[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW202341142A - Memory device, a write circuit thereof, and a write method of writing memory - Google Patents

Memory device, a write circuit thereof, and a write method of writing memory Download PDF

Info

Publication number
TW202341142A
TW202341142A TW112104071A TW112104071A TW202341142A TW 202341142 A TW202341142 A TW 202341142A TW 112104071 A TW112104071 A TW 112104071A TW 112104071 A TW112104071 A TW 112104071A TW 202341142 A TW202341142 A TW 202341142A
Authority
TW
Taiwan
Prior art keywords
current
write
memory cell
array
memory
Prior art date
Application number
TW112104071A
Other languages
Chinese (zh)
Inventor
池育德
鄒宗成
吳俊諭
洪哲民
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202341142A publication Critical patent/TW202341142A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0026Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0028Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0038Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Landscapes

  • Static Random-Access Memory (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

A memory device includes a main array comprising main memory cells; a redundancy array comprising redundancy memory cells; and write circuitry configured to perform a first programming operation on a main memory cell, to detect whether a current of the main memory cell exceeds a predefined current threshold during the first programming operation, and to disable a second programming operation for a redundancy memory cell if the current of the main memory cell exceeds the predefined current threshold during the first programming operation.

Description

具有提升的冗餘寫入的電阻式記憶體Resistive memory with improved write redundancy

without

電阻式隨機存取記憶體(Resistive Random Access Memory,RRAM)為一種使用電阻變化而非電荷來存儲資訊位元的記憶體技術。與現有的傳統記憶體架構相比,基於RRAM的裝置展示出許多令人鼓舞的特性。然而,由於製造製程相對較新,故RRAM裝置可能會受到可靠性問題的影響。因此,一些RRAM裝置實現冗餘陣列,有時稱為「每位元兩個單元」方案,以提高可靠性。Resistive Random Access Memory (RRAM) is a memory technology that uses resistance changes rather than electric charges to store information bits. RRAM-based devices exhibit many encouraging properties compared to existing conventional memory architectures. However, because the manufacturing process is relatively new, RRAM devices may be affected by reliability issues. Therefore, some RRAM devices implement redundant arrays, sometimes called a "two cells per cell" scheme, to improve reliability.

without

以下揭示內容提供用於實現提供之標的的不同特徵的許多不同的實施例或實例。以下描述組件及佈置的特定實例用以簡化本揭示的一實施例內容。當然,該些僅為實例,並不旨在進行限制。例如,在下面的描述中在第二特徵上方或之上形成第一特徵可包括其中第一特徵及第二特徵直接接觸形成的實施例,並且亦可包括其中在第一特徵與第二特徵之間形成附加特徵的實施例,以使得第一特徵及第二特徵可以不直接接觸。此外,本揭示的一實施例內容可以在各個實例中重複元件符號或字母。此重複係出於簡單及清楚的目的,其本身並不指定所討論之各種實施例或組態之間的關係。The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the context of one embodiment of the present disclosure. Of course, these are examples only and are not intended to be limiting. For example, forming a first feature over or on a second feature in the following description may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include embodiments in which the first feature and the second feature are formed in direct contact. Embodiments in which additional features are formed between the first and second features so that the first feature and the second feature may not be in direct contact. In addition, embodiments of the present disclosure may repeat reference symbols or letters in each instance. This repetition is for simplicity and clarity and does not by itself specify a relationship between the various embodiments or configurations discussed.

此外,為了便於描述,本文中可以使用諸如「在……下方」、「在……下」、「下方」、「在……上方」、「上方」之類的空間相對術語,來描述如圖中所示的一個元件或特徵與另一元件或特徵的關係。除了在附圖中示出的定向之外,空間相對術語意在涵蓋裝置在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或以其他定向),並且在此使用的空間相對描述語亦可被相應地解釋。In addition, for the convenience of description, spatially relative terms such as "below", "under", "below", "above", "above" may be used in this article to describe the figure. The relationship of one element or feature to another element or feature shown in . The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

本文中揭示的一些實施例涉及用於以減小的電流及程式化時間執行寫入操作的系統及/或方法,用於實現「每位元兩個單元」(two-cells per one-bit,2CPB)方案的記憶體裝置。記憶體裝置可包含電阻式隨機存取記憶體(Resistive Random Access Memory,RRAM)裝置。在每位元兩個單元製程中,資料位元寫入兩個RRAM單元以實現冗餘。然而,對於當前的RRAM裝置,此舉意味著執行兩個程式化週期,這可能會限制功率及時間資源,從而可以實現這種冗餘。與一個單元應用相比,為每一位元實現兩個單元的冗餘導致每一寫入操作使用兩個程式化週期及兩倍的電流。Some embodiments disclosed herein relate to systems and/or methods for performing write operations with reduced current and programmed times to implement "two-cells per one-bit." 2CPB) scheme memory device. The memory device may include a resistive random access memory (RRAM) device. In the two-cell-per-bit process, data bits are written into two RRAM cells to achieve redundancy. However, for current RRAM devices, this means executing two programming cycles, which may limit the power and time resources required to achieve this redundancy. Implementing redundancy of two cells per bit results in two programmed cycles and twice the current per write operation compared to a one-cell application.

第1圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的記憶體裝置100的方塊圖。記憶體裝置100包括由記憶體單元104組成的一或多個記憶體陣列102。特別地,在一個實施例中,記憶體裝置100實施包含主陣列102-1及冗餘陣列102-2的每位元兩個單元方案。因此,可使用兩個記憶體單元,亦即,主陣列102-1中的一個記憶體單元104及冗餘陣列102-2中的相應記憶體單元104,來組成一個位元。Figure 1 is a block diagram of a memory device 100 for performing write operations with reduced current and programming time, according to some embodiments. Memory device 100 includes one or more memory arrays 102 composed of memory cells 104 . In particular, in one embodiment, memory device 100 implements a two-cell-per-bit scheme including primary array 102-1 and redundant array 102-2. Therefore, two memory cells, ie, one memory cell 104 in the main array 102-1 and the corresponding memory cell 104 in the redundant array 102-2, can be used to form one bit.

每一記憶體陣列102可包含排列成列及行的記憶體單元網格104 1,1~104 m,n。列內的記憶體單元104 (例如,104 1,1~104 1,n)可操作地耦合至字元線WL1~WLm,且行內的記憶體單元104 (例如,104 1,1~104 m,1)可操作地耦合至位元線BL 1~BL n。因此,每一記憶體單元104可藉助於由字元線及位元線的交點界定的位址來存取。為簡單起見,相對於主陣列102-1展示及描述記憶體單元104,儘管應理解,冗餘陣列102-2可類似地配置。 Each memory array 102 may include a grid of memory cells 104 1,1 -104 m,n arranged in columns and rows. Memory cells 104 within columns (e.g., 104 1,1 ~ 104 1,n ) are operably coupled to word lines WL1 ~ WLm, and memory cells 104 within rows (e.g., 104 1,1 ~ 104 m, 1 ) Operably coupled to bit lines BL 1 ~BL n . Therefore, each memory cell 104 can be accessed via an address defined by the intersection of a word line and a bit line. For simplicity, memory cells 104 are shown and described with respect to primary array 102-1, although it should be understood that redundant array 102-2 may be similarly configured.

藉由選擇性地向字元線及位元線施加訊號,在選定的記憶體單元104上執行讀取及寫入操作。例如,列解碼器110用以基於第一位址ADDR1選擇性地向複數個字元線WL1~WLm中的一或多者施加訊號(例如,電壓及/或電流),且行解碼器120用以基於第二位址ADDR2及/或第三位址ADDR3選擇性地向複數個位元線BL 1-BL n中的一或多者施加訊號(例如,電壓及/或電流)。對於讀取操作,所施加的訊號使讀取電路130接收具有取決於所選記憶體單元104的狀態的值的訊號(例如,電壓及/或電流)。對於寫入操作,所施加的訊號使寫入電路140將將程式化值的訊號(例如,電壓及/或電流)提供至選定記憶體單元104。 Read and write operations are performed on selected memory cells 104 by selectively applying signals to word lines and bit lines. For example, the column decoder 110 is used to selectively apply signals (eg, voltage and/or current) to one or more of the plurality of word lines WL1 ~ WLm based on the first address ADDR1 , and the row decoder 120 is used to A signal (eg, voltage and/or current) is selectively applied to one or more of the plurality of bit lines BL 1 -BL n based on the second address ADDR2 and/or the third address ADDR3. For a read operation, the applied signal causes the read circuit 130 to receive a signal (eg, voltage and/or current) having a value that depends on the state of the selected memory cell 104 . For a write operation, the applied signal causes the write circuit 140 to provide a programmed value of the signal (eg, voltage and/or current) to the selected memory cell 104 .

