[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW202137712A - Two-capacitor digital-to-analog converter - Google Patents

Two-capacitor digital-to-analog converter Download PDF

Info

Publication number
TW202137712A
TW202137712A TW110105893A TW110105893A TW202137712A TW 202137712 A TW202137712 A TW 202137712A TW 110105893 A TW110105893 A TW 110105893A TW 110105893 A TW110105893 A TW 110105893A TW 202137712 A TW202137712 A TW 202137712A
Authority
TW
Taiwan
Prior art keywords
capacitor
input
mode
bit
capacitance
Prior art date
Application number
TW110105893A
Other languages
Chinese (zh)
Inventor
阿卜杜拉 艾哈邁德
大西章申
河合多一郎
Original Assignee
美商半導體組件工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/248,840 external-priority patent/US11431348B2/en
Application filed by 美商半導體組件工業公司 filed Critical 美商半導體組件工業公司
Publication of TW202137712A publication Critical patent/TW202137712A/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

A two-capacitor digital-to-analog converter circuit having circuitry to compensate for an unwanted capacitance is disclosed. The converter is configured to generate an average voltage on two capacitors for a sequence of bits in a digital word so that when the final bit is reached, the average voltage corresponds to an analog level of the digital word. The converter is configured to input and average the voltage on the two capacitors using different modes to minimize the effects of capacitor mismatch and switching capacitance on the accuracy of the conversion. The converter includes a buffer amp that has an input capacitance that can affect the conversion. Accordingly, the converter further includes capacitance compensation circuitry configured to provide a replica input capacitance that can be charged and discharged according to the bits of the digital word and coupled to the input capacitor to prevent the input capacitance from affecting the conversion.

Description

雙電容器數位轉類比轉換器Dual-capacitor digital-to-analog converter

本揭露係關於整合類比及數位電路,且更具體地關於用於數位轉類比轉換的電路及其方法。This disclosure is about integrating analog and digital circuits, and more specifically about circuits and methods for digital-to-analog conversion.

電子系統可能需要數位轉類比轉換器(digital-to-analog converter, DAC)將數位信號轉變成對應的類比信號。例如,DAC可允許數位字組用以設定輸出電壓位準。具體而言,DAC可經組態以接收N位元二進位字組的各二進位位元(b0 , b1 , …bN-1 )及參考電壓(VREF ),並輸出輸出電壓(VO )。換言之,DAC可經組態以將由參考電壓定義的範圍分成複數個位準,各對應於在用於給定解析度之可能數位字組之範圍中的可能數位字組。為達成此,DAC可包括由開關耦接之電阻器或電容器的網路。開關可由二進位字組的位元控制導通/關斷,以輸出各種位準的電壓。電容器網路可導因於其等的較低損失而優於電阻器網路,但可歸因於其等的大尺寸及在高解析度(N ≥ 10)的不良準確度而受到限制。因此,需要使用具有經改善大小及準確度之電容器網路的DAC。此係本揭露之實施方案出現的背景。Electronic systems may require digital-to-analog converters (DAC) to convert digital signals into corresponding analog signals. For example, the DAC may allow a set of digits to be used to set the output voltage level. Specifically, the DAC can be configured to receive each binary bit (b 0 , b 1 , …b N-1 ) and the reference voltage (V REF ) of the N-bit binary word group, and output the output voltage ( V O ). In other words, the DAC can be configured to divide the range defined by the reference voltage into a plurality of levels, each corresponding to possible digit words in the range of possible digit words for a given resolution. To achieve this, the DAC may include a network of resistors or capacitors coupled by switches. The switch can be turned on/off controlled by the bits of the binary word group to output voltages of various levels. The capacitor network can be better than the resistor network due to its lower loss, but it can be limited due to its large size and poor accuracy at high resolution (N ≥ 10). Therefore, it is necessary to use a DAC with a capacitor network with improved size and accuracy. This is the background of the implementation of this disclosure.

在至少一個態樣中,本揭露通常描述一種雙電容器數位轉類比轉換器電路(亦即,2C-DAC)。該2C-DAC電路包括一階段及模式控制器,該階段及模式控制器經組態以設定一數位字組中的一動作位元、選擇該動作位元的一模式狀況、及基於該動作位元的一值及該經選擇模式狀況根據一轉換程序的一第一模式或一第二模式組態切換。該2C-DAC電路進一步包括一重分布開關,該重分布開關經組態以在該轉換程序的一平均階段期間將該第一電容器及該第二電容器耦接在一起以產生一平均電壓。該2C-DAC電路進一步包括一緩衝放大器,該緩衝放大器具有在一輸入處的一輸入電容。該緩衝放大器經組態以基於該平均電壓產生一輸出電壓。該2C-DAC進一步包括一電容補償電路,該電容補償電路包括一複製輸入電容。該電容補償電路經組態以在該轉換程序的一輸入階段期間基於該動作位元的該值將一參考電壓或一接地耦接至該複製輸入電容。該電容補償電路進一步經組態以在該轉換程序的該平均階段期間將該複製輸入電容耦接至該輸入電容以調整該平均電壓。In at least one aspect, the present disclosure generally describes a dual-capacitor digital-to-analog converter circuit (ie, 2C-DAC). The 2C-DAC circuit includes a stage and mode controller configured to set an action bit in a digital word group, select a mode condition of the action bit, and based on the action bit A value of the element and the selected mode status are switched according to a first mode or a second mode configuration of a conversion process. The 2C-DAC circuit further includes a redistribution switch configured to couple the first capacitor and the second capacitor together to generate an average voltage during an averaging phase of the conversion process. The 2C-DAC circuit further includes a buffer amplifier having an input capacitance at an input. The buffer amplifier is configured to generate an output voltage based on the average voltage. The 2C-DAC further includes a capacitance compensation circuit, and the capacitance compensation circuit includes a duplicate input capacitance. The capacitance compensation circuit is configured to couple a reference voltage or a ground to the duplicate input capacitor based on the value of the action bit during an input phase of the conversion process. The capacitance compensation circuit is further configured to couple the duplicate input capacitance to the input capacitance during the averaging phase of the conversion procedure to adjust the average voltage.

在另一態樣中,本揭露通常描述一種用於數位轉類比轉換的方法。該方法包括接收一數位字組、設定該數位字組的一動作位元、選擇該動作位元的一模式狀況、及基於該動作位元的一值及該經選擇模式狀況判定用於該動作位元的一第一模式或一第二模式。該方法進一步包括執行一輸入階段,該輸入階段包括一第一模式及一第二模式。在該輸入階段的一第一模式中,一第一電容器及一複製輸入電容係根據該動作位元的該值而充電或放電。在該輸入階段的一第二模式中,一第二電容器及一複製輸入電容係根據該動作位元的該值而充電或放電。該方法進一步包括執行一平均階段,該平均階段包括將該第一電容器及該第二電容器耦接在一起以產生用於該動作位元的一平均電壓。該平均階段進一步包括將該平均電壓耦接至具有一輸入電容的一緩衝放大器,並將該複製輸入電容與一輸入電容耦接在一起以在該緩衝放大器的一輸入處產生用於該動作位元的一經調整平均電壓。In another aspect, the present disclosure generally describes a method for digital-to-analog conversion. The method includes receiving a digit word group, setting an action bit of the digit word group, selecting a mode status of the action bit, and determining for the action based on a value of the action bit and the selected mode status A first mode or a second mode of bits. The method further includes performing an input phase including a first mode and a second mode. In a first mode of the input stage, a first capacitor and a duplicate input capacitor are charged or discharged according to the value of the action bit. In a second mode of the input stage, a second capacitor and a duplicate input capacitor are charged or discharged according to the value of the action bit. The method further includes performing an averaging phase including coupling the first capacitor and the second capacitor together to generate an average voltage for the active bit. The averaging stage further includes coupling the average voltage to a buffer amplifier having an input capacitance, and coupling the duplicate input capacitance and an input capacitance together to generate a bit for the action at an input of the buffer amplifier Yuan's adjusted average voltage.

在另一態樣中,本揭露通常描述一種用於數位轉類比轉換的系統。該系統包括一階段及模式控制器,該階段及模式控制器經組態以接收一數位字組的位元並根據一轉換程序的一輸入階段、一平均階段、或一輸出階段並根據藉由在至該系統的一輸入處接收的該數位字組中的各位元判定的一第一模式或一第二模式輸出切換信號。該系統進一步包括一平均電路,該平均電路包括一第一電容器及一第二電容器。該平均電路經組態以在一輸入階段期間對該第一電容器或該第二電容器充電或放電,並經組態以在一平均階段期間將該第一電容器及該第二電容器耦接在一起以產生一平均電壓。該系統進一步包括一輸出電路,該輸出電路包括一輸入電容。該輸出電路經組態以基於從該平均電路接收的該平均電壓產生一輸出電壓,並經組態以在該輸出階段期間將該輸出電壓耦接至該系統的一輸出。該系統進一步包括一電容補償電路,該電容補償電路包括實質等於該輸入電容的一複製輸入電容。該電容補償電路經組態以在一平均階段期間將該複製輸入電容及該輸入電容耦接在一起,以調整該平均電壓以補償該輸入電容。In another aspect, the present disclosure generally describes a system for digital-to-analog conversion. The system includes a stage and mode controller that is configured to receive a bit of a digital block and according to an input stage, an average stage, or an output stage of a conversion process and according to the A first mode or a second mode output switching signal determined by each bit in the digit word group received at an input to the system. The system further includes an averaging circuit including a first capacitor and a second capacitor. The averaging circuit is configured to charge or discharge the first capacitor or the second capacitor during an input phase, and is configured to couple the first capacitor and the second capacitor together during an averaging phase To generate an average voltage. The system further includes an output circuit including an input capacitor. The output circuit is configured to generate an output voltage based on the average voltage received from the averaging circuit, and is configured to couple the output voltage to an output of the system during the output phase. The system further includes a capacitance compensation circuit including a duplicate input capacitance substantially equal to the input capacitance. The capacitance compensation circuit is configured to couple the duplicate input capacitance and the input capacitance together during an averaging phase to adjust the average voltage to compensate the input capacitance.

前述的說明性發明內容、及本揭露的其他範例目的及/或優點、以及達成其之方式係進一步解釋於下述實施方式及其隨附圖式。The foregoing illustrative invention content, other exemplary purposes and/or advantages of the present disclosure, and ways to achieve them are further explained in the following embodiments and accompanying drawings.

[相關申請案之交互參照][Cross-reference of related applications]

本申請案主張於2020年2月21日申請之美國臨時專利申請案第62/979,472號及於2020年2月21日申請之美國臨時專利申請案第62/979,474號之優先權。This application claims the priority of U.S. Provisional Patent Application No. 62/979,472 filed on February 21, 2020 and U.S. Provisional Patent Application No. 62/979,474 filed on February 21, 2020.

本揭露描述雙電容器DAC,其可提供具有高準確度的低頻寬信號之高解析度轉換。與其他基於電容器網路的DAC相比,諸如二進位加權電容器網路DAC或階梯電容器網路(亦即,C-2C網路)DAC,所揭示的DAC可在較小面積的積體電路中製造,且不需要針對在高解析度之準確效能校準。額外地,所揭示的DAC提供交替的操作模式及電路系統以補償導因於實際實施方案的不準確度。This disclosure describes a double-capacitor DAC, which can provide high-resolution conversion of low-frequency and wide-band signals with high accuracy. Compared with other DACs based on capacitor networks, such as binary weighted capacitor network DAC or ladder capacitor network (ie, C-2C network) DAC, the disclosed DAC can be used in a smaller area integrated circuit It is manufactured and does not need to be calibrated for accurate performance at high resolution. Additionally, the disclosed DAC provides alternate operation modes and circuitry to compensate for the inaccuracy caused by the actual implementation.

二進位加權電容器網路DAC包括電容庫(各庫具有特定電容),該電容庫可根據二進位輸入而導通/關斷至參考電壓的耦接以產生特定輸出電壓。使用此方法的一個問題係高解析度(N ≥ 10)應用所需之電容器的數目。大數目的電容器可產生對實際實施方案太複雜或太大的網路。額外地,隨網路中之電容器的數目縮放的問題(諸如洩漏、失配等)亦可限制可實際實施之二進位加權電容器的解析度。所揭示之DAC僅使用二個電容器,且因此可實體地小於對應的二進位加權電容器DAC。額外地,二個電容器可標稱地係相同電容(例如,1:1比率);因此,網路中的最大電容器與網路中的最小電容器之間的範圍(亦即,電容器分佈比)可更小。進一步地,因為在所揭示之DAC之網路中的二個電容器之間的電荷重分布,可有效地消除電容器失配。因此,所揭示之DAC亦可具有比二進位加權電容器網路更小的電容器失配,且因此可更準確(例如,線性、單調)。The binary weighted capacitor network DAC includes a capacitor bank (each bank has a specific capacitance), and the capacitor bank can turn on/off the coupling to the reference voltage according to the binary input to generate a specific output voltage. One problem with this method is the number of capacitors required for high-resolution (N ≥ 10) applications. A large number of capacitors can produce a network that is too complex or too large for the actual implementation. In addition, problems that scale with the number of capacitors in the network (such as leakage, mismatch, etc.) can also limit the resolution of binary weighted capacitors that can be implemented in practice. The disclosed DAC uses only two capacitors, and therefore can be physically smaller than the corresponding binary weighted capacitor DAC. Additionally, two capacitors can be nominally the same capacitance (for example, 1:1 ratio); therefore, the range between the largest capacitor in the network and the smallest capacitor in the network (ie, the capacitor distribution ratio) can be smaller. Furthermore, because of the redistribution of charge between the two capacitors in the disclosed DAC network, the capacitor mismatch can be effectively eliminated. Therefore, the disclosed DAC can also have a smaller capacitor mismatch than a binary weighted capacitor network, and therefore can be more accurate (eg, linear, monotonic).

C-2C網路DAC可比二進位加權電容器網路DAC更簡單且更小,但可仍係複雜且大的,以便提供在高解析度的線性效能。C-2C網路DAC的線性度可被階梯網路中之節點處的寄生電容所影響。為補償寄生電容,C-2C DAC可能需要記憶體(例如,RAM)以用於數位校正項(例如,透過校準獲得)的儲存及喚回及/或可能需要自校準修整電容器陣列。在任一情形中,用於補償寄生效應的電路系統可使C-2C DAC更複雜且更大。所揭示之DAC僅使用二個電容器,且因此可實體地小於對應的C-2C網路DAC。進一步地,因為在所揭示之DAC之網路中的二個電容器之間的電荷重分布,可有效地消除導因於寄生電容的非線性度。因此,所揭示的DAC可能不需要針對在高解析度之線性效能的校準或修整電容器陣列。The C-2C network DAC can be simpler and smaller than the binary weighted capacitor network DAC, but can still be complex and large in order to provide linear performance at high resolution. The linearity of the C-2C network DAC can be affected by the parasitic capacitance at the nodes in the ladder network. To compensate for parasitic capacitance, the C-2C DAC may require memory (for example, RAM) for storage and recall of digital correction items (for example, obtained through calibration) and/or may need to self-calibrate and trim the capacitor array. In either case, the circuitry used to compensate for parasitic effects can make the C-2C DAC more complex and larger. The disclosed DAC uses only two capacitors, and therefore can be physically smaller than the corresponding C-2C network DAC. Furthermore, because of the redistribution of charge between the two capacitors in the disclosed DAC network, the nonlinearity caused by the parasitic capacitance can be effectively eliminated. Therefore, the disclosed DAC may not require calibration or trimming capacitor arrays for linear performance at high resolution.

