. By using the proposed service, the target user's points will increase, and the gift provided to the target user will have the possibility of increasing. Therefore, such a display will become a promotion for users who want to increase gifts. In addition, in the notification screen, the user can select the gift (discount content) or the service display part required for point increase by touching or clicking, so that the detailed introduction screen of the gift or service or the screen required for using the gift or service is displayed (illustration omitted).
此外,在本實施形態中是舉出,通知部29係使用者直接通知綜合分數之值的例子來做說明,但通知部29係亦可取代綜合分數之值,改為將以對象使用者的綜合分數為依據的指標,通知給該當對象使用者。這裡所使用的指標,係可使用例如按照分數之值的每一範圍而被設定的使用者階級。關於使用者階級之表現也是可隨著實施形態而做適宜選擇,可使用例如:星星的數量、數值、文字、詞彙(例如銅、銀、金等)等。In addition, in this embodiment, the example in which the
<處理的流程> 接著說明,藉由本實施形態所述的資訊處理裝置而被執行的處理之流程。此外,以下說明的處理的具體內容及處理順序,係為為了實施本揭露所需之一例。具體的處理內容及處理順序,係可隨著本揭露的實施形態而做適宜選擇。 <Processing flow> Next, the process flow of the processing performed by the information processing device described in this embodiment is described. In addition, the specific content and processing order of the processing described below are an example required for implementing the present disclosure. The specific processing content and processing order can be appropriately selected according to the implementation form of the present disclosure.
圖8係為本實施形態所述之機器學習處理之流程的流程圖。本流程圖中所示的處理,係定期地、或在藉由管理者而被指定的時間點上被執行。Fig. 8 is a flow chart showing the flow of the machine learning process according to the present embodiment. The process shown in this flow chart is executed periodically or at a time point specified by an administrator.
於本實施形態中,在機器學習處理中,信用分數推定模型會被生成及/或更新。機器學習部24係作成訓練資料,其中含有:過去所被累積之每一使用者的屬性資料群、和針對對應之使用者而被預先決定的信用分數之組合(步驟S101)。然後,機器學習部24,係將已被作成之訓練資料輸入至信用分數推定模型,將信用分數推定部23所做的信用分數推定時所被使用的信用分數推定模型予以生成及/或更新(步驟S102)。其後,本流程圖中所示的處理係結束。In this embodiment, a credit score estimation model is generated and/or updated during the machine learning process. The
圖9係為本實施形態所述之分數算出處理之流程的流程圖。本流程圖中所示的處理,係定期地、或在已被指定的時間點上,按照每一對象使用者而被執行。Fig. 9 is a flow chart showing the flow of the score calculation process according to the present embodiment. The process shown in this flow chart is executed for each target user periodically or at a designated time point.
在步驟S201及步驟S202中,事實屬性資料及推定屬性資料係被決定。事實屬性決定部21,係基於對象使用者的使用者提供資料及/或履歷資料,來決定對象使用者所相關之事實屬性資料(步驟S201)。然後,推定屬性決定部22,係至少基於步驟S201中所被決定之事實屬性資料,來決定對象使用者所相關之推定屬性資料(步驟S202)。其後,處理係往步驟S203前進。In step S201 and step S202, factual attribute data and inferred attribute data are determined. The factual