控制電路150向讀取電路130及寫入電路140輸出控制訊號,用於根據外部提供的命令訊號執行讀取及寫入操作。輸入/輸出(Input/Output,I/O)電路160輸出自讀取電路130讀取的資料且將外部輸入資料提供給寫入電路140。主陣列102-1及冗餘陣列102-2可共用記憶體裝置100的支援電路,包括列解碼器110、行解碼器120、讀取電路130、寫入電路140、控制電路150及/或I/O電路160的全部或部分。在所說明的實例中,記憶體陣列110、102設置在彼此上方,儘管其他實施方式可具有其他佈置,諸如並排、對稱及/或非對稱佈置。The control circuit 150 outputs control signals to the read circuit 130 and the write circuit 140 for performing read and write operations according to externally provided command signals. The input/output (I/O) circuit 160 outputs the data read from the reading circuit 130 and provides external input data to the writing circuit 140 . The main array 102-1 and the redundant array 102-2 may share support circuits of the memory device 100, including the column decoder 110, the row decoder 120, the read circuit 130, the write circuit 140, the control circuit 150 and/or I /O circuit 160 in whole or in part. In the illustrated example, the memory arrays 110, 102 are disposed above each other, although other implementations may have other arrangements, such as side-by-side, symmetrical and/or asymmetrical arrangements.

記憶體單元104可包含具有可變電阻元件以存儲資料位元的電阻式隨機存取記憶體(Resistive Random Access Memory,RRAM)單元,但本揭示的一實施例內容不限於RRAM。因此,在對RRAM單元進行寫入操作期間,在上電極與下電極之間施加「設定」電壓以將可變電阻介電層自第一電阻率(例如,與邏輯「0」對應的高電阻狀態(high resistance state,HRS))變為第二電阻率(例如,對應於邏輯「1」的低電阻狀態(low resistance state,LRS))。類似地,在上電極與下電極之間施加「重置」電壓以將可變電阻介電層自第二電阻率變回第一電阻率,例如自LRS變為HRS。The memory unit 104 may include a resistive random access memory (RRAM) unit having a variable resistance element for storing data bits, but an embodiment of the present disclosure is not limited to RRAM. Therefore, during a write operation to an RRAM cell, a "set" voltage is applied between the upper and lower electrodes to switch the variable resistance dielectric layer from a first resistivity (e.g., a high resistance corresponding to a logic "0" state (high resistance state, HRS)) changes to a second resistivity (eg, a low resistance state (LRS) corresponding to logic "1"). Similarly, a "reset" voltage is applied between the upper and lower electrodes to change the variable resistance dielectric layer from the second resistivity back to the first resistivity, such as from LRS to HRS.

不幸地,RRAM單元的LRS及HRS的電阻位準可能有變化,這會導致可靠性問題。因此,如前所述,記憶體裝置100可使用每位元兩個單元組態來提高可靠性。例如,為執行集合程式化操作,在主陣列102-1的記憶體單元104上執行第一集合操作且在冗餘陣列102-2的記憶體單元104上執行第二集合操作以提供複本。在當前的RRAM裝置中,相較於一個位元引用,這意味著每次寫入操作涉及兩個程式化週期及兩倍的電流。Unfortunately, the resistance levels of LRS and HRS of RRAM cells may vary, which can lead to reliability issues. Therefore, as mentioned above, the memory device 100 may use a two-cell-per-cell configuration to improve reliability. For example, to perform a set programming operation, a first set operation is performed on the memory units 104 of the primary array 102-1 and a second set operation is performed on the memory units 104 of the redundant array 102-2 to provide a replica. In current RRAM devices, this means that each write operation involves two programming cycles and twice the current compared to one bit reference.

記憶體裝置100經增強以減少每位元兩個單元組態的電流及程式化時間。特別地,寫入電路140用以基於偵測到的記憶體單元104的寫入電流判定在主陣列102-1上執行的第一寫入操作是否已可靠地執行。若偵測到的寫入電流足夠使得記憶體單元104的資料保留不成問題,則寫入電路140用以去能將在冗餘陣列102-2上執行的相應第二寫入操作以用於備用。有利地,若第一寫入操作穩定使得不存在保留問題,則記憶體裝置100藉由去能第二寫入操作來節省功率且提高程式化時間。The memory device 100 is enhanced to reduce current and programming time for two-cell configurations per cell. In particular, the write circuit 140 is used to determine whether the first write operation performed on the main array 102-1 has been reliably performed based on the detected write current of the memory unit 104. If the detected write current is sufficient so that data retention of the memory unit 104 is not a problem, the write circuit 140 is used to disable the corresponding second write operation performed on the redundant array 102-2 for backup. . Advantageously, if the first write operation is stable such that there are no retention issues, the memory device 100 saves power and improves programming time by disabling the second write operation.

第2圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的寫入驅動器200的示意圖。一或多個寫入驅動器200可在記憶體裝置100的寫入電路140中實現,且每一寫入驅動器200可用於每位元兩個單元的寫入操作。因此,寫入驅動器200藉助於一或多個位元線204耦合至主陣列102-1及冗餘陣列102-2。特別地,在該實例中,寫入驅動器200包括輸出節點202,該輸出節點202藉助於主位元線(BL) 204-1可操作地耦合至主陣列102-1且藉助於冗餘位元線(BL_R) 204-2進一步可操作地耦合至冗餘陣列102-2。在其他實施例中,每一陣列102具有各自的寫入驅動器200。Figure 2 is a schematic diagram of a write driver 200 for performing write operations with reduced current and programmed time, according to some embodiments. One or more write drivers 200 may be implemented in the write circuit 140 of the memory device 100, and each write driver 200 may be used for write operations of two cells per bit. Accordingly, write driver 200 is coupled to main array 102-1 and redundant array 102-2 via one or more bit lines 204. Specifically, in this example, write driver 200 includes output node 202 operably coupled to main array 102-1 via main bit line (BL) 204-1 and via redundant bit lines Line (BL_R) 204-2 is further operably coupled to redundancy array 102-2. In other embodiments, each array 102 has its own write driver 200 .

每一記憶體單元104可包含RRAM記憶體單元,該RRAM記憶體單元包括RRAM電阻元件212及存取電晶體214。RRAM電阻元件212具有可在低電阻狀態與高電阻狀態之間切換的電阻狀態。電阻狀態表示存儲在RRAM電阻元件212內的資料值(例如,「1」或「0」)。RRAM電阻元件212具有耦合至位元線(BL或BL_R)的第一端及耦合至存取電晶體214的第二端。存取電晶體214具有耦合至字元線(WL)的閘極、耦合至RRAM電阻元件212的第二端的汲極及可耦合至公共源極線(未圖示)或接地的源極。Each memory cell 104 may include an RRAM memory cell including an RRAM resistive element 212 and an access transistor 214 . RRAM resistance element 212 has a resistance state switchable between a low resistance state and a high resistance state. The resistance state represents the data value stored in the RRAM resistive element 212 (eg, "1" or "0"). RRAM resistive element 212 has a first terminal coupled to bit line (BL or BL_R) and a second terminal coupled to access transistor 214 . The access transistor 214 has a gate coupled to the word line (WL), a drain coupled to the second terminal of the RRAM resistive element 212, and a source that may be coupled to a common source line (not shown) or ground.

藉由設定操作及重置操作來執行RRAM中的電阻切換。例如,為將記憶體單元104自高電阻設定為低電阻,斷言適當的字元線(WL)導通存取電晶體214,且寫入驅動器200將設定脈衝施加至適當的位元線(BL或BL_R),而源極線接地。類似地,可藉由斷言選定字元線(WL)、將選定位元線(BL或BL_R)接地且將結果脈衝施加至源極線來執行重置操作,從而將RRAM單元重置為高電阻狀態。Resistor switching in RRAM is performed through set operations and reset operations. For example, to set memory cell 104 from high resistance to low resistance, the appropriate word line (WL) is asserted to turn on access transistor 214, and write driver 200 applies a set pulse to the appropriate bit line (BL or BL_R), while the source line is connected to ground. Similarly, a reset operation can be performed by asserting the selected word line (WL), grounding the selected bit line (BL or BL_R), and applying the resulting pulse to the source line, thereby resetting the RRAM cell to a high resistance condition.

如前所述,RRAM記憶體單元可具有電阻可變性,這會導致可靠地判定特定記憶體單元是否已設定或重置的問題。例如,一些記憶體單元104可包含「快速位元」,其中RRAM電阻元件212具有低臨限電壓及快速程式化速度。另一方面,其他記憶體單元104可包含「慢位元」,其中RRAM電阻元件212具有高臨限電壓及慢程式化速度。切換電壓及程式化時間的變化可歸因於例如製造製程中的不均勻性,該製造製程藉由減小設定狀態與重置狀態之間的裕度而降低記憶體性能。As mentioned previously, RRAM memory cells can have resistive variability, which can cause problems in reliably determining whether a particular memory cell has been set or reset. For example, some memory cells 104 may include "fast bits," where RRAM resistive elements 212 have low threshold voltages and fast programming speeds. On the other hand, other memory cells 104 may include "slow bits," where the RRAM resistive element 212 has a high threshold voltage and slow programming speed. Variations in switching voltage and programming time can be attributed, for example, to non-uniformities in the manufacturing process, which degrade memory performance by reducing the margin between set and reset states.