所揭示之DAC電容器網路的優點可能要付出其速度的代價。對於二進位加權電容器DAC或C-2C DAC,數位字組的位元可平行地施加至電容器網路以獲得對應的輸出信號。然而,在所揭示之DAC電容器網路中,數位字組的位元係依序(串列)施加的,且在對應輸出信號可獲得之前必須處理從最低有效位元(least significant bit, LSB)至最高有效位元(most significant bit, MSB)的所有位元。The advantages of the disclosed DAC capacitor network may come at the price of its speed. For binary weighted capacitor DAC or C-2C DAC, the bits of the digit block can be applied to the capacitor network in parallel to obtain the corresponding output signal. However, in the disclosed DAC capacitor network, the bits of the digit block are applied in sequence (serial), and the least significant bit (LSB) must be processed before the corresponding output signal can be obtained. All bits up to the most significant bit (MSB).

效能與速度之間的權衡對不需要高速度轉換的應用可係可接受的。例如,一些生物醫學應用(例如,葡萄糖監控感測)可能需要DAC作為可程式化偏壓電路的部分。此等應用可能需要準確且具有低電力消耗的DAC,但可能不需要DAC具有高速度。所揭示之DAC非常適合於此等應用,因為其可以高解析度(例如,≥ 10位元)操作、具有低電力消耗、具有簡單(亦即,小)佈局、係高線性(例如,對於積分非線性度或微分非線性度≤ ±1 LSB)、並可提供軌對軌輸出。The trade-off between performance and speed may be acceptable for applications that do not require high-speed conversion. For example, some biomedical applications (eg, glucose monitoring and sensing) may require a DAC as part of a programmable bias circuit. These applications may require accurate and low power consumption DACs, but may not require DACs with high speeds. The disclosed DAC is very suitable for these applications because it can operate with high resolution (for example, ≥ 10 bits), has low power consumption, has a simple (that is, small) layout, and is highly linear (for example, for integral Non-linearity or differential non-linearity ≤ ±1 LSB), and can provide rail-to-rail output.

為解釋其理想操作,將經簡化雙電容器DAC顯示於圖1A中。電容器(C1 , C2 )可係實質相同電容,使得電容的比率可大約係1:1。為了轉換,雙電容器DAC經組態以依從LSB至MSB的序列接收數位字組(B)的各位元(bi )。平均電壓(VAVG )可針對序列中的各位元產生,使得序列的最終平均電壓係對應於數位字組(B)之類比位準的輸出電壓(VO )。平均電壓係藉由重分布充電至不同電壓之電容器之間的電荷差而產生的電壓。當重分布相等時,重分布後在電容器上的電壓大約係重分布前在各電容器上之電壓的平均。此係在本文中使用用語「平均(average)」,但本揭露認知到變異可能會存在(例如,若重分布不相等)的背景。因此,針對各位元產生的平均電壓(亦即,重分布電壓)通常可指重分布前在各電容器上的電壓之間的電壓(例如,中程數、偏移中程數、加權平均等),而非特定數學關係。序列的各平均電壓係使用二個階段計算:輸入階段及平均階段(亦即,重分布階段)。輸出階段係發生在序列的最終平均電壓計算之後。各階段之開關狀態的表顯示於以下表1中。To explain its ideal operation, a simplified two-capacitor DAC is shown in Figure 1A. The capacitors (C 1 , C 2 ) may have substantially the same capacitance, so that the ratio of capacitance may be approximately 1:1. For conversion, the double-capacitor DAC is configured to receive each bit (b i ) of the digit block (B) in a sequence from LSB to MSB. The average voltage (V AVG ) can be generated for each bit in the sequence, so that the final average voltage of the sequence corresponds to the output voltage (V O ) of the analog level of the digit block (B). The average voltage is the voltage generated by redistributing the charge difference between capacitors charged to different voltages. When the redistribution is equal, the voltage on the capacitors after the redistribution is approximately the average of the voltages on the capacitors before the redistribution. This is the term "average" used in this article, but this disclosure recognizes the background that variation may exist (for example, if the redistributions are not equal). Therefore, the average voltage generated for each cell (ie, redistributed voltage) can generally refer to the voltage between the voltages on the capacitors before redistribution (for example, the number of midranges, the number of offset midranges, the weighted average, etc.) , Not a specific mathematical relationship. Each average voltage of the sequence is calculated using two stages: the input stage and the average stage (that is, the redistribution stage). The output phase occurs after the final average voltage calculation of the sequence. The table of the switch status of each stage is shown in Table 1 below.

surface 11 :簡單雙電容器: Simple double capacitor DACDAC 之開關狀態的實例Example of the switch state 階段stage S0 S 0 S1 S 1 SAVG S AVG SOUT S OUT 輸入enter (bi = 0)(b i = 0) 導通Conduction 關斷Turn off 關斷Turn off 關斷Turn off 輸入enter (bi = 1)(b i = 1) 關斷Turn off 導通Conduction 關斷Turn off 關斷Turn off 平均化Averaging 關斷Turn off 關斷Turn off 導通Conduction 關斷Turn off 輸出Output 關斷Turn off 關斷Turn off 關斷Turn off 導通Conduction

當輸入位元(bi )係邏輯1時,則高位元輸入開關(亦即,一開關(S1 ))可經組態以將第一電容器(C1 )耦接至參考電壓(VREF ),且當輸入位元(bi )係邏輯0時,則低位元輸入開關(亦即,零開關(S0 ))可經組態以將第一電容器(C1 )耦接至接地電壓(例如,0V)。一開關(S1 )及零開關(S0 )以互補方式切換,使得當一開關(S1 )閉合時,零開關(S0 )斷開,且反之亦然。基於開關的狀態,第一電容器(C1 )在DAC轉換程序的輸入階段期間充電或放電。在DAC轉換程序的平均階段中,平均開關(SAVG )(例如,重分布開關)經組態以將第一電容器(C1 )及第二電容器(C2 )耦接在一起,使得電容器中的總儲存電荷相等地重分布。在輸出階段之前,輸入階段及平均階段針對數位字組的各位元重複。在DAC轉換程序的輸出階段中,輸出開關(SOUT )經組態以將第二緩衝放大器110耦接至DAC的輸出。第二電容器(C2 )上的重分布電荷(亦即,平均電壓)在至緩衝放大器110的輸入處產生輸入電壓,該輸入電壓經組態以在輸出(亦即,雙電容器DAC輸出)處產生輸出電壓(VO )。緩衝放大器可係單一增益放大器,使得平均電壓(VAVG )在輸出階段中變成雙電容器DAC的輸出電壓(VO )。When the input bit (b i ) is logic 1, the upper bit input switch (ie, a switch (S 1 )) can be configured to couple the first capacitor (C 1 ) to the reference voltage (V REF ), and when the input bit (b i ) is logic 0, the lower bit input switch (ie, zero switch (S 0 )) can be configured to couple the first capacitor (C 1 ) to the ground voltage (For example, 0V). A switch (S 1 ) and a zero switch (S 0 ) are switched in a complementary manner, so that when a switch (S 1 ) is closed, the zero switch (S 0 ) is opened, and vice versa. Based on the state of the switch, the first capacitor (C 1 ) is charged or discharged during the input phase of the DAC conversion procedure. In the averaging phase of the DAC conversion procedure, the averaging switch (S AVG ) (for example, the redistribution switch) is configured to couple the first capacitor (C 1 ) and the second capacitor (C 2 ) together so that the capacitor The total stored charge is equally redistributed. Before the output phase, the input phase and the averaging phase are repeated for each bit of the digit block. In the output stage of the DAC conversion procedure, the output switch (S OUT ) is configured to couple the second buffer amplifier 110 to the output of the DAC. The redistributed charge (ie, the average voltage) on the second capacitor (C 2 ) produces an input voltage at the input to the buffer amplifier 110, which is configured to be at the output (ie, the double-capacitor DAC output) Generate output voltage (V O ). The buffer amplifier can be a single gain amplifier, so that the average voltage (V AVG ) becomes the output voltage (V O ) of the double-capacitor DAC in the output stage.

圖1B繪示針對在從000(亦即,0)至111(亦即,7)之二進位字組範圍中的二進位字組101(亦即,5)繪示之顯示於圖1A中之雙電容器DAC之輸出電壓(VAVG )的圖表。對於LSB(亦即,b0 ),在輸入階段中將第一電容器充電至參考電壓(VREF )。其次,電荷接著在平均階段中在電容器之間等分,使得b0 的平均電壓(VAVG )係VREF /2(亦即,4/8VREF )。對於次一有效位元(b1 ),在輸入階段中將第一電容器(C1 )放電至接地。其次,剩餘電荷在平均階段中在電容器之間等分,使得平均電壓(VAVG )放電至在VREF /2與接地之間的半途的電壓(亦即,2/8VREF )。對於最高有效位元(b2 ),將第一電容器(C1 )充電至VREF 。其次,電荷在平均階段中在電容器之間等分,使得平均電壓(VAVG )充電至在先前輸出電壓與VREF 之間的半途的電壓(亦即,5/8VREF )。因此,平均電壓通過從LSB至MSB的位元發展,在對應於數位值的輸出電壓(VO )結束。因此,可循序處理整個數位字組,以到達適當的經轉換類比值。FIG. 1B shows the display of the binary block 101 (that is, 5) in the range of the binary block from 000 (that is, 0) to 111 (that is, 7), which is shown in FIG. 1A A graph of the output voltage (V AVG ) of the double-capacitor DAC. For LSB (ie, b 0 ), the first capacitor is charged to the reference voltage (V REF ) during the input phase. Second, the charge is then divided equally between the capacitors in the averaging phase, so that the average voltage (V AVG ) of b 0 is V REF /2 (ie, 4/8V REF ). For the next effective bit (b 1 ), the first capacitor (C 1 ) is discharged to ground during the input phase. Second, the remaining charge is equally divided between the capacitors in the averaging phase, so that the average voltage (V AVG ) is discharged to a voltage halfway between V REF /2 and ground (ie, 2/8 V REF ). For the most significant bit (b 2 ), the first capacitor (C 1 ) is charged to V REF . Second, the charge is equally divided between the capacitors in the averaging phase, so that the average voltage (V AVG ) is charged to a voltage halfway between the previous output voltage and V REF (ie, 5/8V REF ). Therefore, the average voltage develops through the bits from LSB to MSB and ends at the output voltage (V O) corresponding to the digital value. Therefore, the entire group of digits can be processed sequentially to reach the appropriate converted analog value.

雙電容器DAC的效能(例如,準確度)可藉由其積分非線性度及其微分非線性度來表徵。積分非線性度(INL)係數位輸入的實際DAC輸出與理想DAC輸出之間的差。微分非線性度(DNL)係數位輸入之間的步幅(例如,000與001之間的步幅)的實際步幅大小與理想步幅大小之間的差。在一些應用中,INL及DNL小於±1LSB係所欲的。當滿足此等條件時,該DAC可稱為係單調的。除了電容器失配外,圖1A所示之雙電容器DAC的實際實施方案可具有可導致效能劣化的額外(亦即,非所要)電容。進一步地,額外電容可限制雙電容器DAC的軌對軌操作。所揭示之雙電容器DAC利用方法及電路系統以降低或消除額外電容以改善效能,使得雙電容器DAC係單調的並可軌對軌地操作。The performance (for example, accuracy) of the double-capacitor DAC can be characterized by its integral nonlinearity and its differential nonlinearity. The difference between the actual DAC output and the ideal DAC output of the integral nonlinearity (INL) coefficient bit input. The differential non-linearity (DNL) coefficient bit is the difference between the actual step size and the ideal step size of the step size between inputs (for example, the step size between 000 and 001). In some applications, INL and DNL are less than ±1LSB as desired. When these conditions are met, the DAC can be said to be monotonic. In addition to the capacitor mismatch, the actual implementation of the two-capacitor DAC shown in FIG. 1A may have additional (ie, undesired) capacitance that can cause performance degradation. Further, the extra capacitance can limit the rail-to-rail operation of the dual-capacitor DAC. The disclosed dual-capacitor DAC utilizes methods and circuit systems to reduce or eliminate additional capacitance to improve performance, so that the dual-capacitor DAC is monotonic and can operate rail-to-rail.

額外電容的一個來源係由在輸入階段中使用之開關(例如,S0 、S1 )的實際實施方案所引起。例如,可將顯示於圖1A中之雙電容器DAC的第一開關(S1 )實施成包括在操作期間充電之小電容(例如,閘極電容,CGS )的電晶體(例如,MOSFET)。儲存在此小電容中的電荷可改變(例如,降低)在輸入階段期間儲存在電容器(C1 )中的電荷。對於短二進位字組(例如,N < 10),電荷上的變化可係相對小的,使得在二進位位元的序列結束時,最終輸出電壓不會顯著地自其理想位準改變。換言之,效能並未顯著劣化。然而,對於長二進位字組(亦即,高解析度),由切換電容所導致的電荷變化的累積效應可使雙電容器DAC的效能劣化。所揭示之雙電容器DAC利用方法及電路系統以減輕切換電容的效應以改善效能。One source of extra capacitance is caused by the actual implementation of the switches (for example, S 0 , S 1) used in the input stage. For example, the first switch (S 1 ) of the double-capacitor DAC shown in FIG. 1A can be implemented as a transistor (eg, MOSFET) that includes a small capacitance (eg, gate capacitance, C GS) that is charged during operation. The charge stored in this small capacitor can change (for example, reduce) the charge stored in the capacitor (C 1 ) during the input phase. For short binary blocks (for example, N<10), the change in charge can be relatively small, so that at the end of the sequence of binary bits, the final output voltage does not change significantly from its ideal level. In other words, the performance has not deteriorated significantly. However, for long binary blocks (that is, high resolution), the cumulative effect of the charge change caused by the switched capacitor can degrade the performance of the double-capacitor DAC. The disclosed double-capacitor DAC uses method and circuit system to reduce the effect of switching capacitors to improve performance.

