TW202208904A - Push-pull tunable optical delay line and phase shifter - Google Patents
Push-pull tunable optical delay line and phase shifter Download PDFInfo
- Publication number
- TW202208904A TW202208904A TW109129035A TW109129035A TW202208904A TW 202208904 A TW202208904 A TW 202208904A TW 109129035 A TW109129035 A TW 109129035A TW 109129035 A TW109129035 A TW 109129035A TW 202208904 A TW202208904 A TW 202208904A
- Authority
- TW
- Taiwan
- Prior art keywords
- heater
- waveguide
- delay line
- push
- coupler
- Prior art date
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
本發明揭露一種光延遲線,特別是一種推拉式可調光延遲線。The invention discloses an optical delay line, particularly a push-pull adjustable optical delay line.
光延遲線(Optical Delay Line, ODL)是許多光通信或光學領域應用中的關鍵元件。例如,ODL可應於於光網絡中對光信號進行處理和緩衝,或是應用於微波光電系統中的波束成型和濾波。光延遲線亦可應用於生物醫學感測以及三維光檢測和測距(LiDAR)。其中,可調光真時延遲線(Tunable Optical Delay Line)可彈性地控制光信號的傳播與延遲。再者,可調光延遲線係藉由大量光學元件、交換式光纖線軸或積體化的光學晶片來實現。Optical Delay Lines (ODLs) are key components in many applications in the field of optical communication or optics. For example, ODL can be used for processing and buffering optical signals in optical networks, or for beamforming and filtering in microwave optoelectronic systems. Optical delay lines can also be used in biomedical sensing and three-dimensional light detection and ranging (LiDAR). Among them, the Tunable Optical Delay Line can flexibly control the propagation and delay of the optical signal. Furthermore, tunable delay lines are implemented by a large number of optical elements, exchanged fiber spools, or integrated optical chips.
近年來,隨著光積體電路(Photonic Integrated Circuit, PIC)的發展,將單晶片(On-Chip)與其他光學功能元件整合以實現多樣的應用的緊密模組。這些應用包括同步、緩衝、多工和實時延遲等等。而與大容量(bulk)光學元件或基於光纖的光延遲線相比,積體化單晶片上的光延遲線更具有諸多優勢。例如,較低製造成本、較小的元件尺寸、重量和功耗較小等。In recent years, with the development of Photonic Integrated Circuits (PICs), on-chips (On-Chip) are integrated with other optical functional components to realize compact modules for various applications. These applications include synchronization, buffering, multiplexing, and real-time latency, among others. Compared to bulk optics or fiber-based optical delay lines, integrated optical delay lines on a single wafer have many advantages. For example, lower manufacturing cost, smaller component size, lower weight and power consumption, etc.
除此之外,環形諧振器和光子晶體是最常用於建構可控延遲線的PIC光學元件。環形諧振器和光子晶體能夠連續調制群延遲達數百皮秒甚至幾奈秒。其中,環形諧振器利用其諧振頻譜特性來實現精小的光延遲器件,但也帶來較窄的頻寬,而光延遲線元件的微型化則提高了調控速度。在積體化晶片中,光延遲線可以方便地與其他功能性元件(例如光調制器、濾波器、雷射及光二極體)組合使用,因此,比起單一元件能提供更為強大的光學和微波處理能力。Besides, ring resonators and photonic crystals are the most commonly used PIC optical components to construct controllable delay lines. Ring resonators and photonic crystals can continuously modulate group delays of hundreds of picoseconds or even nanoseconds. Among them, the ring resonator utilizes its resonant spectral characteristics to realize a small optical delay device, but it also brings a narrower bandwidth, and the miniaturization of the optical delay line element improves the control speed. In integrated wafers, optical delay lines can be easily combined with other functional components such as light modulators, filters, lasers, and photodiodes, thus providing more powerful optics than single components and microwave processing capability.
