TW202345749A - Brain wave audio/video encoding and playback system characterized by using the manner of music playback and image display to present the change and information of brain wave, thereby people can resonate with it by listening to the music and watching the image - Google Patents
Brain wave audio/video encoding and playback system characterized by using the manner of music playback and image display to present the change and information of brain wave, thereby people can resonate with it by listening to the music and watching the image Download PDFInfo
- Publication number
- TW202345749A TW202345749A TW111119927A TW111119927A TW202345749A TW 202345749 A TW202345749 A TW 202345749A TW 111119927 A TW111119927 A TW 111119927A TW 111119927 A TW111119927 A TW 111119927A TW 202345749 A TW202345749 A TW 202345749A
- Authority
- TW
- Taiwan
- Prior art keywords
- note
- range
- notes
- period
- brainwave
- Prior art date
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 95
- 230000008859 change Effects 0.000 title claims description 8
- 230000007246 mechanism Effects 0.000 claims abstract description 59
- 238000012545 processing Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000003086 colorant Substances 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 91
- 238000004364 calculation method Methods 0.000 claims description 13
- 241000282414 Homo sapiens Species 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 235000000177 Indigofera tinctoria Nutrition 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229940097275 indigo Drugs 0.000 claims description 2
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 claims description 2
- 239000011295 pitch Substances 0.000 claims 11
- 230000001174 ascending effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 230000001020 rhythmical effect Effects 0.000 description 2
- 208000027534 Emotional disease Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
本發明係有關於腦波分析之應用,尤其是一種腦波影音編碼及播放系統。 The present invention relates to the application of brainwave analysis, in particular to a brainwave video encoding and playback system.
在習知的學界研究,已經對於人的腦力的各個活動(包含放鬆力、聽覺、記憶力、注意力、邏輯判斷力、視覺、反應力)所對應的腦波現象做了深入研究,而且可以依據不同的腦力活動計算出對應的腦波數值以作為分析之用。 In the academic field of knowledge, in-depth research has been done on the brain wave phenomena corresponding to various activities of the human brain (including relaxation, hearing, memory, attention, logical judgment, vision, and reaction), and it can be based on Different mental activities calculate corresponding brain wave values for analysis.
人體左腦及右腦的Delta波、Theta波、High/Low Alpha波,High/Low Beta波及High/Low Gamma波,這些不同的腦波具有不同的物理及生理意義,也表示受測者不同的狀態,因此經由測量這些不同的腦波,並進行數值運算可以得知受測者對應特性的程度。相關的數值運算方式在學術上已經有相當廣泛的研究。而且應用腦波儀量測腦波後再經由晶片中的演算法得知受測者對應特性的程度,在學術上也有非常深入的探討。 Delta waves, Theta waves, High/Low Alpha waves, High/Low Beta waves and High/Low Gamma waves of the left and right brains of the human body. These different brain waves have different physical and physiological meanings, and also represent different characteristics of the subjects. state, so by measuring these different brain waves and performing numerical calculations, the degree of the subject's corresponding characteristics can be known. Relevant numerical operation methods have been extensively studied academically. Moreover, there are also very in-depth academic discussions on the use of electroencephalographs to measure brain waves and then use the algorithm in the chip to determine the degree of the subject's corresponding characteristics.
科技日益精進,近年來科技界大力鼓吹「元宇宙」(Meta verse),其中非常重要一點是如何模仿人類真正的人性特質,以便融入虛擬遊戲世界中以創造更接近實際的世間環境。應用頭戴非侵入式的腦波儀,隨時可得知腦波現況反應的變動。人類的情緒反應會在腦波中真實的呈現,而且也會 使得腦波產生韻律的變動。同樣的腦波所反映的情緒也跟人類對色彩的感受有相似的對應關係,比如焦躁時的腦波會讓色彩感覺深沉而且具有快速顫抖的效應,情緒低沉時所呈現的腦波會對應到灰暗的色彩。 Technology has become increasingly sophisticated. In recent years, the scientific and technological community has vigorously advocated the "Metaverse" (Metaverse). A very important point is how to imitate the true human characteristics of human beings in order to integrate them into the virtual game world to create a worldly environment that is closer to reality. By using a head-mounted non-invasive brain wave meter, you can know the changes in brain wave responses at any time. Human emotional reactions will be realistically represented in brain waves, and they will also Causes rhythmic changes in brain waves. The emotions reflected by the same brain waves also have a similar correspondence with human feelings of color. For example, the brain waves when anxious will make the colors feel deep and have a rapid trembling effect. The brain waves displayed when the mood is low will correspond to Dark colors.
所以本發明人基於對此一方面的了解與專業知識,結合多年來從事最新科技研究之經驗,希望將這種腦波的韻律變動對應到音樂上的旋律及色彩的變動,而以音樂及影像的方式呈現出來。藉由音樂的放送及影像的播放,而傳遞出腦波的訊息,因此使得周遭人可以經由收聽該音樂而產生共鳴。 Therefore, based on the understanding and professional knowledge of this aspect, combined with many years of experience in the latest scientific and technological research, the inventor hopes to map the rhythmic changes of brain waves to the changes of musical melody and color, and use music and images to presented in a way. Through the playback of music and images, brain wave information is transmitted, so that people around you can resonate with the music.
提出一種嶄新的腦波特徵數位化編碼系統,以解決上述先前技術上的缺陷。 A new digital encoding system for brainwave characteristics is proposed to solve the above-mentioned shortcomings of previous technologies.
所以本發明的目的係為解決上述習知技術上的問題,本發明中提出一種腦波影音編碼及播放系統,在本案中,發明人基於對腦波多年的研究及了解,找出腦波的變動與人體對音感的律動及色彩明暗關係,而將腦波的變動對應到音樂旋律及影像色彩,因此創造出上述的規則,而可以用音樂的播放及影像顯示的方式呈現出腦波的變動。藉由音樂的放送及影像的顯示,而傳遞出腦波的訊息,因此使得周遭人可以經由收聽該音樂及觀看該影像而產生共鳴。 Therefore, the purpose of the present invention is to solve the above-mentioned conventional technical problems. The present invention proposes a brainwave video encoding and playback system. In this case, the inventor found out the characteristics of brainwaves based on years of research and understanding of brainwaves. The changes are related to the rhythm of the human body's sense of sound and the light and dark colors, and the changes in brain waves are mapped to the music melody and image colors. Therefore, the above rules are created, and the changes in brain waves can be presented in the form of music playback and image display. . Through the playing of music and the display of images, brain wave information is transmitted, so that people around you can resonate with it by listening to the music and watching the images.