實際實施方案中的額外電容的另一來源係緩衝放大器110。緩衝放大器110可實施為具有輸入電容的運算放大器(亦即,opamp)。例如,緩衝放大器(例如,運算放大器)的輸入級可包括具有與其操作關聯之電容(例如,閘極電容,CGS )的電晶體(例如,MOSFET)。輸入電容可改變(例如,降低)來自二個電容器之電荷輸出的位準。因此,在雙電容器DAC之輸出處的輸出電壓(VO )可能較不準確達對應於緩衝放大器的輸入電容與第一電容器C1 及第二電容器C2 的經判定比率的位準。因為輸入電容可根據在緩衝放大器110之輸入處的電壓變化,雙電容器DAC的準確度可根據二進位字組輸入而變化。所揭示之雙電容器DAC利用方法及電路系統以減輕緩衝放大器輸入電容及其變異的效應,以改善效能。Another source of the extra capacitance in the actual implementation is the buffer amplifier 110. The buffer amplifier 110 may be implemented as an operational amplifier (ie, opamp) having an input capacitance. For example, the input stage of a buffer amplifier (eg, operational amplifier) may include a transistor (eg, MOSFET) with a capacitance (eg, gate capacitance, C GS) associated with its operation. The input capacitance can change (for example, lower) the level of charge output from the two capacitors. Therefore, the output voltage (V O ) at the output of the double-capacitor DAC may be less accurate to a level corresponding to the determined ratio of the input capacitance of the buffer amplifier to the first capacitor C 1 and the second capacitor C 2. Because the input capacitance can vary according to the voltage at the input of the buffer amplifier 110, the accuracy of the double-capacitor DAC can vary according to the binary block input. The disclosed double-capacitor DAC utilization method and circuit system can reduce the effect of buffer amplifier input capacitance and its variation to improve performance.

圖2係根據本揭露的一第一可能實施方案之雙電容器DAC(亦即,2C-DAC)電路的示意圖。2C-DAC電路200(亦即,電路)包括複數個開關,該複數個開關針對數位轉換程序組態該電路。如先前所述,二進位(亦即,數位)字組的數位轉換係藉由計算各位元的平均電壓(VAVG )而實行。例如,第一平均電壓可基於二進位字組的最低有效位元來計算,且接著連續更新至數位字組的所有位元均已處理(亦即,至MSB)為止。最終平均電壓係在對應於數位字組的位準,並耦接至DAC的輸出作為輸出電壓(VO )。針對各位元獲得的平均電壓係使用輸入階段及平均階段來計算。2C-DAC電路通過控制複數個開關而針對轉換程序的各階段來組態。可將開關實施為電晶體裝置(例如,NMOS電晶體及/或PMOS電晶體)。FIG. 2 is a schematic diagram of a double-capacitor DAC (ie, 2C-DAC) circuit according to a first possible implementation of the present disclosure. The 2C-DAC circuit 200 (ie, the circuit) includes a plurality of switches that configure the circuit for a digital conversion program. As mentioned earlier, the digital conversion of binary (ie, digital) blocks is performed by calculating the average voltage (V AVG ) of each bit. For example, the first average voltage can be calculated based on the least significant bit of the binary block, and then continuously updated until all the bits of the digital block have been processed (ie, to the MSB). The final average voltage is at the level corresponding to the digit block and is coupled to the output of the DAC as the output voltage (V O ). The average voltage obtained for each element is calculated using the input phase and the average phase. The 2C-DAC circuit is configured for each stage of the conversion process by controlling a plurality of switches. The switch may be implemented as a transistor device (eg, NMOS transistor and/or PMOS transistor).

2C-DAC包括第一組輸入開關(S1_C1 , S0_C1 ),該等輸入開關在輸入階段中可組態以對第一電容器(C1 )充電/放電。開關的組態係基於二進位字組的位元。例如,若數位字組的位元係1,則開關S1_C1 導通(亦即,導電)而開關S0_C1 關斷(亦即,不導電),且當目前位元係零時則反之。2C-DAC進一步包括第二組輸入開關(S1_C2 , S0_C2 ),該等輸入開關在輸入階段中可組態以對第二電容器充電/放電。第二組開關的組態亦可基於二進位字組的位元。例如,若位元係1,則開關S1_C2 導通而開關S0_C1 關斷,且當該位元係零時則反之。The 2C-DAC includes a first set of input switches (S 1_C1 , S 0_C1 ), which can be configured to charge/discharge the first capacitor (C 1) during the input phase. The configuration of the switch is based on the bits of the binary word group. For example, if the bit of the digit string is 1, the switch S 1_C1 is turned on (that is, conductive) and the switch S 0_C1 is turned off (that is, not conductive), and vice versa when the current bit is zero. The 2C-DAC further includes a second set of input switches (S 1_C2 , S 0_C2 ), which can be configured to charge/discharge the second capacitor during the input phase. The configuration of the second group of switches can also be based on the bits of the binary word group. For example, if the bit is 1, the switch S 1_C2 is on and the switch S 0_C1 is off, and when the bit is zero, the opposite is true.

在輸入階段期間,僅一組輸入開關針對數位字組的各位元有效。例如,數位字組的一些位元可使用第一組輸入開關(S1_C1 , S0_C1 )輸入,而數位字組的其他位元可使用第二組輸入開關(S1_C2 , S0_C2 )輸入。將第一組或第二組用於輸入階段的選擇係藉由2C-DAC電路的模式來判定。During the input phase, only one set of input switches is valid for each bit of the digit block. For example, some bits of the digital word group can be input using the first group of input switches (S 1_C1 , S 0_C1 ), and other bits of the digital word group can be input using the second group of input switches (S 1_C2 , S 0_C2 ). The choice of using the first group or the second group for the input stage is determined by the mode of the 2C-DAC circuit.

2C-DAC電路可在二種模式的一者中操作。在第一模式(亦即,Mode1)中,使用第一組輸入開關(S1_C1 , S0_C1 ),而在第二模式(亦即,Mode2)中,使用第二組輸入開關(S1_C2 , S0_C2 )。2C-DAC進一步包括一組耦接開關(SC_C1 , SC_C2 ),該等耦接開關在輸入階段中可組態,以將第一電容器(C1 )或第二電容器(C2 )的其中一者耦接至緩衝放大器210。第一電容器耦接開關(SC_C1 )或第二電容器耦接開關(SC_C2 )的選擇可由轉換程序的模式判定。例如,在第一模式(亦即,Mode1)中,第一電容器(C1 )可在輸入階段中充電,而第二電容器(C2 )可在輸入階段中耦接至緩衝放大器210。在第二模式(亦即,Mode2)中,第二電容器(C2 )可在輸入階段中充電,而第一電容器(C1 )可在輸入階段中耦接至緩衝放大器210。以此方式切換使在輸入階段期間充電/放電及在輸入階段期間耦接至緩衝放大器210的電容器交替。藉由以此方式交替耦接,可降低電容器失配的效應,並可增加DAC轉換的效能(例如,準確度、線性度)。表2說明根據本揭露的一可能實施方案之輸入階段的實例開關狀態。未於表2中提及的其他開關在輸入階段中可係關斷的。The 2C-DAC circuit can operate in one of two modes. In the first mode (ie, Mode1), the first set of input switches (S 1_C1 , S 0_C1 ) is used, and in the second mode (ie, Mode2), the second set of input switches (S 1_C2 , S 0_C2 ). The 2C-DAC further includes a set of coupling switches (S C_C1 , S C_C2 ), which are configurable in the input phase to connect the first capacitor (C 1 ) or the second capacitor (C 2 ) One is coupled to the buffer amplifier 210. The selection of the first capacitor coupling switch (S C_C1) or the second capacitor coupling switch (S C_C2 ) can be determined by the mode of the conversion program. For example, in the first mode (ie, Mode1), the first capacitor (C 1 ) may be charged in the input phase, and the second capacitor (C 2 ) may be coupled to the buffer amplifier 210 in the input phase. In the second mode (ie, Mode 2 ), the second capacitor (C 2) can be charged in the input phase, and the first capacitor (C 1 ) can be coupled to the buffer amplifier 210 in the input phase. Switching in this manner alternates between charging/discharging during the input phase and the capacitor coupled to the buffer amplifier 210 during the input phase. By alternately coupling in this way, the effect of capacitor mismatch can be reduced, and the efficiency of DAC conversion can be increased (for example, accuracy, linearity). Table 2 illustrates an example switch state of the input stage according to a possible implementation of the present disclosure. Other switches not mentioned in Table 2 can be turned off during the input phase.

surface 22 :輸入階段的實例開關狀態: Instance switch state of the input stage   To bi=1, MODE 1bi=1, MODE 1 bi=0, MODE1bi=0, MODE1 bi=1, MODE2bi=1, MODE2 bi=0, MODE2bi=0, MODE2 S1_C1 S 1_C1 導通Conduction 關斷Turn off 關斷Turn off 關斷Turn off S0_C1 S 0_C1 關斷Turn off 導通Conduction 關斷Turn off 關斷Turn off S1_C2 S 1_C2 關斷Turn off 關斷Turn off 導通Conduction 關斷Turn off S0_C2 S 0_C2 關斷Turn off 關斷Turn off 關斷Turn off 導通Conduction SC_C1 S C_C1 關斷Turn off 關斷Turn off 導通Conduction 導通Conduction SC_C2 S C_C2 導通Conduction 導通Conduction 關斷Turn off 關斷Turn off

2C-DAC進一步包括平均開關(亦即,重分布開關)。在第一電容器(C1 )或第二電容器(C2 )的其中一者在輸入階段期間充電/放電後,平均階段可開始。在平均階段中,可導通平均開關SAVG ,而可將輸入開關關斷。平均開關可與模式無關地用於平均階段。當平均開關SAVG 導通時 第一電容器(C1 )及第二電容器(C2 )中的電荷可等化至平均值。因此,各電容器上的電壓在平均階段結束時可實質相同(例如,相等)。The 2C-DAC further includes an averaging switch (ie, a redistribution switch). After one of the first capacitor (C 1 ) or the second capacitor (C 2 ) is charged/discharged during the input phase, the averaging phase can start. In the averaging phase, the averaging switch S AVG can be turned on, and the input switch can be turned off. The averaging switch can be used in the averaging phase regardless of the mode. When the average switch S AVG is turned on , the charges in the first capacitor (C 1 ) and the second capacitor (C 2 ) can be equalized to an average value. Therefore, the voltage on each capacitor can be substantially the same (for example, equal) at the end of the averaging phase.

該組耦接開關(SC_C1 , SC_C2 )在平均階段中可組態,以將第一電容器(C1 )及第二電容器(C2 )二者耦接至緩衝放大器。例如,在第一模式(亦即,Mode1)中,第一電容器(C1 )可在輸入階段中充電,而第一電容器(C1 )及第二電容器(C2 )可在平均階段中耦接在一起並耦接至緩衝放大器。在第二模式(亦即,Mode2)中,第二電容器(C2 )可在輸入階段中充電,而第一電容器(C1 )及第二電容器(C2 )可在平均階段中耦接在一起並耦接至緩衝放大器。以此方式切換使在輸入階段期間充電/放電的電容器交替並在平均階段期間將二個電容器耦接至緩衝放大器。藉由以此方式切換,可降低電容器失配的效應,並可增加DAC轉換的效能(例如,準確度、線性度)。表3說明根據本揭露的一可能實施方案之平均階段的實例開關狀態。未於表3中提及的其他開關在平均階段中可係關斷的。The set of coupling switches (S C_C1 , S C_C2 ) can be configured in the averaging phase to couple both the first capacitor (C 1 ) and the second capacitor (C 2 ) to the buffer amplifier. For example, in the first mode (ie, Mode1), the first capacitor (C 1 ) can be charged in the input phase, and the first capacitor (C 1 ) and the second capacitor (C 2 ) can be coupled in the average phase Connected together and coupled to the buffer amplifier. In the second mode (ie Mode2), the second capacitor (C 2 ) can be charged in the input phase, and the first capacitor (C 1 ) and the second capacitor (C 2 ) can be coupled in the averaging phase Together and coupled to the buffer amplifier. Switching in this way alternates the capacitors charged/discharged during the input phase and couples the two capacitors to the buffer amplifier during the averaging phase. By switching in this way, the effect of capacitor mismatch can be reduced, and the efficiency of DAC conversion can be increased (for example, accuracy, linearity). Table 3 illustrates an example switch state of the average phase according to a possible implementation of the present disclosure. Other switches not mentioned in Table 3 can be turned off during the average phase.

surface 33 :平均階段的實例開關狀態: Instance switch state of the average phase   To MODE 1MODE 1 MODE2MODE2 SAVG S AVG 導通Conduction 導通Conduction SC_C1 S C_C1 導通Conduction 導通Conduction SC_C2 S C_C2 導通Conduction 導通Conduction

2C-DAC可進一步包括實施為運算放大器210(亦即,opamp)的緩衝放大器110。運算放大器210可針對單一增益組態,使得在輸出階段中,輸出電壓(VO )可大約等於在電荷已在第一電容器與第二電容器之間重分布之後的平均電壓。運算放大器的輸出電壓(VO )可係在由供應至運算放大器之上軌電壓及下軌電壓所判定之範圍中的電壓。在一可能實施方案中,運算放大器可針對軌對軌操作組態,使得輸出電壓(VO )可在從接地電壓至參考電壓(VREF )的範圍中。The 2C-DAC may further include a buffer amplifier 110 implemented as an operational amplifier 210 (ie, opamp). The operational amplifier 210 may be configured for a single gain, so that in the output phase, the output voltage (V O ) may be approximately equal to the average voltage after the charge has been redistributed between the first capacitor and the second capacitor. The output voltage (V O ) of the operational amplifier can be a voltage in the range determined by the upper rail voltage and the lower rail voltage supplied to the operational amplifier. In one possible implementation, the operational amplifier can be configured for rail-to-rail operation so that the output voltage (V O ) can be in the range from the ground voltage to the reference voltage (V REF ).

藉由在轉換期間交替模式,在輸入階段中充電/放電的電容器可改變。此變化可使負面地影響給定位元之VO 之精密度的電容器失配及非所要電容(例如,切換電容)的效應最小化。因此,所揭示之2C-DAC可能已改善經改善準確度。此經改善準確度對於將輸出電壓範圍次分割成次範圍以代表數位字組中的各可能位元組合的高解析度(高位元深度)應用尤其重要。例如,必須將0至5V的軌對軌輸出電壓範圍分成32個次範圍以表示5位元數位字組,其僅為各可能位元提供大約156mV的次範圍。隨著數位字組之位元的數目增加,需要更高的準確度。所揭示之2C-DAC可提供處理高解析度(N位元字組,N ≥ 10)的準確度。By alternating the pattern during the conversion, the capacitor charged/discharged during the input phase can be changed. This change can minimize the effects of capacitor mismatch and undesired capacitance (for example, switching capacitance) that negatively affect the accuracy of the V O of a given location element. Therefore, the disclosed 2C-DAC may have improved accuracy. This improved accuracy is especially important for high-resolution (high-bit depth) applications where the output voltage range is sub-divided into sub-ranges to represent each possible bit combination in the digit block. For example, the rail-to-rail output voltage range of 0 to 5V must be divided into 32 sub-ranges to represent 5-bit digit blocks, which only provides a sub-range of approximately 156 mV for each possible bit. As the number of bits in a digit block increases, higher accuracy is required. The disclosed 2C-DAC can provide high-resolution processing (N-byte characters, N ≥ 10) accuracy.

