TW202309777A - Energy-efficient detection of abnormal passenger behavior in elevator - Google Patents
Energy-efficient detection of abnormal passenger behavior in elevator Download PDFInfo
- Publication number
- TW202309777A TW202309777A TW110131679A TW110131679A TW202309777A TW 202309777 A TW202309777 A TW 202309777A TW 110131679 A TW110131679 A TW 110131679A TW 110131679 A TW110131679 A TW 110131679A TW 202309777 A TW202309777 A TW 202309777A
- Authority
- TW
- Taiwan
- Prior art keywords
- control module
- elevator car
- passengers
- analysis mode
- elevator
- Prior art date
Links
Images
Landscapes
- Indicating And Signalling Devices For Elevators (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
Abstract
Description
本發明一般而言,係關於一種在電梯廂內基於視訊影像以偵測乘客行為異常之方法以及電梯裝置。更特定而言,例如,本發明具體實施例所提出之方法以及電梯裝置,可根據電梯廂中的乘客人數的增減變化,相應地對電梯廂內之視訊影像採取不同的分析,藉此在電梯廂內偵測乘客行為異常,並可節省能源。Generally speaking, the present invention relates to a method and an elevator device for detecting abnormal behavior of passengers based on video images in an elevator car. More specifically, for example, the method and the elevator device proposed in the specific embodiments of the present invention can take different analyzes on the video images in the elevator car correspondingly according to the increase or decrease of the number of passengers in the elevator car. Detect abnormal passenger behavior in the elevator car and save energy.
透過影像辨識的方式,可自動辨識處各場域中人的異常行為,而省去人為監控的耗費,也更節省時間,快速有效。對此可參考例如CN102241349B CN111507185B、CN108805093B、以及同屬申請人之中華民國專利申請第110127653號。Through the method of image recognition, abnormal behaviors of people in various fields can be automatically identified, and the cost of manual monitoring is saved, which saves time and is fast and effective. For this, reference can be made to, for example, CN102241349B, CN111507185B, CN108805093B, and the Republic of China Patent Application No. 110127653 belonging to the same applicant.
這種自動化辨識的優勢在電梯的使用環境更為顯著。由於電梯廂屬於密閉空間,若乘客在其中身體不適或發生任何緊急事情,不容易被發現。雖然電梯中一般都具備有緊急通話按鈕,但若狀況嚴重,或特別是當乘客為老年人或幼童時。也不一定有機會可以啟動緊急通話按鈕,而與服務人員通話,取得援助。The advantages of this automatic identification are more significant in the elevator environment. Since the elevator car is a confined space, it is not easy to be found if passengers feel unwell or any emergency happens in it. Although there are generally emergency call buttons in elevators, if the situation is serious, or especially when the passengers are elderly or young children. It is also not necessarily possible to activate the emergency call button to communicate with service personnel and obtain assistance.
在電梯廂或其他特定空間中要判斷乘客的行為是否有異常,可透過乘客的身體姿勢加以判斷。舉例來說,例如在電梯的情況,一般來說都會安裝有攝影機,可拍攝電梯廂內乘客的視訊影像。進一步地利用所拍攝到的視訊影像進行人體姿勢估測(Human Pose Estimation)或其他人工智慧(Artificial Intelligence、AI) 的影像分析,可進一步判斷出乘客的身體姿勢與行為異常。To judge whether the passenger's behavior is abnormal in the elevator car or other specific spaces, it can be judged by the passenger's body posture. For example, in the case of an elevator, cameras are generally installed to capture video images of passengers in the elevator car. Further use of the captured video images for Human Pose Estimation (Human Pose Estimation) or other AI (Artificial Intelligence, AI) image analysis can further determine the abnormal body posture and behavior of passengers.
