TW202003426A - Process and device for the inverted separation of aromatics - Google Patents
Process and device for the inverted separation of aromatics Download PDFInfo
- Publication number
- TW202003426A TW202003426A TW108114853A TW108114853A TW202003426A TW 202003426 A TW202003426 A TW 202003426A TW 108114853 A TW108114853 A TW 108114853A TW 108114853 A TW108114853 A TW 108114853A TW 202003426 A TW202003426 A TW 202003426A
- Authority
- TW
- Taiwan
- Prior art keywords
- column
- toluene
- benzene
- fraction
- aromatic compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G61/00—Treatment of naphtha by at least one reforming process and at least one process of refining in the absence of hydrogen
- C10G61/08—Treatment of naphtha by at least one reforming process and at least one process of refining in the absence of hydrogen plural parallel stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/007—Energy recuperation; Heat pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/10—Vacuum distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/32—Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
- B01D3/322—Reboiler specifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/22—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
- C07C5/27—Rearrangement of carbon atoms in the hydrocarbon skeleton
- C07C5/2729—Changing the branching point of an open chain or the point of substitution on a ring
- C07C5/2732—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C6/00—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
- C07C6/08—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
- C07C6/12—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
- C07C6/123—Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of only one hydrocarbon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/005—Processes comprising at least two steps in series
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/04—Purification; Separation; Use of additives by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/12—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/12—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
- C07C7/13—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/20—Organic compounds not containing metal atoms
- C10G29/205—Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/08—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural parallel stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G7/00—Distillation of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1096—Aromatics or polyaromatics
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
Description
本發明屬於用於分離芳香族化合物之方法及裝置的領域。根據本發明之目標尤其適用於芳香族化合物複合裝置(aromatic complex)需要藉由苯、甲苯及具有8個或更多個碳原子之較重化合物(在下文中表示為C8+化合物)間之蒸餾來進行分離的情況。The invention belongs to the field of methods and devices for separating aromatic compounds. The object according to the invention is particularly suitable for aromatic compound complexes (aromatic complex) which need to be carried out by distillation between benzene, toluene and heavier compounds with 8 or more carbon atoms (hereinafter referred to as C8+ compounds) The situation of separation.
專利FR 2 998 301 B1描述了一種能夠節約用於藉由苯、甲苯及C8+化合物間之蒸餾來進行分離的芳香族化合物複合裝置之燃料及電之總能量消耗的方法。具體而言,該方法之原理在於在某些管柱中產生低壓蒸汽,將由此產生之低壓蒸汽用作熱交換流體(使用或不使用中間壓縮),例如用於在經歷壓力下降之其他管柱的較低溫度下再沸。Patent FR 2 998 301 B1 describes a method that can save the total energy consumption of fuel and electricity in an aromatic compound device for separation by distillation between benzene, toluene and C8+ compounds. Specifically, the principle of this method is to generate low-pressure steam in certain columns, and use the resulting low-pressure steam as a heat exchange fluid (with or without intermediate compression), for example, for other columns that experience a pressure drop At a lower temperature.
在上文所描述之情形下,本發明之第一目標為使進行苯、甲苯及C8+化合物間之分離所需能量之量有所減少成為可能。Under the circumstances described above, the first objective of the present invention is to make it possible to reduce the amount of energy required to carry out the separation between benzene, toluene and C8+ compounds.
根據第一態樣,上述目標以及其他優勢係藉由一種用於分離包含苯、甲苯及具有8個或更多個碳原子之化合物之原料的方法獲得,其在包含至少一個重組物管柱、一個芳香族化合物萃取單元及一個轉烷化單元之分離裝置中,將來自該等單元之流出物在以下蒸餾管柱中分離:苯管柱、甲苯管柱及穩定管柱,該方法包含以下階段: 直接向甲苯管柱進料由定位於轉烷化單元下游之穩定管柱底部產生的C7+餾分,以便自甲苯管柱抽取富含苯及甲苯之頂部產物,且自甲苯管柱抽取富含具有8個或更多個碳原子之化合物的底部產物, 向苯管柱進料來自甲苯管柱之頂部產物,以便自苯管柱抽取富含苯之頂部產物,且自苯管柱抽取富含甲苯之底部產物,及 向轉烷化單元進料來自苯管柱之富含甲苯之底部產物, 其中向甲苯管柱進料由芳香族化合物萃取單元產生之主要芳香族餾分,由該芳香族化合物萃取單元產生的甲苯管柱之進料與由穩定管柱底部產生的甲苯管柱之進料分開且在其上方進行,或 其中向苯管柱進料由芳香族化合物萃取單元產生之主要芳香族餾分,該主要芳香族餾分呈與來自甲苯管柱之頂部產物的混合物形式或與其分開。According to the first aspect, the above objectives and other advantages are obtained by a method for separating raw materials containing benzene, toluene and compounds having 8 or more carbon atoms, which includes at least one recombinant column, In the separation device of an aromatic compound extraction unit and a transalkylation unit, the effluent from these units is separated in the following distillation columns: benzene column, toluene column and stable column. The method includes the following stages : The C7+ fraction produced from the bottom of the stable column positioned downstream of the transalkylation unit is fed directly to the toluene column so that the top product rich in benzene and toluene is extracted from the toluene column, and the rich product with 8 is extracted from the toluene column The bottom product of a compound of one or more carbon atoms, Feeding the benzene column with the top product from the toluene column to extract the benzene-rich top product from the benzene column and the toluene-rich bottom product from the benzene column, and Feed the transalkylation unit with toluene-rich bottom product from the benzene column, The main aromatic fraction produced by the aromatic compound extraction unit is fed to the toluene column, and the feed of the toluene column produced by the aromatic compound extraction unit is separated from the feed of the toluene column produced by the bottom of the stable column And proceed above it, or The benzene column is fed with the main aromatic fraction produced by the aromatic compound extraction unit, which is in the form of a mixture with or separated from the top product from the toluene column.
根據一或多個實施例,額外向甲苯管柱進料來自純化管柱之頂部產物,該頂部產物呈與由穩定管柱底部產生之C7+餾分的混合物形式或與其分開。According to one or more embodiments, the toluene column is additionally fed with the top product from the purification column, which is in the form of a mixture with or separated from the C7+ fraction produced from the bottom of the stabilization column.
根據一或多個實施例,額外向轉烷化單元進料來自純化管柱之頂部產物,該頂部產物呈與來自苯管柱之底部產物的混合物形式或與其分開。According to one or more embodiments, the transalkylation unit is additionally fed with the top product from the purification column, which is in the form of a mixture with or separated from the bottom product from the benzene column.