為達到上述目的本發明中提出一種腦波影音編碼及播放系統,包含一頭戴式儀器,用於偵測受測者的腦波訊號,該頭戴式儀器包含一頭戴環、一腦波偵測器位在該頭戴環上用於偵測腦波、一專注度及放鬆度指數計算器連接該腦波偵測器,用於將腦波的偵測數據應用特定演算法得到受測者 的腦波之專注度(Attention)指數及放鬆度(Meditation)指數、及一腦波儀收發機連接該腦波偵測器及該專注度及放鬆度指數計算器,用於將腦波訊號向外傳送;一處理單元連接該頭戴式儀器,接收由該頭戴式儀器輸出的一序列的腦波訊號並進行處理;這些腦波訊號包含人體左腦及右腦的Delta波、Theta波、High/Low Alpha波,High/Low Beta波及High/Low Gamma波,及專注度(Attention)指數與放鬆度(Meditation)指數;該處理單元包含一處理端收發機連接該頭戴式儀器的腦波儀收發機,用於接收來自該腦波儀收發機所發射的訊號;一旋律轉換機構連接該處理端收發機,用於將受測者在一時段中的腦波訊號依據特定的演算法轉換出對應的音樂旋律;一色彩轉換機構,連接該處理端收發機,用於將受測者在一時段中的腦波訊號,依據特定的演算法得到對應的色彩;一音樂播放機構連接該旋律轉換機構,用於播放該旋律轉換機構所得到的音樂旋律;以及一畫面顯示機構連接該色彩轉換機構,用於顯示該色彩轉換機構所得到的各種色彩。 In order to achieve the above objectives, the present invention proposes a brainwave video encoding and playback system, which includes a head-mounted instrument for detecting the brain wave signal of a subject. The head-mounted instrument includes a headband, a brain wave A detector is located on the headband for detecting brain waves. A concentration and relaxation index calculator is connected to the brain wave detector for applying a specific algorithm to the brain wave detection data to obtain the measured results. By The concentration (Attention) index and the relaxation (Meditation) index of the brain waves, and an electroencephalograph transceiver is connected to the brain wave detector and the concentration and relaxation index calculator for transmitting the brain wave signals to External transmission; a processing unit is connected to the head-mounted instrument, receives and processes a sequence of brain wave signals output by the head-mounted instrument; these brain wave signals include Delta waves, Theta waves, High/Low Alpha wave, High/Low Beta wave and High/Low Gamma wave, as well as concentration (Attention) index and relaxation (Meditation) index; the processing unit includes a processing end transceiver connected to the brain waves of the head-mounted device A transceiver is used to receive signals transmitted from the electroencephalograph transceiver; a melody conversion mechanism is connected to the processing end transceiver and is used to convert the brain wave signals of the subject during a period of time according to a specific algorithm. The corresponding music melody is output; a color conversion mechanism is connected to the processing terminal transceiver, and is used to obtain the corresponding color according to the brain wave signal of the subject in a period of time according to a specific algorithm; a music playing mechanism is connected to the melody A conversion mechanism is used to play the music melody obtained by the melody conversion mechanism; and a picture display mechanism is connected to the color conversion mechanism and is used to display various colors obtained by the color conversion mechanism.
由下文的說明可更進一步瞭解本發明的特徵及其優點,閱讀時並請參考附圖。 The features and advantages of the present invention can be further understood from the following description. Please refer to the accompanying drawings when reading.
10:頭戴式儀器 10:Head mounted instrument
11:頭戴環 11:Headband
12:腦波偵測器 12:Brain wave detector
14:腦波儀收發機 14: EEG transceiver
15:放鬆度指數計算器 15:Relaxation Index Calculator
20:處理單元 20: Processing unit
21:處理端收發機 21: Processing end transceiver
30:旋律轉換機構 30: Melody conversion mechanism
31:腦波變化計算單元 31: Brain wave change calculation unit
32:編碼單元 32: Coding unit
33:音域轉換單元 33:Voice range conversion unit
35:旋律建立單元 35: Melody building unit
40:音樂播放機構 40:Music player organization
41:樂器選擇單元 41: Instrument selection unit
50:色彩轉換機構 50: Color conversion mechanism
60:畫面顯示機構 60:Screen display mechanism
70:音量及色彩濃度選擇機構 70: Volume and color density selection mechanism
331:節拍計算單元 331: Beat calculation unit
圖1顯示本案之主要元件組合架構方塊圖。 Figure 1 shows the block diagram of the main component combination of this project.
圖2顯示本案之頭戴式儀器之示意圖。 Figure 2 shows a schematic diagram of the head-mounted instrument in this case.
圖3顯示本案之系統架構方塊示意圖。 Figure 3 shows the block diagram of the system architecture of this case.
圖4顯示本案中由各種腦波參數所計算出之強度差值表。 Figure 4 shows the intensity difference table calculated from various brain wave parameters in this case.
圖5顯示本案之編碼單元所計算出之編碼表。 Figure 5 shows the coding table calculated for the coding unit of this case.
圖6A顯示本案之第一音域範圍之音符轉換結果表。 Figure 6A shows the note conversion result table of the first musical range of this case.
圖6B顯示本案之第一音域範圍之音符轉換結果表,係接續圖6A之內容。 Figure 6B shows the note conversion result table of the first musical range of this case, which is continued from the content of Figure 6A.
圖7A顯示本案之第二音域範圍之音符轉換結果表。 Figure 7A shows the note conversion result table of the second musical range of this case.
圖7B顯示本案之第二音域範圍之音符轉換結果表,係接續圖7A之內容。 Figure 7B shows the note conversion result table of the second musical range of this case, which is continued from Figure 7A.
圖7C顯示本案之第二音域範圍之音符轉換結果表,係接續圖7B之內容。 Figure 7C shows the note conversion result table of the second musical range of this case, which is continued from the content of Figure 7B.
圖7D顯示本案之第二音域範圍之音符轉換結果表,係接續圖7C之內容。 Figure 7D shows the note conversion result table of the second musical range of this case, which is continued from the content of Figure 7C.
圖7E顯示本案之第二音域範圍之音符轉換結果表,係接續圖7D之內容。 Figure 7E shows the note conversion result table of the second musical range of this case, which is continued from the content of Figure 7D.
圖8A顯示本案之第三音域範圍之音符轉換結果表。 Figure 8A shows the note conversion result table of the third musical range of this case.
圖8B顯示本案之第三音域範圍之音符轉換結果表,係接續圖8A之內容。 Figure 8B shows the note conversion result table of the third musical range of this case, which is continued from Figure 8A.