而在選擇合適的積體化平台之前,還需要考慮積體化密度和波導傳播損耗之間的權衡。就以矽上絕緣體(Silicon-on-Insulator, SOI)的光積體電路平台而言,其矽光子平台具有較大的折射率對比度、較小的彎曲半徑以及使用與標準CMOS電路晶片兼容的製造設備,而被認為是大規模高密度光積體化最有前途的技術之一。The trade-off between integration density and waveguide propagation loss also needs to be considered before selecting a suitable integration platform. In terms of silicon-on-insulator (SOI) optical integrated circuit platforms, the silicon photonics platform has a large refractive index contrast, a small bend radius, and is fabricated using a standard CMOS circuit die. equipment, and is considered to be one of the most promising technologies for large-scale high-density optical integration.
一般而言,調整基於SOI的ODL的方法有兩種。其中一種是通過加熱進行折射係數調制或藉由改變載子濃度來調制折射係數的效應。上述兩種折射係數調制機制都會改變光波通過波導的相位。其中,藉由改變載子濃度的效應可以採載子注入(施加電流)或載子耗空(施加逆向偏壓)來達成。而藉由載子注入或耗空以引起折射係數調制效應需要在波導中形成PN接面(P-N junction),且折射率變化也同時造成光損耗的變化。 因此,只要調制速度不是主要考慮因素,結構簡單且光損耗低的熱調制會是主要選擇。 實際上,對於緊密型SOI波導的局部加熱,熱調制速度可能短至幾微秒(microsecond)。再者 ,SOI結構上的二氧化矽披覆層的高熱阻還可以減少熱串擾和功耗。Generally speaking, there are two ways to tune SOI-based ODL. One of them is the effect of refractive index modulation by heating or by changing the carrier concentration. Both of the above-mentioned refractive index modulation mechanisms change the phase of the light wave passing through the waveguide. Among them, the effect of changing the carrier concentration can be achieved by using carrier injection (applying current) or carrier depletion (applying reverse bias). In order to induce the modulation effect of the refractive index by carrier injection or depletion, a PN junction (P-N junction) needs to be formed in the waveguide, and the change of the refractive index also causes the change of the optical loss. Therefore, as long as modulation speed is not a major consideration, thermal modulation with a simple structure and low optical loss would be the main choice. In fact, for localized heating of compact SOI waveguides, the thermal modulation speed may be as short as a few microseconds. Furthermore, the high thermal resistance of the silicon dioxide capping layer on the SOI structure can also reduce thermal crosstalk and power dissipation.
基於環形諧振器的可調式ODL已被證實其可行性,係可以利用單階或多階級來實現光延遲線,而大多數設計則用於光信號處理或緩衝。然而,在這些應用中,關鍵的需求包括夠大的真實延遲、較大的頻帶寬度以及較低的高階相位變化,以避免導致色散和信號失真。因此,與單階ODL相比,多階的環形諧振器可實現具有大頻寬和低失真所需的延遲。Tunable ODLs based on ring resonators have been shown to be feasible and can utilize single or multiple stages to implement optical delay lines, while most designs are used for optical signal processing or buffering. However, in these applications, key requirements include a large enough true delay, large bandwidth, and low high-order phase variations to avoid causing chromatic dispersion and signal distortion. Therefore, multi-order ring resonators can achieve the required delay with large bandwidth and low distortion compared to single-order ODL.
請參閱圖1,圖1係為一習知之兩階的延遲線示意圖。習知兩階的延遲線包含馬赫曾德爾(Mach-Zehnder)干涉儀和三個可調耦合器。其中,三個可調耦合器的耦合比分別為K1、K2和K3。耦合比K1、K2和K3可以連續在0到1之間變化。在此情況下,可調耦合器通可過配備三個平衡Mach-Zehnder相位移動器,但也適用使用任何其他耦合器設計。再參照圖1,兩階的兩個分支之間都存有不平衡的延遲線相位移動器,用以調整元件的工作頻率。再者,對於單階電路而言,其設計方法類似,包括前兩個可調耦合器K1和K2以及第一個不平衡部分。 一般而言,元件可能有兩個輸入端口和兩個輸出端口。然而,習知之兩階的延遲線設計為單輸入單輸出電路。Please refer to FIG. 1 , which is a schematic diagram of a conventional two-order delay line. A conventional two-order delay line consists of a Mach-Zehnder interferometer and three tunable couplers. Among them, the coupling ratios of the three adjustable couplers are K1, K2 and K3 respectively. The coupling ratios K1, K2 and K3 can be continuously varied between 0 and 1. In this case, the tunable coupler can be equipped with three balanced Mach-Zehnder phase shifters, but it is also suitable to use any other coupler design. Referring to FIG. 1 again, there are unbalanced delay line phase shifters between the two branches of the two stages to adjust the operating frequency of the components. Again, for a single-order circuit, the design method is similar, including the first two adjustable couplers K1 and K2 and the first unbalanced part. In general, a component may have two input ports and two output ports. However, the conventional two-order delay line is designed as a single-input single-output circuit.