根據一或多個實施例,分離裝置另外包含對二甲苯分離單元及二甲苯異構化單元,該等流出物在以下額外蒸餾管柱中分離:二甲苯管柱、重芳香族化合物管柱、萃餘物管柱、萃取管柱、純化管柱、脫庚烷塔及汽提塔。According to one or more embodiments, the separation device additionally comprises a paraxylene separation unit and a xylene isomerization unit, and the effluents are separated in the following additional distillation columns: xylene column, heavy aromatic compound column, Extraction column, extraction column, purification column, deheptane column and stripping column.
根據一或多個實施例,僅二甲苯管柱及重芳香族化合物管柱將C9+芳香族化合物進料至轉烷化單元。According to one or more embodiments, only the xylene column and the heavy aromatic compound column feed the C9+ aromatic compound to the transalkylation unit.
根據一或多個實施例,向重組物管柱進料原料以便在重組物管柱頂部產生C7-餾分,且向芳香族化合物萃取單元進料C7-餾分以便自C7-餾分萃取石蠟化合物且產生主要芳香族餾分。According to one or more embodiments, the feedstock is fed to the recombinant column to produce a C7-fraction at the top of the recombinant column, and the aromatic compound extraction unit is fed with a C7-fraction to extract paraffin compounds from the C7-fraction and produce The main aromatic fraction.
根據一或多個實施例,苯管柱之操作條件如下: 再沸器處溫度為130℃至180℃,冷凝器處溫度為70℃至130℃; 壓力:在0.1 MPa與0.5 MPa之間;及 理論塔板在35個與55個之間。According to one or more embodiments, the operating conditions of the benzene column are as follows: The temperature at the reboiler is 130°C to 180°C, and the temperature at the condenser is 70°C to 130°C; Pressure: between 0.1 MPa and 0.5 MPa; and The theoretical plates are between 35 and 55.
根據一或多個實施例,甲苯管柱之操作條件如下: 再沸器處溫度為130℃至260℃,冷凝器處溫度為50℃至200℃; 壓力:在0.05 MPa與1 MPa之間;及 理論塔板在30個與55個之間。According to one or more embodiments, the operating conditions of the toluene column are as follows: The temperature at the reboiler is 130°C to 260°C, and the temperature at the condenser is 50°C to 200°C; Pressure: between 0.05 MPa and 1 MPa; and The theoretical plates are between 30 and 55.
根據第二態樣,上述目標以及其他優勢係藉由一種用於分離包含苯、甲苯及具有8個或更多個碳原子之化合物之原料的裝置獲得,該分離裝置包含至少一個重組物管柱、一個芳香族化合物萃取單元及一個轉烷化單元,該分離裝置額外包含用於蒸餾來自該等單元之流出物的以下管柱:苯管柱、甲苯管柱及穩定管柱, 甲苯管柱適合於向其進料由定位於轉烷化單元下游之穩定管柱底部產生的C7+餾分,且適合於遞送富含苯及甲苯的來自甲苯管柱之頂部產物及富含具有8個或更多個碳原子之化合物的來自甲苯管柱的底部產物, - 苯管柱適合於向其進料來自甲苯管柱之頂部產物,且適合於遞送來自苯管柱之富含苯之頂部產物及來自苯管柱之富含甲苯之底部產物, - 轉烷化單元適合於處理來自苯管柱之富含甲苯之底部產物, 其中甲苯管柱適合於向其進料由芳香族化合物萃取單元產生之主要芳香族餾分,由該芳香族化合物萃取單元產生的甲苯管柱之進料與由穩定管柱底部產生的甲苯管柱之進料分開且在其上方進行,或 其中苯管柱適合於向其進料由芳香族化合物萃取單元產生之主要芳香族餾分,該主要芳香族餾分呈與來自甲苯管柱之頂部產物的混合物形式或與其分開。According to the second aspect, the above objectives and other advantages are obtained by a device for separating raw materials containing benzene, toluene and compounds having 8 or more carbon atoms, the separation device including at least one recombinant column , An aromatic compound extraction unit and a transalkylation unit, the separation device additionally includes the following columns for distilling the effluent from these units: benzene column, toluene column and stabilization column, The toluene column is suitable for feeding the C7+ fraction produced from the bottom of the stable column positioned downstream of the transalkylation unit, and is suitable for delivering the top product from the toluene column rich in benzene and toluene and rich in 8 The bottom product of the toluene column of more carbon compounds, -The benzene column is suitable for feeding the top product from the toluene column and is suitable for delivering the benzene-rich top product from the benzene column and the toluene-rich bottom product from the benzene column, -The transalkylation unit is suitable for processing toluene-rich bottom products from benzene columns, The toluene column is suitable for feeding the main aromatic fraction produced by the aromatic compound extraction unit, the feed of the toluene column produced by the aromatic compound extraction unit and the toluene column produced by the bottom of the stable column Feed separately and above it, or The benzene column is suitable for feeding the main aromatic fraction produced by the aromatic compound extraction unit to the main aromatic fraction in the form of a mixture with or separated from the top product from the toluene column.
根據一或多個實施例,甲苯管柱適合於進料來自純化管柱之頂部產物,該頂部產物呈與由穩定管柱底部產生之C7+餾分的混合物形式或與其分開。According to one or more embodiments, the toluene column is suitable for feeding the top product from the purification column, which is in the form of a mixture with or separated from the C7+ fraction produced from the bottom of the stabilizing column.
根據一或多個實施例,轉烷化單元適合於進料來自純化管柱之頂部產物,該頂部產物呈與來自苯管柱之底部產物的混合物形式或與其分開。According to one or more embodiments, the transalkylation unit is suitable for feeding the top product from the purification column, which is in the form of a mixture with or separated from the bottom product from the benzene column.
根據一或多個實施例,分離裝置額外包含對二甲苯分離單元、二甲苯異構化單元及用於蒸餾該等流出物之以下額外管柱:二甲苯管柱、重芳香族化合物管柱、萃餘物管柱、萃取管柱、純化管柱、脫庚烷塔及汽提塔。According to one or more embodiments, the separation device additionally includes a paraxylene separation unit, a xylene isomerization unit, and the following additional columns for distilling these effluents: xylene column, heavy aromatic compound column, Extraction column, extraction column, purification column, deheptane column and stripping column.