圖8C顯示本案之第三音域範圍之音符轉換結果表,係接續圖8B之內容。 Figure 8C shows the note conversion result table of the third musical range of this case, which is a continuation of the content of Figure 8B.
圖8D顯示本案之第三音域範圍之音符轉換結果表,係接續圖8C之內容。 Figure 8D shows the note conversion result table of the third musical range of this case, which is continued from the content of Figure 8C.
圖8E顯示本案之第三音域範圍之音符轉換結果表,係接續圖8D之內容。 Figure 8E shows the note conversion result table of the third musical range of this case, which is a continuation of the content of Figure 8D.
圖9A顯示本案之第四音域範圍之音符轉換結果表。 Figure 9A shows the note conversion result table of the fourth musical range of this case.
圖9B顯示本案之第四音域範圍之音符轉換結果表,係接續圖9A之內容。 Figure 9B shows the note conversion result table of the fourth musical range of this case, which is continued from the content of Figure 9A.
圖9C顯示本案之第四音域範圍之音符轉換結果表,係接續圖9B之內容。 Figure 9C shows the note conversion result table of the fourth musical range of this case, which is a continuation of the content of Figure 9B.
圖10A顯示本案之節拍轉換結果表。 Figure 10A shows the beat conversion result table of this case.
圖10B顯示本案之節拍轉換結果表,係接續圖10A之內容。 Figure 10B shows the beat conversion result table of this case, which is a continuation of the content of Figure 10A.
圖10C顯示本案之節拍轉換結果表,係接續圖10B之內容。 Figure 10C shows the beat conversion result table of this case, which is a continuation of the content of Figure 10B.
圖10D顯示本案之節拍轉換結果表,係接續圖10C之內容。 Figure 10D shows the beat conversion result table of this case, which is a continuation of the content of Figure 10C.
圖10E顯示本案之節拍轉換結果表,係接續圖10D之內容。 Figure 10E shows the beat conversion result table of this case, which is a continuation of the content of Figure 10D.
圖10F顯示本案之節拍轉換結果表,係接續圖10E之內容。 Figure 10F shows the beat conversion result table of this case, which is a continuation of the content of Figure 10E.
茲謹就本案的結構組成,及所能產生的功效與優點,配 合圖式,舉本案之一較佳實施例詳細說明如下。 Hereby we would like to share the structure and composition of this case, as well as the functions and advantages it can produce. With reference to the drawings, one preferred embodiment of this case will be described in detail as follows.
請參考圖1至圖3所示,顯示本發明之腦波影音編碼及播放系統,包含下列元件: Please refer to Figures 1 to 3, which show the brainwave video encoding and playback system of the present invention, including the following components:
一頭戴式儀器10,用於偵測受測者的腦波訊號。使用時該頭戴式儀器10係架設於受測者頭部。如圖1及圖2所示,該頭戴式儀器10包含一頭戴環11、一腦波偵測器12位在該頭戴環11上用於偵測腦波、一專注度及放鬆度指數計算器15連接該腦波偵測器12,用於將腦波的偵測數據應用特定演算法(此為習知技術所熟知者,不再贅述其細節)得到受測者的腦波之專注度(Attention)指數及放鬆度(Meditation)指數、及一腦波儀收發機14連接該腦波偵測器12及該專注度及放鬆度指數計算器15,用於將腦波訊號向外傳送。
A head-mounted
一處理單元20連接該頭戴式儀器10,接收由該頭戴式儀器10輸出的一序列的腦波訊號並進行處理。這些腦波訊號包含人體左腦及右腦的Delta波、Theta波、High/Low Alpha波,High/Low Beta波及High/Low Gamma波,及專注度(Attention)指數與放鬆度(Meditation)指數。如圖1及圖3所示,該處理單元20包含:
A processing unit 20 is connected to the head-mounted
一處理端收發機21連接該頭戴式儀器10的腦波儀收發機14,用於接收來自該腦波儀收發機14所發射的訊號。
A processing end transceiver 21 is connected to the electroencephalograph transceiver 14 of the head-mounted
一旋律轉換機構30連接該處理端收發機21,用於將受測者在一時段中的腦波訊號依據特定的演算法轉換出對應的音樂旋律。其方式主要是依據專注度
(Attention)指數與放鬆度(Meditation)指數的變化、及腦波波形中左腦及右腦的Delta波、Theta波、High/Low Alpha波,High/Low Beta波及High/Low Gamma波的變化。
A
一色彩轉換機構50,連接該處理端收發機21,用於將受測者在一時段中的腦波訊號,依據特定的演算法得到對應的多個色彩。 A color conversion mechanism 50 is connected to the processing end transceiver 21 and is used to convert the subject's brainwave signals in a period of time to obtain multiple corresponding colors according to a specific algorithm.
一音樂播放機構40連接該旋律轉換機構30,用於播放該旋律轉換機構30所得到的音樂旋律。
A music playing mechanism 40 is connected to the
一畫面顯示機構60連接該色彩轉換機構,用於顯示該色彩轉換機構50所得到的各種色彩。 A picture display mechanism 60 is connected to the color conversion mechanism and used to display various colors obtained by the color conversion mechanism 50 .
該處理單元20可以安裝在各種不同的電子資訊裝置中,如電腦、手機或平板等等。 The processing unit 20 can be installed in various electronic information devices, such as computers, mobile phones, tablets, etc.
該旋律轉換機構30包含:
The
一腦波變化計算單元31,對於受測者的各種腦波參數X,計算其在每前後兩相鄰時間點t-1、t之各強度差值Dt,t大於0。其中該腦波參數X選自Att,Med,δ,θ,α-,α+,β-,β+,γ-,γ+。其中Att表示專注度指數,Med表示放鬆度指數,δ表示Delta波,θ表示Theta波,α-表示Low Alpha波,α+表示High Alpha波,β-表示Low Beta波,β+表示High Beta波,γ-表示Low Gamma波,γ+表示High Gamma波。計算後的值如圖4所示,其中顯示各腦波參數X所對應之D1至D8的計算結果。 An brainwave change calculation unit 31 calculates the intensity differences D t of each of the subject's various brainwave parameters X at each two adjacent time points t-1 and t, and t is greater than 0. The brain wave parameter X is selected from Att, Med, δ, θ, α - , α + , β - , β + , γ - , γ + . Among them, Att represents concentration index, Med represents relaxation index, δ represents Delta wave, θ represents Theta wave, α - represents Low Alpha wave, α + represents High Alpha wave, β - represents Low Beta wave, and β + represents High Beta wave. , γ - represents Low Gamma wave, γ + represents High Gamma wave. The calculated values are shown in Figure 4, which shows the calculation results of D 1 to D 8 corresponding to each brain wave parameter X.