本發明之一目的在於提供一種以推拉模式操作的熱加熱器來調制之基於跑道型(環型)諧振器光學延遲線的群延遲裝置及方法。其中,於本發明之裝置及方法中,群延遲峰值及共振波長峰值可以獨立的調制。群延遲利用平衡MZI耦合器中的一個臂的加熱器來調制,以改變與諧振器的有效耦合係數。而跑道型上的熱調制則可以在不影響群延遲的情況下校正波長漂移。An object of the present invention is to provide a racetrack-type (ring-type) resonator optical delay line based group delay device and method modulated by a thermal heater operating in a push-pull mode. Wherein, in the apparatus and method of the present invention, the group delay peak and the resonance wavelength peak can be independently modulated. The group delay is modulated with the heater of one arm in the balanced MZI coupler to change the effective coupling coefficient with the resonator. Thermal modulation on the racetrack type corrects for wavelength drift without affecting group delay.
根據本揭露之其中一目的,提出一種推拉式可調光延遲線,包括:一第一耦合器,具有一第一端及一第二端,此第一端包含一輸入端;一第二耦合器,具有一第三端及一第四端,此第四端包含一輸出端;一第一波導,此第一波導係耦接於此第二端及此第三端之間,此第一波導係覆蓋有一第一加熱器;一第二波導,此第二波導係耦接於此第二端及此第三端之間;以及一第三波導,此第三波導係耦接於此第一端及此第四端之間,此第三波導係覆蓋有一第二加熱器。其中,藉由調整該第一加熱器與該第二加熱器之溫度以改變一固定波長光波的延遲量。According to one of the objectives of the present disclosure, a push-pull adjustable optical delay line is provided, comprising: a first coupler having a first end and a second end, the first end including an input end; a second coupling The device has a third end and a fourth end, the fourth end includes an output end; a first waveguide, the first waveguide is coupled between the second end and the third end, the first The waveguide is covered with a first heater; a second waveguide is coupled between the second end and the third end; and a third waveguide is coupled to the first Between one end and the fourth end, the third waveguide is covered with a second heater. The retardation of a fixed wavelength light wave is changed by adjusting the temperature of the first heater and the second heater.
較佳地,第一耦合器以及第二耦合器係為一三分貝耦合器(3dB耦合器)。Preferably, the first coupler and the second coupler are a three-dB coupler (3dB coupler).
較佳地,輸入端用以輸入一輸入光信號。Preferably, the input terminal is used for inputting an input optical signal.
較佳地,第一加熱器係用以調制輸入光信號之一耦合係數。Preferably, the first heater is used to modulate a coupling coefficient of the input optical signal.
較佳地,第二加熱器係用以補償一相位變化。Preferably, the second heater is used to compensate for a phase change.
較佳地,第二加熱器係用於校正一共振波長誤差。Preferably, the second heater is used to correct a resonance wavelength error.
較佳地,第一波導及第二波導具有相同長度。Preferably, the first waveguide and the second waveguide have the same length.
較佳地,第一加熱器以及第二加熱器係為一其於載子效應的相位移位器。Preferably, the first heater and the second heater are a phase shifter due to the carrier effect.
較佳地,調整該第一加熱器與該第二加熱器之溫度之方式為當該第一加熱器加熱時,該第二加熱器冷卻,或當該第二加熱器加熱時,該第一加熱器冷卻。Preferably, the temperature of the first heater and the second heater is adjusted in such a way that when the first heater is heated, the second heater is cooled, or when the second heater is heated, the first heater is Heater cools.