根據一或多個實施例,分離裝置適合於將原料進料至重組物管柱以便在重組物管柱頂部產生C7-餾分,且將C7-餾分進料至芳香族化合物萃取單元以便自C7-餾分萃取石蠟化合物且產生主要芳香族餾分。According to one or more embodiments, the separation device is adapted to feed the raw materials to the recombination column to produce a C7-fraction at the top of the recombination column, and feed the C7-fraction to the aromatic compound extraction unit to remove from the C7- The distillate extracts paraffin compounds and produces the main aromatic distillate.
根據一或多個實施例,苯管柱之操作條件如下: 再沸器處溫度為130℃至180℃,冷凝器處溫度為70℃至130℃; 壓力:在0.1 MPa與0.5 MPa之間;及 理論塔板在35個與55個之間。According to one or more embodiments, the operating conditions of the benzene column are as follows: The temperature at the reboiler is 130°C to 180°C, and the temperature at the condenser is 70°C to 130°C; Pressure: between 0.1 MPa and 0.5 MPa; and The theoretical plates are between 35 and 55.
根據一或多個實施例,甲苯管柱之操作條件如下: 再沸器處溫度為130℃至260℃,冷凝器處溫度為50℃至200℃; 壓力:在0.05 MPa與1 MPa之間;及 理論塔板在30個與55個之間。According to one or more embodiments, the operating conditions of the toluene column are as follows: The temperature at the reboiler is 130°C to 260°C, and the temperature at the condenser is 50°C to 200°C; Pressure: between 0.05 MPa and 1 MPa; and The theoretical plates are between 30 and 55.
上文提及的方法及裝置之實施例以及其他特徵及優勢將在閱讀以下實施方式時變得顯而易見,其僅出於說明目的給出而不加以限制,且參考以下圖式。The embodiments and other features and advantages of the methods and devices mentioned above will become apparent when reading the following embodiments, which are given for illustrative purposes only and are not limited, and refer to the following drawings.
本發明係關於用於分離包含苯、甲苯及C8+ (例如,C8至C10)化合物(其可尤其包含對二甲苯)的原料之方法及裝置的領域。The present invention relates to the field of methods and devices for separating raw materials containing benzene, toluene, and C8+ (eg, C8 to C10) compounds (which may especially include p-xylene).
可將根據本發明之分離方法及裝置界定為一系列轉化及分離階段及區段,其旨在自富含芳香族化合物(範圍自苯至具有超過10個碳原子之芳香族化合物(表示為C10+化合物))之原料(例如源自催化重組單元)開始,分離苯/甲苯/二甲苯及/或將甲苯轉化成C8+化合物,且特定言之,具有八個碳原子之稱為二甲苯的芳香族化合物,且更特定言之,對二甲苯。富含芳香族化合物之原料通常展現出極低含量至零含量之含硫化合物、含氮化合物及烯烴化合物(例如,根據ASTMD 1159,硫含量<0.5 ppm(重量)及/或氮含量<0.5 ppm(重量)及/或溴量<1 g/100 g),此係因為此等化合物可影響芳香族化合物複合裝置單元中所採用之某些催化劑及分子篩的效能品質及使用壽命。The separation method and apparatus according to the present invention can be defined as a series of conversion and separation stages and sections, which are intended to be rich in aromatic compounds (ranging from benzene to aromatic compounds with more than 10 carbon atoms (denoted as C10+ Compounds)) starting materials (eg from catalytic recombination units), separation of benzene/toluene/xylene and/or conversion of toluene into C8+ compounds, and in particular, an aromatic group called xylene with eight carbon atoms The compound, and more specifically, p-xylene. Raw materials rich in aromatic compounds usually exhibit very low to zero levels of sulfur-containing compounds, nitrogen-containing compounds and olefin compounds (eg, according to ASTM D 1159, sulfur content <0.5 ppm (weight) and/or nitrogen content <0.5 ppm (Weight) and/or bromine content <1 g/100 g), because these compounds can affect the performance quality and service life of certain catalysts and molecular sieves used in aromatic compound device units.
可將根據本發明之第一目标界定为逆轉苯管柱及甲苯管柱的次序以及分開向管柱進料原料(根據专利FR 2 998 301 B1,其以混合物形式導引至苯管柱),此係為了更高之能效而進行。The first object according to the invention can be defined as reversing the order of the benzene column and the toluene column and feeding the raw materials separately to the column (according to patent FR 2 998 301 B1, which is directed to the benzene column in the form of a mixture), This is for higher energy efficiency.
在以下實施方式中,術語「複合 裝置 」係用於表示任何包含至少兩個蒸餾管柱之精煉或石化裝置。此定義極廣泛且包含例如用於催化裂化汽油之裝置及用於由芳香族餾分產生對二甲苯或間二甲苯之裝置(稱為「芳香族化合物 複 合裝置 」)。以下實施方式及用於說明根據本發明之分離方法及裝置的實例係在芳香族化合物複合裝置之情况下给出,但應明確理解,芳香族化合物複合裝置僅構成應用之一種情況且不以任何方式限制本說明書中所闡述之分離方法及裝置的範疇。In the following embodiments, the term " composite device " is used to denote any refining or petrochemical device containing at least two distillation columns. This definition includes, for example and means a very wide range of FCC gasoline and means for generating from an aromatic fraction of the xylene or meta-xylene apparatus (referred to as "composite means an aromatic compound"). The following embodiments and examples for explaining the separation method and device according to the present invention are given in the case of an aromatic compound device, but it should be clearly understood that the aromatic compound device constitutes only one case of application and does not The method limits the scope of the separation method and device described in this specification.
圖1描述用於分離苯、甲苯及C8+化合物之參考方法及芳香族化合物複合裝置的圖式。FIG. 1 depicts a reference method for separating benzene, toluene and C8+ compounds and a schematic diagram of an aromatic compound compounding device.
參考圖1,特定言之,描述了一連串兩個管柱:苯管柱C9及甲苯管柱C10。向此一連串管柱進料由芳香族化合物萃取單元P1產生之主要芳香族C6-C7餾分及由轉烷化單元P4下游之穩定管柱C11的管柱底部產生之C7+餾分的混合物。苯管柱C9在頂部產生呈最終產物之苯且在底部產生傳送至甲苯管柱C10之C7+餾分。在甲苯管柱C10頂部回收甲苯,而在甲苯管柱C10底部萃取C8+餾分。With reference to FIG. 1, in particular, a series of two columns are described: a benzene column C9 and a toluene column C10. To this series of columns is fed a mixture of the main aromatic C6-C7 fraction produced by the aromatic compound extraction unit P1 and the C7+ fraction produced by the bottom of the column of the stable column C11 downstream of the transalkylation unit P4. The benzene column C9 produces benzene as the final product at the top and the C7+ fraction at the bottom that is passed to the toluene column C10. Toluene was recovered at the top of the toluene column C10, and the C8+ fraction was extracted at the bottom of the toluene column C10.