一編碼單元32連接該腦波變化計算單元31,將各腦波參
數X所對應之強度差值的變化,編碼為各該腦波參數X在時段Tn的一對應之二進位值,時段Tn表示第n個時段,n大於0。該編碼單元32將這些二進位值建立一編碼表,該編碼表係以各腦波參數X作為行,時段Tn作為列。其中該編碼表中的各個二進位值係表示為X(Tn)或Tn(X),X(Tn)表示腦波參數X對應之行與時段Tn對應之列的交集處的二進位值,Tn(X)表示時段Tn對應之列與腦波參數X對應之行之交集處的二進位值,即X(Tn)與Tn(X)會對應到該編碼表中相同位置的二進位值。
An
其中決定X(Tn)值的方式為當Dn與Dn-1皆大於0、或皆小於0、或皆為0、或Dn大於0且Dn-1為0、或Dn小於0且Dn-1為0,則X(Tn)為0;
The
當Dn與Dn-1中一者大於0且另一者小於0,或Dn為0且Dn-1大於0、或Dn為0且Dn-1小於0,則X(Tn)為1。 When one of D n and D n-1 is greater than 0 and the other is less than 0, or D n is 0 and D n-1 is greater than 0, or D n is 0 and D n-1 is less than 0, then X(T n ) is 1.
該編碼單元32之編碼表如圖5所示,其中顯示時段T1至T7的各腦波參數X之編碼結果。
The encoding table of the
一音域轉換單元33,連接該編碼單元32,依據該編碼表中各時段Tn的專注度指數及放鬆度指數之二進位值,選擇對應的音域模式,在各該音域模式中係應用不同的轉換規則將各腦波參數X在該編碼表中的二進位值轉換為該時段Tn對應的音符及音高,每一音符是由至少一對應之腦波參數之二進位值所轉換得出者。
A sound range conversion unit 33 is connected to the
其方式為依據Tn(Att,Med)的值決定某一時段Tn之音域模式,其中Tn(Att,Med)=Tn(Att)×2+Tn(Med)。各個音域模式包含多個音符範圍,各該音符範圍包含至少一對應的音符, 且以特定順序依序產生各音符;各音符範圍之音高範圍為一個八度,且該多個音符範圍之對應音符之音高相差八度。其中定義0~7為一個八度中的八個音符。 The method is to determine the vocal range mode of T n for a certain period of time based on the value of T n (Att, Med), where T n (Att, Med) = T n (Att) × 2 + T n (Med). Each range mode includes multiple note ranges, and each note range includes at least one corresponding note, and each note is generated in a specific order; the pitch range of each note range is one octave, and the corresponding note ranges Notes are an octave apart in pitch. It defines 0~7 as the eight notes in an octave.
各個音域模式的轉換方式如下: The conversion methods of each range mode are as follows:
當Tn(Att,Med)=0,則為第一音域模式,其音符範圍依據音高由小至大依序為第一音符範圍、第二音符範圍、第三音符範圍及第四音符範圍。 When T n (Att, Med)=0, it is the first range mode, and its note ranges are the first note range, the second note range, the third note range and the fourth note range in ascending order according to the pitch. .
其中第一音符範圍在時段Tn之各音符依序為: Among them, the notes in the first note range in the period T n are in sequence:
δ(Tn)×22+δ(Tn+1)×2+δ(Tn+2),以及 δ(T n )×2 2 +δ(T n+1 )×2+δ(T n+2 ), and
θ(Tn)×22+θ(Tn+1)×2+θ(Tn+2); θ(T n )×2 2 +θ(T n+1 )×2+θ(T n+2 );
其中第二音符範圍在時段Tn之各音符依序為: Among them, the notes in the second note range in the period T n are as follows:
(α-)(Tn)×22+(α-)(Tn+1)×2+(α-)(Tn+2),以及 (α - )(T n )×2 2 +(α - )(T n+1 )×2+(α - )(T n+2 ), and
(α+)(Tn)×22+(α+)(Tn+1)×2+(α+)(Tn+2); (α + )(T n )×2 2 +(α + )(T n+1 )×2+(α + )(T n+2 );
其中第三音符範圍在時段Tn之各音符依序為: Among them, the notes in the third note range in the period T n are as follows:
(β-)(Tn)×22+(β-)(Tn+1)×2+(β-)(Tn+2),以及 (β - )(T n )×2 2 +(β - )(T n+1 )×2+(β - )(T n+2 ), and
(β+)(Tn)×22+(β+)(Tn+1)×2+(β+)(Tn+2); (β + )(T n )×2 2 +(β + )(T n+1 )×2+(β + )(T n+2 );
其中第四音符範圍在時段Tn之各音符依序為: Among them, the notes in the fourth note range in the period T n are as follows:
(γ-)(Tn)×22+(γ-)(Tn+1)×2+(γ-)(Tn+2),以及 (γ - )(T n )×2 2 +(γ - )(T n+1 )×2+(γ - )(T n+2 ), and
(γ+)(Tn)×22+(γ+)(Tn+1)×2+(γ+)(Tn+2)。 (γ + )(T n )×2 2 +(γ + )(T n+1 )×2+(γ + )(T n+2 ).
該第一音域模式的轉換結果如圖6A至圖6B所示,其中顯示時段T1、T2、T3、T4及Tn的轉換結果表。 The conversion results of the first range mode are shown in FIGS. 6A to 6B , in which the conversion result tables for the time periods T 1 , T 2 , T 3 , T 4 and T n are displayed.
當Tn(Att,Med)=1,則為第二音域模式,其音符範圍依據音高由小至大依序為第一音符範圍、第二音符範圍及第三音符範圍。其中定義腦波參數序列K=“δ,θ,α-,α+, β-,β+,γ-,γ+,δ,θ,α-,α+”。其中序列K的第i個元素以Ki表示,如K4表示α+,K8表示γ+。 When T n (Att, Med)=1, it is the second range mode, and its note ranges are the first note range, the second note range and the third note range in ascending order according to the pitch. Among them, the brain wave parameter sequence K = "δ, θ, α - , α + , β - , β + , γ - , γ + , δ, θ, α - , α + " is defined. The i-th element of the sequence K is represented by K i , such as K 4 represents α + and K 8 represents γ + .