本案首先體認到,人工智慧的功能強大,其可如上所述,透過人體姿勢估測或其他類似利用人工智慧的影像分析的方式可在電梯廂或其他特定空間中要判斷乘客的行為是否有異常。但人工智慧往往涉及龐大的計算,因此非常耗能。This case first realized that artificial intelligence has powerful functions. As mentioned above, through human body posture estimation or other similar methods of image analysis using artificial intelligence, it is possible to judge whether the behavior of passengers in elevator cars or other specific spaces abnormal. But artificial intelligence often involves huge calculations and is therefore very energy-intensive.
而當使用人工智慧在電梯廂中要判斷乘客的行為是否有異常時,此耗能的問題更加嚴重。一般來說,電梯都是整天不停的運轉,甚至全年無休。為了乘客安全的考量,電梯中的攝影機也是整天不間斷地即時地拍攝電梯廂內的視訊影像。可想而知,一整天下所累積的視訊影像的資料將相當龐大,而這些視訊影像的資料如果全部都要即時使用人工智慧進行影像分析,其耗能必然相當可觀,也對於硬體的要求也必然嚴格。舉例來說,耗能的最大問題是:不管是哪一種耗能方式,都會轉換成廢熱,這些廢熱必須排出去,才能讓系統正常運轉。And when artificial intelligence is used to judge whether the passenger's behavior is abnormal in the elevator car, the problem of energy consumption is even more serious. Generally speaking, elevators run non-stop all day, even year-round. For the sake of passenger safety, the cameras in the elevators are also continuously shooting video images in the elevator cabins in real time throughout the day. It is conceivable that the video image data accumulated throughout the day will be quite large, and if all of these video image data are to be analyzed using artificial intelligence in real time, the energy consumption will be considerable, and it will also affect the hardware requirements. The requirements must also be strict. For example, the biggest problem with energy consumption is that no matter what kind of energy consumption is used, it will be converted into waste heat, which must be discharged to allow the system to operate normally.
有鑑於此,本案之一特點即在於可根據電梯廂中的乘客人數的增減變化,相應地對所取得電梯廂內之視訊影像採取不同方式的採樣與處理,以節省運算資源、能源、或甚至是通訊頻寬。舉例來說,當電梯廂中無人的時候,可只使用簡單快速的分析模式,其目的只需要確認電梯廂中目前仍然是無人的狀態,而不需要去判斷是否有乘客行為異常。而只有當電梯廂中有乘客的時候,才使用到複雜的分析模式,以人工智慧或是較為耗費計算資源與能源的方式進行採樣與影像內容分析,以偵測乘客行為異常。In view of this, one of the characteristics of this case is that according to the increase or decrease of the number of passengers in the elevator car, different methods of sampling and processing can be adopted for the obtained video images in the elevator car, so as to save computing resources, energy, or Even communication bandwidth. For example, when there is no one in the elevator car, only a simple and fast analysis mode can be used. The purpose is only to confirm that the elevator car is still unoccupied, and it is not necessary to judge whether there are abnormal behaviors of passengers. Only when there are passengers in the elevator car, the complex analysis mode is used, and artificial intelligence or methods that consume more computing resources and energy are used to perform sampling and image content analysis to detect abnormal behavior of passengers.
在一實施例中,本案提出一種在一電梯廂內基於視訊影像以偵測乘客行為異常之方法,其中一攝影裝置固定設置於該電梯廂內並與一控制模組連結,該攝影裝置拍攝該電梯廂內之視訊影像並提供給該控制模組進行分析,該方法包含:該控制模組以一第一分析模式分析該攝影裝置所提供之視訊影像;以及因應該電梯廂中之乘客人數之改變,該控制模組以一第二分析模式分析該攝影裝置所提供之視訊影像,並藉此判斷該電梯廂內之乘客行為有異常。。In one embodiment, this case proposes a method for detecting abnormal behavior of passengers based on video images in an elevator car, wherein a camera device is fixedly installed in the elevator car and connected to a control module, and the camera device takes pictures of the The video image in the elevator car is provided to the control module for analysis. The method includes: the control module analyzes the video image provided by the camera device in a first analysis mode; and according to the number of passengers in the elevator car Change, the control module analyzes the video image provided by the photographing device in a second analysis mode, and thereby judges that the behavior of the passengers in the elevator car is abnormal. .