為解決這些問題,寫入驅動器200經增強以使用每位元兩個單元組態進行操作,同時以減少的電流及程式化時間執行寫入操作。特別地,寫入驅動器200用以產生指示寫入操作為快速位元操作或慢位元操作的訊號WR_DONE。若在主陣列102-1的第一次寫入期間偵測到快速位元,則寫入驅動器200判定第一次寫入為可靠的。作為回應,寫入驅動器200自動去能(例如,跳過、取消或以其他方式避免)對冗餘陣列102-2的冗餘寫入操作。因此,若第一程式化操作穩定使得不存在保留問題,則寫入驅動器200有利地節省電力且提高程式化時間。To address these issues, the write driver 200 is enhanced to operate using a two-cell-per-bit configuration while performing write operations with reduced current and programming time. In particular, the write driver 200 is used to generate the signal WR_DONE indicating whether the write operation is a fast bit operation or a slow bit operation. If a fast bit is detected during the first write to the main array 102-1, the write driver 200 determines that the first write is reliable. In response, write driver 200 automatically disables (eg, skips, cancels, or otherwise avoids) redundant write operations to redundant array 102-2. Therefore, if the first programming operation is stable such that there are no retention issues, the write driver 200 advantageously saves power and improves programming time.

寫入驅動器200包括指示節點222,用以提供指示寫入操作為快速位元操作或慢位元操作的訊號WR_DONE。電流源220 (或電流槽)耦合在指示節點212與接地之間。電流源220用以產生具有預定電流位準的靶電流I_target。電流源220拉動電流通過第一電晶體230 (例如,p型MOSFET)。第一電晶體230 (例如,參考電晶體)包括耦合至電源(PWR)的源極(例如,第一源極/汲極(S/D)端)及耦合至指示節點222的汲極(例如,第二S/D端)。此外,第一電晶體230的閘極與第二電晶體240 (例如,p型MOSFET)的閘極耦合以形成電流鏡電路,如下文進一步描述。The write driver 200 includes an indication node 222 for providing a signal WR_DONE indicating whether the write operation is a fast bit operation or a slow bit operation. A current source 220 (or current sink) is coupled between indicating node 212 and ground. The current source 220 is used to generate a target current I_target with a predetermined current level. Current source 220 pulls current through first transistor 230 (eg, a p-type MOSFET). A first transistor 230 (eg, a reference transistor) includes a source (eg, a first source/drain (S/D) terminal) coupled to a power supply (PWR) and a drain (eg, a first source/drain (S/D) terminal) coupled to the indicating node 222 , the second S/D terminal). Additionally, the gate of first transistor 230 is coupled with the gate of second transistor 240 (eg, a p-type MOSFET) to form a current mirror circuit, as further described below.

寫入驅動器200亦包括比較器250 (例如,放大器),該比較器250的輸出耦合至第一電晶體230及第二電晶體240的閘極。比較器250及第二電晶體240設置在PWR與輸出端202之間。此外,比較器250包括兩個輸入端,亦即,耦合至輸出節點202的第一輸入(例如,非反相輸入端)及耦合至參考電壓VREF的第二輸入(例如,反相輸入端)。第二電晶體240 (例如,驅動電晶體)包括連接至比較器250的輸出的閘極、耦合至PWR的源極(例如,第一S/D端)及耦合至輸出節點202的汲極(例如,第二S/D端)。因此,比較器250及第二電晶體240形成閉環,該閉環使比較器250調製第二電晶體240的閘極,從而在輸出節點202產生驅動電壓VD,該輸出節點202的電壓等於或基於參考電壓VREF。因此,寫入驅動器200用以產生單元電流I_cell,該單元電流I_cell傳送至選定的RRAM記憶體單元的位元線204以執行寫入操作。The write driver 200 also includes a comparator 250 (eg, an amplifier) having an output coupled to the gates of the first transistor 230 and the second transistor 240 . The comparator 250 and the second transistor 240 are disposed between the PWR and the output terminal 202 . In addition, the comparator 250 includes two input terminals, namely, a first input (eg, a non-inverting input terminal) coupled to the output node 202 and a second input (eg, an inverting input terminal) coupled to the reference voltage VREF. . The second transistor 240 (eg, a drive transistor) includes a gate coupled to the output of the comparator 250, a source coupled to the PWR (eg, the first S/D terminal), and a drain coupled to the output node 202 ( For example, the second S/D terminal). Therefore, the comparator 250 and the second transistor 240 form a closed loop, which allows the comparator 250 to modulate the gate of the second transistor 240 to generate a driving voltage VD at the output node 202. The voltage of the output node 202 is equal to or based on the reference voltage VREF. Therefore, the write driver 200 is used to generate the cell current I_cell, which is delivered to the bit line 204 of the selected RRAM memory cell to perform the write operation.

由第一電晶體230、第二電晶體240及比較器250形成的電流鏡電路用以在電路的右側(亦即,通過第一電晶體230的電流)複製電路的左側(亦即,通過第二電晶體240的單元電流I_cell)。因此,在寫入操作期間,若通過記憶體單元104的單元電流I_cell等於或超過由靶電流I_target界定的電流臨限,則指示節點222為訊號WR_DONE輸出高值或邏輯「1」。換言之,寫入驅動器200將寫入操作判定為對於保持可靠的快速位元操作。The current mirror circuit formed by the first transistor 230, the second transistor 240 and the comparator 250 is used to replicate the left side of the circuit (i.e., the current through the first transistor 230) on the right side of the circuit (i.e., the current through the first transistor 230). The cell current I_cell of the two transistors 240). Therefore, during the write operation, if the cell current I_cell through the memory cell 104 is equal to or exceeds the current threshold defined by the target current I_target, the instruction node 222 outputs a high value or logic "1" for the signal WR_DONE. In other words, the write driver 200 determines the write operation as a fast bit operation that remains reliable.

電流源220及靶電流I_target可用以產生使指示節點222能夠在記憶體單元104的寫入操作期間相對於電流臨限追蹤單元電流I_cell的電流位準。在一個實施例中,靶電流I_target為預定電流位準,該預定電流位準基於將傳送至RRAM單元用於執行諸如設定操作的程式化操作的最小電流量。因此,靶電流I_target可界定RRAM單元在設定操作期間接收的臨限電流值,從而可靠地執行設定階段而不存在潛在的保持問題。另外,在一些實施例中,靶電流I_target基於寫入驅動器200的電流鏡比「1:m」。Current source 220 and target current I_target may be used to generate a current level that enables indication node 222 to track cell current I_cell relative to a current threshold during a write operation of memory cell 104 . In one embodiment, the target current I_target is a predetermined current level based on the minimum amount of current that will be delivered to the RRAM cell for performing programmed operations such as set operations. Therefore, the target current I_target can define the threshold current value received by the RRAM cell during the setup operation, thereby reliably performing the setup phase without potential holdover issues. Additionally, in some embodiments, the target current I_target is based on the current mirror ratio “1:m” of the write driver 200 .

例如,假設判定電阻式記憶體裝置的RRAM單元可以可靠地設定置為300 μA。進一步假設寫入驅動器200配置有0.5的「m」值以節省電流,這意味著電流鏡右側的電流(亦即,I_target)為右側的一半(亦即,I_cell)。因此,在該實例中,寫入驅動器200可指示是否使用300 μA的單元電流I_cell及150 μA的靶電流I_target執行可靠集合操作,總共使用450 μA。下文描述寫入驅動器200的操作的附加細節。For example, suppose it is determined that an RRAM cell of a resistive memory device can be reliably set to 300 μA. Assume further that the write driver 200 is configured with an "m" value of 0.5 to save current, which means that the current on the right side of the current mirror (ie, I_target) is half that of the right side (ie, I_cell). Therefore, in this example, the write driver 200 may indicate whether to perform a reliable collection operation using a cell current I_cell of 300 μA and a target current I_target of 150 μA, using a total of 450 μA. Additional details of the operation of write drive 200 are described below.

第3A圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的記憶體裝置的時序圖300。時序圖300說明其中寫入驅動器200偵測到主陣列102-1的寫入操作為快速位元操作(亦即,可靠地執行)的實例。換言之,當在主陣列102-1上程式化集合操作時,主位元線(BL) 204-1、WLN及定時器驅動至高狀態。另外,在此操作期間,RRAM單元的電流(亦即,單元電流I_cell)達到或超過由靶電流I_target界定的臨限,如前所述將訊號WR_DONE驅動至高位準。Figure 3A is a timing diagram 300 of a memory device for performing write operations with reduced current and programming time, according to some embodiments. Timing diagram 300 illustrates an example in which write driver 200 detects that the write operation of main array 102-1 is a fast bit operation (ie, performed reliably). In other words, when a programmed set operates on the main array 102-1, the main bit line (BL) 204-1, WLN and timers are driven to a high state. Additionally, during this operation, the current of the RRAM cell (ie, the cell current I_cell) reaches or exceeds the threshold defined by the target current I_target, driving the signal WR_DONE to a high level as described above.