模式選擇可基於數位字組之各位元的模式狀況。例如,模式狀況可係數位字組中之各位元的二個可能模式狀況的一者。模式狀況係規則,諸如表示在以下方程式中的規則。

Figure 02_image001
(1)
Figure 02_image003
(2)The mode selection can be based on the mode status of each bit of the digit word group. For example, the mode condition can be one of the two possible mode conditions for each bit in the bit block. The mode status is a rule, such as the rule expressed in the following equation.
Figure 02_image001
(1)
Figure 02_image003
(2)

模式狀況可基於數位字組中的位元位置。例如,LSB (i=0)可具有第一模式狀況,次一較高有效位元(亦即,i=1)可具有第二模式狀況,次一較高有效位元(亦即,i=2)可具有第一模式狀況,依此類推直到MSB為止。因此,隨著將位元循序地時控至DAC中,模式狀況可在第一模式狀況(亦即,mode-condition_1)與第二模式狀況(亦即,mode_condition_2)之間變化(例如,交替)。The mode status can be based on the bit position in the digit word group. For example, LSB (i=0) may have the first mode status, the next higher significant bit (i.e., i=1) may have the second mode status, and the next higher significant bit (i.e., i= 2) It can have the first mode status, and so on until the MSB. Therefore, as the bits are sequentially timed into the DAC, the mode condition may change (for example, alternate) between the first mode condition (ie, mode-condition_1) and the second mode condition (ie, mode_condition_2) .

圖3係根據本揭露的一實例實施方案之針對5位元二進位字組(亦即,數位字組)的各可能位元組合之可能模式狀況及模式的表。各可能數位字組具有基於(i)各位元位置之模式狀況及(ii)各位元位置之位元值的獨特模式組合。對於數位字組00000,因為模式狀況對各位元位置交替,而各位元位置的位元值不交替,用於從LSB至MSB之各位元的模式交替。同樣地,對於數位字組11111,因為模式狀況對各位元位置交替,而各位元位置的位元值不交替,用於從LSB至MSB之各位元的模式交替。用於數位字組00000及11111的模式係互補的。對於數位字組01010,因為模式狀況對各位元位置交替且位元值亦對各位元位置交替,用於從LSB至MSB之各位元的模式相同(亦即,Mode1)。同樣地,對於數位字組10101,因為模式狀況對各位元位置交替且位元值亦對各位置交替,用於從LSB至MSB之各位元的模式相同(亦即,Mode2)。只要模式狀況對各位元位置交替(亦即,在該表的水平方向上),何模式狀況用於00000字組的LSB的選擇可係第一模式狀況或第二模式狀況中的其中一者。FIG. 3 is a table of possible mode conditions and modes for each possible bit combination of a 5-bit binary block (ie, a digital block) according to an example implementation of the present disclosure. Each possible digit word group has a unique pattern combination based on (i) the mode status of each bit position and (ii) the bit value of each bit position. For the digit word group 00000, the bit positions are alternated due to the mode status, but the bit values of the bit positions are not alternated, which is used to alternate the mode of each bit from LSB to MSB. Similarly, for the digit word group 11111, the bit positions of the bit positions are alternated due to the mode status, but the bit values of the bit positions are not alternated, which is used for the mode of the bit positions from LSB to MSB. The modes used for the digit groups 00000 and 11111 are complementary. For the digit word group 01010, because the mode status alternates with bit positions and bit values also alternate with bit positions, the mode used for each bit from LSB to MSB is the same (that is, Mode1). Similarly, for the digit block 10101, because the mode status alternates for each bit position and the bit value also alternates for each position, the mode used for each bit from LSB to MSB is the same (ie, Mode2). As long as the mode status alternates with the bit position (that is, in the horizontal direction of the table), the selection of which mode status is used for the LSB of the 00000 word group can be one of the first mode status or the second mode status.

2C-DAC包括經組態以循序饋送數位字組的位元(例如,依時脈饋送位元)至2C-DAC中、基於位元的有效性(亦即,其在循序饋送位元中的位元位置)來選擇模式狀況、及基於施加至經選擇模式狀況之位元的值來選擇模式(亦即,Mode1,Mode2)的電路系統(未圖示)。例如,2C-DAC可包括基於顯示於圖3中的表啟動第一模式(Mode1)或第二模式(Mode2)的邏輯電路系統。替代地,當大於或小於數位字組中的5個位元時,2C-DAC可包括基於與圖3所示之表類似的表啟動第一模式(Mode1)或第二模式(Mode2)的邏輯電路系統。2C-DAC includes bits that are configured to sequentially feed digital blocks (for example, feed bits according to the clock) into 2C-DAC, based on the validity of the bits (that is, their Bit position) to select the mode status, and to select the mode (ie, Mode1, Mode2) based on the value of the bit applied to the selected mode status (not shown). For example, the 2C-DAC may include a logic circuit system that activates the first mode (Mode1) or the second mode (Mode2) based on the table shown in FIG. 3. Alternatively, when greater than or less than 5 bits in the digit block, the 2C-DAC may include logic to activate the first mode (Mode1) or the second mode (Mode2) based on a table similar to the table shown in FIG. 3 electrical system.

模式狀況可使用位元選擇信號(亦即,Bit_Select)實施。位元選擇信號可基於位元的有效性交替。例如,位元選擇信號對LSB位元(Data[0])可係零、對次一有效位元(Data[1])可係一、對次一有效位元(Data[2])可係零、依此類推至MSB為止。模式可藉由比較位元的值(亦即,Bit_Vale)與位元選擇信號而選擇。例如,當位元選擇信號係0且位元的值係0時,可選擇Mode1,且當位元選擇信號係0且位元的值係1時,可選擇Mode 2。同樣地,當位元選擇信號係1且位元的值係0時,可選擇Mode 2,且當位元選擇信號係1且位元的值係1時,可選擇Mode1。The mode status can be implemented using a bit selection signal (ie, Bit_Select). The bit selection signal can be alternated based on the validity of the bit. For example, the bit selection signal can be zero for the LSB bit (Data[0]), one for the next significant bit (Data[1]), and one for the next significant bit (Data[2]). Zero, and so on until the MSB. The mode can be selected by comparing the value of the bit (ie, Bit_Vale) with the bit selection signal. For example, when the bit selection signal is 0 and the value of the bit is 0, Mode 1 can be selected, and when the bit selection signal is 0 and the value of the bit is 1, Mode 2 can be selected. Similarly, when the bit selection signal is 1 and the value of the bit is 0, Mode 2 can be selected, and when the bit selection signal is 1 and the value of the bit is 1, Mode 1 can be selected.

圖4圖形地繪示基於顯示於圖3中之可能模式狀況之表的模式狀況選擇及模式判定的程序。程序基於實例5位元數位字組,01100。程序以5位元數位字組的LSB開始,01100。從圖3所示的表,用於LSB (Data[0])的模式狀況係第一模式狀況(Bit_Select = 0)。因此,當將LSB的位元值(b0 = 0)施加至模式狀況時,選擇Mode1。換言之,位元的位元選擇信號(亦即,0)匹配位元值(亦即,0),所以選擇Mode1。結果,圖2所示的2C-DAC可使用指定給Mode1的開關繼續通過輸入、平均、及輸出階段。FIG. 4 graphically illustrates the process of mode condition selection and mode determination based on the table of possible mode conditions shown in FIG. 3. The program is based on the example 5-bit number block, 01100. The program starts with the LSB of the 5-bit digit block, 01100. From the table shown in FIG. 3, the mode status for LSB (Data[0]) is the first mode status (Bit_Select = 0). Therefore, when the bit value of the LSB (b 0 = 0) is applied to the mode condition, Mode1 is selected. In other words, the bit selection signal of the bit (that is, 0) matches the bit value (that is, 0), so Mode1 is selected. As a result, the 2C-DAC shown in Figure 2 can use the switch assigned to Mode1 to continue through the input, average, and output stages.

程序以5位元數位字組的次一有效位元繼續,01100。從圖3所示的表,用於次一有效位元(Data[1])的模式狀況係第二模式狀況(Bit_Select = 1)。因此,當將次一有效位元的位元值(b1 = 0)施加至模式狀況時,選擇Mode2。換言之,位元的位元選擇信號(亦即,1)不匹配位元值(亦即,0),所以選擇Mode2。結果,圖2所示的2C-DAC可使用指定給Mode2的開關繼續通過輸入、平均、及輸出階段。The program continues with the next significant bit of the 5-bit digit block, 01100. From the table shown in FIG. 3, the mode status for the next valid bit (Data[1]) is the second mode status (Bit_Select = 1). Therefore, when the bit value (b 1 = 0) of the next valid bit is applied to the mode condition, Mode2 is selected. In other words, the bit selection signal of the bit (that is, 1) does not match the bit value (that is, 0), so Mode2 is selected. As a result, the 2C-DAC shown in Figure 2 can continue through the input, averaging, and output stages using the switch assigned to Mode2.

程序以5位元數位字組的次一有效位元繼續,01100。從圖3所示的表,用於次一有效位元(Data[2])的模式狀況係第一模式狀況(Bit_Select = 0))。因此,當將次一有效位元的位元值(b2 = 1)施加至模式狀況時,選擇Mode2。換言之,位元選擇信號(亦即,0)不匹配位元值(亦即,1),所以選擇Mode2。結果,圖2所示的2C-DAC可使用指定給Mode2的開關繼續通過輸入、平均、及輸出階段。The program continues with the next significant bit of the 5-bit digit block, 01100. From the table shown in FIG. 3, the mode status for the next valid bit (Data[2]) is the first mode status (Bit_Select = 0)). Therefore, when the bit value (b 2 = 1) of the next significant bit is applied to the mode condition, Mode2 is selected. In other words, the bit selection signal (that is, 0) does not match the bit value (that is, 1), so Mode2 is selected. As a result, the 2C-DAC shown in Figure 2 can continue through the input, averaging, and output stages using the switch assigned to Mode2.

程序以5位元數位字組的次一有效位元繼續,01100。從圖3所示的表,用於次一有效位元(Data[3])的模式狀況係第二模式狀況(Bit_Select = 1)。因此,當將次一有效位元的位元值(b3 = 1)施加至模式狀況時,選擇Mode1。換言之,位元選擇信號(亦即,1)匹配位元值(亦即,1),所以選擇Mode1。結果,圖2所示的2C-DAC可使用指定給Mode1的開關繼續通過輸入、平均、及輸出階段。The program continues with the next significant bit of the 5-bit digit block, 01100. From the table shown in FIG. 3, the mode status for the next valid bit (Data[3]) is the second mode status (Bit_Select = 1). Therefore, when the bit value of the next significant bit (b 3 = 1) is applied to the mode condition, Mode1 is selected. In other words, the bit selection signal (ie, 1) matches the bit value (ie, 1), so Mode1 is selected. As a result, the 2C-DAC shown in Figure 2 can use the switch assigned to Mode1 to continue through the input, average, and output stages.

程序以5位元數位字組的MSB結束,01100。從圖3所示的表,用於次一有效位元(Data[4])的模式狀況係第一模式狀況(Bit_Select = 0)。因此,當將MSB的位元值(b4 = 0)施加至模式狀況時,選擇Mode1。換言之,位元選擇信號(亦即,0)匹配位元值(亦即,0),所以選擇Mode 1。結果,圖2所示的2C-DAC可使用指定給Mode1的開關繼續通過輸入、平均、及輸出階段。The program ends with the MSB of the 5-bit digit block, 01100. From the table shown in FIG. 3, the mode status for the next valid bit (Data[4]) is the first mode status (Bit_Select = 0). Therefore, when the bit value of the MSB (b 4 = 0) is applied to the mode condition, Mode1 is selected. In other words, the bit selection signal (ie, 0) matches the bit value (ie, 0), so Mode 1 is selected. As a result, the 2C-DAC shown in Figure 2 can use the switch assigned to Mode1 to continue through the input, average, and output stages.

如可觀察到的,程序在循序位元值不變化時變化模式。此可預防在序列中對相同的電容器重複充電或在序列中對相同的電容器重複放電。預防在位元序列中對相同電容器重複充電/放電可預防重複使用相同開關,其可預止由開關之電容所導致的充電/放電誤差。另一方面,至少由於使用不同開關對電容器充電及放電的原因,當循序位元值變化時,程序不改變模式。藉由預防對相同電容器四重複充電/放電(亦即,重複使用相同開關),可增加DAC轉換的效能(例如,準確度、線性度)。As can be observed, the program changes mode when the sequential bit value does not change. This prevents repeated charging of the same capacitor in the sequence or repeated discharge of the same capacitor in the sequence. Preventing repeated charging/discharging of the same capacitor in the bit sequence can prevent repeated use of the same switch, which can prevent charging/discharging errors caused by the capacitance of the switch. On the other hand, at least due to the use of different switches to charge and discharge the capacitor, when the sequential bit value changes, the program does not change the mode. By preventing repeated charging/discharging of the same capacitor (that is, repeated use of the same switch), the efficiency of DAC conversion (for example, accuracy, linearity) can be increased.

在程序結束時,在圖2所示之緩衝器之輸出處的輸出電壓(VO )可在對應於數位數目01100(亦即,12)的電壓。對於0 V至1 V的2C-DAC輸出電壓範圍。在所描述之程序結束時的輸出電壓(VO )可係12/31 V。顯示於圖4中的程序在二進位字組上操作並可對額外的二進位字組重複。例如,二進位字組可依序輸入至2C-DAC,以產生時變輸出電壓。輸出電壓可以其改變的速率可能取決於程序(諸如在圖4中所示)可以其實行的速度。因此,較高解析度(亦即,較長數位字組)可導致比較低解析度(亦即,較短數位字組)更慢的轉換。At the end of the procedure, the output voltage (V O ) at the output of the buffer shown in FIG. 2 can be at a voltage corresponding to the number of digits 01100 (ie, 12). For a 2C-DAC output voltage range of 0 V to 1 V. The output voltage (V O ) at the end of the described procedure can be 12/31 V. The program shown in Figure 4 operates on binary blocks and can be repeated for additional binary blocks. For example, binary blocks can be sequentially input to the 2C-DAC to generate a time-varying output voltage. The rate at which the output voltage can change may depend on the speed at which the program (such as shown in Figure 4) can be executed. Therefore, a higher resolution (ie, a longer digit block) may result in a slower conversion than a lower resolution (ie, a shorter digit block).