此外,在其他實施例中,本案提出的電梯裝置中具有一攝影裝置與一控制模組,與該攝影裝置連接以接收該攝影裝置所提供之視訊影像,並進行上述的方法。In addition, in other embodiments, the elevator device proposed in this case has a camera device and a control module, which are connected to the camera device to receive video images provided by the camera device, and perform the above method.
本說明書中所提及的特色、優點、或類似表達方式並不表示,可以本發明實現的所有特色及優點應在本發明之任何單一的具體實施例內。而是應明白,有關特色及優點的表達方式是指結合具體實施例所述的特定特色、優點、或特性係包含在本發明的至少一具體實施例內。因此,本說明書中對於特色及優點、及類似表達方式的論述與相同具體實施例有關,但亦非必要。The features, advantages, or similar expressions mentioned in this specification do not mean that all the features and advantages that can be realized by the present invention should be included in any single embodiment of the present invention. Rather, it should be understood that the expressions about features and advantages mean that specific features, advantages, or characteristics described in conjunction with specific embodiments are included in at least one specific embodiment of the present invention. Therefore, the discussion of the features and advantages, and similar expressions in this specification are related to the same specific embodiment, but not necessarily.
參考以下說明及隨附申請專利範圍或利用如下文所提之本發明的實施方式,即可更加明瞭本發明的這些特色及優點。These features and advantages of the present invention will become more apparent by referring to the following description and the appended claims or using the embodiments of the present invention as mentioned below.
本說明書中「一具體實施例」或類似表達方式的引用是指結合該具體實施例所述的特定特色、結構、或特性係包括在本發明的至少一具體實施例中。因此,在本說明書中,「在一具體實施例中」及類似表達方式之用語的出現未必指相同的具體實施例。References to "a specific embodiment" or similar expressions in this specification mean that the specific features, structures, or characteristics described in conjunction with the specific embodiment are included in at least one specific embodiment of the present invention. Therefore, in this specification, the occurrences of "in a specific embodiment" and similar expressions do not necessarily refer to the same specific embodiment.
<系統架構><System Architecture>
圖1為表示本發明的實施形態中電梯裝置100的系統架構圖,以說明電梯裝置100的基本運作與元件,但應知以下說明的目的為範例,且以簡化省略不必要的細節。惟須說明的是,以下雖以電梯裝置100進行說明,但本發明亦可適用於其他與電梯裝置類似的場所,例如火車車廂或甚至是某些商店之中。Fig. 1 is a system architecture diagram showing an