其中第一音符範圍在時段Tn之各音符Mn依序為: Among them, the notes M n in the first note range in the period T n are in sequence:
(Att)(Tn)×22+(Att)(Tn+1)×2+(Att)(Tn+2),以及 (Att)(T n )×2 2 +(Att)(T n+1 )×2+(Att)(T n+2 ), and
(Med)(Tn)×22+(Med)(Tn+1)×2+(Med)(Tn+2); (Med)(T n )×2 2 +(Med)(T n+1 )×2+(Med)(T n+2 );
其中第二音符範圍在時段Tn之各音符依序為: Among them, the notes in the second note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki+1)(Tn)×2+(Ki+2)(Tn),其中i=1~8。 (K i )(T n )×2 2 +(K i+1 )(T n )×2+(K i+2 )(T n ), where i=1~8.
其中第三音符範圍在時段Tn之各音符依序為: Among them, the notes in the third note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki)(Tn+1)×2+(Ki)(Tn+2),其中i=1~8。 (K i )(T n )×2 2 +(K i )(T n+1 )×2+(K i )(T n+2 ), where i=1~8.
上述第二及第三音符範圍依據i值由小至大依序轉換出對應的各音符。 The above-mentioned second and third note ranges are converted into corresponding notes in order from small to large according to the i value.
該第二音域模式的轉換結果如圖7A至圖7E所示,其中顯示時段T1、T2、T3及Tn的轉換結果表。 The conversion results of the second range mode are shown in FIGS. 7A to 7E , in which the conversion result tables for the time periods T 1 , T 2 , T 3 and T n are displayed.
當Tn(Att,Med)=2,則為第三音域模式,其音符範圍依據音高由小至大依序為第一音符範圍、第二音符範圍、第三音符範圍及第四音符範圍。其中定義腦波參數序列K=“δ,θ,α-,α+,β-,β+,γ-,γ+,δ,θ,α-,α+”。其中序列K的第i個元素以Ki表示,如K4表示α+,K8表示γ+。 When T n (Att, Med)=2, it is the third range mode. The note ranges are the first note range, the second note range, the third note range and the fourth note range according to the pitch in ascending order. . The brainwave parameter sequence K = "δ, θ, α - , α + , β - , β + , γ - , γ + , δ, θ, α - , α + " is defined. The i-th element of the sequence K is represented by K i , such as K 4 represents α + and K 8 represents γ + .
其中第一音符範圍在時段Tn之各音符依序為: Among them, the notes in the first note range in the period T n are in sequence:
(Att)(Tn)×22+(Att)(Tn+1)×2+(Att)(Tn+2),以及 (Att)(T n )×2 2 +(Att)(T n+1 )×2+(Att)(T n+2 ), and
(Med)(Tn)×22+(Med)(Tn+1)×2+(Med)(Tn+2); (Med)(T n )×2 2 +(Med)(T n+1 )×2+(Med)(T n+2 );
其中第二音符範圍在時段Tn之各音符依序為: Among them, the notes in the second note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki+1)(Tn)×2+(Ki+2)(Tn),其中i=1~8。 (K i )(T n )×2 2 +(K i+1 )(T n )×2+(K i+2 )(T n ), where i=1~8.
其中第三音符範圍在時段Tn之各音符依序為: Among them, the notes in the third note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki)(Tn+1)×2+(Ki)(Tn+2),其中i=1~4。 (K i )(T n )×2 2 +(K i )(T n+1 )×2+(K i )(T n+2 ), where i=1~4.
其中第四音符範圍在時段Tn之各音符依序為: Among them, the notes in the fourth note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki)(Tn+1)×2+(Ki)(Tn+2),其中i=5~8。 (K i )(T n )×2 2 +(K i )(T n+1 )×2+(K i )(T n+2 ), where i=5~8.
上述第二、第三及第四音符範圍依據i值由小至大依序轉換出對應的各音符。 The above-mentioned second, third and fourth note ranges are converted into corresponding notes in order from small to large according to the i value.
該第三音域模式的轉換結果如圖8A至圖8E所示,其中顯示時段T1、T2、T3及Tn的轉換結果表。 The conversion results of the third range mode are shown in FIGS. 8A to 8E , which display conversion result tables for periods T 1 , T 2 , T 3 and T n .
當Tn(Att,Med)=3,則為第四音域模式,其音符範圍依據音高由小至大依序為第一音符範圍、第二音符範圍、第三音符範圍及第四音符範圍。其中定義腦波參數序列K=“δ,θ,α-,α+,β-,β+,γ-,γ+,δ,θ,α-,α+”。其中序列K的第i個元素以Ki表示,如K4表示α+,K8表示γ+。 When T n (Att, Med)=3, it is the fourth range mode. The note ranges are the first note range, the second note range, the third note range and the fourth note range according to the pitch in ascending order. . The brainwave parameter sequence K = "δ, θ, α - , α + , β - , β + , γ - , γ + , δ, θ, α - , α + " is defined. The i-th element of the sequence K is represented by K i , such as K 4 represents α + and K 8 represents γ + .
其中第一音符範圍在時段Tn之各音符依序為: Among them, the notes in the first note range in the period T n are in sequence:
(Ki)(Tn)×22+(Ki+1)(Tn)×2+(Ki+2)(Tn),其中i=1~4。 (K i )(T n )×2 2 +(K i+1 )(T n )×2+(K i+2 )(T n ), where i=1~4.
其中第二音符範圍在時段Tn之各音符依序為: Among them, the notes in the second note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki+1)(Tn)×2+(Ki+2)(Tn),其中i=5~8。 (K i )(T n )×2 2 +(K i+1 )(T n )×2+(K i+2 )(T n ), where i=5~8.
其中第三音符範圍在時段Tn之各音符依序為: Among them, the notes in the third note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki)(Tn+1)×2+(Ki)(Tn+2),其中i=1~4。 (K i )(T n )×2 2 +(K i )(T n+1 )×2+(K i )(T n+2 ), where i=1~4.
其中第四音符範圍在時段Tn之各音符依序為: Among them, the notes in the fourth note range in the period T n are as follows:
(Ki)(Tn)×22+(Ki)(Tn+1)×2+(Ki)(Tn+2),其中i=5~8。 (K i )(T n )×2 2 +(K i )(T n+1 )×2+(K i )(T n+2 ), where i=5~8.
上述各音符範圍依據i值由小至大依序轉換出對應的各音符。 The above note ranges are converted into corresponding notes in order from small to large according to the i value.