圖2描述根據本發明之一或多個實施例之分離方法及裝置的圖式,尤其使與參考方法及芳香族化合物複合裝置相比,苯、甲苯及C8+化合物間之分離所需的能量消耗有所降低成為可能。FIG. 2 depicts a diagram of a separation method and apparatus according to one or more embodiments of the present invention, especially the energy consumption required for separation between benzene, toluene and C8+ compounds compared to the reference method and aromatic compound composite apparatus It is possible to reduce it.
參考圖2,特定言之,描述了分離方法及裝置的區域,其經調整以向甲苯管柱(C10)進料由定位於轉烷化單元(P4)下游之穩定管柱(C11)底部產生的C7+餾分,以便自富含苯及甲苯之甲苯管柱(C10)抽取頂部產物,且自富含具有8個或更多個碳原子之化合物的甲苯管柱(C10)抽取底部產物;向苯管柱(C9)進料來自甲苯管柱(C10)之頂部產物,以便自苯管柱(C9)抽取富含苯之頂部產物,且自苯管柱(C9)抽取富含甲苯之底部產物;且向轉烷化單元(P4)進料來自苯管柱(C9)之富含甲苯之底部產物。根據一或多個實施例,亦向該甲苯管柱(C10)進料由芳香族化合物萃取單元(P1)產生之主要芳香族餾分(以下表示為C6-C7餾分),由芳香族化合物萃取單元(P1)產生的甲苯管柱(C10)之進料與由穩定管柱(C11)底部產生的甲苯管柱(C10)之進料分開且在其上方(其下游)進行。根據一或多個實施例,亦向苯管柱(C9)進料由芳香族化合物萃取單元(P1)產生之C6-C7餾分,該餾分呈與來自甲苯管柱(C10)之頂部產物的混合物形式或與其分開。Referring to FIG. 2, in particular, the area of the separation method and apparatus is described, which is adjusted to feed the toluene column (C10) produced by the bottom of the stable column (C11) positioned downstream of the transalkylation unit (P4) C7+ fraction to extract the top product from the toluene column (C10) rich in benzene and toluene, and the bottom product from the toluene column (C10) rich in compounds with 8 or more carbon atoms; towards benzene The column (C9) feeds the top product from the toluene column (C10) to extract the benzene-rich top product from the benzene column (C9) and the toluene-rich bottom product from the benzene column (C9); And the transalkylation unit (P4) is fed with the toluene-rich bottom product from the benzene column (C9). According to one or more embodiments, the toluene column (C10) is also fed with the main aromatic fraction (hereinafter referred to as C6-C7 fraction) produced by the aromatic extraction unit (P1) and the aromatic extraction unit (P1) The feed of the toluene column (C10) produced is separated from the feed of the toluene column (C10) produced from the bottom of the stabilization column (C11) and is carried out above it (downstream thereof). According to one or more embodiments, the C6-C7 fraction produced by the aromatic compound extraction unit (P1) is also fed to the benzene column (C9) as a mixture with the top product from the toluene column (C10) Form or separate from it.
下文較詳細地描述根據本發明之分離方法及裝置的轉化及分離階段及區段。The conversion and separation stages and sections of the separation method and apparatus according to the invention are described in more detail below.
當目標僅為使苯、C8化合物及視情況選用之甲苯自原料分離時,僅存在階段或區段C1、P1、C9、C10、P4及C11。下文所描述之其他區段僅在需要分離二甲苯,實際上甚至需要使對二甲苯產率最大化時有用。When the goal is only to separate benzene, C8 compounds and optionally toluene from the raw materials, there are only stages or sections C1, P1, C9, C10, P4 and C11. The other sections described below are only useful when it is necessary to separate xylene, and indeed even to maximize p-xylene yield.
重組物管柱 C1
經由管線1將待處理之原料傳送至第一蒸餾管柱(表示為重組物管柱C1),其使甲苯及較輕化合物(C7-化合物之餾分)與較重化合物(C8至C10+化合物之餾分)分離。 Recombinant column C1 transfers the raw material to be processed via
芳香族化合物萃取單元 P1
經由管線10將來自重組物管柱C1之頂部流出物導引至芳香族化合物萃取單元P1。 The aromatic compound extraction unit P1 leads the top effluent from the recombinant column C1 to the aromatic compound extraction unit P1 via the
經由管線81將甲苯及視情況選用之在汽提塔C8底部回收的化合物傳送至芳香族化合物萃取單元P1。Via
芳香族化合物萃取單元P1使主要芳香族C6-C7餾分與包含石蠟化合物之產物分離,該產物經由管線13傳送至芳香族化合物複合裝置外。芳香族化合物萃取單元P1中所用之較佳溶劑為N-甲醯嗎啉(N-formylmorpholine,NFM)。The aromatic compound extraction unit P1 separates the main aromatic C6-C7 fraction from the product containing paraffin compounds, and the product is transferred to the aromatic compound compounding device via
參考圖1,在分離區段F內經由管線12將由芳香族化合物萃取單元P1產生之C6-C7餾分導引至苯管柱C9。Referring to FIG. 1, in the separation section F, the C6-C7 fraction produced by the aromatic compound extraction unit P1 is led to the benzene column C9 via the
參考圖2,在分離區段F內經由管線12將由芳香族化合物萃取單元P1產生之C6-C7餾分導引至苯管柱C9,或(為了自其可能含有之一些C8化合物純化)導引至甲苯管柱C10。Referring to FIG. 2, in the separation section F, the C6-C7 fraction produced by the aromatic compound extraction unit P1 is led to the benzene column C9 via
根據一或多個實施例,芳香族化合物萃取單元P1包含萃取蒸餾單元。According to one or more embodiments, the aromatic compound extraction unit P1 includes an extractive distillation unit.