回應於訊號WR_DONE指示主陣列102-1的第一記憶體單元的第一集合操作與快速位元相關聯且可靠地執行,寫入驅動器200用以繞過對冗餘陣列102-2的第二記憶體單元執行第二集合操作。換言之,寫入驅動器200避免斷言冗餘位元線(BL_R) 204-2及WLN用於第二集合操作,如虛線所示。有利地,消除原本會為第二集合操作執行的程式化時間及電流。因此,藉由使用電流鏡來偵測集合操作電流是否超過臨限,寫入驅動器200用以實現具有更好的性能及降低的功率的每位元兩個單元方案。In response to signal WR_DONE indicating that the first set of operations on the first memory cells of primary array 102-1 are associated with fast bits and are performed reliably, write driver 200 bypasses the second set of operations on redundant array 102-2. The memory unit performs a second set of operations. In other words, the write driver 200 avoids asserting the redundant bit line (BL_R) 204-2 and WLN for the second set of operations, as shown by the dotted line. Advantageously, the programming time and current that would otherwise be performed for the second set of operations is eliminated. Therefore, by using a current mirror to detect whether the collective operating current exceeds a threshold, the write driver 200 is used to implement a two-cell-per-bit solution with better performance and reduced power.

第3B圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的記憶體裝置的另一時序圖350。時序圖350說明其中寫入驅動器200偵測到主陣列102-1的寫入操作為慢位元操作(即,認為可能不可靠)的實例。亦即,在主陣列102-1的集合操作期間,RRAM單元的電流(亦即,單元電流I_cell)不滿足或超過由靶電流I_target界定的臨限。因此,訊號WR_DONE保持在低位準狀態。Figure 3B is another timing diagram 350 of a memory device for performing a write operation with reduced current and programming time, in accordance with some embodiments. Timing diagram 350 illustrates an example in which write driver 200 detects that the write operation of main array 102-1 is a slow bit operation (ie, considered potentially unreliable). That is, during collective operation of the main array 102-1, the current of the RRAM cell (ie, the cell current I_cell) does not meet or exceed the threshold defined by the target current I_target. Therefore, the signal WR_DONE remains low.

回應於訊號WR_DONE指示主陣列102-1的第一記憶體單元104的第一集合操作與慢位元相關聯且不可靠,寫入驅動器200用以觸發冗餘陣列102-2的第二記憶體單元104的第二集合操作。因此,寫入驅動器200確保位元的冗餘。儘管在此情況下沒有避免第二集合操作,但由於與慢位元相關聯的較低電流,執行兩次集合操作的總電流仍然減少。In response to signal WR_DONE indicating that the first set of operations of the first memory cells 104 of the main array 102-1 is associated with slow bits and is unreliable, the write driver 200 is configured to trigger the second memory of the redundant array 102-2. Second set of operations of unit 104. Therefore, the write driver 200 ensures bit redundancy. Although the second set operation is not avoided in this case, the total current required to perform two set operations is still reduced due to the lower current associated with the slow bits.

第4A圖為根據一些實施例的用以偵測集合操作是否已執行的記憶體裝置的邏輯電路400。第4B圖為邏輯電路400的真值表450。如第4A圖及第4B圖所展示,若相應的主位元及冗餘位元中的任一者已設定,則邏輯電路400將資料輸出Dout輸出至高狀態。因此,即使在每位元兩個單元組態中只有一個RRAM單元指示設定狀態,記憶體裝置亦可偵測到位處於設定狀態。例如,若在主陣列102-1上偵測到快速位元,則意味著在該記憶體單元104上很容易具有穩定階段且不存在保留問題。因此,不需要對冗餘陣列102-2再次進行設定以節省功率,且冗餘單元可以保持在重置階段。Figure 4A illustrates logic circuitry 400 of a memory device for detecting whether a set operation has been performed, according to some embodiments. Figure 4B shows the truth table 450 of the logic circuit 400. As shown in Figures 4A and 4B, if any of the corresponding main bits and redundant bits has been set, the logic circuit 400 outputs the data output Dout to a high state. Therefore, even if only one RRAM cell indicates the set state in a two-cell-per-cell configuration, the memory device can detect that it is in the set state. For example, if fast bits are detected on the main array 102-1, it means that there is easily a stable phase on that memory cell 104 and there are no retention issues. Therefore, redundant array 102-2 does not need to be reconfigured to save power, and the redundant units can remain in the reset phase.

第5圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的寫入驅動器電路500的示意圖。特別地,寫入驅動器電路500包括藉助於主位元線(BL) 204-1可操作地耦合至主陣列102-1的主寫入驅動器502-1,及藉助於冗餘位元線(BL_R) 204-2可操作地耦合至冗餘陣列102-2的冗餘寫入驅動器502-2。因此,可在記憶體裝置100的寫入電路140中實現成對的寫入驅動器502,且每對寫入驅動器502可以用於可同時或並行執行的每位元兩個單元的寫入操作。寫入驅動器502以與本文先前描述的相似組件相似的方式操作,因此為簡潔起見不再重複描述。Figure 5 is a schematic diagram of a write driver circuit 500 for performing write operations with reduced current and programmed time, according to some embodiments. In particular, write driver circuit 500 includes a main write driver 502-1 operably coupled to main array 102-1 via main bit line (BL) 204-1, and a main write driver 502-1 operably coupled to main array 102-1 via redundant bit line (BL_R ) 204-2 is operably coupled to the redundant write drive 502-2 of the redundant array 102-2. Accordingly, pairs of write drivers 502 may be implemented in the write circuit 140 of the memory device 100, and each pair of write drivers 502 may be used for two-cell-per-bit write operations that may be performed simultaneously or in parallel. The write driver 502 operates in a similar manner to similar components previously described herein, so the description is not repeated for the sake of brevity.

在此實施例中,每一寫入驅動器502包括耦合至輸出節點202的電源開關504及耦合至指示節點222的反相器506。亦即,主寫入驅動器502-1包括用以藉助於主賦能訊號(EN_A)選擇性地將輸出節點202與主位元線(BL) 204-1耦合的主電源開關504-1。類似地,冗餘寫入驅動器502-2包括用以藉助於冗餘賦能訊號(EN_B)選擇性地將輸出節點202與冗餘位元線(BL) 204-2耦合的冗餘電源開關504-2。此外,主寫入驅動器502-1包括用以輸出主指示訊號(Det_A)的主反相器506-1。冗餘寫入驅動器502-2包括用以輸出冗餘指示訊號(Det_B)的冗餘反相器506-2。下文描述寫入驅動器電路500的操作的附加細節。In this embodiment, each write driver 502 includes a power switch 504 coupled to output node 202 and an inverter 506 coupled to indication node 222 . That is, the main write driver 502-1 includes a main power switch 504-1 to selectively couple the output node 202 to the main bit line (BL) 204-1 via the main enable signal (EN_A). Similarly, redundant write driver 502-2 includes redundant power switch 504 to selectively couple output node 202 to redundant bit line (BL) 204-2 via redundant enable signal (EN_B) -2. In addition, the main write driver 502-1 includes a main inverter 506-1 for outputting a main indication signal (Det_A). The redundancy write driver 502-2 includes a redundancy inverter 506-2 for outputting a redundancy indication signal (Det_B). Additional details of the operation of write driver circuit 500 are described below.

第6A圖為根據一些實施例的用以控制寫入驅動器電路500的邏輯控制器600。在一些實例中,邏輯控制器600為第1圖的寫入電路140及/或控制電路150的一部分。第6B圖為邏輯控制器600的真值表650。參看第6A圖及第6B圖結合第5圖,考慮若主賦能訊號(EN_A)為高,則基於VREF的電壓驅動主位元線(BL) 204-1,且啟用主陣列102-1以藉由主寫入驅動器502-1程式化集合操作。相反,若主賦能訊號(EN_A)為低,則斷開主位元線(BL)204-1,且去能主陣列102-1以藉由主寫入驅動器502-1程式化集合操作。基於選擇性地耦合冗餘位元線(BL_R) 204-2的冗餘賦能訊號(EN_B)類似地啟用或去能冗餘寫入驅動器502-1及冗餘陣列102-2。Figure 6A illustrates a logic controller 600 for controlling write driver circuit 500 in accordance with some embodiments. In some examples, logic controller 600 is part of write circuit 140 and/or control circuit 150 of FIG. 1 . Figure 6B shows the truth table 650 of the logic controller 600. Referring to Figures 6A and 6B combined with Figure 5, consider that if the main enable signal (EN_A) is high, the main bit line (BL) 204-1 is driven based on the voltage of VREF, and the main array 102-1 is enabled to Set operations are programmed via master write driver 502-1. On the contrary, if the main enable signal (EN_A) is low, the main bit line (BL) 204-1 is disconnected and the main array 102-1 is disabled to program the collective operation by the main write driver 502-1. Redundancy write driver 502-1 and redundancy array 102-2 are similarly enabled or disabled based on a redundancy enable signal (EN_B) selectively coupled to redundancy bit line (BL_R) 204-2.