請參閱圖2,圖2為本發明之可調式光延遲線之一第一實施例之結構示意圖。如圖2所示,本發明之推拉式可調光延遲線20包括一第一耦合器200、一第二耦合器201、一第一波導202、第二波導203以及一第三波導204。Please refer to FIG. 2 , which is a schematic structural diagram of a first embodiment of an adjustable optical delay line of the present invention. As shown in FIG. 2 , the push-pull tunable
第一耦合器200具有一第一端2001及一第二端2002,而第一端2001包含一輸入端Ein。第二耦合器201具有一第三端2011及一第四端2012,而第四端2012包含一輸出端Eout。第一波導202係耦接於此第二端2002及此第三端2011之間,此第一波導202係覆蓋有一第一加熱器205。第二波導203係耦接於此第二端2002及此第三端2011之間。而第三波導204係耦接於此第一端2001及此第四端2012之間,此第三波導204係覆蓋有一第二加熱器206。The
於本實施例中,輸入端Ein用以輸入一輸入光信號(圖中未視)。再者,第一加熱器205係用以調制此輸入光信號之一耦合係數,而第二加熱器206係用以補償一相位變化。此外,第二加熱器206更用於校正一共振波長誤差。In this embodiment, the input terminal Ein is used for inputting an input optical signal (not shown in the figure). Furthermore, the
其中,於本實施例中,第一波導200及第二波導200具有相同長度。再者,於本發明之實施例中,第一加熱器205以及第二加熱器206係為,但不限於,一其於載子效應的相位移位器。此外,第一耦合器200以及第二耦合器201於本發明之實施例中係為,但不限於,一三分貝耦合器(3dB耦合器)。Wherein, in this embodiment, the
再者,本發明之實施例係藉由調整第一加熱器205與第二加熱器206之溫度以改變一固定波長光波的延遲量。更詳細的說,調整第一加熱器25與第二加熱器206之溫度之方式為當第一加熱器205加熱時,第二加熱器206冷卻。或當,亦可為當第二加熱器206加熱時,第一加熱器205冷卻。Furthermore, in the embodiment of the present invention, the retardation of a fixed wavelength light wave is changed by adjusting the temperature of the
推拉式操作亦可理解為,當一個相位調控器(第一加熱器205或第二加熱器206)增加電流 (載子)時,另一相位調控器將減少電流 (載子)。此外,推拉式操作亦可理解為當一個相位調控器增加逆向電壓時,另一相位調控器將增加逆向電壓 (載子)。而其中,推拉式操作為當一個相位調控器增加逆向電壓時,另一相位調控器將增加逆向電壓 (載子)。Push-pull operation can also be understood as when one phase regulator (the
值得注意的是,本發明之可調式光延遲線20係實現了跑道型諧振器、平衡馬赫曾德爾干涉儀(MZI)和兩個可調加熱器的組合。其中,第一波導202上之第一加熱器206係用於調制一輸入光信號(如前述,由輸入端Ein輸入至可調式光延遲線20之輸入光信號)的一耦合係數,使輸入光信號從直線波導耦合進出通道。It is worth noting that the tunable
再者,於本發明實施例中,最大群延遲發生在共振條件下。其中,耦合係數決定了環路的品質參數,進而決定了延遲時間。然而,耦合係數的調制也會引起相位變化,從而改變諧振波長。因此,為了使用單個跑道型共振器實現群延遲的較大變化,工作波長需要與共振峰對齊。因此,在調制耦合係數時的相位變化必須由另一個熱加熱器(即第二加熱器206)的跑道型部分的相位變化來補償。第二加熱器206還可以用於校正由於製程上的誤差而引起的共振波長的誤差。Furthermore, in the embodiments of the present invention, the maximum group delay occurs under resonance conditions. Among them, the coupling coefficient determines the quality parameter of the loop, and then determines the delay time. However, modulation of the coupling coefficient also causes a phase change, which changes the resonant wavelength. Therefore, in order to achieve large changes in group delay using a single racetrack-type resonator, the operating wavelength needs to be aligned with the resonant peak. Therefore, the phase change in modulating the coupling coefficient must be compensated by the phase change of the racetrack portion of the other thermal heater (ie, the second heater 206). The