二甲苯管柱 C2
經由管線11將在管柱C1底部回收的C8-C10+芳香族化合物傳送至二甲苯管柱C2,以便使C9及較重(C9+化合物)芳香族化合物與包含向位於下游之芳香族化合物複合裝置單元進料的C8芳香族化合物之二甲苯餾分分離。 The xylene column C2 transfers the C8-C10+ aromatic compounds recovered at the bottom of the column C1 to the xylene column C2 via
對二甲苯分離單元 P2
在二甲苯管柱C2頂部回收二甲苯餾分(亦即含有對二甲苯、間二甲苯、鄰二甲苯及乙苯之C8芳香族化合物的餾分),且經由管線20將其傳送至對二甲苯分離單元P2,其選擇性地回收存在於該二甲苯餾分中之對二甲苯。 The para-xylene separation unit P2 recovers the xylene fraction (that is, the fraction containing C8 aromatic compounds of para-xylene, meta-xylene, o-xylene, and ethylbenzene) at the top of the xylene column C2, and passes it through
該對二甲苯分離單元P2可為適合於例如產生對二甲苯與解吸附劑之混合物(稱為萃取物)及其他C8-芳香族化合物與解吸附劑之混合物(稱為萃餘物)的對二甲苯吸附單元。The para-xylene separation unit P2 may be a pair suitable for generating, for example, a mixture of para-xylene and a desorbent (referred to as an extract) and a mixture of other C8-aromatic compounds and a desorbent (referred to as a raffinate) Xylene adsorption unit.
所用吸附劑為專用於吸附二甲苯之分子篩,亦即其呈現出尤其對此化合物之高親和力。The adsorbent used is a molecular sieve dedicated to the adsorption of xylene, that is, it exhibits a particularly high affinity for this compound.
常用吸附劑固體為由矽質黏合劑形成之八面沸石型沸石,該沸石經鋇交換或鉀交換。所用之較佳解吸附劑為對二乙苯(para-diethylbenzene,PDEB)。Commonly used adsorbent solids are faujasite-type zeolites formed from siliceous binders, which are exchanged with barium or potassium. The preferred desorbent used is para-diethylbenzene (PDEB).
根據一或多個實施例,對二甲苯分離單元P2包含對二甲苯結晶單元,例如如美國專利3 467 724中所描述。According to one or more embodiments, the para-xylene separation unit P2 comprises a para-xylene crystallization unit, for example as described in US Patent 3 467 724.
根據一或多個實施例,對二甲苯分離單元P2包含對二甲苯吸附單元與結晶單元之組合,如例如專利EP-B-053 191中所描述。According to one or more embodiments, the para-xylene separation unit P2 includes a combination of a para-xylene adsorption unit and a crystallization unit, as described in, for example, patent EP-B-053 191.
萃取管柱 C5
此管柱係在分離單元為對二甲苯吸附型時使用。經由管線22將由對二甲苯吸附單元產生且含有對二甲苯及解吸附劑之萃取物之料流傳送至自解吸附劑分離對二甲苯之萃取管柱C5。經由管線51將在萃取管柱C5底部回收之解吸附劑傳送回吸附管柱。將在萃取管柱C5頂部回收之對二甲苯傳送至純化管柱C6。 Extraction column C5 This column is used when the separation unit is paraxylene adsorption type. Via
純化管柱 C6
經由管線50將來自萃取管柱C5之頂部料流傳送至純化管柱C6,該純化管柱使甲苯(其部分地與對二甲苯一起萃取)與對二甲苯分離。 Purification column C6 transfers the top stream from extraction column C5 via
在純化管柱C6底部回收所產生之高純度對二甲苯,且經由管線61將其作為成品藉由泵送傳輸以供儲存。The generated high-purity p-xylene is recovered at the bottom of the purification column C6, and is transferred as a finished product by pumping via
根據一或多個實施例,將來自純化管柱C6之頂部產物導引至分離區段F內之苯管柱C9 (管線60)。According to one or more embodiments, the top product from purification column C6 is directed to benzene column C9 (line 60) in separation section F.
參考圖2,可將來自純化管柱C6之頂部產物:以與來自管柱C10之頂部料流的混合物形式或經由分開進料導引至苯管柱C9,或者導引至甲苯管柱C10,例如呈與由穩定管柱C11之底部(管線112)產生之C7+餾分的混合物形式,以便自其可能含有的一些C8化合物純化該頂部產物;及/或直接再循環至轉烷化單元P4,例如呈與在苯管柱C9底部萃取之C7+餾分的混合物形式。Referring to FIG. 2, the top product from the purification column C6 may be directed to the benzene column C9 or the toluene column C10 in the form of a mixture with the top stream from the column C10 or via a separate feed. For example, in the form of a mixture with the C7+ fraction produced from the bottom of the stable column C11 (line 112) to purify the top product from some C8 compounds it may contain; and/or directly recycled to the transalkylation unit P4, for example In the form of a mixture with the C7+ fraction extracted at the bottom of the benzene column C9.
萃餘物管柱 C4
經由管線23將源自對二甲苯分離單元P2之萃餘物傳送至使C8芳香族化合物(萃餘物)與解吸附劑分離之萃餘物管柱C4。經由管線41將在管柱C4底部回收的解吸附劑傳送回對二甲苯吸附區段P2。 The raffinate column C4 transfers the raffinate originating from the para-xylene separation unit P2 to the raffinate column C4 that separates the C8 aromatic compound (raffinate) from the desorbent via the
藉由排出側流萃取萃餘物(C8芳香族化合物餾分),且將其經由管線40作為二甲苯異構化單元P3之原料傳送。The raffinate (C8 aromatic compound fraction) is extracted by discharging the side stream, and it is transferred as a raw material of the xylene isomerization unit P3 via the
解吸附劑管柱 ( 未展示 ) 此管柱係在對二甲苯分離單元為對二甲苯吸附型時使用。將在對二甲苯吸附單元中循環之一小部分解吸附劑傳送至解吸附劑管柱(未展示)以便自其移除重化合物,否則其將積聚在環路中。 Desorbent column ( not shown ) This column is used when the paraxylene separation unit is paraxylene adsorption type. A small portion of the desorbent circulating in the paraxylene adsorption unit is transferred to a desorbent column (not shown) to remove heavy compounds therefrom, otherwise it will accumulate in the loop.
二甲苯異構化單元 P3 二甲苯異構化單元P3係用於在熱力學平衡下將對二甲苯耗盡之原料轉化成二甲苯料流(表示為「異構體(isomerate)」)。 Xylene isomerization unit P3 The xylene isomerization unit P3 is used to convert paraxylene-depleted raw materials into a xylene stream (expressed as "isomerate") under thermodynamic equilibrium.