該第四音域模式的轉換結果如圖9A至圖9C所示,其中顯示時段T1、T2、T3及Tn的轉換結果表。 The conversion results of the fourth range mode are shown in FIGS. 9A to 9C , which display conversion result tables for periods T 1 , T 2 , T 3 and T n .
該音域轉換單元33尚包含一節拍計算單元331,依據各音符的轉換規則,計算其對應的節拍。 The range conversion unit 33 also includes a beat calculation unit 331, which calculates the corresponding beat according to the conversion rules of each note.
其中定義0代表全節拍,1代表1/2節拍,2代表1/4節拍,3代表1/8節拍。 It is defined that 0 represents full beat, 1 represents 1/2 beat, 2 represents 1/4 beat, and 3 represents 1/8 beat.
該節拍計算單元331計算節拍的方式為: The beat calculation unit 331 calculates the beat in the following manner:
其中具有(Att)(Tn)×22+(Att)(Tn+1)×2+(Att)(Tn+2)之轉換規則的音符,其節拍為(Med)(Tn)×2+(Med)(Tn+1)。 The note with the conversion rule of (Att)(T n )×2 2 +(Att)(T n+1 )×2+(Att)(T n+2 ) has the beat of (Med)(T n ) ×2+(Med)(T n+1 ).
其中具有(Med)(Tn)×22+(Med)(Tn+1)×2+(Med)(Tn+2)之轉換規則的音符,其節拍為(Att)(Tn)×2+(Att)(Tn+1)。 The note with the conversion rule of (Med)(T n )×2 2 +(Med)(T n+1 )×2+(Med)(T n+2 ) has the beat of (Att)(T n ) ×2+(Att)(T n+1 ).
其中具有(Ki)(Tn)×22+(Ki+1)(Tn)×2+(Ki+2)(Tn)之轉換規則的音符,其節拍為(Ki+3)(Tn)×2+(Ki+4)(Tn),其中i=1~8。 The note with the conversion rule of (K i )(T n )×2 2 +(K i+1 )(T n )×2+(K i+2 )(T n ) has a beat of (K i+ 3 )(T n )×2+(K i+4 )(T n ), where i=1~8.
其中具有δ(Tn)×22+δ(Tn+1)×2+δ(Tn+2)之轉換規則的音符,其節拍為θ(Tn)×2+θ(Tn+1)。 The note with the conversion rule of δ(T n )×2 2 +δ(T n+1 )×2+δ(T n+2 ) has a beat of θ(T n )×2+θ(T n+ 1 ).
其中具有θ(Tn)×22+θ(Tn+1)×2+θ(Tn+2)之轉換規則的音符,其節拍為δ(Tn)×2+δ(Tn+1)。 The note with the conversion rule of θ(T n )×2 2 +θ(T n+1 )×2+θ(T n+2 ) has a beat of δ(T n )×2+δ(T n+ 1 ).
其中具有(α-)(Tn)×22+(α-)(Tn+1)×2+(α-)(Tn+2)之轉換規則的音符,其節拍為(α+)(Tn)×2+(α+)(Tn+1)。 The note with the conversion rule of (α - )(T n )×2 2 +(α - )(T n+1 )×2+(α - )(T n+2 ) has the beat of (α + ) (T n )×2+(α + )(T n+1 ).
其中具有(α+)(Tn)×22+(α+)(Tn+1)×2+(α+)(Tn+2)之轉換規則的音符,其節拍為(α-)(Tn)×2+(α-)(Tn+1)。 The note with the conversion rule of (α + )(T n )×2 2 +(α + )(T n+1 )×2+(α + )(T n+2 ) has a beat of (α - ) (T n )×2+(α - )(T n+1 ).
其中具有(β-)(Tn)×22+(β-)(Tn+1)×2+(β-)(Tn+2)之轉換規則的音符,其節拍為(β+)(Tn)×2+(β+)(Tn+1)。 The note with the conversion rule of (β - )(T n )×2 2 +(β - )(T n+1 )×2+(β - )(T n+2 ) has a beat of (β + ) (T n )×2+(β + )(T n+1 ).
其中具有(β+)(Tn)×22+(β+)(Tn+1)×2+(β+)(Tn+2)之轉換規則的音符,其節拍為(β-)(Tn)×2+(β-)(Tn+1)。 The note with the conversion rule of (β + )(T n )×2 2 +(β + )(T n+1 )×2+(β + )(T n+2 ) has a beat of (β - ) (T n )×2+(β - )(T n+1 ).
其中具有(γ-)(Tn)×22+(γ-)(Tn+1)×2+(γ-)(Tn+2)之轉換規則 的音符,其節拍為(γ+)(Tn)×2+(γ+)(Tn+1)。 The note with the conversion rule of (γ - )(T n )×2 2 +(γ - )(T n+1 )×2+(γ - )(T n+2 ) has a beat of (γ + ) (T n )×2+(γ + )(T n+1 ).
其中具有(γ+)(Tn)×22+(γ+)(Tn+1)×2+(γ+)(Tn+2)之轉換規則的音符,其節拍為(γ-)(Tn)×2+(γ-)(Tn+1)。 The note with the conversion rule of (γ + )(T n )×2 2 +(γ + )(T n+1 )×2+(γ + )(T n+2 ) has a beat of (γ - ) (T n )×2+(γ - )(T n+1 ).
該節拍計算單元331的轉換結果如圖10A至圖10F所示,其中顯示時段T1、T2及Tn的轉換結果表。 The conversion results of the beat calculation unit 331 are shown in FIGS. 10A to 10F , in which conversion result tables for periods T 1 , T 2 and T n are displayed.
一旋律建立單元35連接該音域轉換單元33,依據特定的演算法將該音域轉換單元33所轉換出的各時段Tn中的各個音符以特定的順序排列,而建立各時段Tn的音樂旋律,並將該音樂旋律輸出到該音樂播放機構40進行播放。 A melody creation unit 35 is connected to the range conversion unit 33, and arranges the notes in each period Tn converted by the range conversion unit 33 in a specific order according to a specific algorithm, thereby establishing the music melody of each period Tn . , and output the music melody to the music playing mechanism 40 for playing.
其方式為依據Tn+1(Att,Med)的值決定某一時段Tn所得出之各音符的排序方式,其中Tn+1(Att,Med)=Tn+1(Att)×2+Tn+1(Med)。 The method is to determine the sorting method of each note obtained by T n in a certain period of time based on the value of T n+1 (Att, Med), where T n+1 (Att, Med) = T n+1 (Att)×2 +T n+1 (Med).