在步驟S203及步驟S204中,信用分數係被決定、輸出。信用分數推定部23,係將含有步驟S201中所被決定之事實屬性資料及步驟S202中所被決定之推定屬性資料的屬性資料群,予以決定(步驟S203)。然後,信用分數推定部23,係將步驟S203中所被決定之屬性資料群,輸入至信用分數推定模型,並將所被輸出的值,當作對象使用者利用了後付結帳的情況下隨應於後付結帳之結算不被該當對象使用者正常履行之風險而變化的信用分數,而加以取得(步驟S204)。但是,信用分數的推定方法,係不限定於本實施形態中的例示。例如,信用分數係亦可為包含有,將屬性資料群輸入至非機器學習模型的所定之函數或統計模型等而被算出的值。其後,處理係往步驟S205前進。In step S203 and step S204, the credit score is determined and output. The credit
在步驟S205及步驟S206中,忠誠度分數及綜合分數係被算出。忠誠度分數算出部25,係基於商業生態系統中的使用者所做的服務利用狀況,而將該當使用者的關於該當商業生態系統之忠誠度分數,予以算出(步驟S205)。然後,綜合分數算出部26,係基於針對對象使用者而在步驟S204中所被推定出來的信用分數、及針對該當對象使用者而在步驟S205中所被算出的忠誠度分數,而算出該當對象使用者的綜合分數(步驟S206)。在本實施形態中,針對對象使用者,是藉由將信用分數與忠誠度分數做單純地相加,以算出綜合分數。其後,處理係往步驟S207前進。In step S205 and step S206, the loyalty score and the comprehensive score are calculated. The loyalty
在步驟S207及步驟S208中,對對象使用者所被提供的贈禮係被決定。贈禮決定部27,係基於對象使用者的信用分數,來決定可對該當對象使用者進行提供的,有關於授信的贈禮內容(步驟S207)。再者,贈禮決定部27,係基於對象使用者的綜合分數,來決定可對該當對象使用者進行提供的,無關於授信的贈禮內容(步驟S208)。其後,處理係往步驟S209前進。In step S207 and step S208, the gift provided to the target user is determined. The
在步驟S209中,對對象使用者之分數提升會有貢獻的服務,係被特定。服務特定部28,係在對象使用者所能夠利用的服務之中,特定出在對象使用者做了利用的情況下可使該當對象使用者的忠誠度分數及綜合分數有所提升的服務。其後,處理係往步驟S210前進。In step S209, services that contribute to the improvement of the target user's score are identified. The
在步驟S210中,對對象使用者的通知會被進行。通知部29,係對對象使用者,將步驟S206中所被算出之該當對象使用者的綜合分數、步驟S207及步驟S208中針對該當對象使用者而被決定的贈禮內容、及步驟S209中針對該當使用者而被特定的服務,發送至對象使用者的終端,並令該當使用者終端做顯示,以通知給對象使用者。其後,本流程圖中所示的處理係結束。In step S210, the target user is notified. The
<效果> 若依據本實施形態,則在彼此互異之多樣種類之服務所聚集而成的商業生態系統(經濟圈)中,可以改善使用者評價的手法、及使用者體驗。 <Effect> According to this implementation form, in the business ecosystem (economic circle) where various types of services are gathered, the user evaluation method and user experience can be improved.
<變形例> 在上記說明的實施形態中是說明,將對使用者之分數提升會有所貢獻的服務加以特定,並通知給對象使用者的例子,但為了對使用者做更強的服務利用之訴求,亦可設計成,將使用者做了利用的情況下能夠增加給對象使用者之贈禮內容的服務加以特定,並將其通知給使用者。此外,於本變形例中,與上記說明的實施形態共通的構成係省略說明,針對相異點來做說明。 <Variation> In the above-described implementation form, the service that contributes to the improvement of the user's score is specified and notified to the target user. However, in order to make a stronger appeal to the user to use the service, it is also possible to design a service that can add gift content to the target user when the user uses it, and notify the user. In addition, in this variation, the configuration common to the above-described implementation form is omitted, and the differences are explained.