可於根據本發明之分離方法及裝置中使用任何類型的能夠異構化具有8個碳原子之烴的催化劑。較佳使用含有脫氫化金屬(諸如鉑、鈀或鎳)及酸性相(例如摻雜氧化鋁、沸石(諸如絲光沸石(mordenite)、MFI、沸石Y)或包含諸如鋁磷酸鹽(例如鋁磷酸鹽AlPO、矽鋁磷酸鹽SAPO)的酸之沸石或非沸石分子篩)的催化劑。因此,使用包含EUO結構類型之沸石(諸如沸石EUI、沸石ZSM 50或沸石TPZ3)的異構化催化劑可能更佳,如美國專利4 640 829、EP-B-042 226或EP-B-051 318中所描述。Any type of catalyst capable of isomerizing hydrocarbons having 8 carbon atoms can be used in the separation method and apparatus according to the present invention. It is preferred to use a dehydrogenated metal (such as platinum, palladium or nickel) and an acidic phase (for example doped alumina, zeolite (such as mordenite, MFI, zeolite Y) or contain such as aluminum phosphate (for example aluminum phosphate AlPO, silicoaluminophosphate (SAPO) acid zeolite or non-zeolitic molecular sieve) catalyst. Therefore, it may be better to use isomerization catalysts containing zeolites of the EUO structure type (such as zeolite EUI,
脫庚烷塔 C7
經由管線42將來自二甲苯異構化單元P3之流出物傳送至脫庚烷塔C7,其使異構體(C8+芳香族化合物)與在該脫庚烷塔管柱C7頂部回收的C7-輕餾分分離。經由管線71將此C7-餾分傳送至汽提塔C8以便使輕化合物與C7-餾分分離。 The deheptane column C7 transfers the effluent from the xylene isomerization unit P3 via
經由管線72將在脫庚烷塔C7底部回收之由二甲苯及較重化合物形成的C8+餾分再循環至二甲苯管柱C2。The C8+ fraction formed by xylene and heavier compounds recovered at the bottom of the deheptanizer C7 via
鑒於脫庚烷塔(C7)中之含有大量輕(C4-)化合物,因此來自脫庚烷塔C7之頂部產物可包含氣相70 (主要由輕(C4-)化合物構成)及液相71,二者均由回流槽(未展示)產生。In view of the large amount of light (C4-) compounds contained in the deheptane column (C7), the top product from the deheptane column C7 may contain gas phase 70 (mainly composed of light (C4-) compounds) and
汽提塔 C8 經由脫庚烷塔C7頂部向汽提塔(或汽提管柱)C8進料。 Stripping column C8 feeds stripping column (or stripping column) C8 via the top of deheptane column C7.
在汽提塔C8底部回收穩定C7-餾分以經由管線81將其傳送至芳香族化合物萃取單元P1。The stable C7-fraction is recovered at the bottom of the stripper C8 to be sent to the aromatic compound extraction unit P1 via
經由管線80將由汽提塔頂部產生之輕(C4-)化合物與來自脫庚烷塔頂部(管線70)之輕化合物混合且排出。The light (C4-) compound produced from the top of the stripping column is mixed with the light compound from the top of the deheptanizer (line 70) via
重芳香族化合物管柱 C3
經由管線21將在二甲苯管柱C2底部回收之C9+芳香族化合物傳送至重芳香族化合物管柱C3,該重芳香族化合物管柱使C9及C10芳香族化合物與較重化合物(諸如萘)分離,該等較重化合物對轉烷化催化劑可能具有不利影響且其經由管線31在底部進行回收。 The heavy aromatic compound column C3 transfers the C9+aromatic compound recovered at the bottom of the xylene column C2 to the heavy aromatic compound column C3 via the
轉烷化單元 P4
經由管線30將在重芳香族化合物管柱C3頂部回收之C9及C10芳香族化合物傳送至轉烷化單元P4。 The transalkylation unit P4 sends the C9 and C10 aromatic compounds recovered at the top of the heavy aromatic compound column C3 to the transalkylation unit P4 via
參考圖1,將C9及C10芳香族化合物與源自甲苯管柱C10頂部的甲苯混合。Referring to FIG. 1, C9 and C10 aromatic compounds are mixed with toluene derived from the top of the toluene column C10.
參考圖2,將C9及C10芳香族化合物與源自苯管柱C9底部的甲苯混合。Referring to FIG. 2, C9 and C10 aromatic compounds are mixed with toluene derived from the bottom of the benzene column C9.
轉烷化單元P4將源自重組物管柱C1及源自二甲苯異構化單元P3之異構體的甲苯及C9+芳香族化合物(在穿過二甲苯管柱C2及重芳香族化合物管柱C3之後)經由熱力學限制反應轉化成二甲苯與苯的混合物。根據一或多個實施例,二甲苯管柱C2及重芳香族化合物管柱C3提供傳送至轉烷化單元P4之大部分(實質上所有) C9+芳香族化合物。The transalkylation unit P4 will generate toluene and C9+ aromatic compounds derived from the recombination column C1 and the isomers derived from the xylene isomerization unit P3 (after passing through the xylene column C2 and the heavy aromatic compound column After C3) conversion to a mixture of xylene and benzene via thermodynamic limiting reaction. According to one or more embodiments, the xylene column C2 and the heavy aromatic compound column C3 provide most (substantially all) C9+ aromatic compounds that are transferred to the transalkylation unit P4.
任何類型之轉烷化催化劑可用於根據本發明之分離方法及裝置中,例如美國專利3 437 710中所描述之基於絲光沸石或八面沸石之催化劑,或美國專利5 030 787中所描述之基於MCM-22或β沸石之催化劑,或如美國專利申請案2012/0065446中所描述之基於絲光沸石及MFI沸石之催化劑。此等催化劑通常額外包含較佳選自由錸、鎳、鈷、鉬、鎢、鈀及鉑形成之群的金屬化合物。Any type of transalkylation catalyst can be used in the separation method and apparatus according to the present invention, such as the mordenite or faujasite-based catalyst described in US Patent 3 437 710, or based on the US Patent 5 030 787 MCM-22 or beta zeolite catalyst, or a mordenite and MFI zeolite based catalyst as described in US Patent Application 2012/0065446. These catalysts usually additionally comprise metal compounds preferably selected from the group consisting of rhenium, nickel, cobalt, molybdenum, tungsten, palladium and platinum.