使用邏輯控制器600來控制寫入驅動器電路500,若主寫入驅動器502-1在冗餘寫入驅動器502-2之前指示偵測到的快速位元(亦即,Det_A為邏輯「1」,且Det_B為邏輯「0」),則去能冗餘陣列102-2 (EN_B為邏輯「0」)。相反,若冗餘寫入驅動器502-2在主寫入驅動器502-1之前指示偵測到的快速位元(亦即,Det_B為邏輯「1」,且Det_A為邏輯「0」),則去能主陣列102-1 (EN_A為邏輯「0」)。若主寫入驅動器502-1及冗餘寫入驅動器502-2輸出相同階段(亦即,Det_A及Det_B均為邏輯「0」或均為邏輯「1」),則邏輯控制器600用以啟用一個記憶體陣列且去能另一陣列(例如,藉由在邏輯「1」輸出EN_A及在邏輯「0」輸出EN_B來啟用主陣列102-1且去能冗餘陣列102-2)。下文描述寫入驅動器電路500及邏輯控制器600的操作的附加細節。Logic controller 600 is used to control write driver circuit 500. If primary write driver 502-1 indicates a detected fast bit before redundant write driver 502-2 (i.e., Det_A is logic "1", and Det_B is logic "0"), then the redundant array 102-2 is disabled (EN_B is logic "0"). Conversely, if the redundant write driver 502-2 indicates a detected fast bit before the primary write driver 502-1 (i.e., Det_B is a logic "1" and Det_A is a logic "0"), then go Enable main array 102-1 (EN_A is logic "0"). If the primary write driver 502-1 and the redundant write driver 502-2 output the same phase (that is, Det_A and Det_B are both logic "0" or both are logic "1"), the logic controller 600 is used to enable One memory array and disabling the other array (eg, by outputting EN_A at logic "1" and outputting EN_B at logic "0" to enable primary array 102-1 and disable redundant array 102-2). Additional details of the operation of write driver circuit 500 and logic controller 600 are described below.

第7圖為根據一些實施例的配置有邏輯控制器600以控制寫入驅動器電路500的記憶體裝置的時序圖700。特別地,時序圖700說明在主陣列102-1及冗餘陣列102-2的同時集合操作期間,主寫入驅動器502-1在冗餘寫入驅動器502-2之前偵測到快速位元的情況(亦即,Det_A為邏輯「1」,Det_B為邏輯「0」)。換言之,在本實例中,主RRAM單元的電流因快速位元而超過靶電流I_target,而冗餘RRAM單元的電流因慢位元而未超過靶電流I_target。Figure 7 is a timing diagram 700 of a memory device configured with a logic controller 600 to control a write driver circuit 500, in accordance with some embodiments. In particular, timing diagram 700 illustrates that during simultaneous collective operations of primary array 102-1 and redundant array 102-2, primary write drive 502-1 detects a fast bit before redundant write drive 502-2. case (that is, Det_A is logic "1" and Det_B is logic "0"). In other words, in this example, the current of the main RRAM cell exceeds the target current I_target due to the fast bit, while the current of the redundant RRAM cell does not exceed the target current I_target due to the slow bit.

超過靶電流I_target導致主寫入驅動器502-1將Det_A驅動至邏輯「1」,如箭頭702所示。進而,此舉將EN_B驅動至邏輯「0」以去能冗餘陣列102-2,如箭頭704所示。因此,冗餘RRAM單元的電流在如箭頭706所示的程式化週期結束之前(例如,在拉低WLN之前)切斷,從而減小電流。此外,由於慢位元,冗餘RRAM單元的電流相對較低,從而減少用於執行兩個集合操作的總電流。更進一步,由於寫入驅動器電路500的組態使得兩個集合操作能夠並行執行,程式化時間為傳統的每位元兩個單元實施方式的一半。Exceeding the target current I_target causes the main write driver 502-1 to drive Det_A to logic "1," as indicated by arrow 702. In turn, this drives EN_B to logic "0" to disable redundant array 102-2, as indicated by arrow 704. Therefore, the current to the redundant RRAM cell is cut off before the end of the programmed period as indicated by arrow 706 (eg, before pulling WLN low), thereby reducing the current. Furthermore, due to the slow bits, the current of the redundant RRAM cells is relatively low, thereby reducing the total current used to perform both set operations. Furthermore, since the write driver circuit 500 is configured such that the two set operations can be performed in parallel, programming time is half that of a conventional two-cell-per-bit implementation.

第8圖為根據一些實施例的配置有邏輯控制器600以控制寫入驅動器電路500的記憶體裝置的另一時序圖800。特別地,時序圖800說明在主陣列102-1及冗餘陣列102-2的同時集合操作期間,冗餘寫入驅動器502-2在主寫入驅動器502-1之前偵測到快速位元的情況(亦即,Det_A為邏輯「0」,且Det_B為邏輯「1」)。換言之,在本實例中,冗餘RRAM單元的電流因快速位元而超過靶電流I_target,而主RRAM單元的電流因慢位元而未超過靶電流I_target。Figure 8 is another timing diagram 800 of a memory device configured with logic controller 600 to control write driver circuit 500, in accordance with some embodiments. In particular, timing diagram 800 illustrates that during simultaneous collective operations of primary array 102-1 and redundant array 102-2, redundant write driver 502-2 detects a fast bit before primary write driver 502-1. case (that is, Det_A is logic "0" and Det_B is logic "1"). In other words, in this example, the current of the redundant RRAM cell exceeds the target current I_target due to the fast bit, while the current of the main RRAM cell does not exceed the target current I_target due to the slow bit.

超過靶電流I_target導致冗餘寫入驅動器502-2將Det_B驅動至邏輯「1」,如箭頭802所示。進而,此舉將EN_A驅動至邏輯「0」以去能冗餘陣列102-2,如箭頭804所示。因此,主RRAM單元的電流在如箭頭806所示的程式化週期結束之前(例如,在拉低WLN之前)切斷,從而減小電流。前文描述的附加優點亦適用。Exceeding the target current I_target causes redundant write driver 502-2 to drive Det_B to logic "1," as indicated by arrow 802. In turn, this drives EN_A to logic "0" to disable redundant array 102-2, as indicated by arrow 804. Therefore, the current to the main RRAM cell is cut off before the end of the programmed period as indicated by arrow 806 (eg, before WLN is pulled low), thereby reducing the current. The additional advantages described above also apply.

第9圖為根據一些實施例的配置有邏輯控制器600以控制寫入驅動器電路500的記憶體裝置的又一時序圖900。特別地,時序圖900說明在主陣列102-1及冗餘陣列102-2的同時集合操作期間,主寫入驅動器502-1及冗餘寫入驅動器502-2偵測到快速位元的情況(亦即,Det_A為邏輯「1」,且Det_B為邏輯「1」)。超過靶電流I_target導致主寫入驅動器502-1將Det_A驅動至邏輯「1」,如箭頭902所示。此外,超過靶電流I_target導致冗餘寫入驅動器502-2將Det_B驅動至邏輯「1」,如箭頭904所示。隨著Det_A及Det_B驅動至高狀態,邏輯控制器600用以啟用一個記憶體陣列且去能另一陣列(例如,藉由在邏輯「1」處輸出EN_A且在邏輯「0」處輸出EN_B來啟用主陣列102-1且去能冗餘陣列102-2),如箭頭906所示。Figure 9 is yet another timing diagram 900 of a memory device configured with logic controller 600 to control write driver circuit 500, in accordance with some embodiments. In particular, timing diagram 900 illustrates the detection of fast bits by primary write driver 502-1 and redundant write driver 502-2 during simultaneous collective operations of primary array 102-1 and redundant array 102-2. (That is, Det_A is logic "1", and Det_B is logic "1"). Exceeding the target current I_target causes the main write driver 502-1 to drive Det_A to logic "1," as indicated by arrow 902. Additionally, exceeding target current I_target causes redundant write driver 502-2 to drive Det_B to logic "1," as indicated by arrow 904. With Det_A and Det_B driven high, logic controller 600 is used to enable one memory array and disable the other array (e.g., enabled by outputting EN_A at a logic "1" and EN_B at a logic "0" The main array 102-1 and the redundant array 102-2) are disabled, as shown by arrow 906.

第10圖說明用於每位元兩個單元的寫入操作的例示性方法1000。在操作1002,提供用於存儲位元的第一RRAM單元陣列。在操作1004,提供用於存儲第一RRAM單元陣列的冗餘位元的第二RRAM單元陣列。在操作1006,一或多個寫入驅動器耦合至第一RRAM單元陣列及第二RRAM單元陣列,用於執行每位元兩個單元冗餘。在操作1008,對第一RRAM單元陣列及第二RRAM單元陣列之一的記憶體單元執行第一集合操作。Figure 10 illustrates an exemplary method 1000 for a two-unit-per-bit write operation. In operation 1002, a first array of RRAM cells for storing bits is provided. In operation 1004, a second RRAM cell array for storing redundant bits of the first RRAM cell array is provided. In operation 1006, one or more write drivers are coupled to the first RRAM cell array and the second RRAM cell array for performing two cell redundancy per cell. In operation 1008, a first set operation is performed on the memory cells of one of the first RRAM cell array and the second RRAM cell array.

在操作1010,判定在第一集合操作期間是否超過記憶體單元的電流臨限。若否,則方法1000行進至操作1012,且在第二RRAM單元陣列的備用記憶體單元上執行第二集合操作以提供用於第一集合操作的冗餘。否則,方法1000行進至操作1014,且去能第二集合操作以節省電流。換言之,回應於判定在第一集合操作期間超過記憶體單元的電流臨限,在第一RRAM單元陣列及第二RRAM單元陣列中的另一者(亦即,不同於操作1008中寫入的陣列)去能第二集合操作以節省電流。At operation 1010, it is determined whether the current threshold of the memory cell was exceeded during the first set of operations. If not, method 1000 proceeds to operation 1012 and a second set operation is performed on the spare memory cells of the second array of RRAM cells to provide redundancy for the first set operation. Otherwise, method 1000 proceeds to operation 1014 and disables the second set of operations to save current. In other words, in response to a determination that the current threshold of the memory cells was exceeded during the first set of operations, the other one of the first RRAM cell array and the second RRAM cell array (i.e., a different array than the one written in operation 1008 ) disables the second set operation to save current.