圖5係根據本揭露的一可能實施方案之包括重設及輸出電路系統之雙電容器DAC(亦即,2C-DAC)電路的示意圖。2C-DAC電路500類似於圖2的實施方案,其中在運算放大器210的輸出處增加取樣及保持電路510。取樣及保持電路510包括耦接至輸出開關(SOUT )的取樣及保持電容器(CSH )。當輸出開關導通時,取樣及保持電容器(CSH )經組態以充電至運算放大器210的輸出電壓(VO )。將取樣及保持電容器(CSH )耦接至DAC的輸出(亦即,OUTDAC ),使得即使將輸出開關(SOUT )關斷時,可藉由取樣及保持電容器(CSH )維持在DAC之輸出(亦即,OUTDAC )處的輸出電壓。FIG. 5 is a schematic diagram of a two-capacitor DAC (ie, 2C-DAC) circuit including a reset and output circuit system according to a possible implementation of the present disclosure. The 2C-DAC circuit 500 is similar to the embodiment of FIG. 2, in which a sample and hold circuit 510 is added at the output of the operational amplifier 210. The sample and hold circuit 510 includes a sample and hold capacitor (C SH ) coupled to the output switch (S OUT ). When the output switch is turned on, the sample and hold capacitor (C SH ) is configured to charge to the output voltage (V O ) of the operational amplifier 210. The sample and hold capacitor (C SH ) is coupled to the output of the DAC (ie, OUT DAC ), so that even when the output switch (S OUT ) is turned off, the sample and hold capacitor (C SH ) can be used to maintain the DAC The output voltage at the output (that is, OUT DAC ).

2C-DAC電路500進一步包括耦接至電路之各電容器的重設開關。第一重設開關(SRES_C1 )並聯耦接在第一電容器(C1 )的正端子與接地之間。第一重設開關在導通狀況下係可組態的,以將第一電容器(C1 )放電。第二重設開關(SRES_C2 )並聯耦接在第二電容器(C2 )的正端子與接地之間。第二重設開關在導通狀況下係可組態的,以將第二電容器(C2 )放電。取樣及保持重設開關(SRES_CSH )並聯耦接在取樣及保持電容器(CSH )的正端子與接地之間。取樣及保持重設開關(SRES_CSH )在導通狀況下係可組態的,以將取樣及保持電容器(CSH )放電。重設開關可一起或獨立地控制。例如,重設開關可在數位字組結束時導通,所以沒有殘留電荷會改變次一數位字組的計算。The 2C-DAC circuit 500 further includes a reset switch coupled to each capacitor of the circuit. The first reset switch (S RES_C1 ) is coupled in parallel between the positive terminal of the first capacitor (C 1 ) and the ground. The first reset switch is configurable in the on-state to discharge the first capacitor (C 1 ). The second reset switch (S RES_C2 ) is coupled in parallel between the positive terminal of the second capacitor (C 2 ) and the ground. The second reset switch is configurable in the on-state to discharge the second capacitor (C 2 ). The sample and hold reset switch (S RES_CSH ) is coupled in parallel between the positive terminal of the sample and hold capacitor (C SH) and ground. The sample and hold reset switch (S RES_CSH ) is configurable in the on-state to discharge the sample and hold capacitor (C SH ). The reset switches can be controlled together or independently. For example, the reset switch can be turned on at the end of the digit block, so no residual charge will change the calculation of the next digit block.

2C-DAC電路500的運算放大器210可具有可影響(例如,降低)數位轉類比轉換之準確度的輸入電容(CIN )。例如,運算放大器的輸入級可包括電晶體差動對。差動對中的一或多個電晶體可具有與控制端子(例如,閘極端子)關聯的電容。在此實例中,運算放大器的輸入電容(CIN )可係與閘極端子關聯的電容(亦即,CGS )。若運算放大器的輸入電容使用耦接自電容器(C1 , C2 )之電荷的一部分充電,則VO 可具有與用以對運算放大器之輸入電容充電之電荷的此部分關聯的誤差。因為輸入電容可能改變,此部分的校準可係困難或不可能的。 The operational amplifier 210 of the 2C-DAC circuit 500 may have an input capacitance (C IN ) that can affect (for example, reduce) the accuracy of the digital-to-analog conversion. For example, the input stage of an operational amplifier may include a differential pair of transistors. One or more transistors in the differential pair may have a capacitance associated with the control terminal (eg, gate terminal). In this example, the input capacitance (C IN ) of the operational amplifier may be the capacitance associated with the gate terminal (ie, C GS ). If the input capacitance of the operational amplifier is charged using a portion of the charge coupled from the capacitors (C 1 , C 2 ), V O may have an error associated with this portion of the charge used to charge the input capacitance of the operational amplifier. Because the input capacitance may change, calibration of this part may be difficult or impossible.

圖6係經組態為緩衝放大器之運算放大器之輸入電容的圖表。該圖表包括繪示包括具有輸入電容CIN 之運算放大器210的緩衝放大器的插圖610。如圖表所示,輸入電容可以複雜的方式(例如,非線性、非單調等)改變平均輸入電壓(VAVG )。如先前所述,在轉換期間,平均電壓可改變(例如,見圖1B)。因此,由輸入電容導致的轉換誤差可對各可能位元組合改變。此可導致具有難以預測之誤差的二進位字組的轉換。所揭示之雙電容器DAC利用方法及電路系統以減輕緩衝放大器輸入電容及其變異的效應,以改善效能(例如,線性度、單調度、準確度)。Figure 6 is a graph of the input capacitance of an operational amplifier configured as a buffer amplifier. The diagram includes an illustration 610 showing a buffer amplifier including an operational amplifier 210 having an input capacitance C IN. As shown in the chart, the input capacitance can change the average input voltage (V AVG ) in complex ways (for example, non-linear, non-monotonic, etc.). As mentioned earlier, during the conversion, the average voltage can change (see Figure 1B, for example). Therefore, the conversion error caused by the input capacitance can be changed for each possible bit combination. This can lead to conversion of binary blocks with unpredictable errors. The disclosed double-capacitor DAC utilization method and circuit system reduce the effect of buffer amplifier input capacitance and its variation to improve performance (for example, linearity, single scheduling, accuracy).

圖7係根據本揭露的一可能實施方案之包括電容補償電路之雙電容器DAC(亦即,2C-DAC)電路的示意圖。2C-DAC電路700類似於圖5的2C-DAC實施方案,其中增加電容補償電路710。電容補償電路710包括具有與運算放大器720之輸入電容器(CIN )類似之電容(例如,等效電容)的複製輸入電容器(CIN_REP )(亦即,複製輸入電容)。例如,輸入電容器(CIN )及複製輸入電容器(CIN_REP )可具有與平均電壓相同的變異(例如,見圖6)。FIG. 7 is a schematic diagram of a double-capacitor DAC (ie, 2C-DAC) circuit including a capacitance compensation circuit according to a possible implementation of the present disclosure. The 2C-DAC circuit 700 is similar to the 2C-DAC implementation of FIG. 5, in which a capacitance compensation circuit 710 is added. The capacitance compensation circuit 710 includes a duplicate input capacitor (C IN_REP ) (ie, duplicate input capacitance) having a capacitance (for example, equivalent capacitance) similar to the input capacitor (C IN) of the operational amplifier 720. For example, the input capacitor (C IN ) and the duplicate input capacitor (C IN_REP ) may have the same variation as the average voltage (for example, see Figure 6).

電容補償電路710可進一步包括一對補償輸入開關(S1 , S0 )。補償輸入開關可經組態以根據控制第一組輸入開關(S1_C1 , S0_C1 )或第二組輸入開關(S1_C2 , S0_C2 )的資料操作。例如,當S1_C1 或S1_C2 的其中一者導通時,可將第一補償輸入開關(S1_CINREP )導通,且當S0_C1 或S0_C2 的其中一者導通時,可將第二補償輸入開關(S0_CINREP )導通。當第一補償輸入開關(S1_CINREP )導通時,第二補償輸入開關(S0_CINREP )可係關斷的,且反之亦然。換言之,在Mode1或Mode2之其中一者的輸入階段中,當位元值係1時,將第一補償輸入開關(S1_CINREP )導通,或當位元值係零時,將第二補償輸入開關(S2_CINREP )導通。以此方式,複製輸入電容器(CIN_REP )可在輸入階段中充電或放電。The capacitance compensation circuit 710 may further include a pair of compensation input switches (S 1 , S 0 ). The compensation input switch can be configured to operate according to the data for controlling the first group of input switches (S 1_C1 , S 0_C1 ) or the second group of input switches (S 1_C2 , S 0_C2 ). For example, when one of S 1_C1 or S 1_C2 is turned on, the first compensation input switch (S 1_CINREP ) can be turned on, and when one of S 0_C1 or S 0_C2 is turned on, the second compensation input switch ( S 0_CINREP ) is turned on. When the first compensation input switch (S 1_CINREP ) is turned on, the second compensation input switch (S 0_CINREP ) can be turned off, and vice versa. In other words, in the input phase of either Mode1 or Mode2, when the bit value is 1, the first compensation input switch (S 1_CINREP ) is turned on, or when the bit value is zero, the second compensation input switch is turned on (S 2_CINREP ) is turned on. In this way, the duplicate input capacitor (C IN_REP ) can be charged or discharged during the input phase.

電容補償電路710可進一步包括經組態以在平均階段期間並根據模式操作的第一補償開關(SCOMP_C1 )及第二補償開關(SCOMP_C2 )。因此,在將平均開關(SAVG )及SC_C1 或SC_C2 導通的同時,可將SCOMP_1 或SCOMP_2 的其中一者導通。例如,在Mode1中的轉換程序的平均階段中,可將第一補償開關(SCOMP_1 )導通以將儲存在CIN_REP 中的電荷耦接至2C-DAC電路700的NODE1。在Mode2中的轉換程序的平均階段中,可將第二補償開關(SCOMP_2 )導通以將儲存在CIN_REP 中的電荷耦接至2C-DAC電路700的NODE2。轉換程序的平均階段因而具有二個態樣。第一態樣(亦即,轉換平均)包括在C1 與C2 之間重分布電荷,且第二態樣(亦即,複製平均)包括在CIN_REP 與CIN 之間重分布電荷。The capacitance compensation circuit 710 may further include a first compensation switch (S COMP_C1 ) and a second compensation switch (S COMP_C2 ) configured to operate during the averaging phase and according to the mode. Therefore, while the average switch (S AVG ) and S C_C1 or S C_C2 are turned on, one of S COMP_1 or S COMP_2 can be turned on. For example, in the averaging phase of the conversion process in Mode1, the first compensation switch (S COMP_1 ) can be turned on to couple the charge stored in C IN_REP to NODE1 of the 2C-DAC circuit 700. In the average phase of the conversion procedure in Mode2, the second compensation switch (S COMP_2 ) can be turned on to couple the charge stored in C IN_REP to NODE2 of the 2C-DAC circuit 700. The average phase of the conversion process therefore has two aspects. The first aspect (ie, conversion average) includes redistribution of charges between C 1 and C 2 , and the second aspect (ie, replication average) includes redistribution of charges between C IN_REP and C IN.

在轉換程序的平均階段(亦即,複製平均)中,CIN_REP 上的電荷可以與可將C1 (C2 )上的電荷與C2 (C1 )重分布相同的方式與輸入電容CIN 重分布。因此,加入電荷的一部分以補償由輸入電容消耗的電荷。複製輸入電容器(CIN_REP )及輸入電容器(CIN )具有相同的平均電壓及相同的平均電容。在一可能實施方案中,複製輸入電容器係運算放大器720的一部分的複製(未圖示)。例如,電容補償電路710可包括經組態以實質匹配耦接至2C-DAC之輸出之運算放大器720之電晶體的電晶體。表4說明根據本揭露的一可能實施方案之平均階段的實例開關狀態。未於表4中提及的其他開關在平均階段中可係關斷的。In the averaging phase of the conversion process (ie, copy averaging), the charge on C IN_REP can be redistributed to C 1 (C 2 ) and C 2 (C 1 ) in the same way as the input capacitance C IN Redistribution. Therefore, a part of the charge is added to compensate for the charge consumed by the input capacitor. The duplicate input capacitor (C IN_REP ) and the input capacitor (C IN ) have the same average voltage and the same average capacitance. In one possible implementation, the copy input capacitor is a copy of a part of the operational amplifier 720 (not shown). For example, the capacitance compensation circuit 710 may include a transistor configured to substantially match the transistor of the operational amplifier 720 coupled to the output of the 2C-DAC. Table 4 illustrates an example switch state of the average phase according to a possible implementation of the present disclosure. Other switches not mentioned in Table 4 can be turned off during the average phase.

surface 44 :平均階段的實例開關狀態: Instance switch state of the average phase   To MODE 1MODE 1 MODE2MODE2 SAVG S AVG 導通Conduction 導通Conduction SC_C1 S C_C1 導通Conduction 導通Conduction SC_C2 S C_C2 導通Conduction 導通Conduction SCOMP_1 S COMP_1 導通Conduction 關斷Turn off SCOMP_2 S COMP_2 關斷Turn off 導通Conduction

圖8係根據本揭露的一可能實施方案之用於數位轉類比轉換之方法的流程圖。方法800包括接收810包括二進位位元(亦即,數位位元、位元)的二進位字組(B)(亦即,數位字組)。例如,接收二進位字組可包括依序接收從最低有效位元(LSB)至最高有效位元(MSB)的位元。因此,方法包括將LSB設定820成二進位字組中的動作位元。方法進一步包括基於二進位字組中的動作位元選擇830模式狀況(例如,0=Mode1、1=Mode2)。方法接著包括基於動作位元的值(例如,0、1)及經選擇模式狀況判定835模式。方法接著進入轉換程序的輸入階段。FIG. 8 is a flowchart of a method for digital to analog conversion according to a possible implementation of the present disclosure. The method 800 includes receiving 810 a binary word group (B) (that is, a digit word group) including binary bits (ie, digit bit, bit). For example, receiving a binary word group may include sequentially receiving bits from the least significant bit (LSB) to the most significant bit (MSB). Therefore, the method includes setting 820 the LSB to the action bit in the binary block. The method further includes selecting 830 mode status based on the action bit in the binary word group (for example, 0=Mode1, 1=Mode2). The method then includes determining the 835 mode based on the value of the action bit (eg, 0, 1) and the selected mode status. The method then enters the input phase of the conversion program.

轉換器可包括階段及模式控制器以將資料載入至轉換器中、判定用於各位元的模式、及將切換信號輸出至2C-DAC電路中的開關。例如,階段及模式控制器可包括移位暫存器,以循序饋送位元至2C-DAC電路中。階段及模式控制器可進一步包括經組態以判定模式狀況及各位元之模式的邏輯。該邏輯可進一步經組態以基於模式狀況及各位元的模式輸出切換信號。The converter may include stage and mode controllers to load data into the converter, determine the mode for each bit, and output switching signals to switches in the 2C-DAC circuit. For example, the stage and mode controller may include a shift register to sequentially feed bits into the 2C-DAC circuit. The stage and mode controller may further include logic configured to determine the status of the mode and the mode of each bit. The logic can be further configured to output a switching signal based on the mode status and the mode of each bit.