穩定管柱 C11
經由管線102將來自含有苯、未經轉化之甲苯及C8 (例如二甲苯)及C9+芳香族化合物之轉烷化單元P4的流出物傳送至穩定管柱C11,該穩定管柱使比苯要輕之化合物與苯及較重芳香族化合物(表示為C7+化合物)分離。 The stabilization column C11 sends the effluent from the transalkylation unit P4 containing benzene, unconverted toluene and C8 (e.g. xylene) and C9+ aromatic compounds via
經由管線110將離開穩定管柱C11 (之回流槽)的氣體傳送至芳香族化合物複合裝置之邊界。The gas leaving the stable column C11 (the reflux tank) is sent to the boundary of the aromatic compound composite device via the
將未純化之苯餾分以側流形式排出且將其經由管線111傳送至汽提管柱C8,以使輕化合物可與該餾分分離。The unpurified benzene fraction is discharged as a side stream and transferred to the stripping column C8 via
根據一或多個實施例,藉助於冷卻塔(視情況後接水冷卻器)達成來自穩定管柱C11之頂部氣體的部分冷凝。According to one or more embodiments, partial condensation of the top gas from the stabilization column C11 is achieved by means of a cooling tower (optionally followed by a water cooler).
分離區段 F 分離區段F包含苯管柱C9及甲苯管柱C10。 Separation section F The separation section F includes a benzene column C9 and a toluene column C10.
根據參考方法及芳香族化合物複合裝置之苯管柱 C9
參考圖1,由芳香族化合物萃取單元P1產生之C6-C7餾分(管線12)與由穩定管柱C11底部產生之C7+餾分(管線112)混合且傳送至苯管柱C9。在苯管柱C9頂部經由管線90自苯管柱C9萃取出呈最終產物之苯。經由管線91將在苯管柱C9底部萃取之C7+餾分導引至甲苯管柱C10。 According to the reference method and the benzene column C9 of the aromatic compound compounding device, refer to FIG. 1, the C6-C7 fraction produced by the aromatic compound extraction unit P1 (line 12) and the C7+ fraction produced by the bottom of the stable column C11 (line 112) Mix and transfer to benzene column C9. The benzene as the final product is extracted from the benzene column C9 via
根據參考方法及芳香族化合物複合裝置之甲苯管柱 C10
參考圖1,向甲苯管柱C10進料由苯管柱C9底部產生之C7+餾分。經由管線100導引在甲苯管柱C10頂部回收的甲苯作為轉烷化單元P4之原料。經由管線101將在管柱C10底部萃取之C8+餾分再循環至二甲苯管柱C2。 According to the reference method and the toluene column C10 of the aromatic compound compounding device, referring to FIG. 1, the C7+ fraction produced from the bottom of the benzene column C9 is fed to the toluene column C10. The toluene recovered at the top of the toluene column C10 is introduced via
根據本發明之分離方法及裝置的甲苯管柱 C10 參考圖2,向甲苯管柱C10進料由穩定管柱C11底部產生之C7+餾分(管線112)。來自甲苯管柱C10之頂部產物係富含C7-化合物(例如,主要甲苯+ C6-化合物)之餾分,且底部產物係富含具有8個碳原子之芳香族化合物的C8+餾分。 According to the toluene column C10 of the separation method and apparatus of the present invention, referring to FIG. 2, the toluene column C10 is fed with the C7+ fraction generated from the bottom of the stable column C11 (line 112). The top product from the toluene column C10 is a C7-compound-rich fraction (eg, main toluene + C6-compound), and the bottom product is a C8+-fraction enriched in aromatic compounds having 8 carbon atoms.
經由管線101將在甲苯管柱C10底部萃取之C8+餾分(亦即富含具有8個或更多個碳原子之化合物的來自甲苯管柱C10的底部產物)再循環至二甲苯管柱C2,該二甲苯管柱使C9+及較重化合物與進料至對二甲苯分離裝置之C8芳香族化合物餾分分離。The C8+ fraction extracted at the bottom of the toluene column C10 (that is, the bottom product from the toluene column C10 rich in compounds having 8 or more carbon atoms) is recycled to the xylene column C2 via
根據一或多個實施例,將由芳香族化合物萃取單元P1產生之C6-C7餾分以分開方式且在由穩定管柱C11底部產生之C7+餾分進料上方傳送至甲苯管柱C10。According to one or more embodiments, the C6-C7 fraction produced by the aromatic compound extraction unit P1 is transferred to the toluene column C10 in a separate manner and above the C7+ fraction feed produced from the bottom of the stable column C11.
根據本發明之一或多個實施例,由於由純化管柱C6頂部產生的流出物與由分離區段F處理之其他兩個料流相比可能具有極低流動速率,因此將該流出物與由管柱C11底部產生之C7+餾分混合。用於將由純化管柱C6頂部產生之料流進料至分離區段F中的任何其他位置亦係可能的。舉例而言,可將純化管柱C6之頂部再循環至苯管柱C9或直接再循環至轉烷化單元P4。舉例而言,可將包含來自苯管柱C9之底部產物與來自純化管柱C6之頂部產物的混合物進料至轉烷化單元P4。According to one or more embodiments of the present invention, since the effluent produced at the top of the purification column C6 may have an extremely low flow rate compared to the other two streams treated by the separation section F, the effluent is The C7+ fractions produced from the bottom of column C11 are mixed. It is also possible to feed the stream generated from the top of the purification column C6 to any other location in the separation section F. For example, the top of the purification column C6 can be recycled to the benzene column C9 or directly to the transalkylation unit P4. For example, a mixture comprising the bottom product from the benzene column C9 and the top product from the purification column C6 can be fed to the transalkylation unit P4.
根據一或多個實施例,甲苯管柱之操作條件如下: 再沸器處溫度為130℃至260℃,冷凝器處溫度為50℃至200℃; 壓力:在0.05 MPa與1 MPa之間;及 理論塔板在30個與55個之間。According to one or more embodiments, the operating conditions of the toluene column are as follows: The temperature at the reboiler is 130°C to 260°C, and the temperature at the condenser is 50°C to 200°C; Pressure: between 0.05 MPa and 1 MPa; and The theoretical plates are between 30 and 55.