如前述,於本實施例中,第一耦合器200以及第二耦合器201係為一三分貝耦合器(3dB耦合器)。藉此,本實施例由兩個3 dB耦合器而組成一馬赫曾德爾干涉儀,用來作為諧振器的等效可調耦合器。再者,本實施例之可調式光延遲線20(跑道型諧振器)的構造是將MZI的一個輸出端口連接到其一個輸入端口(即第三端2011與第四端2012相耦接)。MZI的兩個臂長相等(第一波導202及第二波導203具有相同長度)。第一加熱器205係位於MZI下臂上方(第一加熱器205覆蓋第一波導202)以產生相位變化,並透過熱光效應改變兩個臂(第一波導202及第三波導204)傳播的光之間的相位關係,因此可以改變耦合到跑道型諧振器中的光功率,從而實現耦合效率的可調性。第二加熱器206放置在跑道型波導上方(第二加熱器206覆蓋第三波導204),以控制諧振波長位置。As mentioned above, in this embodiment, the
請再參閱圖3,圖3為本發明之可調式光延遲線之一第二實施例之結構示意圖。如圖3所示,第二實施例之可調式光延遲線30係串接兩個第一實施例之可調式光延遲線20。圖3所示之第二實施例之可調式光延遲線30係為一兩階光延遲線。其中,每一階都帶有可調耦合器的可調跑道型諧振器。可調耦合器為對稱的馬赫曾德爾干涉儀(MZI),兩臂中的其中一個配備了以熱加熱器做為相位調控器,以調節MZI的輸出比。峰值延遲發生在跑道型諧振器的諧振條件下。Please refer to FIG. 3 again. FIG. 3 is a schematic structural diagram of a second embodiment of the adjustable optical delay line of the present invention. As shown in FIG. 3 , the adjustable
其中,峰值延遲取決於MZI輸出的耦合比。通常隨著峰值延遲的增加,光延遲線的插入損耗會增加,而波長頻寬會減小。同時,發生峰值延遲的峰值波長隨耦合比移動。為了穩定光感測應用領域中的峰值波長,每一階的兩個相位調控器以推拉模式工作。也就是說,當一個相位調控器加熱時,另一相位調控器將冷卻。可將兩階的峰值波長互相對齊以使峰值群延遲加倍或兩階的峰值波長稍微偏移以達到更大的頻寬。where the peak delay depends on the coupling ratio of the MZI output. Generally, as the peak delay increases, the insertion loss of the optical delay line increases, while the wavelength bandwidth decreases. At the same time, the peak wavelength at which the peak delay occurs moves with the coupling ratio. To stabilize the peak wavelength in light sensing applications, the two phase regulators of each order work in a push-pull mode. That is, when one phase regulator heats up, the other phase regulator will cool down. The peak wavelengths of the two orders can be aligned with each other to double the peak group delay or the peak wavelengths of the two orders can be shifted slightly to achieve a larger bandwidth.
綜上,本發明之一目的係基於單階跑道型(環形)諧振器設計了一條光延遲線,其中此諧振器係配置了兩個可調加熱器。其中一個可調加熱器用於調制耦合係數,而另一個可調加熱器則用於調制往返的相位。本發明之設計可應用於光學和生物醫學感測的應用,其中光學信號通常具有較窄的線寬。應用範例可包括LiDAR的光學相位陣列,雷射線寬測量以及採用雷射都普勒或掃頻相干層析成像技術的干涉式生物醫學感測。To sum up, one objective of the present invention is to design an optical delay line based on a single-order racetrack-type (ring) resonator, wherein the resonator is configured with two tunable heaters. One of the adjustable heaters is used to modulate the coupling coefficient, while the other is used to modulate the phase of the round trip. The design of the present invention can be applied to optical and biomedical sensing applications, where optical signals typically have narrow linewidths. Application examples may include optical phased arrays for LiDAR, laser linewidth measurements, and interferometric biomedical sensing using laser Doppler or swept-frequency coherence tomography techniques.