在轉換程序的輸入階段中,方法包括控制一組輸入開關以對電容器充電或放電。在Mode1中,方法包括控制841第一組輸入開關(S0_C1 , S1_C1 )以對第一電容器(C1 )充電/放電(及導通SC_C2 )。在Mode2中,方法包括控制842第二組輸入開關(S0_C2 , S1_C2 )以對第二電容器(C2 )充電/放電(及導通SC_C1 )。再者,在輸入階段中,方法包括控制840一組補償輸入開關(S1_CINREP , S0_CINREP )以對複製輸入電容器(CIN_REP )充電/放電。補償輸入開關的控制可獨立於該模式。例如,當bi=1時,則可將S1_CINREP 導通以對CIN_REP 充電,而當bi=0時,則可將S0_CINREP 導通以將CIN_REP 放電,與所判定的模式無關。在輸入階段後,方法進入轉換程序的平均階段。In the input phase of the conversion procedure, the method includes controlling a set of input switches to charge or discharge the capacitor. In Mode1, the method includes controlling 841 the first set of input switches (S 0_C1 , S 1_C1 ) to charge/discharge the first capacitor (C 1 ) (and turn on S C_C2 ). In Mode2, the method includes controlling 842 the second set of input switches (S 0_C2 , S 1_C2 ) to charge/discharge the second capacitor (C 2 ) (and turn on S C_C1 ). Furthermore, in the input phase, the method includes controlling 840 a set of compensation input switches (S 1_CINREP , S 0_CINREP ) to charge/discharge the copy input capacitor (C IN_REP ). The control of the compensation input switch can be independent of this mode. For example, when bi=1, S 1_CINREP can be turned on to charge C IN_REP , and when bi=0, S 0_CINREP can be turned on to discharge C IN_REP , regardless of the determined mode. After the input phase, the method enters the averaging phase of the conversion process.

在轉換程序的平均階段中,方法包括控制850平均開關(SAVG )以將C1 耦接至C2 以重分布(亦即,平均)電容器之間的電荷(並導通SC_C1 及SC_C2 )。方法進一步包括控制開關以在複製輸入電容(CIN_REP )與緩衝放大器的輸入電容(CIN )之間重分布電荷,以產生經調整平均電壓。在Mode1中,方法包括控制851耦接開關(SC_C1 )及耦接開關(SC_C2 )及補償開關(SCOMP_1 )以將CIN_REP 耦接至CIN 。在Mode2中,方法包括控制852耦接開關(SC_C1 )及耦接開關(SC_C2 )及補償開關(SCOMP_2 )以將CIN_REP 耦接至CINIn the averaging phase of the conversion procedure, the method includes controlling the 850 averaging switch (S AVG ) to couple C 1 to C 2 to redistribute (ie, average) the charge between the capacitors (and turn on SC_C1 and SC_C2 ) . The method further includes controlling the switch to redistribute charge between the replicated input capacitance (C IN_REP ) and the input capacitance of the buffer amplifier (C IN ) to generate an adjusted average voltage. In Mode1, the method includes controlling 851 coupling switch ( SC_C1 ), coupling switch ( SC_C2 ) and compensation switch (S COMP_1 ) to couple C IN_REP to C IN . In Mode2, the method includes controlling 852 the coupling switch (S C_C1 ), the coupling switch (S C_C2 ), and the compensation switch (S COMP_2 ) to couple C IN_REP to C IN .

在平均階段之後,方法可重複輸入階段及平均階段,或基於動作位元的位元位置而進入輸出階段。因此,方法包括檢查860動作位元是否係數位字組的最終位元(例如,MSB)。若動作位元非數位字組的最後位元,則將次一最高有效位元設定870成動作位元,且該程序轉換程序針對新的動作位元重複。若動作位元係數位字組的最後位元,則方法進入輸出階段。After the average phase, the method can repeat the input phase and the average phase, or enter the output phase based on the bit position of the action bit. Therefore, the method includes checking whether the 860 action bit is the final bit of the coefficient bit block (eg, MSB). If the action bit is not the last bit of the digital word group, the next most significant bit is set to 870 as the action bit, and the program conversion process is repeated for the new action bit. If the last bit of the bit-coefficient bit group is actuated, the method enters the output stage.

在轉換程序的輸出階段中,方法包括控制880輸出開關(SOUT )以將緩衝放大器的輸出耦接至DAC的輸出(亦即,OUTDAC )。緩衝放大器的輸出電壓(VO )係在緩衝放大器之輸入處的平均電壓(VAVG )的經緩衝版本。在產生數位字組的輸出之後,可將第一電容器、第二電容器、及複製輸入電容放電,且可接收新的數位字組。在接收新的數位字組之後,可重複上述程序以獲得新數位字組的輸出電壓。In the output stage of the conversion procedure, the method includes controlling the 880 output switch (S OUT ) to couple the output of the buffer amplifier to the output of the DAC (ie, OUT DAC ). The output voltage (V O ) of the buffer amplifier is a buffered version of the average voltage (V AVG) at the input of the buffer amplifier. After the output of the digit word group is generated, the first capacitor, the second capacitor, and the duplicate input capacitor can be discharged, and a new digit word group can be received. After receiving the new digit word group, the above procedure can be repeated to obtain the output voltage of the new digit word group.

圖9係根據本揭露的一實施方案之用於數位轉類比轉換之系統的方塊圖。系統包括可藉由階段及模式控制器901以輸入階段的mode1或mode2版本、平均階段、及輸出階段來組態2C-DAC 910。例如,階段及模式控制器901可包括數位移位暫存器以從最低有效位元至最高有效位元讀取(亦即,時脈輸入)數位字組的位元值。階段及模式控制器901可進一步包括經組態以基於位元的位置及位元的值(例如,見圖3)來判定模式狀況及模式(亦即,mode1、mode2)的邏輯。階段及模式控制器901可輸出耦接至2C-DAC中之開關的切換信號。開關可根據模式(亦即,mode1、mode2)及轉換的階段(亦即,輸入、平均、輸出)來組態。FIG. 9 is a block diagram of a system for digital-to-analog conversion according to an embodiment of the present disclosure. The system includes a 2C-DAC 910 that can be configured with a mode1 or mode2 version of an input phase, an averaging phase, and an output phase through the phase and mode controller 901. For example, the stage and mode controller 901 may include a digital bit shift register to read (ie, clock input) the bit value of the digital block from the least significant bit to the most significant bit. The stage and mode controller 901 may further include logic configured to determine mode conditions and modes (ie, mode1, mode2) based on the position of the bit and the value of the bit (see, for example, FIG. 3). The stage and mode controller 901 can output the switching signal coupled to the switch in the 2C-DAC. The switch can be configured according to the mode (ie, mode1, mode2) and the stage of conversion (ie, input, average, output).

2C-DAC亦可包括平均電路940。平均電路940可包括第一電容器(C1 )及第二電容器(C2 )。平均電路940可藉由切換信號來組態,以在輸入階段期間對第一電容器或第二電容器充電或放電。平均電路940可進一步藉由切換信號來組態,以在平均階段期間將第一電容器及第二電容器耦接在一起以在平均階段期間平均(亦即,重分布)加入的或剩餘的電荷。平均電路940可進一步經組態以在平均階段期間將第一電容器(C1 )(例如,用於mode2)或第二電容器(C2 )(例如,用於mode1)的其中一者耦接至輸出電路950。The 2C-DAC may also include an averaging circuit 940. The averaging circuit 940 may include a first capacitor (C 1 ) and a second capacitor (C 2 ). The averaging circuit 940 can be configured by switching signals to charge or discharge the first capacitor or the second capacitor during the input phase. The averaging circuit 940 may be further configured by switching signals to couple the first capacitor and the second capacitor together during the averaging phase to average (ie, redistribute) the added or remaining charge during the averaging phase. The averaging circuit 940 may be further configured to couple one of the first capacitor (C 1 ) (for example, for mode 2) or the second capacitor (C 2 ) (for example, for mode 1) to Output circuit 950.

2C-DAC進一步包括在輸出階段期間耦接至2C-DAC 910之輸出的輸出電路950。輸出電路950可包括緩衝放大器,以緩衝從平均電路940接收的平均電壓,以產生2C-DAC的輸出電壓(VO )。輸出電路可具有可預防一部分的電荷(亦即,電壓)到達輸出的輸入電容(CIN ),其中該部分係基於在輸入處的平均電壓。The 2C-DAC further includes an output circuit 950 coupled to the output of the 2C-DAC 910 during the output phase. The output circuit 950 may include a buffer amplifier to buffer the average voltage received from the averaging circuit 940 to generate the output voltage (V O ) of the 2C-DAC. The output circuit may have an input capacitance (C IN ) that prevents a portion of the charge (ie, voltage) from reaching the output, where this portion is based on the average voltage at the input.

為補償CIN 在輸出電壓(VO )上的效應,2C-DAC 910包括電容補償電路930。電容補償電路包括複製輸入電容(CIN_REP )。複製輸入電容可係具有與輸入電壓相同之變異的緩衝放大器之輸入電容(CIN )的複製(亦即,複本)。電容補償電路930可藉由切換信號來組態,以在輸入階段期間對複製輸入電容充電或放電。電容補償電路可進一步經組態以在平均階段期間將複製輸入電容耦接至輸入電容,以在平均階段期間平均加入的或剩餘的電荷,使得輸入電容在輸出電壓(VO )上的效應獲得補償。To compensate for the effect of C IN on the output voltage (V O ), the 2C-DAC 910 includes a capacitance compensation circuit 930. The capacitance compensation circuit includes a duplicate input capacitance (C IN_REP ). The duplicate input capacitance may be a duplicate (ie, a copy) of the input capacitance (C IN ) of the buffer amplifier with the same variation as the input voltage. The capacitance compensation circuit 930 can be configured by switching signals to charge or discharge the duplicate input capacitance during the input phase. The capacitance compensation circuit can be further configured to couple the replicated input capacitor to the input capacitor during the averaging phase to average the added or remaining charge during the averaging phase, so that the effect of the input capacitor on the output voltage (V O ) is obtained compensate.

所揭示之2C-DAC電路可提供超越數位轉類比轉換電路的優點。例如,因為其僅需要二個電容器以用於轉換程序,其可係低功率的。至少因為其對否則可影響轉換程序之準確度的切換電容、電容器失配、及輸入電容的補償,其可係高精密度的。其可在矽積體電路中佔據小面積。例如,使用4微微法拉(pF)或8 pF電容器及開關的2C-DAC電路可能需要50微米(µm)乘70 µm的面積。由於所需的客製化佈局僅針對二個電容器、開關、緩衝放大器、及輸出電容器,預期將設計時間最小化。設計的其餘部分係在數位域中。雖然轉換程序具有與串列地處理各位元關聯的延遲,此延遲可適用於不需要速度且可能需要高精密度之軌對軌轉換的應用。例如,生物醫學應用可能具有緩慢變化的狀況,其可由所揭示的2C-DAC處理。The disclosed 2C-DAC circuit can provide advantages over digital-to-analog conversion circuits. For example, because it only needs two capacitors for the conversion process, it can be low power. At least because it compensates for switching capacitance, capacitor mismatch, and input capacitance that would otherwise affect the accuracy of the conversion process, it can be highly precise. It can occupy a small area in a silicon integrated circuit. For example, a 2C-DAC circuit using 4 picofarad (pF) or 8 pF capacitors and switches may require an area of 50 microns (µm) by 70 µm. Since the required customized layout is only for the two capacitors, switch, buffer amplifier, and output capacitor, it is expected to minimize the design time. The rest of the design is in the digital domain. Although the conversion process has a delay associated with serially processing each bit, this delay may be suitable for applications that do not require speed and may require high-precision rail-to-rail conversion. For example, biomedical applications may have slowly changing conditions, which can be handled by the disclosed 2C-DAC.

在說明書及/或圖式中,已揭示典型的實施例。本揭露不限於此類例示性實施例。用語「及/或(and/or)」之使用包括相關聯之所列項目之一或多者的任何或全部組合。圖式係示意代表圖,且因此非必然按比例繪製。除非另有說明,否則特定用語已採一般性及描述性意義來使用,而非出於限制之目的來使用。In the description and/or the drawings, typical embodiments have been disclosed. The present disclosure is not limited to such exemplary embodiments. The use of the term "and/or" includes any or all combinations of one or more of the associated listed items. The drawings are schematic representations and are therefore not necessarily drawn to scale. Unless otherwise stated, specific terms have been used in a general and descriptive sense, rather than for the purpose of limitation.

除非另有定義,本文中使用之所有技術及科學用語具有所屬技術領域中具有通常知識者所通常瞭解的相同意義。類似或等效於本文中所述的方法及材料可用於本揭露之實施或測試中。如本說明書中及隨附申請專利範圍中所使用者,除非內文另有明確指示,否則單數形式「一(a/an)」、「該(the)」包括複數的指稱物。本文中所用之用語「包含(comprising)」及其變化詞係與用語「包括(including)」及其變化詞同義地使用,且為非限制性的開放用語。本文中所用之用語「可選的(optional)」或「可選地(optionally)」意指可發生或可不發生隨後描述的特徵、情形、或情況,及意指該描述包括發生和未發生該特徵、情形、或情況的案例。範圍在本文中可表示成從「約」一個特定值及/或至「約」另一特定值。當表示此範圍時,一態樣包括從該一特定值及/或至該另一特定值。類似地,使用前述之「約」來將值表示為近似值時,應理解該特定值會形成另一態樣。應進一步理解的是,該等範圍之各者的端點係顯著相對於另一端點,且又顯著獨立於另一端點。Unless otherwise defined, all technical and scientific terms used in this article have the same meanings commonly understood by those with ordinary knowledge in the technical field. Methods and materials similar or equivalent to those described herein can be used in the implementation or testing of the present disclosure. As in this specification and in the scope of the appended application, unless the content clearly indicates otherwise, the singular form "一 (a/an)" and "the (the)" include plural referents. The term "comprising" and its variants used herein are used synonymously with the term "including" and its variants, and are non-limiting open terms. As used herein, the term "optional" or "optionally" means that the feature, situation, or situation described later may or may not occur, and that the description includes the occurrence and non-occurrence of the Cases of characteristics, circumstances, or circumstances. Ranges can be expressed herein as from "about" one specific value and/or to "about" another specific value. When expressing this range, one aspect includes from the one specific value and/or to the other specific value. Similarly, when the aforementioned "about" is used to express a value as an approximation, it should be understood that the specific value will form another aspect. It should be further understood that the endpoint of each of these ranges is significantly relative to the other endpoint, and is significantly independent of the other endpoint.