當Tn+1(Att,Med)=0,則將時段Tn所對應之各個音符範圍按照其音高範圍由低至高排列;其中對於每個音符範圍中的所有音符: When T n+1 (Att, Med)=0, then the note ranges corresponding to the period T n are arranged from low to high according to their pitch range; where for all the notes in each note range:
若該音符範圍中之各音符均是由單一個腦波參數Y所轉換而成,其中該腦波參數Y選自δ,θ,α-,α+,β-,β+,γ-,γ+,比如第一音域模式的第一音符範圍之δ(Tn)×22+δ(Tn+1)×2+δ(Tn+2)及θ(Tn)×22+θ(Tn+1)×2+θ(Tn+2),則將這些音符按照其對應之腦波參數δ,θ,α-,α+,β-,β+,γ-,γ+的順序排列。 If each note in the note range is converted from a single brain wave parameter Y, where the brain wave parameter Y is selected from δ, θ, α - , α + , β - , β + , γ - , γ + , such as δ(T n )×2 2 +δ(T n+1 )×2+δ(T n +2 ) and θ(T n )×2 2 +θ of the first note range of the first range mode (T n+1 )×2+θ(T n+2 ), then these notes are calculated according to their corresponding brain wave parameters δ, θ, α - , α + , β - , β + , γ - , γ + Arrange in order.
若該音符範圍中之各音符並非由上述單一個腦波參數Y所轉換而成,則將這些音符按照其產生順序由第一個音符排列至最後一個音符,例如對於第二音域模式的第二音符範圍 之各音符為(Ki)(Tn)×22+(Ki+1)(Tn)×2+(Ki+2)(Tn),按照i=1~8的順序排列。 If each note in the note range is not converted by the above-mentioned single brain wave parameter Y, then these notes will be arranged from the first note to the last note in the order of their production, for example, for the second note of the second range mode Each note in the note range is (K i )(T n )×2 2 +(K i+1 )(T n )×2+(K i+2 )(T n ), in the order of i=1~8 arrangement.
當Tn+1(Att,Med)=1,則將時段Tn所對應之各個音符範圍之第1個音符同時排列於第1個時間點,各個音符範圍之第2個音符同時排列於第2個時間點,按照上述方式將各個音符範圍之第M個音符同時排列於第M個時間點,其中M大於0。當該時段Tn所對應之各個音符範圍的音符數量不同,則具有數量較少的音符之音符範圍的音符用盡時會重新從第1個音符開始將其各音符加入排序。該音樂播放機構40會在各個時間點同時演奏對應的所有音符,達到混音的效果。 When T n+1 (Att, Med)=1, the first note of each note range corresponding to period T n is arranged at the first time point at the same time, and the second note of each note range is arranged at the first time point at the same time. At 2 time points, arrange the M-th notes of each note range at the M-th time point at the same time according to the above method, where M is greater than 0. When the number of notes in each note range corresponding to the period T n is different, when the notes in the note range with a smaller number of notes are exhausted, the notes will be added to the sequence starting from the first note. The music playing mechanism 40 will simultaneously play all the corresponding notes at each time point to achieve a mixing effect.
當Tn+1(Att,Med)=2,則先將時段Tn所對應之各個音符範圍按照其音高範圍由低至高排列一次,且各該音符範圍中之各音符按照其產生順序由第一個音符依序排列至最後一個音符。然後接著再將各個音符範圍按照其音高範圍由高至低排列一次,且各該音符範圍中之各音符按照其產生順序以反向方式由最後一個音符排列至第一個音符。按照與上述相同的方式,不斷重複排列。 When T n+1 (Att, Med)=2, first arrange the note ranges corresponding to the period T n according to their pitch ranges from low to high, and the notes in each note range in the order of their production are Arrange from the first note to the last note. Then, each note range is arranged once again according to its pitch range from high to low, and the notes in each note range are arranged in a reverse manner from the last note to the first note in the order in which they are produced. Repeat the arrangement in the same manner as above.
當Tn+1(Att,Med)=3,則將時段Tn所對應之各個音符範圍按照其音高範圍由高至低排列;其中對於每個音符範圍中的所有音符: When T n+1 (Att, Med)=3, then the note ranges corresponding to the period T n are arranged from high to low according to their pitch ranges; where for all the notes in each note range:
若該音符範圍中之各音符均是由單一個腦波參數Z所轉換而成,其中該腦波參數Z選自γ+,γ-,β+,β-,α+,α-,θ,δ,比如第一音域模式的第一音符範圍之δ(Tn)×22+δ(Tn+1)×2+δ(Tn+2)及 θ(Tn)×22+θ(Tn+1)×2+θ(Tn+2),則將這些音符按照其對應之腦波參數γ+,γ-,β+,β-,α+,α-,θ,δ的順序排列。 If each note in the note range is converted by a single brain wave parameter Z, where the brain wave parameter Z is selected from γ + , γ - , β + , β - , α + , α - , θ, δ, such as δ(T n )×2 2 +δ(T n+1 )×2+δ(T n +2 ) and θ(T n )×2 2 +θ of the first note range of the first range mode (T n+1 )×2+θ(T n+2 ), then these notes are calculated according to their corresponding brain wave parameters γ + , γ - , β + , β - , α + , α - , θ, δ Arrange in order.
若該音符範圍中之各音符並非由上述單一個腦波參數Z所轉換而成,則將這些音符按照其產生順序以反向方式由最後一個音符排列至第一個音符,例如對於第二音域模式的第二音符範圍之各音符為(Ki)(Tn)×22+(Ki+1)(Tn)×2+(Ki+2)(Tn),按照i=8~1的順序反向排列。 If each note in the note range is not converted by the above-mentioned single brain wave parameter Z, then the notes are arranged in reverse order from the last note to the first note in the order of their production, for example, for the second range Each note in the second note range of the pattern is (K i )(T n )×2 2 +(K i+1 )(T n )×2+(K i+2 )(T n ), according to i=8 The order of ~1 is reversed.
該色彩轉換機構50將各腦波波段分別對應到不同的色彩,其中Delta波對應到白色、Theta波對應到紅色、Low Alpha波對應到橙色、High Alpha波對應到黃色、Low Beta波對應到綠色、High Beta波對應到藍色、Low Gamma波對應到靛色、High Gamma波對應到紫色。當該音樂播放機構40在播放音樂時,依據各音符所對應之腦波波段,將對應的色彩傳送到該畫面顯示機構60予以顯示。 The color conversion mechanism 50 corresponds each brain wave band to a different color, in which Delta waves correspond to white, Theta waves correspond to red, Low Alpha waves correspond to orange, High Alpha waves correspond to yellow, and Low Beta waves correspond to green. , High Beta waves correspond to blue, Low Gamma waves correspond to indigo, and High Gamma waves correspond to purple. When the music playing mechanism 40 plays music, the corresponding color is transmitted to the picture display mechanism 60 for display according to the brain wave band corresponding to each note.