綜上,本發明提出一以推拉模式操作的熱加熱器來調制基於跑道型諧振器光學延遲線的群延遲之新穎方法。群延遲峰值及共振波長峰值可以獨立調制。群延遲利用平衡MZI耦合器中的一個臂的加熱器來調制,以改變與諧振器的有效耦合係數。而跑道型上的熱調制則可以校正波長漂移,而不會影響群延遲。In conclusion, the present invention proposes a novel method for modulating group delay based on racetrack resonator optical delay lines with thermal heaters operating in push-pull mode. Group delay peak and resonance wavelength peak can be modulated independently. The group delay is modulated with the heater of one arm in the balanced MZI coupler to change the effective coupling coefficient with the resonator. Thermal modulation on the racetrack type corrects for wavelength drift without affecting group delay.
綜上,對於給定類型的ODL,頻寬延時乘積(DBP)會受到限制,而對於環形環諧振器等諧振型延遲線,DBP則較小。對於上述生醫感測或光學感測類型應用,雷射的線寬通常小於幾個MHz甚至約為kHz。因此,透過使用較高品質參數和較小頻寬的設計簡單的諧振器即可實現較長的延遲。在這種情況下,諧振峰的波長需要穩定並對準雷射光波長。本發明的ODL設計可以在穩定的波長下實現從數十ps到數百ps的真實延遲。In summary, for a given type of ODL, the bandwidth-delay product (DBP) is limited, while for resonant-type delay lines such as ring-ring resonators, the DBP is smaller. For the above biomedical sensing or optical sensing type applications, the linewidth of the laser is usually less than a few MHz or even about kHz. Therefore, longer delays can be achieved by using simpler resonators with higher quality parameters and smaller bandwidths. In this case, the wavelength of the resonance peak needs to be stabilized and aligned with the laser light wavelength. The ODL design of the present invention can achieve true delays from tens of ps to hundreds of ps at stable wavelengths.
值得注意的是,對於光學感測或生物醫學感測,其光源通常具有穩定且較窄的線寬,而可調光延遲線(ODL)的設計規則可能因其光通訊和緩衝來調整。 根據本發明,通過推拉式操作來穩定基於諧振腔的ODL,以穩定諧振波長。 再者,本發明以熱調制效應對元件進行模擬,並進行積體化元件及驗證可調ODL的特性。本發明使用簡單的跑道型諧振器,透過改變諧振器的耦合係數來簡單地調整群延遲,同時通過調整跑道型環路來穩定波長。此外,本發明利用緊密的元件,並以小的功耗便實現數百皮秒(picoseconds)的調制。It is worth noting that for optical sensing or biomedical sensing, the light source usually has a stable and narrow linewidth, while the design rule of tunable optical delay line (ODL) may be tuned for its optical communication and buffering. According to the present invention, the resonant cavity-based ODL is stabilized by a push-pull operation to stabilize the resonant wavelength. Furthermore, the present invention simulates the device with thermal modulation effect, integrates the device and verifies the characteristics of the tunable ODL. The present invention uses a simple racetrack-type resonator, simply adjusts the group delay by changing the coupling coefficient of the resonator, and stabilizes the wavelength by adjusting the racetrack-type loop. Furthermore, the present invention utilizes compact components and enables modulation of hundreds of picoseconds with small power consumption.
可見本揭露在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請。It can be seen that the present disclosure has indeed achieved the desired enhancement by breaking through the previous technology, and it is not easy for those who are familiar with the technology to think about it. Yuan to file a patent application in accordance with the law.
以上所述僅為舉例性,而非為限制性者。其它任何未脫離本揭露之精神與範疇,而對其進行之等效修改或變更,均應該包含於後附之申請專利範圍中。The above description is exemplary only, not limiting. Any other equivalent modifications or changes without departing from the spirit and scope of the present disclosure should be included in the appended patent application scope.
20,30:推拉式可調光延遲線 200:第一耦合器 201:第二耦合器 202:第一波導 203:第二波導 204:第三波導 2001:第一端 2002:第二端 Ein:輸入端 2011:第三端 2012:第四端 Eout:輸出端 205:第一加熱器 206:第二加熱器20,30: Push-pull dimmable delay line 200: First coupler 201: Second coupler 202: First Waveguide 203: Second Waveguide 204: Third Waveguide 2001: First End 2002: Second End Ein: input terminal 2011: The Third End 2012: Fourth End Eout: output terminal 205: First heater 206: Second heater
圖1係為一習知之兩階的延遲線示意圖;FIG. 1 is a schematic diagram of a conventional two-order delay line;
圖2為本發明之可調式光延遲線之一第一實施例之結構示意圖;以及FIG. 2 is a schematic structural diagram of a first embodiment of an adjustable optical delay line of the present invention; and
圖3為本發明之可調式光延遲線之一第二實施例之結構示意圖。FIG. 3 is a schematic structural diagram of a second embodiment of the adjustable optical delay line of the present invention.