如圖1所示,電梯裝置100的電梯廂1與平衡重3藉由鋼纜4而懸吊於升降路2。鋼纜4捲掛在曳引機的曳引輪6上。當曳引輪6轉動時,透過曳引輪6與鋼纜4的摩擦力帶動使電梯廂1隨著上昇或下降。曳引機除了曳引輪6之外還具備電動機及制動裝置。電動機使曳引輪6轉動及停止。制動裝置使曳引輪6不轉動,而使曳引輪6維持在靜止的狀態,同時電梯廂1也跟著靜止。As shown in FIG. 1 , the elevator car 1 and the counterweight 3 of the
另外,在機械室7中設置了控制模組10與通訊模組11。In addition, a
控制模組10控制電梯裝置100的運轉,特別是電梯廂1的上昇、下降或靜止,藉此將乘客運送到目的樓層。控制模組10藉由控制纜線13與電梯廂1連接。電梯廂1和控制模組10之間的資訊的收發係藉由控制纜線13而進行。但在其他實施例中,電梯廂1和控制模組10亦可透過無線通訊的方式進行資訊的通訊。The
在此實施例中,電梯廂1具備了例如顯示器14、對講機15、攝影機16及秤裝置17。例如,控制模組10藉由控制纜線13接收從對講機15傳來的資訊、攝影機16傳來的資訊及秤裝置17傳來的資訊。In this embodiment, the elevator car 1 is provided with, for example, a
顯示器14為向乘客呈現資訊的裝置之一例。對講機15具備麥克風及揚聲器。由麥克風取得的聲音的資訊被輸出至控制模組10。攝影機16拍攝例如電梯廂1的內部。由攝影機16拍攝的影像的資訊被輸出至控制模組10。The
秤裝置17檢出電梯廂1的承載重量。也可以將秤裝置17設置在鋼纜4的端部。由秤裝置17所檢出的承載重量之資訊被輸出至控制模組10。The
控制模組10包括具有例如輸出入介面、處理器、記憶體的電路以作為其硬體資源。控制模組10,藉由處理器執行記憶在記憶體中的程式,以實現控制電梯裝置100運轉的功能。控制模組10亦可具備複數個處理器。控制模組10亦可具備複數個記憶體。亦即,可以用複數處理器及複數記憶體協同運作來實現控制模組10的功能,且各功能的一部份或者全部亦可以用硬體來實現。The
但應知控制模組10的一部份或者全部也可以透過個人電腦、工作站、或是透過網路以雲端的方式來實現。But it should be known that a part or all of the
通訊模組11為用以讓控制模組10和外部進行通訊的裝置。通訊模組11能夠透過通訊線路21(可為有線或無線線路)而和外部進行通訊,藉此將資訊從電梯裝置向外部傳送,以及從外部接收資訊。一般來說,通訊模組11可進行通訊的對象乃預先指定,例如可以是電梯裝置100的服務中心或是建築物的管理室等等。The
另外一提的是,攝影機16可參考現有技術中電梯所使用的網路攝影機(IP Cam)加以實施。此外,攝影機16與控制模組10之間可使用有線或無線的方式連接,本發明並不欲侷限。It is also mentioned that the
在一實施例中,一或多台攝影機16可包含例如Raspberry Pi晶片(未圖示)而可作為客戶端,利用ImageZMQ網路通訊模組將所拍攝的畫面(frame)即時串流(live streaming)至作為主機端的控制模組10,但本發明可不限於此。關於ImageZMQ網路通訊模組,可參考Python Package Index軟體套件儲存庫在其網站上所發布的技術文件“Transporting OpenCV images via ZMQ” https://pypi.org/project/imagezmq/ ,本文不加以贅述。In one embodiment, one or
ImageZMQ網路通訊模組因為可使用發布-訂閱的Publish/Subscribe)資料分發模式,由發布者不斷取得並發布攝影機16所拍攝的最新影像,訂閱者可以在處理資料時,才向發布者要求目前最新發布的影像,因此可以確保每次處理的影像都是最新的,而不浪費運算資源。此外,ImageZMQ網路通訊模組可支援多個客戶端,因此控制模組10可透過一或多台攝影機16所拍攝的視訊影像來進行如圖2所示之各步驟,但以下先僅以一台攝影機16為例進行說明。Because the ImageZMQ network communication module can use the publish-subscribe (Publish/Subscribe) data distribution mode, the publisher continuously obtains and publishes the latest images taken by the