該處理單元20尚包含一音量及色彩濃度選擇機構70,連接該音樂播放機構40及該畫面顯示機構60,用於將各時間點的各腦波參數的數值依據其振幅大小分為多個類別,各個類別分別對應到不同的音量大小及色彩濃度,以控制該音樂播放機構40的音量大小及該畫面顯示機構60所顯示的色彩濃度。 The processing unit 20 also includes a volume and color density selection mechanism 70, which is connected to the music playing mechanism 40 and the image display mechanism 60, and is used to divide the values of each brain wave parameter at each time point into multiple categories according to their amplitudes. , each category corresponds to a different volume and color density, so as to control the volume of the music player 40 and the color density displayed by the screen display mechanism 60 .
該音樂播放機構40尚包含一樂器選擇單元41,接收受測者指定的樂器種類,並使用該樂器的音色來演奏音樂旋律。因此當有多個受測者時,可以將不同的樂器所演奏的旋律組合成複合音樂旋律。 The music playing mechanism 40 further includes an instrument selection unit 41 that receives the type of instrument specified by the subject and uses the timbre of the instrument to play the music melody. Therefore, when there are multiple subjects, the melodies played by different instruments can be combined into a composite music melody.
該音樂播放機構40可以將該旋律轉換機構30的旋律以MIDI格式進行播放。
The music playing mechanism 40 can play the melody of the
在本案中,發明人基於對腦波多年的研究及了解,找出腦波的變動與人體對音感的律動及色彩明暗關係,而將腦波的變動對應到音樂旋律及影像色彩,因此創造出上述的規則,而可以用音樂的播放及影像顯示的方式呈現出腦波的變動。藉由音樂的放送及影像的顯示,而傳遞出腦波的訊息,因此使得周遭人可以經由收聽該音樂及觀看該影像而產生共鳴。 In this case, based on years of research and understanding of brain waves, the inventor found out the relationship between brain wave changes and the human body's rhythm of sound and color light and shade, and mapped the brain wave changes to music melody and image color, thus creating Based on the above rules, the changes in brain waves can be displayed through music playback and image display. Through the playing of music and the display of images, brain wave information is transmitted, so that people around you can resonate with it by listening to the music and watching the images.
綜上所述,本案人性化之體貼設計,相當符合實際需求。其具體改進現有缺失,相較於習知技術明顯具有突破性之進步優點,確實具有功效之增進,且非易於達成。本案未曾公開或揭露於國內與國外之文獻與市場上,已符合專利法規定。 To sum up, the humanized and considerate design of this case is quite in line with actual needs. Its specific improvement has the existing deficiencies, and it has obvious breakthrough advantages compared to the conventional technology, and it does have an improvement in efficacy, and it is not easy to achieve. This case has not been published or disclosed in domestic or foreign documents or markets, and it complies with the provisions of the patent law.
上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The above detailed description is a specific description of one possible embodiment of the present invention. However, this embodiment is not intended to limit the patent scope of the present invention. Any equivalent implementation or modification that does not depart from the technical spirit of the present invention shall be included in within the scope of the patent in this case.
10:頭戴式儀器 10:Head mounted instrument
11:頭戴環 11:Headband
12:腦波偵測器 12:Brain wave detector
14:腦波儀收發機 14: EEG transceiver
15:放鬆度指數計算器 15:Relaxation Index Calculator
20:處理單元 20: Processing unit
21:處理端收發機 21: Processing end transceiver
30:旋律轉換機構 30: Melody conversion mechanism
40:音樂播放機構 40:Music player organization
50:色彩轉換機構 50: Color conversion mechanism
60:畫面顯示機構 60:Screen display mechanism
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111119927A TWI859542B (en) | 2022-05-27 | Brainwave video encoding and playback system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111119927A TWI859542B (en) | 2022-05-27 | Brainwave video encoding and playback system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202345749A true TW202345749A (en) | 2023-12-01 |
TWI859542B TWI859542B (en) | 2024-10-21 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Juslin et al. | Emotion in music performance | |
US11308925B2 (en) | System and method for creating a sensory experience by merging biometric data with user-provided content | |
JP2009527782A (en) | Apparatus and method for generating note signal and apparatus and method for outputting output signal indicating pitch class | |
Wang et al. | A cross-cultural analysis of the influence of timbre on affect perception in western classical music and chinese music traditions | |
London et al. | Speed on the dance floor: Auditory and visual cues for musical tempo | |
Tomasetti et al. | Playing with others using headphones: Musicians prefer binaural audio with head tracking over stereo | |
TW202345749A (en) | Brain wave audio/video encoding and playback system characterized by using the manner of music playback and image display to present the change and information of brain wave, thereby people can resonate with it by listening to the music and watching the image | |
TWI859542B (en) | Brainwave video encoding and playback system | |
TWM636295U (en) | Brain wave audio and video coding and playback system | |
RU2411593C2 (en) | Device for converting frequency spectrum to natural harmonic frequency | |
JP3238360U (en) | EEG video coding and playback system | |
Knapp et al. | Measurement of motion and emotion during musical performance | |
JP3239014U (en) | Metaverse Community Multimedia System Based on EEG | |
TW202347094A (en) | Metaverse community multimedia system based on brain waves including a head-mounted instrument for detecting the user's brain wave signals, a processing unit, a color conversion mechanism for converting the user's brainwave signal, a scene database, and a scene player | |
CN117064407A (en) | Brain wave video and audio coding and playing system | |
TWM637860U (en) | Metaverse Community Multimedia System Based on Brainwaves | |
TWM640982U (en) | Brainwave-Based Metaverse Game System | |
Jovicevic | Flow Vertical: Composing and Improvising Original Music Inspired by Bodily Sound Vibrations | |
WO2005017606A2 (en) | A universal method and apparatus for mutual sound and light correlation | |
Votava et al. | The Heart Chamber Orchestra | |
US11550393B1 (en) | Meta verse multimedia system based on brainwaves | |
Geringer | Musicians’ preferences for tempo and pitch levels in recorded orchestral music | |
Absaroka | Timbre, taste and epistemic tasks: A cross-cultural perspective on atmosphere and vagueness | |
US20240269545A1 (en) | Metaverse game system based on brainwaves | |
Rönnberg | Towards interactive sonification for monitoring of dynamic processes |