因此,本文揭示的各種實施例提供一種記憶體裝置,包含:包含主記憶體單元的主陣列;包含冗餘記憶體單元的冗餘陣列;及寫入電路,用以對主記憶體單元執行第一程式化操作以在該第一程式化操作期間偵測該主記憶體單元的電流是否超過預定電流臨限,且若在該第一程式化操作期間該主記憶體單元的電流超過該預定電流臨限,則去能冗餘記憶體單元的第二程式化操作。Therefore, various embodiments disclosed herein provide a memory device including: a main array including main memory cells; a redundant array including redundant memory cells; and a write circuit for performing the first step on the main memory unit. A programming operation to detect whether the current of the main memory unit exceeds a predetermined current threshold during the first programming operation, and if the current of the main memory unit exceeds the predetermined current during the first programming operation threshold, the second programmed operation of the redundant memory unit is disabled.

根據進一步揭示的實施例,一種用於記憶體裝置的寫入電路,包含:比較器,具有用以接收參考電壓訊號的第一輸入端、第二輸入端及輸出端;參考電晶體,具有連接至比較器的輸出端的閘極端、連接至電源端的第一S/D端及連接至指示節點的第二S/D端,該指示節點連接至電流源及用以產生參考電流;及驅動電晶體,具有連接至比較器的輸出端的閘極端、連接至電源端的第一S/D端,及連接至比較器的第二輸入端且用於輸出程式化訊號至記憶體單元的第二S/D端,其中指示節點用以基於記憶體單元的電流與參考電流的比較來輸出指示訊號。According to a further disclosed embodiment, a writing circuit for a memory device includes: a comparator having a first input terminal, a second input terminal and an output terminal for receiving a reference voltage signal; a reference transistor having a connection to the gate terminal of the output terminal of the comparator, the first S/D terminal connected to the power terminal and the second S/D terminal connected to the indication node, the indication node being connected to the current source and used to generate the reference current; and the driving transistor , having a gate terminal connected to the output terminal of the comparator, a first S/D terminal connected to the power terminal, and a second S/D terminal connected to the second input terminal of the comparator and used for outputting the programming signal to the memory unit. terminal, wherein the indication node is used to output an indication signal based on a comparison of the current of the memory cell and the reference current.

根據其他揭示的實施例,用於RRAM記憶體裝置的寫入電路包含:一或多個寫入驅動器,用以對主陣列及冗餘陣列執行每位元兩個單元的寫入操作,每一寫入驅動器用以輸出指示是否偵測到第一操作在RRAM記憶體單元上可靠地執行的指示訊號;及邏輯控制器,用以在指示訊號指示偵測到第一程式化操作可靠地執行時,控制一或多個寫入驅動器去能第二程式化操作。According to other disclosed embodiments, a write circuit for an RRAM memory device includes: one or more write drivers for performing write operations of two units per bit for the main array and the redundant array, each a write driver for outputting an indication signal indicating whether the first operation is detected to be reliably executed on the RRAM memory unit; and a logic controller for outputting an indication signal indicating whether the first programmed operation is detected to be reliably executed. , controls one or more write drives to enable a second program operation.

根據其他揭示的實施例,一種寫入方法包括以下步驟:提供用於存儲位元的第一RRAM單元陣列;提供用於存儲第一RRAM單元陣列的冗餘位元的第二RRAM單元陣列;將一或多個寫入驅動器耦合至第一RRAM單元陣列及第二RRAM單元陣列,以執行每位元兩個單元冗餘;對第一RRAM單元陣列及第二RRAM單元陣列之一的記憶體單元執行第一集合操作;判定在第一集合操作期間是否超過記憶體單元的電流臨限;及回應於判定在第一集合操作期間超過記憶體單元的電流臨限,去能第一電阻式隨機存取記憶體單元陣列及第二電阻式隨機存取記憶體單元陣列中的另一者處的一第二集合操作。According to other disclosed embodiments, a writing method includes the steps of: providing a first RRAM cell array for storing bits; providing a second RRAM cell array for storing redundant bits of the first RRAM cell array; One or more write drivers coupled to the first RRAM cell array and the second RRAM cell array to perform two cell redundancy per cell; for memory cells of one of the first RRAM cell array and the second RRAM cell array performing a first collective operation; determining whether a current threshold of the memory cell was exceeded during the first collective operation; and in response to determining that a current threshold of the memory cell was exceeded during the first collective operation, disabling the first resistive random access memory A second set operation is obtained at the other of the memory cell array and the second resistive random access memory cell array.

本揭示內容概述了數個實施例,使得熟習此項技術者可以更好地理解本揭示的一實施例內容的各態樣。熟習此項技術者應理解,熟習此項技術者可以容易地將本揭示的一實施例內容用作設計或修改其他製程及結構的基礎,以實現與本文介紹的實施例相同的目的及/或實現相同的優點。熟習此項技術者亦應認識到,這些等效構造不脫離本揭示的一實施例內容的精神及範疇,並且在不脫離本揭示的一實施例內容的精神及範疇的情況下,這些等效構造可以進行各種改變、替代及變更。This disclosure summarizes several embodiments so that those skilled in the art can better understand various aspects of an embodiment of the disclosure. Those skilled in the art should understand that those skilled in the art can easily use the content of an embodiment of the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purposes as the embodiments introduced herein and/or achieve the same advantages. Those skilled in the art should also realize that these equivalent structures do not depart from the spirit and scope of an embodiment of the present disclosure, and without departing from the spirit and scope of an embodiment of the present disclosure, these equivalent structures Constructs are subject to various changes, substitutions and alterations.

100:記憶體裝置 102:記憶體陣列 102-1:主陣列 102-2:冗餘陣列 104:記憶體單元 104 1,1~104 m,n:記憶體單元網格 110:列解碼器 120:行解碼器 130:讀取電路 140:寫入電路 150:控制電路 160:I/O電路 200:寫入驅動器 202:輸出節點 204:位元線 204-1:主位元線 204-2:冗餘位元線 212:RRAM電阻元件 214:存取電晶體 220:電流源 222:指示節點 230:第一電晶體 240:第二電晶體 250:比較器 300、350:時序圖 400:邏輯電路 450:真值表 500:寫入驅動器電路 502-1:主寫入驅動器 502-2:冗餘寫入驅動器 504:電源開關 504-1:主電源開關 504-2:冗餘電源開關 506:反相器 506-1:主反相器 506-2:冗餘反相器 600:邏輯控制器 650:真值表 700:時序圖 702、704、706:箭頭 800:時序圖 802、804、806:箭頭 900:時序圖 902、904、906:箭頭 1000:方法 1002、1004、1006、1008、1010、1012、1014:操作 ADDR1:第一位址 ADDR2:第二位址 ADDR3:第三位址 BL:主位元線 BL_R:冗餘位元線 BL 1~BL n:位元線 Det_A:主指示訊號 Det_B:冗餘指示訊號 Dout:資料輸出 EN_A:主賦能訊號 EN_B:冗餘賦能訊號 I_cell:單元電流 I_target:靶電流 PWR:電源 VD:驅動電壓 VREF:參考電壓 WL1~WLm:字元線 WR_DONE:訊號 100: Memory device 102: Memory array 102-1: Main array 102-2: Redundant array 104: Memory unit 104 1,1 ~104 m,n : Memory unit grid 110: Column decoder 120: Row decoder 130: read circuit 140: write circuit 150: control circuit 160: I/O circuit 200: write driver 202: output node 204: bit line 204-1: main bit line 204-2: redundant Remaining bit line 212: RRAM resistive element 214: Access transistor 220: Current source 222: Instruction node 230: First transistor 240: Second transistor 250: Comparators 300, 350: Timing diagram 400: Logic circuit 450 :Truth table 500: Write driver circuit 502-1: Main write driver 502-2: Redundant write driver 504: Power switch 504-1: Main power switch 504-2: Redundant power switch 506: Inverting Inverter 506-1: Main inverter 506-2: Redundant inverter 600: Logic controller 650: Truth table 700: Timing diagram 702, 704, 706: Arrow 800: Timing diagram 802, 804, 806: Arrow 900: Timing diagram 902, 904, 906: Arrow 1000: Method 1002, 1004, 1006, 1008, 1010, 1012, 1014: Operation ADDR1: First address ADDR2: Second address ADDR3: Third address BL: Master Bit line BL_R: redundant bit line BL 1 ~ BL n : bit line Det_A: main instruction signal Det_B: redundant instruction signal Dout: data output EN_A: main enable signal EN_B: redundant enable signal I_cell: unit Current I_target: target current PWR: power supply VD: drive voltage VREF: reference voltage WL1~WLm: word line WR_DONE: signal