一些實施方案可使用各種半導體處理及/或封裝技術來實作。一些實施方案可使用與半導體基材關聯的各種類型的半導體處理技術實施,包括但不限於,例如,矽(Si)、砷化鎵(GaAs)、氮化鎵(GaN)、碳化矽(SiC)、絕緣體上覆矽(SOI)、完全空乏型SOI (FDSOI)、及/或等等。Some implementations can be implemented using various semiconductor processing and/or packaging techniques. Some embodiments can be implemented using various types of semiconductor processing technologies associated with semiconductor substrates, including, but not limited to, for example, silicon (Si), gallium arsenide (GaAs), gallium nitride (GaN), silicon carbide (SiC) , Silicon on Insulator (SOI), Completely Depleted SOI (FDSOI), and/or etc.

雖然所描述之實施方案的某些特徵已如本文所描述而說明,但所屬技術領域中具有通常知識者現將想到許多修改、替換、改變及均等物。因此,應當理解,隨附申請專利範圍旨在涵蓋落於實施方案範圍內的所有此類修改及改變。應當理解,其等僅以實例(非限制)方式呈現,並且可進行各種形式及細節改變。本文所描述之設備及/或方法之任何部分可以任何組合進行組合,除了互斥組合之外。本文所描述之實施方案可包括所描述之不同實施方案之功能、組件及/或特徵的各種組合及/或子組合。Although certain features of the described embodiments have been illustrated as described herein, those with ordinary knowledge in the art will now think of many modifications, substitutions, changes, and equivalents. Therefore, it should be understood that the scope of the attached patent application is intended to cover all such modifications and changes that fall within the scope of the embodiments. It should be understood that these are presented by way of example (non-limiting) only, and various forms and details can be changed. Any part of the devices and/or methods described herein can be combined in any combination, except for mutually exclusive combinations. The implementations described herein may include various combinations and/or sub-combinations of the functions, components, and/or features of the different implementations described.

應理解,在前面描述中,當元件被稱為在另一元件上、連接至另一元件、電連接至另一元件、耦接至另一元件、或電耦接至另一元件時,其可直接在另一元件上、連接或耦接至另一元件、或可存在一或多個中間元件。相反地,當一元件被稱為直接在另一元件上、直接連接至另一元件、或直接耦接至另一元件時,則無中間元件存在。雖然用語直接在…上(directly on)、直接連接至(directly connected to)、或直接耦接至(directly coupled to)可能不在實施方式各處使用,但可如此稱呼顯示為直接在…上、直接連接至、或直接耦接至的元件。本申請案之申請專利範圍(若有)可經修改成敘述在本說明書中描述或圖式中所展示之例示性關係。It should be understood that in the foregoing description, when an element is referred to as being on another element, connected to another element, electrically connected to another element, coupled to another element, or electrically coupled to another element, it It may be directly on, connected or coupled to another element, or one or more intervening elements may be present. Conversely, when an element is referred to as being directly on another element, directly connected to another element, or directly coupled to another element, no intervening elements exist. Although the term directly on (directly on), directly connected to (directly connected to), or directly coupled to (directly coupled to) may not be used throughout the embodiment, it can be called directly on, directly Components connected to or directly coupled to. The scope of patent application (if any) of this application can be modified to describe the illustrative relationships described in this specification or shown in the drawings.

當用於本說明書中時,單數形式可包括複數形式,除非在內文中明確指示特定情況。除了圖式中所描繪之定向之外,空間相對用語(例如,之上(over)、上方(above)、上部(upper)、下(under)、底下(beneath)、下方(below)、下部(lower)等)旨在涵蓋裝置在使用中或操作中的不同定向。在一些實施方案中,相對用語上方(above)及下方(below)分別地包括垂直上方及垂直下方。在一些實施方案中,用語相鄰(adjacent)可包括側向相鄰於或水平相鄰於。When used in this specification, the singular form may include the plural form, unless a specific situation is clearly indicated in the context. In addition to the orientation depicted in the schema, relative terms of space (for example, over, above, upper, under, below, below, below, etc.) lower) etc.) are intended to cover the different orientations of the device in use or operation. In some embodiments, the relative terms above and below include vertically above and vertically below, respectively. In some embodiments, the term adjacent may include laterally adjacent or horizontally adjacent.

110:緩衝放大器 200:2C-DAC電路 210:緩衝放大器/運算放大器 500:2C-DAC電路 510:取樣及保持電路 610:插圖 700:2C-DAC電路 710:電容補償電路 720:運算放大器 800:方法 810:接收 820:設定 830:選擇 835:判定 840:控制 841:控制 842:控制 850:控制 851:控制 852:控制 860:檢查 870:設定 880:控制 901:相位及模式控制器 910:2C-DAC 930:電容補償電路 940:平均電路 950:輸出電路 B:數位字組 b0:LSB b1:次一有效位元 b2:最有效位元 bi:位元 C1:電容器/第一電容器 C2:電容器/第二電容器 CIN:輸入電容 CIN_REP:複製輸入電容器 CSH:取樣及保持電容器 Mode1:第一模式 Mode2:第二模式 OUTDAC:輸出 S0:零開關/補償輸入開關 S0_C1:輸入開關 S0_C2:輸入開關 S0_CINREP:第二補償輸入開關 S1:一開關/補償輸入開關 S1_C1:輸入開關 S1_C2:輸入開關 S1_CINREP:第一補償輸入開關 SAVG:平均開關 SC_C1:第一電容器耦接開關/耦接開關 SC_C2:第二電容器耦接開關/耦接開關 SCOMP_1:第一補償開關 SCOMP_C1:第一補償開關 SCOMP_2:第二補償開關 SCOMP_C2:第二補償開關 SOUT:輸出開關 SRES_C1:第一重設開關 SRES_C2:第二重設開關 SRES_CSH:取樣及保持重設開關 VAVG:平均電壓 VO:輸出電壓 VREF:參考電壓110: Buffer amplifier 200: 2C-DAC circuit 210: Buffer amplifier/operational amplifier 500: 2C-DAC circuit 510: Sample and hold circuit 610: Illustration 700: 2C-DAC circuit 710: Capacitance compensation circuit 720: Operational amplifier 800: Method 810: Receive 820: Setting 830: Selection 835: Judgment 840: Control 841: Control 842: Control 850: Control 851: Control 852: Control 860: Check 870: Setting 880: Control 901: Phase and Mode Controller 910: 2C- DAC 930: Capacitance compensation circuit 940: Averaging circuit 950: Output circuit B: Digit block b 0 : LSB b 1 : Second effective bit b 2 : Most significant bit b i : Bit C 1 : Capacitor/first Capacitor C 2 : Capacitor/Second Capacitor C IN : Input Capacitance C IN_REP : Copy Input Capacitor C SH : Sample and Hold Capacitor Mode1: First Mode Mode2: Second Mode OUT DAC : Output S 0 : Zero Switching/Compensation Input Switch S 0_C1 : input switch S 0_C2 : input switch S 0_CINREP : second compensation input switch S 1 : one switch/compensation input switch S 1_C1 : input switch S 1_C2 : input switch S 1_CINREP : first compensation input switch S AVG : average switch S C_C1 : first capacitor coupling switch/coupling switch S C_C2 : second capacitor coupling switch/coupling switch S COMP_1 : first compensation switch S COMP_C1 : first compensation switch S COMP_2 : second compensation switch S COMP_C2 : Second compensation switch S OUT : output switch S RES_C1 : first reset switch S RES_C2 : second reset switch S RES_CSH : sample and hold reset switch V AVG : average voltage V O : output voltage V REF : reference voltage

[圖1A]係根據本揭露的一可能實施方案之實例雙電容器DAC的示意圖。 [圖1B]係圖1A之雙電容器DAC對於可能數位字組之輸出電壓的圖表。 [圖2]係根據本揭露的一第一可能實施方案之雙電容器DAC(亦即,2C-DAC)的示意圖。 [圖3]係根據本揭露的一實例實施方案之針對5位元二進位字組(亦即,數位字組)的各可能位元組合之可能模式狀況的表。 [圖4]圖形地繪示基於顯示於圖3中之可能模式狀況之表的模式狀況選擇及模式判定的程序。 [圖5]係根據本揭露的一可能實施方案之包括重設及輸出電路系統之雙電容器DAC(亦即,2C-DAC)的示意圖。 [圖6]係根據本揭露的一可能實施方案之緩衝放大器的輸入電容對平均電壓的圖表。 [圖7]係根據本揭露的一可能實施方案之包括輸入電容補償之雙電容器DAC(亦即,2C-DAC)的示意圖。 [圖8]係根據本揭露的一可能實施方案之用於數位轉類比轉換之方法的流程圖。 [圖9]係根據本揭露的一實施方案之用於數位轉類比轉換之系統的方塊圖。[Fig. 1A] is a schematic diagram of an example double-capacitor DAC according to a possible implementation of the present disclosure. [Figure 1B] is a graph of the output voltage of the double-capacitor DAC in Figure 1A for possible digital blocks. [Fig. 2] is a schematic diagram of a double-capacitor DAC (ie, 2C-DAC) according to a first possible implementation of the present disclosure. [FIG. 3] is a table of possible mode conditions for each possible bit combination of a 5-bit binary block (ie, a digit block) according to an example implementation of the present disclosure. [Fig. 4] Graphically shows the procedure of mode condition selection and mode determination based on the table of possible mode conditions shown in Fig. 3. [FIG. 5] is a schematic diagram of a double-capacitor DAC (ie, 2C-DAC) including a reset and output circuit system according to a possible implementation of the present disclosure. [Figure 6] is a graph of the input capacitance versus average voltage of the buffer amplifier according to a possible implementation of the present disclosure. [FIG. 7] is a schematic diagram of a two-capacitor DAC (ie, 2C-DAC) including input capacitance compensation according to a possible implementation of the present disclosure. [Figure 8] is a flow chart of a method for digital to analog conversion according to a possible implementation of the present disclosure. [Figure 9] is a block diagram of a system for digital to analog conversion according to an embodiment of the present disclosure.

圖式中之組件非必然相對於彼此按比例繪製。相似的元件符號在若干視圖中標示對應的部件。The components in the drawing are not necessarily drawn to scale relative to each other. Similar component symbols indicate corresponding parts in several views.

700:2C-DAC電路 700: 2C-DAC circuit

710:電容補償電路 710: Capacitance compensation circuit

720:運算放大器 720: Operational amplifier

C1:電容器/第一電容器 C 1 : capacitor / first capacitor

C2:電容器/第二電容器 C 2 : Capacitor/Second capacitor

CIN:輸入電容 C IN : Input capacitance

CIN_REP:複製輸入電容器 C IN_REP : Copy input capacitor

CSH:取樣及保持電容器 C SH : Sample and hold capacitor

OUTDAC:輸出 OUT DAC : output

S0_C1:輸入開關 S 0_C1 : Input switch

S0_C2:輸入開關 S 0_C2 : Input switch

S0_CINREP:第二補償輸入開關 S 0_CINREP : The second compensation input switch

S1_C1:輸入開關 S 1_C1 : Input switch

S1_C2:輸入開關 S 1_C2 : Input switch

S1_CINREP:第一補償輸入開關 S 1_CINREP : The first compensation input switch

SAVG:平均開關 S AVG : Average switch

SC_C1:第一電容器耦接開關/耦接開關 S C_C1 : first capacitor coupling switch/coupling switch

SC_C2:第二電容器耦接開關/耦接開關 S C_C2 : second capacitor coupling switch/coupling switch

SCOMP_1:第一補償開關 S COMP_1 : The first compensation switch

SCOMP_2:第二補償開關 S COMP_2 : The second compensation switch

SOUT:輸出開關 S OUT : output switch

SRES_C1:第一重設開關 S RES_C1 : The first reset switch

SRES_C2:第二重設開關 S RES_C2 : The second reset switch

SRES_CSH:取樣及保持重設開關 S RES_CSH : Sample and hold reset switch

VREF:參考電壓 V REF : Reference voltage

Claims (13)