圖10係為本變形例所述之資訊處理裝置1b的機能構成之概略的圖示。資訊處理裝置1b,係藉由將記憶裝置14中所被記錄的程式,讀出至RAM13中,並藉由CPU11來加以執行,以控制資訊處理裝置1中所具備的各硬體,藉此而成為具備忠誠度分數算出部25、綜合分數算出部26、贈禮決定部27、服務特定部28b、通知部29、及分數更新預測部30的資訊處理裝置而發揮機能。亦即,實施形態所述之資訊處理裝置1b,係除了資訊處理裝置1所具備的構成以外還再具備有分數更新預測部30,又,服務特定部28b的處理內容係和上記實施形態有部分不同。Fig. 10 is a diagram schematically showing the functional configuration of the information processing device 1b according to the present modification. The information processing device 1b functions as an information processing device having a loyalty
分數更新預測部30,係按照商業生態系統中使用者所能夠利用的每一服務,將假定對象使用者利用了該當服務之情況的該當對象使用者的忠誠度分數及綜合分數(以下稱作「預估綜合分數」。)予以算出。預估綜合分數的算出方法,係和上記說明的實施形態中的綜合分數的算出方法概略相同,但分數更新預測部30,係針對使用者所未利用之服務之各者,算出假定使用者利用了該當服務之情況的對象使用者的預估綜合分數。The score
服務特定部28b,係基於分數更新預測部30所做的預測結果,而將在對象使用者做了利用的情況下能夠增加給該當對象使用者之贈禮內容的服務,加以特定。服務特定部28b,係針對目前尚未被提供給使用者的贈禮,將按照每一贈禮而被預先設定之閾值、與對象使用者的預估綜合分數,進行比較。然後,服務特定部28b,係在預估綜合分數為閾值以上的情況下,將該當預估綜合分數所涉及之服務,當作在對象使用者做了利用的情況下能夠增加給該當對象使用者之贈禮內容的服務,而加以特定。例如,對銀行手續費全免之贈禮所被設定之閾值為「預估綜合分數700」的情況下,對於雖然現在綜合分數未滿700,但是假定利用了某個服務之情況的預估綜合分數會變成700以上的使用者,就把該當服務,當作使用者做了利用的情況下就能夠增加給該當使用者之贈禮內容的服務,而加以特定。The
通知部29,係將如上記般地藉由服務特定部28b而被特定出來的服務,通知給對象使用者。藉由如此設計,使用者就可得知如果利用就能獲得贈禮的具體服務,就可對使用者,更有效果地訴求服務利用。The
又,在上記說明的實施形態中,作為信用分數是使用表示後付風險的分數為例來做說明,但信用分數係只要是表示使用者之信用力的分數即可,可為基於不是後付風險的其他指標(例如信用卡的違約風險或貸款的違約風險等)來表示使用者之信用力的分數。In addition, in the implementation form described above, a score indicating post-payment risk is used as an example for explanation as a credit score, but a credit score can be any score that indicates the creditworthiness of a user, and can be a score that indicates the creditworthiness of a user based on other indicators that are not post-payment risk (such as credit card default risk or loan default risk, etc.).
1,1b:資訊處理裝置
5:服務提供系統
11:CPU
12:ROM
13:RAM
14:記憶裝置
15:通訊單元
21:事實屬性決定部
22:推定屬性決定部
23:信用分數推定部
24:機器學習部
25:忠誠度分數算出部
26:綜合分數算出部
27:贈禮決定部
28,28b:服務特定部
29:通知部
30:分數更新預測部
1,1b: Information processing device
5: Service provision system
11: CPU
12: ROM
13: RAM
14: Memory device
15: Communication unit
21: Factual attribute determination unit
22: Estimated attribute determination unit
23: Credit score estimation unit
24: Machine learning unit
25: Loyalty score calculation unit
26: Comprehensive score calculation unit
27:
[圖1]實施形態所述之資訊處理系統的構成的概略圖。 [圖2]實施形態中的信用分數、忠誠度分數及綜合分數之關係的圖示。 [圖3]實施形態所述之資訊處理裝置的機能構成之概略的圖示。 [圖4]實施形態所述之信用分數推定處理的簡略圖。 [圖5]於實施形態中作為信用分數推定模型等而被採用的機器學習模型的決策樹之概念的簡略圖。 [圖6]於實施形態中對象使用者的使用者終端上所被顯示的第一通知畫面之一例。 [圖7]於實施形態中對象使用者的使用者終端上所被顯示的第二通知畫面之一例。 [圖8]實施形態所述之機器學習處理之流程的流程圖。 [圖9]實施形態所述之分數算出處理之流程的流程圖。 [圖10]變形例所述之資訊處理裝置的機能構成之概略的圖示。 [Figure 1] A schematic diagram of the configuration of the information processing system according to the embodiment. [Figure 2] An illustration of the relationship between the credit score, loyalty score, and comprehensive score in the embodiment. [Figure 3] An illustration of the schematic functional configuration of the information processing device according to the embodiment. [Figure 4] A simplified diagram of the credit score estimation process according to the embodiment. [Figure 5] A simplified diagram of the concept of the decision tree of the machine learning model adopted as the credit score estimation model, etc. in the embodiment. [Figure 6] An example of the first notification screen displayed on the user terminal of the target user in the embodiment. [Figure 7] An example of the second notification screen displayed on the user terminal of the target user in the embodiment. [Figure 8] A flow chart of the flow of the machine learning process according to the embodiment. [Figure 9] A flow chart of the score calculation process described in the embodiment. [Figure 10] A schematic diagram of the functional structure of the information processing device described in the variant.