結合附圖,根據以下詳細描述可以最好地理解本揭示的一實施例內容的各態樣。注意,根據行業中的標準實務,各種特徵未按比例繪製。實際上,為了討論清楚起見,各種特徵的尺寸可任意增加或減小。 第1圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的記憶體裝置的方塊圖。 第2圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的寫入驅動器的示意圖。 第3A圖為根據一些實施例的用以以減少的電流及程式化時間執行寫入操作的記憶體裝置的時序圖。 第3B圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的記憶體裝置的另一時序圖。 第4A圖為根據一些實施例的用以偵測集合操作是否已執行的記憶體裝置的邏輯電路。 第4B圖為邏輯電路的真值表。 第5圖為根據一些實施例的用以以減小的電流及程式化時間執行寫入操作的寫入驅動器電路的示意圖。 第6A圖為根據一些實施例的用以控制寫入驅動器電路的邏輯控制器。 第6B圖為邏輯控制器的真值表。 第7圖為根據一些實施例的配置有邏輯控制器以控制寫入驅動器電路的記憶體裝置的時序圖。 第8圖為根據一些實施例的配置有邏輯控制器以控制寫入驅動器電路的記憶體裝置的另一時序圖。 第9圖為根據一些實施例的配置有邏輯控制器以控制寫入驅動器電路的記憶體裝置的又一時序圖。 第10圖說明用於每位元兩個單元的寫入操作的例示性方法。 Various aspects of an embodiment of the present disclosure can be best understood from the following detailed description in conjunction with the accompanying drawings. Note that in accordance with standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for the sake of clarity of discussion. Figure 1 is a block diagram of a memory device for performing write operations with reduced current and programming time, according to some embodiments. Figure 2 is a schematic diagram of a write driver for performing write operations with reduced current and programmed time, according to some embodiments. Figure 3A is a timing diagram of a memory device for performing write operations with reduced current and programming time, according to some embodiments. Figure 3B is another timing diagram of a memory device for performing a write operation with reduced current and programming time, in accordance with some embodiments. Figure 4A illustrates logic circuitry of a memory device for detecting whether a set operation has been performed, according to some embodiments. Figure 4B shows the truth table of a logic circuit. Figure 5 is a schematic diagram of a write driver circuit for performing write operations with reduced current and programmed time, according to some embodiments. Figure 6A is a logic controller used to control a write driver circuit in accordance with some embodiments. Figure 6B shows the truth table of the logic controller. Figure 7 is a timing diagram of a memory device configured with a logic controller to control write driver circuitry, in accordance with some embodiments. Figure 8 is another timing diagram of a memory device configured with a logic controller to control write driver circuitry, in accordance with some embodiments. Figure 9 is yet another timing diagram of a memory device configured with a logic controller to control write driver circuitry, in accordance with some embodiments. Figure 10 illustrates an exemplary method for a two-unit-per-bit write operation.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

100:記憶體裝置 100:Memory device

102:記憶體陣列 102:Memory array

102-1:主陣列 102-1: Main array

102-2:冗餘陣列 102-2:Redundant Array

1041,1~104m,n:記憶體單元網格 104 1,1 ~104 m,n : memory cell grid

110:列解碼器 110: Column decoder

120:行解碼器 120: Line decoder

130:讀取電路 130:Reading circuit

140:寫入電路 140:Writing circuit

150:控制電路 150:Control circuit

160:I/O電路 160:I/O circuit

ADDR1:第一位址 ADDR1: first address

ADDR2:第二位址 ADDR2: second address

ADDR3:第三位址 ADDR3: third address

BL1~BLn:位元線 BL 1 ~BL n : bit lines

WL1~WLm:字元線 WL1~WLm: character lines

Claims (20)

一種記憶體裝置,包含: 一主陣列,包含多個主記憶體單元; 一冗餘陣列,包含多個冗餘記憶體單元;及 寫入電路,用以對一主記憶體單元執行一第一程式化操作,在該第一程式化操作期間偵測該主記憶體單元的一電流是否超過一預定電流臨限,且在該第一程式化操作期間該主記憶體單元的該電流超過該預定電流臨限時,去能一冗餘記憶體單元的一第二程式化操作。 A memory device containing: a main array including a plurality of main memory units; a redundant array including a plurality of redundant memory cells; and A write circuit for performing a first programming operation on a main memory unit, detecting whether a current of the main memory unit exceeds a predetermined current threshold during the first programming operation, and during the first programming operation When the current of the main memory cell exceeds the predetermined current threshold during a programming operation, a second programming operation of a redundant memory cell is disabled. 如請求項1所述之記憶體裝置,其中該寫入電路用以在該第一程式化操作期間該主記憶體單元的該電流不超過該預定電流臨限時,對該冗餘單元執行該第二程式化操作。The memory device of claim 1, wherein the writing circuit is used to perform the third execution on the redundant unit when the current of the main memory unit does not exceed the predetermined current threshold during the first programming operation. 2. Programmed operation. 如請求項1所述之記憶體裝置,其中該寫入電路用以基於一電流鏡電路偵測該主記憶體單元的該電流是否超過該預定電流臨限。The memory device of claim 1, wherein the writing circuit is used to detect whether the current of the main memory unit exceeds the predetermined current threshold based on a current mirror circuit. 如請求項3所述之記憶體裝置,其中該電流鏡電路包括一第一電晶體、一第二電晶體及具有可操作地耦合至該第一電晶體及該第二電晶體的相應閘極的一輸出的一比較器。The memory device of claim 3, wherein the current mirror circuit includes a first transistor, a second transistor and a corresponding gate operatively coupled to the first transistor and the second transistor. An output of a comparator. 如請求項4所述之記憶體裝置,其中: 該第一電晶體包括與一指示節點耦合的一汲極; 一電流源耦合至該指示節點且用以產生界定該預定電流臨限的一電流位準;及 該第一電晶體用以在該指示節點處輸出一訊號,該訊號指示該主記憶體單元的該電流是否超過該預定電流臨限。 The memory device as claimed in claim 4, wherein: The first transistor includes a drain coupled to an indication node; a current source coupled to the indication node and used to generate a current level defining the predetermined current threshold; and The first transistor is used to output a signal at the indication node, and the signal indicates whether the current of the main memory unit exceeds the predetermined current threshold. 如請求項5所述之記憶體裝置,其中該寫入電路用以回應於該指示節點處的該訊號指示該主記憶體單元的該電流超過該預定電流臨限,避免在完成該第一程式化操作之後觸發該第二程式化操作。The memory device of claim 5, wherein the write circuit is configured to respond to the signal at the instruction node to instruct the current of the main memory unit to exceed the predetermined current threshold to avoid completing the first program. The second stylized operation is triggered after the stylized operation. 如請求項5所述之記憶體裝置,其中該寫入電路用以回應於該指示節點處的該訊號指示該主記憶體單元的該電流超過該預定電流臨限,去能與該第一程式化操作同時執行的該第二程式化操作。The memory device of claim 5, wherein the write circuit is configured to respond to the signal at the instruction node indicating that the current of the main memory unit exceeds the predetermined current threshold to disable communication with the first program. This second stylized operation is performed simultaneously with the stylized operation. 如請求項1所述之記憶體裝置,其中: 該些主記憶體單元及該些冗餘記憶體單元包含多個電阻式隨機存取記憶體記憶體單元;且 該寫入電路用以執行該第一程式化操作及該第二程式化操作作為一每位元兩個單元的寫入操作的一部分,且在該第一程式化操作可靠地執行時,去能該第二程式化操作,以減少該每位元兩個單元的寫入操作的寫入電流及寫入時間。 The memory device as claimed in claim 1, wherein: The main memory cells and the redundant memory cells include a plurality of resistive random access memory cells; and The write circuit is used to perform the first programming operation and the second programming operation as part of a two-bit unit writing operation, and when the first programming operation is reliably performed, disable The second programming operation is used to reduce the write current and write time of the write operation of two units per bit. 如請求項1所述之記憶體裝置,其中該寫入電路包括藉助於一或多個位元線耦合至該主陣列及該冗餘陣列的一或多個寫入驅動器。The memory device of claim 1, wherein the write circuit includes one or more write drivers coupled to the main array and the redundant array via one or more bit lines. 用於一記憶體裝置的寫入電路,包含: 一比較器,具有用以接收一參考電壓訊號的一第一輸入端、一第二輸入端及一輸出端; 一參考電晶體,具有連接至該比較器的該輸出端的一閘極端、連接至一電源端的一第一源極/汲極端,及連接至一指示節點的一第二源極/汲極端,該指示節點連接至一電流源及用以產生一參考電流;及 一驅動電晶體,具有連接至該比較器的該輸出端的一閘極端、連接至該電源端的一第一源極/汲極端,及連接至該比較器的該第二輸入端且用以輸出一程式化訊號至一第一記憶體陣列的一記憶體單元的一位元線的一第二源極/汲極端; 其中該指示節點用以基於該記憶體單元的一電流與該參考電流的一比較來輸出一指示訊號。 A write circuit for a memory device, including: A comparator having a first input terminal, a second input terminal and an output terminal for receiving a reference voltage signal; a reference transistor having a gate terminal connected to the output terminal of the comparator, a first source/drain terminal connected to a power supply terminal, and a second source/drain terminal connected to an indication node, the The indication node is connected to a current source and used to generate a reference current; and A drive transistor has a gate terminal connected to the output terminal of the comparator, a first source/drain terminal connected to the power terminal, and a second input terminal connected to the comparator and used to output a Programming signals to a second source/drain terminal of a bit line of a memory cell of a first memory array; The indication node is used to output an indication signal based on a comparison between a current of the memory cell and the reference current. 如請求項10所述之寫入電路,其中: 該指示訊號指示來自該程式化訊號的該記憶體單元的該電流是否超過該參考電流。 The writing circuit as described in claim 10, wherein: The indication signal indicates whether the current of the memory cell from the programmed signal exceeds the reference current. 如請求項11所述之寫入電路,其中: 該寫入電路用以在該指示訊號指示來自該程式化訊號的該記憶體單元的該電流超過該參考電流時,去能一備用程式化訊號。 A writing circuit as described in claim 11, wherein: The write circuit is used to disable a backup programming signal when the instruction signal indicates that the current from the memory cell of the programming signal exceeds the reference current. 如請求項12所述之寫入電路,其中: 該寫入電路用以在該指示訊號指示來自該程式化訊號的該記憶體單元的該電流不超過該參考電流時,執行該備用程式化訊號。 A writing circuit as described in claim 12, wherein: The write circuit is used to execute the backup programming signal when the instruction signal indicates that the current from the memory cell of the programming signal does not exceed the reference current. 如請求項13所述之寫入電路,其中: 該程式化訊號及該備用程式化訊號為一每位元兩個單元的寫入操作的相應寫入操作; 該程式化訊號在該第一記憶體陣列上執行;且 該備用程式化訊號在一第二記憶體陣列上執行。 A writing circuit as described in claim 13, wherein: The programmed signal and the backup programmed signal are corresponding write operations of a two-bit-unit write operation; The programmed signal is executed on the first memory array; and The backup programming signal is executed on a second memory array. 如請求項10所述之寫入電路,其中: 該參考電晶體及該驅動電晶體形成一電流鏡電路。 The writing circuit as described in claim 10, wherein: The reference transistor and the driving transistor form a current mirror circuit. 一種記憶體寫入方法,包含以下步驟: 提供用於存儲多個位元的一第一電阻式隨機存取記憶體單元陣列; 提供用於存儲該第一電阻式隨機存取記憶體單元陣列的多個冗餘位元的一第二電阻式隨機存取記憶體單元陣列; 將一或多個寫入驅動器耦合至該第一電阻式隨機存取記憶體單元陣列及該第二電阻式隨機存取記憶體單元陣列,以執行每位元兩個單元冗餘; 對該第一電阻式隨機存取記憶體單元陣列及該第二電阻式隨機存取記憶體單元陣列中的一者的一記憶體單元執行一第一集合操作; 判定在該第一集合操作期間是否超過該記憶體單元的一電流臨限;及 回應於判定在該第一集合操作期間超過該記憶體單元的該電流臨限,去能該第一電阻式隨機存取記憶體單元陣列及該第二電阻式隨機存取記憶體單元陣列中的另一者處的一第二集合操作。 A memory writing method includes the following steps: providing a first resistive random access memory cell array for storing a plurality of bits; providing a second resistive random access memory cell array for storing a plurality of redundant bits of the first resistive random access memory cell array; coupling one or more write drivers to the first resistive random access memory cell array and the second resistive random access memory cell array to perform two cell redundancy per cell; performing a first set operation on a memory cell of one of the first resistive random access memory cell array and the second resistive random access memory cell array; Determine whether a current threshold of the memory cell was exceeded during the first set of operations; and In response to determining that the current threshold of the memory cell was exceeded during the first set of operations, disabling the first resistive random access memory cell array and the second resistive random access memory cell array. A second set of operations at the other. 如請求項16所述之方法,進一步包含以下步驟: 回應於判定在該第一集合操作期間未超過該記憶體單元的該電流臨限,對該第二電阻式隨機存取記憶體單元陣列的一備用記憶體單元執行該第二集合操作,從而為該第一集合操作提供冗餘。 The method described in request 16 further includes the following steps: In response to determining that the current threshold of the memory cell was not exceeded during the first set operation, performing the second set operation on a spare memory cell of the second array of resistive random access memory cells, thereby providing This first set of operations provides redundancy. 如請求項16所述之方法,進一步包含以下步驟: 基於一電流鏡電路判定在該第一集合操作期間是否超過該記憶體單元的該電流臨限。 The method described in request 16 further includes the following steps: Determining whether the current threshold of the memory cell is exceeded during the first set of operations is based on a current mirror circuit. 如請求項16所述之方法,其中該去能該第二集合操作之步驟包括以下步驟:在該第一集合操作完成之後繞過該第二集合操作。The method of claim 16, wherein the step of disabling the second set operation includes the following steps: bypassing the second set operation after the first set operation is completed. 如請求項16所述之方法,其中該去能該第二集合操作之步驟包括以下步驟:在與該第一集合操作同時程式化期間斷開執行該第二集合操作的一寫入驅動器。The method of claim 16, wherein the step of disabling the second set operation includes the step of disconnecting a write drive performing the second set operation during programming concurrently with the first set operation.
TW112104071A 2022-03-31 2023-02-06 Memory device, a write circuit thereof, and a write method of writing memory TW202341142A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/709,662 US11915752B2 (en) 2022-03-31 2022-03-31 Resistive memory with enhanced redundancy writing
US17/709,662 2022-03-31