一種雙電容器數位轉類比轉換器電路,其包含: 一階段及模式控制器,其經組態以設定一數位字組中的一動作位元、選擇該動作位元的一模式狀況、及基於該動作位元的一值及該經選擇模式狀況根據一轉換程序的一第一模式或一第二模式來組態開關; 一重分布開關,其經組態以在該轉換程序的一重分布階段期間將一第一電容器及一第二電容器耦接在一起以產生一重分布電壓; 一緩衝放大器,其經組態以基於該重分布電壓產生一輸出電壓,該緩衝放大器在一輸入處具有一輸入電容;及 一電容補償電路,其包括一複製輸入電容,該電容補償電路經組態以: 在該轉換程序的一輸入階段期間,基於該動作位元的該值耦接一參考電壓或一接地至該複製輸入電容,及 在該轉換程序的該重分布階段期間,將該複製輸入電容耦接至該輸入電容以調整該重分布電壓。A double-capacitor digital-to-analog converter circuit, which includes: A stage and mode controller, which is configured to set an action bit in a digital word group, select a mode condition of the action bit, and a value based on the action bit and the selected mode condition according to A first mode or a second mode of the conversion program to configure the switch; A redistribution switch configured to couple a first capacitor and a second capacitor together during a redistribution phase of the conversion process to generate a redistribution voltage; A buffer amplifier configured to generate an output voltage based on the redistributed voltage, the buffer amplifier having an input capacitance at an input; and A capacitance compensation circuit, which includes a duplicate input capacitance, and the capacitance compensation circuit is configured to: During an input phase of the conversion process, a reference voltage or a ground is coupled to the copy input capacitor based on the value of the action bit, and During the redistribution phase of the conversion procedure, the duplicate input capacitor is coupled to the input capacitor to adjust the redistribution voltage. 如請求項1之雙電容器數位轉類比轉換器電路,其進一步包括: 一第一組輸入開關,其經組態以在該第一模式中在該轉換程序的一輸入階段期間,基於該動作位元的該值將一第一電容器耦接至一參考電壓或一接地;及 一第二組輸入開關,其經組態以在該第二模式中在該轉換程序的該輸入階段期間,基於該動作位元的該值將一第二電容器耦接至該參考電壓或該接地。For example, the dual-capacitor digital-to-analog converter circuit of claim 1, which further includes: A first set of input switches configured to couple a first capacitor to a reference voltage or a ground based on the value of the action bit during an input stage of the conversion procedure in the first mode ;and A second set of input switches configured to couple a second capacitor to the reference voltage or the ground based on the value of the action bit during the input phase of the conversion procedure in the second mode . 如請求項1之雙電容器數位轉類比轉換器電路,其進一步包括: 一輸出開關,其經組態以在該轉換程序的一輸出階段期間,將該輸出電壓耦接至該雙電容器數位轉類比轉換器電路的一輸出。For example, the dual-capacitor digital-to-analog converter circuit of claim 1, which further includes: An output switch configured to couple the output voltage to an output of the double-capacitor digital-to-analog converter circuit during an output stage of the conversion process. 如請求項1之雙電容器數位轉類比轉換器電路,其中該複製輸入電容耦接至該輸入電容以調整該重分布電壓,以降低該輸入電容對該輸出電壓的一影響。For example, the two-capacitor digital-to-analog converter circuit of claim 1, wherein the duplicate input capacitor is coupled to the input capacitor to adjust the redistribution voltage, so as to reduce an influence of the input capacitor on the output voltage. 如請求項1之雙電容器數位轉類比轉換器電路,其中該電容補償電路包括: 一第一補償輸入開關,其經組態以在該第一模式或該第二模式中在該轉換程序的該輸入階段期間,在該動作位元的該值係一時,將該複製輸入電容耦接至一參考電壓; 一第二補償輸入開關,其經組態以在該第一模式或該第二模式中在該轉換程序的該輸入階段期間,在該動作位元的該值係零時,將該複製輸入電容耦接至一接地; 一第一補償開關,其經組態以在該第一模式中在該轉換程序的該重分布階段期間,將該複製輸入電容耦接至該第一電容器的一正端子; 一第二補償開關,其經組態以在該第二模式中在該轉換程序的該重分布階段期間,將該複製輸入電容耦接至該第二電容器的一正端子; 一第一電容器耦接開關,其經組態以在該第二模式中在該轉換程序的該輸入階段期間,將該第一電容器的該正端子耦接至在該緩衝放大器之該輸入處的該輸入電容;及 一第二電容器耦接開關,其經組態以在該第一模式中在該轉換程序的該輸入階段期間,將該第二電容器的該正端子耦接至在該緩衝放大器之該輸入處的該輸入電容。For example, the dual-capacitor digital-to-analog converter circuit of claim 1, wherein the capacitance compensation circuit includes: A first compensation input switch, which is configured to couple the duplicate input capacitance during the input phase of the conversion procedure in the first mode or the second mode when the value of the action bit is one Connect to a reference voltage; A second compensation input switch configured to copy the input capacitance when the value of the action bit is zero during the input phase of the conversion procedure in the first mode or the second mode Coupled to a ground; A first compensation switch configured to couple the duplicate input capacitance to a positive terminal of the first capacitor during the redistribution phase of the conversion procedure in the first mode; A second compensation switch configured to couple the duplicate input capacitance to a positive terminal of the second capacitor during the redistribution phase of the conversion procedure in the second mode; A first capacitor coupled switch configured to couple the positive terminal of the first capacitor to the input of the buffer amplifier during the input phase of the conversion procedure in the second mode The input capacitance; and A second capacitor coupled switch is configured to couple the positive terminal of the second capacitor to the input of the buffer amplifier during the input phase of the conversion procedure in the first mode The input capacitance. 如請求項1之雙電容器數位轉類比轉換器電路,其中: 該緩衝放大器係一運算放大器,該運算放大器經組態用於單一增益及軌對軌操作,該輸入電容在該運算放大器的一輸入處,且 該電容補償電路包括一電晶體,該電晶體經組態以複製該運算放大器的該輸入電容。For example, the dual-capacitor digital-to-analog converter circuit of claim 1, where: The buffer amplifier is an operational amplifier, the operational amplifier is configured for single gain and rail-to-rail operation, the input capacitance is at an input of the operational amplifier, and The capacitance compensation circuit includes a transistor configured to replicate the input capacitance of the operational amplifier. 如請求項1之雙電容器數位轉類比轉換器電路,其進一步包含: 一取樣及保持電容器,其耦接至該緩衝放大器的一輸出;及 一第一重設開關,其經組態以在該轉換程序之後將該第一電容器放電、一第二重設開關,其經組態以在該轉換程序之後將該第二電容器放電、及一取樣及保持重設開關,其經組態以在該轉換程序之後將該取樣及保持電容器放電。For example, the dual-capacitor digital-to-analog converter circuit of claim 1, which further includes: A sample and hold capacitor coupled to an output of the buffer amplifier; and A first reset switch configured to discharge the first capacitor after the conversion process, a second reset switch configured to discharge the second capacitor after the conversion process, and a A sample and hold reset switch, which is configured to discharge the sample and hold capacitor after the conversion procedure. 一種用於數位轉類比轉換之方法,該方法包含: 選擇一數位字組的一動作位元的一模式狀況; 基於該動作位元的一值及該經選擇模式狀況,判定用於該動作位元的一第一模式或一第二模式; 執行一輸入階段,該輸入階段包括: 在一第一模式中,根據該動作位元的該值,對一第一電容器及一複製輸入電容充電或放電,及 在一第二模式中,根據該動作位元的該值,對一第二電容器及該複製輸入電容充電或放電;及 執行一平均階段,該平均階段包括: 將該第一電容器及該第二電容器耦接在一起以產生該動作位元的一平均電壓, 將該平均電壓耦接至具有一輸入電容的一緩衝放大器,及 將該複製輸入電容及該輸入電容耦接在一起以在該緩衝放大器的一輸入處產生該動作位元的一經調整平均電壓。A method for digital to analog conversion, the method includes: Select a mode status of an action bit of a digital word group; Determine a first mode or a second mode for the action bit based on a value of the action bit and the selected mode status; Perform an input phase, which includes: In a first mode, according to the value of the action bit, a first capacitor and a copy input capacitor are charged or discharged, and In a second mode, charge or discharge a second capacitor and the copy input capacitor according to the value of the action bit; and Perform an averaging phase, which includes: Coupling the first capacitor and the second capacitor together to generate an average voltage of the action bit, Coupling the average voltage to a buffer amplifier with an input capacitance, and The duplicate input capacitor and the input capacitor are coupled together to generate an adjusted average voltage of the action bit at an input of the buffer amplifier. 如請求項8之用於數位轉類比轉換之方法,其進一步包含: 重複該選擇、該判定、該執行該輸入階段、及執行該平均階段以一序列獲得該數位字組之各位元的一經調整平均電壓; 從該緩衝放大器將該序列中之該數位字組的一最終位元的該經調整平均電壓輸出為一輸出電壓,該輸出電壓對應於該數位字組的一類比轉換; 將該第一電容器、該第二電容器、及該複製輸入電容放電; 接收一新數位字組; 重複該選擇、該判定、該執行該輸入階段、及執行該平均階段以一序列獲得該新數位字組之各位元的一經調整平均電壓;及 將該序列中之該數位字組的該最終位元的該經調整平均電壓輸出為該輸出電壓,該輸出電壓對應於該新數位字組的一類比轉換。For example, the method for digital-to-analog conversion in claim 8, which further includes: Repeat the selection, the determination, the execution of the input phase, and the execution of the average phase to obtain an adjusted average voltage of each bit of the digit word group in a sequence; Outputting the adjusted average voltage of a final bit of the digital word group in the sequence from the buffer amplifier as an output voltage, the output voltage corresponding to an analog conversion of the digital word group; Discharging the first capacitor, the second capacitor, and the duplicate input capacitor; Receive a new group of digits; Repeat the selection, the determination, the execution of the input phase, and the execution of the average phase to obtain an adjusted average voltage of each element of the new digit word group in a sequence; and The adjusted average voltage of the final bit of the digit word group in the sequence is output as the output voltage, and the output voltage corresponds to an analog conversion of the new digit word group. 如請求項8之用於數位轉類比轉換之方法,其中選擇該動作位元的一模式狀況包含: 判定該動作位元的一位元位置,該位元位置在從一最低有效位元(LSB)至一最高有效位元(MSB)的一範圍中;及 基於該位元位置選擇一第一模式狀況或一第二模式狀況,該第一模式狀況及該第二模式狀況從該LSB至該MSB依序針對各位元位置交替,其中該第一模式狀況包括當該動作位元的一位元值係零時,判定一第一模式,及當該動作位元的該位元值係一時,判定一第二模式;且該第二模式狀況包括當該動作位元的該位元值係零時,判定一第二模式,且當該動作位元的該位元值係一時,判定一第一模式。For example, the method for digital-to-analog conversion in claim 8, wherein a mode condition for selecting the action bit includes: Determine the bit position of the action bit, the bit position is in a range from a least significant bit (LSB) to a most significant bit (MSB); and A first mode condition or a second mode condition is selected based on the bit position. The first mode condition and the second mode condition alternate from the LSB to the MSB for each bit position in sequence, wherein the first mode condition includes When the bit value of the action bit is zero, a first mode is determined, and when the bit value of the action bit is one, a second mode is determined; and the second mode status includes when the action When the bit value of the bit is zero, a second mode is determined, and when the bit value of the action bit is one, a first mode is determined. 如請求項8之用於數位轉類比轉換之方法,其中在該平均階段中,該耦接該平均電壓至具有一輸入電容的一緩衝放大器包括: 在該第一模式中,耦接該第一電容器的一正端子及耦接該第二電容器的一正端子至該緩衝放大器的該輸入;及 在該第二模式中,耦接該第一電容器的一正端子及耦接該第二電容器的一正端子至該緩衝放大器的該輸入。For example, the method for digital-to-analog conversion of claim 8, wherein in the averaging phase, the coupling of the average voltage to a buffer amplifier having an input capacitance includes: In the first mode, coupling a positive terminal of the first capacitor and coupling a positive terminal of the second capacitor to the input of the buffer amplifier; and In the second mode, a positive terminal of the first capacitor and a positive terminal of the second capacitor are coupled to the input of the buffer amplifier. 一種用於數位轉類比轉換之系統,該系統包含: 一階段及模式控制器,其經組態以接收一數位字組的位元並根據一轉換程序的一輸入階段、一平均階段、或一輸出階段並根據藉由在至該系統的一輸入處接收的該數位字組中的各位元判定的一第一模式或一第二模式來輸出切換信號; 一平均電路,其包括一第一電容器及一第二電容器,該平均電路經組態以在一輸入階段期間對該第一電容器或該第二電容器充電或放電,並經組態以在一平均階段期間將該第一電容器及該第二電容器耦接在一起以產生一平均電壓; 一輸出電路,其包括一輸入電容,該輸出電路經組態以基於從該平均電路接收的該平均電壓產生一輸出電壓,並經組態以在該輸出階段期間將該輸出電壓耦接至該系統的一輸出;及 一電容補償電路,其包括實質等於該輸入電容的一複製輸入電容,該電容補償電路經組態以在一平均階段期間將該複製輸入電容及該輸入電容耦接在一起,以調整該平均電壓以補償該輸入電容。A system for digital-to-analog conversion. The system includes: A stage and mode controller, which is configured to receive a bit of a digital word and according to an input stage, an averaging stage, or an output stage of a conversion process and according to an input to the system A first mode or a second mode determined by each bit in the received digital word group to output a switching signal; An averaging circuit including a first capacitor and a second capacitor, the averaging circuit is configured to charge or discharge the first capacitor or the second capacitor during an input phase, and is configured to an average During the phase, the first capacitor and the second capacitor are coupled together to generate an average voltage; An output circuit including an input capacitor configured to generate an output voltage based on the average voltage received from the averaging circuit, and configured to couple the output voltage to the output voltage during the output phase An output of the system; and A capacitance compensation circuit including a duplicate input capacitance substantially equal to the input capacitance, and the capacitance compensation circuit is configured to couple the duplicate input capacitance and the input capacitance together during an averaging phase to adjust the average voltage To compensate the input capacitance. 如請求項12之用於數位轉類比轉換之系統,其中: 該階段及模式控制器經組態以依序接收該數位字組的各位元,並根據一第一模式狀況或一第二模式狀況產生切換信號,該第一模式狀況及該第二模式狀況隨該序列中的各位元交替; 該輸出電路包括一運算放大器,該運算放大器經組態用於單一增益,該運算放大器在至該運算放大器的一輸入處具有該輸入電容,且 該電容補償電路包括一電晶體,該電晶體經組態以複製該運算放大器的該輸入電容。For example, the system used for digital to analog conversion in claim 12, where: The stage and the mode controller are configured to sequentially receive the bits of the digital word group, and generate a switching signal according to a first mode condition or a second mode condition. The first mode condition and the second mode condition follow The bits in the sequence alternate; The output circuit includes an operational amplifier configured for a single gain, the operational amplifier has the input capacitance at an input to the operational amplifier, and The capacitance compensation circuit includes a transistor configured to replicate the input capacitance of the operational amplifier.
TW110105893A 2020-02-21 2021-02-20 Two-capacitor digital-to-analog converter TW202137712A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202062979472P 2020-02-21 2020-02-21
US202062979474P 2020-02-21 2020-02-21
US62/979,474 2020-02-21
US62/979,472 2020-02-21
US17/248,840 US11431348B2 (en) 2020-02-21 2021-02-10 Two-capacitor digital-to-analog converter
US17/248,840 2021-02-10

Publications (1)

Publication Number Publication Date
TW202137712A true TW202137712A (en) 2021-10-01

Family

ID=77319012

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105893A TW202137712A (en) 2020-02-21 2021-02-20 Two-capacitor digital-to-analog converter

Country Status (2)

Country Link
CN (1) CN113300712A (en)
TW (1) TW202137712A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584138B (en) * 2022-03-23 2022-11-22 深圳市航顺芯片技术研发有限公司 Digital-to-analog converter output circuit and method

Also Published As

Publication number Publication date
CN113300712A (en) 2021-08-24

Similar Documents

Publication Publication Date Title
JP5554675B2 (en) Successive comparison A / D converter
KR0179466B1 (en) Self-calibrating high speed d/a converter
US5621409A (en) Analog-to-digital conversion with multiple charge balance conversions
KR102289432B1 (en) Successive-approximation register analog to digital converter
KR102001762B1 (en) DAC capacitance array, SAR-type analog-to-digital converter and method of reducing power consumption
US9065479B2 (en) Digital to analog converter with an intra-string switching network
WO2013036204A1 (en) An analog-to-digital converter for a multi-channel signal acquisition system
CN108123718B (en) Solid-state imaging device
JP3857450B2 (en) Successive comparison type analog-digital conversion circuit
TW201141072A (en) Capacitive voltage divider
JP4741680B2 (en) Flexible analog / digital converter
CN113839672A (en) Self-calibration successive approximation analog-digital converter utilizing redundant capacitor analog domain
RU2335844C2 (en) Analog-to-digital converter and method of calibration thereof
US6958720B1 (en) Fine string compensation to minimize digital to analog converter differential nonlinearity error
US7554475B2 (en) Low-power inverted ladder digital-to-analog converter
CN110912561B (en) Digital-to-analog converter transfer function modification
CN114614821B (en) SAR ADC offset error correction method and circuit based on differential structure
TW202137712A (en) Two-capacitor digital-to-analog converter
US11431348B2 (en) Two-capacitor digital-to-analog converter
US20110032128A1 (en) Analog-digital converter circuit and calibration method
TWI777464B (en) Signal converting apparatus and signal converting method
JPWO2010137095A1 (en) Resistive digital / analog converter
US20070146182A1 (en) Self-calibrating current source arrays
KR102075653B1 (en) Analogue-to-digital converter based on integer-based split capacitors
TWI763525B (en) Analog-to-digital converter and method of operating same