20:推拉式可調光延遲線20: Push-pull dimmable delay line
200:第一耦合器200: First coupler
201:第二耦合器201: Second coupler
202:第一波導202: First Waveguide
203:第二波導203: Second Waveguide
204:第三波導204: Third Waveguide
2001:第一端2001: First End
2002:第二端2002: Second End
Ein:輸入端Ein: input terminal
2011:第三端2011: The Third End
2012:第四端2012: Fourth End
Eout:輸出端Eout: output terminal
205:第一加熱器205: First heater
206:第二加熱器206: Second heater
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109129035A TWI740621B (en) | 2020-08-26 | 2020-08-26 | Push-pull tunable optical delay line and phase shifter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109129035A TWI740621B (en) | 2020-08-26 | 2020-08-26 | Push-pull tunable optical delay line and phase shifter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI740621B TWI740621B (en) | 2021-09-21 |
TW202208904A true TW202208904A (en) | 2022-03-01 |
Family
ID=78778085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109129035A TWI740621B (en) | 2020-08-26 | 2020-08-26 | Push-pull tunable optical delay line and phase shifter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI740621B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5949542A (en) * | 1998-03-27 | 1999-09-07 | Corning, Inc. | Method of tuning an optical device |
US7085438B2 (en) * | 2002-12-06 | 2006-08-01 | Nippon Telegraph And Telephone Corporation | Optical multi/demultiplexing circuit equipped with phase generating device |
KR20110070420A (en) * | 2009-12-18 | 2011-06-24 | 한국전자통신연구원 | Optical switch using mach-zehnder interferometor and optical switch matrix having the same |
-
2020
- 2020-08-26 TW TW109129035A patent/TWI740621B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI740621B (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10714895B2 (en) | Rapidly tunable silicon modulated laser | |
US7480425B2 (en) | Integrated opto-electronic oscillators | |
JP6911035B2 (en) | Dual ring laser wavelength control | |
US10281746B2 (en) | Wavelength-tunable III-V/Si hybrid optical transmitter | |
US9735542B2 (en) | Ring-modulated laser | |
EP3703202B1 (en) | Tunable laser device and laser transmitter | |
CN107024781B (en) | A kind of Optical All-pass and microwave photon filter and phase shifter | |
WO2007143627A2 (en) | Integrated opto-electronic oscillators | |
US20170090268A1 (en) | Chirp suppressed ring resonator | |
WO2021259027A1 (en) | Silicon-based tunable filter, laser and optical module | |
US20170090267A1 (en) | Chirp suppressed ring resonator | |
CN113991266B (en) | Broadband microwave photon phase shifter with constant output power | |
Sun et al. | Broadband 1× 8 optical beamforming network based on anti-resonant microring delay lines | |
Zheng et al. | Demonstration of a push-pull silicon dual-ring modulator with enhanced optical modulation amplitude | |
Shoman et al. | Compact silicon microring modulator with tunable extinction ratio and wide FSR | |
Fandiño et al. | A monolithic integrated microwave photonics filter | |
TWI740621B (en) | Push-pull tunable optical delay line and phase shifter | |
Li et al. | 800G DR8 transceiver based on thin-film lithium niobate photonic integrated circuits | |
CN113189706B (en) | Integrated adjustable silicon optical delay unit and delay line | |
de Farias et al. | Photonic integrated devices for high-capacity data-center interconnect | |
JP3109622B2 (en) | Laser frequency stabilizing apparatus and laser frequency stabilizing method | |
Michel et al. | Advances in fully CMOS integrated photonic devices | |
US9395596B2 (en) | Ring resonator comprising optical filtering device | |
Chan et al. | 60 GHz Adiabatic Microring Modulator with ultra-wide 80nm operation wavelength range | |
US20230216271A1 (en) | Silicon photonic symmetric distributed feedback laser |