1:資訊處理裝置 1: Information processing device
21:事實屬性決定部 21: Determination of the nature of facts
22:推定屬性決定部 22: Presumed attribute determination section
23:信用分數推定部 23: Credit score estimation department
24:機器學習部 24: Machine Learning Department
25:忠誠度分數算出部 25: Loyalty score calculation department
26:綜合分數算出部 26: Comprehensive score calculation unit
27:贈禮決定部 27: Gift Decision Department
28:服務特定部 28: Service specific department
29:通知部 29: Notification Department
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022194912A JP7509858B2 (en) | 2022-12-06 | 2022-12-06 | Information processing system, information processing method, and program |
JP2022-194912 | 2022-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202424876A true TW202424876A (en) | 2024-06-16 |
Family
ID=91486769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112137157A TW202424876A (en) | 2022-12-06 | 2023-09-27 | Information processing system, information processing method and program product which is applied to a load review based on the credit score and loyalty score estimated for the target user |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7509858B2 (en) |
TW (1) | TW202424876A (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6906003B2 (en) | 2019-03-25 | 2021-07-21 | 株式会社クレディセゾン | Scoring device, scoring method, and program |
US11615467B2 (en) | 2019-06-19 | 2023-03-28 | Jpmorgan Chase Bank, N.A. | Systems and methods for pre-approving and pre-underwriting customers for financial products |
JP2021140712A (en) | 2020-02-29 | 2021-09-16 | Assest株式会社 | Loan customer credibility determination program |
-
2022
- 2022-12-06 JP JP2022194912A patent/JP7509858B2/en active Active
-
2023
- 2023-09-27 TW TW112137157A patent/TW202424876A/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP7509858B2 (en) | 2024-07-02 |
JP2024081353A (en) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200349641A1 (en) | System and method for determining credit and issuing a business loan using tokens and machine learning | |
EP3754582A1 (en) | Systems and methods for recommending merchant discussion groups based on settings in an e-commerce platform | |
EP3822902A1 (en) | Systems and methods for customization of reviews | |
US20210182730A1 (en) | Systems and methods for detecting non-causal dependencies in machine learning models | |
JP2018116694A (en) | Calculation device, calculation method and calculation program | |
JP7345032B1 (en) | Credit screening device, method and program | |
CA3098792A1 (en) | Systems and methods for customization of reviews | |
JP2018116580A (en) | Calculation device, calculation method and calculation program | |
TW202424876A (en) | Information processing system, information processing method and program product which is applied to a load review based on the credit score and loyalty score estimated for the target user | |
US11403658B1 (en) | Systems and methods for providing post-transaction offers | |
JP2023078440A (en) | Providing device, providing method and providing program | |
TWI837066B (en) | Information processing devices, methods and program products | |
CN114298825A (en) | Method and device for extremely evaluating repayment volume | |
JP7366218B1 (en) | Information processing device, method and program | |
TW202424874A (en) | Information processing system, information processing method and program product making the installment payment conditions set when a user makes installment payments more appropriate | |
TW202424873A (en) | Information processing system, information processing method and program product for promoting a high degree of freedom for using the credit payment service when the creditworthiness of a user does not meet a predetermined standard | |
US20240378492A1 (en) | Systems and methods for training and using a machine-learning model for determining the similarity of entities | |
TW202401337A (en) | Reviewing device, reviewing method, and program product including a first score acquisition portion, a second score acquisition portion, a user section specifying portion, and a reviewing result determination portion | |
JP7576059B2 (en) | Information processing system, method and program | |
US20230260004A1 (en) | Systems and method for providing contextual product recommendations | |
US20230410031A1 (en) | Method and system for taking action based on product reviews | |
Neeraj et al. | CloudConsumerism: A Consumer‐Centric Ranking Model for Efficient Service Mapping in Cloud | |
TW202427334A (en) | Credit learning device, credit learning method, credit estimation device, credit estimation method, and program | |
JP2023148437A (en) | Information processing system, method and program | |
JP2024000693A (en) | Information processing apparatus, method, and program |