在步驟200:作為客戶端的攝影機16將所拍攝的畫面以即時串流方式所傳送給作為主機端的控制模組10。一般來說,在即時串流的狀況,攝影機16影格率(frame rate)通常可設定在24或是30 fps,也就是每秒傳送24或30張影像給控制模組10進行分析。在初始情況,控制模組10所採用的分析模式中採樣頻率(sampling rate)先是設定與攝影機16的影格率一致,也就是對攝影機16所傳送過來的每一張畫面都進行採樣,以進行後續影像內容的分析。In step 200 : the
步驟202:在此步驟中,控制模組10對所採樣的畫面進行簡單的影像分析,以判斷出電梯廂1是否為空車(也就是沒有乘客)。判斷出電梯廂1是否為空車的具體方式可參考現有作法,例如 CN101357726A或 CN105692376,但一般來說,此部分甚至可不需要使用人工智慧方式來進行判斷,因此步驟202中控制模組10所需要的運算資源與能源都相當有限。若步驟202判斷出電梯廂1為空車,則進行步驟204。反之,若判斷為否,也就是判斷出電梯廂1內有乘客,則進行步驟214。在另一實施例中,為了避免誤判,控制模組10可在例如若干時間(例如5秒)內連續進行步驟202多次,而每次判斷結果皆顯示電梯廂1為空車時,此時才會進行步驟204,否則進行步驟214。Step 202: In this step, the
步驟204:由於判斷出電梯廂1為空車,其中並無乘客,因此控制模組10後續其實無須進行太多處理,只需要確認電梯廂1是否仍保持在空車的狀態即可。因此這時候所採用的分析模式可較步驟200初始的分析模式更為簡單。舉例來說,在步驟204中,控制模組10此時的採樣頻率可大幅降低,例如僅需要每1秒或每2秒取樣一次即可。相較於步驟200時控制模組10的採樣頻率,可大幅減少控制模組10所消耗的運算資源與能源。如圖2所示,在降低採樣頻率之後,即回到步驟202之判斷以確認電梯廂1是否仍保持在空車的狀態,若這次步驟202之判斷為否,表示原本是空車的電梯廂1內現在有乘客進入,此時進行步驟214。Step 204: Since it is determined that the elevator car 1 is empty and there are no passengers therein, the
步驟214:由於判斷出電梯廂1其中有乘客,因此控制模組10此時的分析模式就需要進行進一步的影像分析,以辨識出電梯廂1的人數,並根據所辨識出的人數再對每一個乘客進行人體姿勢估測或其他人工智慧(Artificial Intelligence、AI) 的影像分析,以判斷出個別乘客的身體姿勢與行為異常(步驟216)。舉例來說,可根據所辨識出的人數,將畫面中所辨識出來的人一個一個分割(crop)出來為較小的影像,再使用2D 人體姿勢估測(2D Human Pose Estimation) 偵測出骨架,並作為跌倒偵測模型 (以單人骨架訓練) 的輸入。一般來說,處理較小的影像也能節省運算資源。Step 214: Since it is determined that there are passengers in the elevator car 1, the analysis mode of the
另外值得說明的是,若先前步驟202中電梯廂1是否為空車的判斷也是透過影像分析方式進行,則步驟202的判斷與步驟214中乘客人數辨識可以是同一個步驟進行,而當所辨識出的人數為零,就不會執行分割影像與骨架偵測。In addition, it is worth noting that if the determination of whether the elevator car 1 is empty in
若步驟216判斷出乘客行為異常,則控制模組10可透過通訊模組11通報電梯裝置100的服務中心(步驟220),若否,則回到步驟200繼續進行監控。而步驟214中人體姿勢估計以及其他用來偵測乘客行為異常的影像分析,可採用現有技術中任何適合的作法,亦可使用人工智慧方式進行,本發明對此並不欲限制。然而,為了確保可正確地乘客行為異常,步驟214所採用的影像分析方式會一般會耗費較多的運算資源與能源,但由於此僅限於當電梯有乘客時所不得不進行分析的結果,換言之,當電梯沒有乘客時,即不會進行到步驟214,因此可有效節省運算資源與能源。If
此外,在一實施例中,在步驟214中隨著每次辨識出電梯廂1的人數有所不同,後續所採用的影像分析方式也可以有所不同。舉例來說,當電梯廂1中有多名乘客時,容易出現一名乘客的影像被其他乘客遮擋的情況,因此此時控制模組10可能需要採取更為複雜的人工智慧模型來進行 「多人人體姿勢估測(Multi-Person 3D Pose Estimation)」來偵測是否存在異常行為,也因此會耗費更多的運算資源與能源。相較之下,若電梯廂1只有一名乘客時的情況,並不會有被其他乘客遮擋的情況發生,因此控制模組10只需要進行「單人人體姿勢估測(Single-Person 3D Pose Estimation) 」來偵測是否存在異常行為,而有機會耗費比多人人體姿勢估測較少的運算資源與能源。In addition, in an embodiment, as the number of people who recognize the elevator car 1 is different each time in