Publications (1)

Publication Number Publication Date
TW202341142A true TW202341142A (en) 2023-10-16

Family

ID=87880996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112104071A TW202341142A (en) 2022-03-31 2023-02-06 Memory device, a write circuit thereof, and a write method of writing memory

Country Status (3)

Country Link
US (2) US11915752B2 (en)
CN (1) CN219658388U (en)
TW (1) TW202341142A (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484254B1 (en) 2002-10-31 2005-04-22 주식회사 하이닉스반도체 Redundancy circuit in semiconductor memory device and fail repair method using the same
US7495944B2 (en) * 2005-03-30 2009-02-24 Ovonyx, Inc. Reading phase change memories
KR100909770B1 (en) * 2007-08-10 2009-07-29 주식회사 하이닉스반도체 Driving Method of Phase Change Memory Device
KR100944343B1 (en) * 2007-08-10 2010-03-02 주식회사 하이닉스반도체 Phase change memory device
US8213243B2 (en) * 2009-12-15 2012-07-03 Sandisk 3D Llc Program cycle skip
US8238158B2 (en) * 2010-08-04 2012-08-07 Texas Instruments Incorporated Programming of memory cells in a nonvolatile memory using an active transition control
US9251893B2 (en) * 2010-08-20 2016-02-02 Shine C. Chung Multiple-bit programmable resistive memory using diode as program selector
US8934292B2 (en) * 2011-03-18 2015-01-13 Sandisk 3D Llc Balanced method for programming multi-layer cell memories
JP5642649B2 (en) * 2011-10-07 2014-12-17 シャープ株式会社 Semiconductor memory device and semiconductor device
KR20130075541A (en) * 2011-12-27 2013-07-05 에스케이하이닉스 주식회사 Semiconductor device and method for sensing the same
TWI693766B (en) * 2018-04-18 2020-05-11 力旺電子股份有限公司 Electrostatic discharge protection device

Also Published As

Publication number Publication date
US11915752B2 (en) 2024-02-27
US20240153558A1 (en) 2024-05-09
CN219658388U (en) 2023-09-08
US20230317159A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP4619004B2 (en) Programmable conductive random access memory and detection method thereof
US9548116B2 (en) Resistive memory with program verify and erase verify capability
US10825509B2 (en) Full-rail digital read compute-in-memory circuit
JP7471422B2 (en) Tri-state programming of memory cells
US9852090B2 (en) Serial memory device alert of an external host to completion of an internally self-timed operation
US8379430B2 (en) Memory device and method of reading memory device
US9318158B2 (en) Non-volatile memory using bi-directional resistive elements
US20160276029A1 (en) Non-volatile memory using bi-directional resistive elements
US9378785B2 (en) Resistive random-access memory devices
TW201735036A (en) System and method for performing memory operations on RRAM cells
JP2012038387A (en) Semiconductor memory device
KR20050018639A (en) Method for reading a structural phase-change memory
TWI646537B (en) Serial memory device alert of an external host to completion of an internally self-timed operation
US9401207B2 (en) Pseudo SRAM using resistive elements for non-volatile storage
WO2014176213A1 (en) Retention optimized memory device using predictive data inversion
CN111902873B (en) 2T2R resistive random access memory with differential architecture, MCU and equipment
US9036429B2 (en) Nonvolatile memory device and operating method thereof
CN219658388U (en) Memory device and write circuit thereof
TWI760924B (en) Methods and systems for accessing memory cells
CN114514579A (en) Voltage distribution for reducing read disturb in memory cells
KR20210009088A (en) Nonvolatile memor apparatus mitigating disturbance and operating method thereof
US20230221871A1 (en) Memory device and operating method thereof
US10636464B1 (en) Memory device
KR20220049201A (en) Nonvolatile memory apparatus generating a read refeence and operating method thereof
US9542984B2 (en) Semiconductor memory apparatus and operation method using the same