<變化例1><Modification 1>
在一變化實施中,步驟202中判斷出電梯廂1是否為空車的作法,除了如上所述控制模組10對所採樣的畫面進行影像分析,也可以採用其他的做法。舉例來說,圖1所示的秤裝置17可檢出電梯廂1的承載重量,並將所檢出的承載重量之資訊被輸出至控制模組10,因此控制模組10可根據承載重量判斷電梯廂1是否為空車,甚至還可以估計乘客的人數。此外,圖1所示的對講機15也可以接收電梯廂1的聲音,並將所偵測的聲音資訊被輸出至控制模組10,因此控制模組10可根據聲音資訊判斷電梯廂1是否為空車。In a variant implementation, in
<變化例2><Modification 2>
在一變化實施中,步驟204中除了控制模組10可將採樣頻率將低以外,控制模組10還可以發出控制指令給攝影機16以切換攝影機16拍攝的模式,例如可以從原本的解析度4MP( 2688 x 1520)以及影格率30fps的拍攝模式切換到解析度1MP = 1280 x 720以及影格率10fps的拍攝模式,以節省後續控制模組10所要耗費在影像分析上的能源以及網路頻寬。選擇性地,控制模組10還可以切換攝影機16之間的串流模式,也就是可以對攝影機16要傳送影像給控制模組10時所使用的任何參數,或是控制模組10接收攝影機16所傳送影像時所使用的任何參數,進行調整。舉例來說,攝影機16雖然是以高解析度(例如4MP)來拍攝影像,但在進行串流時額外對影像進行大小的調整(Resize)以轉換成較低的解析度(例如1MP或甚至更低)的影像進行傳送,這種作法同樣地也可以節省後續控制模組10所要耗費在影像分析上的能源以及網路頻寬。In a variant implementation, in addition to the
前述揭示內容未意欲將本發明限制在所揭示之精確形式或特定使用領域。如此,根據本發明,無論本文明確描述或暗示,可預期本發明之各種替代具體實施例及/或修改。The foregoing disclosure is not intended to limit the invention to the precise forms disclosed or to the particular field of use. Thus, various alternative embodiments and/or modifications of the invention are contemplated in light of the invention, whether explicitly described or implied herein.
本文提供之各種具體實施例可使用硬體、軟體或硬體與軟體之組合實行,且各種硬體與軟體部件可組合成包含軟體及/或硬體之組合之一或多個部件,而不背離本發明之精神。在應用時,可改變本文所述之各種步驟的順序,結合成合併步驟,及/或分拆成子步驟以提供本文所述之特徵。The various embodiments provided herein can be implemented using hardware, software, or a combination of hardware and software, and various hardware and software components can be combined to include one or more components of a combination of software and/or hardware, without Deviate from the spirit of the present invention. Where applicable, the order of the various steps described herein may be changed, combined into combined steps, and/or split into sub-steps to provide features described herein.
本發明雖以各種實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾。本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed above with various embodiments, it is not intended to limit the scope of the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. . The scope of protection of the present invention should be defined by the scope of the appended patent application.
1:電梯廂
2:升降路
3:平衡重
4:鋼纜
5:曳引機
6:曳引輪
7:機械室
8:電動機
9:制動裝置
10:控制模組
11:通訊模組
13:控制纜線
14:顯示器
15:對講機
16:攝影機
17:秤裝置
21:通訊線路
100:電梯裝置
200~220:步驟
1: Elevator car
2: Elevator road
3: Balance weight
4: steel cable
5: Traction machine
6: Traction wheel
7: Machinery Room
8: Motor
9: Brake device
10: Control Modules
11:Communication module
13: Control cable
14: Display
15: walkie-talkie
16: Camera
17: scale device
21: Communication Lines
100:
為了立即瞭解本發明的優點,請參考如附圖所示的特定具體實施例,詳細說明上文簡短敘述的本發明。在瞭解這些圖示僅描繪本發明的典型具體實施例並因此不將其視為限制本發明範疇的情況下,參考附圖以額外的明確性及細節來說明本發明,圖式中:For an immediate appreciation of the advantages of the invention, the invention briefly described above shall be referred to in detail by reference to specific embodiments as shown in the accompanying drawings. With the understanding that these drawings depict only typical embodiments of the invention and are therefore not to be considered as limiting the scope of the invention, the invention is illustrated with additional clarity and detail with reference to the accompanying drawings, in which:
圖1顯示本發明的實施形態中電梯裝置的系統架構圖;Fig. 1 shows the system architecture diagram of the elevator device in the embodiment of the present invention;
圖2顯示根據本發明實施例之一方法流程圖;Fig. 2 shows a flow chart of a method according to an embodiment of the present invention;
200~220:步驟 200~220: steps
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110131679A TW202309777A (en) | 2021-08-26 | 2021-08-26 | Energy-efficient detection of abnormal passenger behavior in elevator |
CN202111040152.0A CN115716619A (en) | 2021-08-26 | 2021-09-06 | Energy-saving detection of abnormal behavior of passengers in elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110131679A TW202309777A (en) | 2021-08-26 | 2021-08-26 | Energy-efficient detection of abnormal passenger behavior in elevator |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202309777A true TW202309777A (en) | 2023-03-01 |
Family
ID=85253720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110131679A TW202309777A (en) | 2021-08-26 | 2021-08-26 | Energy-efficient detection of abnormal passenger behavior in elevator |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115716619A (en) |
TW (1) | TW202309777A (en) |
-
2021
- 2021-08-26 TW TW110131679A patent/TW202309777A/en unknown
- 2021-09-06 CN CN202111040152.0A patent/CN115716619A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115716619A (en) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10513417B2 (en) | Elevator system using passenger characteristic information to generate control commands | |
US11983909B2 (en) | Responding to machine learning requests from multiple clients | |
US10176381B2 (en) | Video analysis system for energy-consuming building equipment and intelligent building management system | |
CN105035887B (en) | A kind of intelligent elevator master control system based on Computer Vision Detection | |
CN110861983A (en) | Elevator operation control method and device | |
CN106809708A (en) | The cluster management system of elevator | |
CN107902513A (en) | Elevator stop-start control method based on video/image detection | |
CN202390065U (en) | Elevator dynamic image recognition and control system | |
WO2020238661A1 (en) | Elevator scheduling method, device, computer apparatus, and storage medium | |
JP2015000807A (en) | Elevator control system and elevator control method | |
CN108861908A (en) | A kind of intelligent elevator control method and relevant device | |
CN114332925A (en) | Method, system, device and computer-readable storage medium for detecting pets in elevators | |
WO2024242282A1 (en) | Apparatus for farrow determination based on behavior recognition of sow, and operational method therefor | |
CN110713082A (en) | An elevator control method, system, device and storage medium | |
JP5596423B2 (en) | Elevator control system | |
CN107522046A (en) | Automatically a kind of method for calling ladder after elevator overload together | |
EP4261173A1 (en) | Method and apparatus for setting state of scenario detection module of escalator | |
TW202309777A (en) | Energy-efficient detection of abnormal passenger behavior in elevator | |
CN205754618U (en) | Elevator intelligent monitoring camera and elevator monitoring system | |
KR102515719B1 (en) | Vision recognition interlocking elevator control system | |
JP5948467B1 (en) | Elevator control device | |
US11631019B2 (en) | Computing networks | |
CN104709786A (en) | Intelligent elevator | |
CN112299211B (en) | Elevator control method, device and system | |
CN104709781A (en) | Intelligent elevator and working method thereof |