根據本發明之分離方法及裝置的苯管柱 C9
參考圖2,經由管線91將在甲苯管柱C10頂部(亦即富含苯及甲苯之來自甲苯管柱的頂部產物)萃取的C7-餾分導引至苯管柱C9。 According to the benzene column C9 of the separation method and apparatus of the present invention, referring to FIG. 2, the C7-distillate extracted at the top of the toluene column C10 (that is, the top product from the toluene column rich in benzene and toluene) via
根據本發明之一或多個實施例,例如當由芳香族化合物萃取單元P1產生之C6-C7餾分含有極少C8+(例如在C6-C7餾分中,C8+ <1重量%,較佳地,<0.5重量%,且再更佳地,<0.3重量%)時,將由芳香族化合物萃取單元P1產生之C6-C7餾分導引至甲苯管柱C10下游之苯管柱C9 (呈與甲苯管柱C10頂部的混合物形式或與其分開)。根據一或多個實施例,由芳香族化合物萃取單元P1產生之苯管柱C9的進料與由甲苯管柱C10頂部產生之進料分開且較佳地在其上方(其下游)進行。According to one or more embodiments of the present invention, for example, when the C6-C7 fraction produced by the aromatic compound extraction unit P1 contains very little C8+ (for example, in the C6-C7 fraction, C8+ <1% by weight, preferably, <0.5 % By weight, and even better, <0.3% by weight), the C6-C7 fraction produced by the aromatic compound extraction unit P1 is led to the benzene column C9 downstream of the toluene column C10 (presenting the top of the toluene column C10 Or in a separate mixture). According to one or more embodiments, the feed of the benzene column C9 produced by the aromatic compound extraction unit P1 is separated from the feed produced by the top of the toluene column C10 and is preferably performed above (downstream thereof).
自苯管柱C9開始,經由管線90萃取呈最終產物之富含苯之頂部產物。根據一或多個實施例,藉由排出側流來萃取富含苯之產物。根據一或多個實施例,經由管柱頂部之蒸汽流排出輕質及不冷凝化合物(管線92)。經由管線100將來自苯管柱C9之富含甲苯之底部產物導引至轉烷化單元P4。Starting from the benzene column C9, the benzene-rich top product as the final product is extracted via
根據一或多個實施例,苯管柱之操作條件如下: 再沸器處溫度為130℃至180℃,冷凝器處溫度為70℃至130℃; 壓力:在0.1 MPa與0.5 MPa之間;及 理論塔板在35個與55個之間。According to one or more embodiments, the operating conditions of the benzene column are as follows: The temperature at the reboiler is 130°C to 180°C, and the temperature at the condenser is 70°C to 130°C; Pressure: between 0.1 MPa and 0.5 MPa; and The theoretical plates are between 35 and 55.
在圖1及圖2中,為簡單起見,並未展示出回流區段、回流槽或冷凝器;可使用任何已知冷凝手段(例如:冷卻塔及/或水冷卻器)。In FIGS. 1 and 2, for simplicity, the reflux section, reflux tank, or condenser are not shown; any known condensation means (eg, cooling tower and/or water cooler) may be used.
實例 在各實例中,向分離區段F進料以下兩種原料: - 原料1:由芳香族化合物萃取單元P1產生之C6-C7餾分;及 - 原料2:由穩定管柱C11底部產生的C7+餾分。 EXAMPLES In each example, the following two raw materials were fed to the separation section F:-Raw material 1: C6-C7 fraction produced by the aromatic compound extraction unit P1; and-Raw material 2: C7+ produced from the bottom of the stable column C11 Distillate.
在各實例中,將純化管柱C6頂部直接再循環至轉烷化單元P4。In each example, the top of the purification column C6 was directly recycled to the transalkylation unit P4.
實例 1
分離區段F之兩種原料(原料1及原料2)的組成展示於表1中。
根據表2之組成,自分離區段F排出之各餾分為各自富含苯、甲苯及C8+化合物之產物。
評估四種分餾組態:
- 組態1 (根據參考分離方法及裝置):向苯管柱進料兩種原料之混合物。苯管柱底部向甲苯管柱進料。
- 組態2 (比較):向苯管柱進料兩種原料(分開引入至管柱中)。苯管柱底部向甲苯管柱進料。
- 組態3 (比較):向甲苯管柱進料兩種原料之混合物。甲苯管柱頂部向苯管柱進料。
- 組態4 (根據根據本發明之分離方法及裝置):向甲苯管柱進料兩種原料(分開引入至管柱中)。原料1在原料2上方進料。甲苯管柱頂部向苯管柱進料。Evaluation of four fractionation configurations:
-Configuration 1 (according to the reference separation method and device): feeding a mixture of two raw materials to the benzene column. The bottom of the benzene column feeds the toluene column.
-Configuration 2 (comparison): feeding two raw materials to the benzene column (introduced separately into the column). The bottom of the benzene column feeds the toluene column.
-Configuration 3 (comparison): feeding a mixture of two raw materials to the toluene column. The top of the toluene column is fed to the benzene column.
-Configuration 4 (according to the separation method and device according to the invention): feeding two raw materials to the toluene column (introduced separately into the column).
在組態中之每一者中優化進料位置以便使管柱中之每一者的再沸能耗降至最低。Optimize the feed position in each of the configurations to minimize the reboiling energy consumption of each of the columns.
組態中之每一者之幾何結構及能耗展示於表3中。The geometry and energy consumption of each of the configurations are shown in Table 3.
出人意料地注意到,相較於參考實例,僅藉由逆轉管柱之次序且藉由分開引入兩種原料(根據本發明之組態4)可獲得顯著(大於10%)節能。簡單的管柱逆向(組態3)或彼此獨立地進行的分開引入兩種進料(組態2)無法獲得顯著節能。It was surprisingly noted that compared to the reference example, significant (more than 10%) energy savings can be obtained only by reversing the order of the column and by introducing two raw materials separately (configuration 4 according to the invention). Simple column reversal (configuration 3) or separate introduction of the two feeds (configuration 2) separately from each other cannot achieve significant energy savings.
在此實例中,當苯管柱C9在甲苯管柱C10下游時,選擇將由芳香族化合物萃取單元P1產生之C6-C7餾分直接導引至苯管柱C9,因為其C8+化合物含量(767 公斤/小時)大於C8+化合物含量(267 公斤/小時)(此係來自甲苯管柱C10之底部產物所期望的)。
實例 2
苯、甲苯、C8+化合物分離區段(F)中之2種原料的組成展示於表4中。
在此實例中,在根據本發明之苯管柱C9位於甲苯管柱C10之下游的圖式中,原料1中C8+化合物之含量(192 公斤/小時)使將由C6/C7餾分(由芳香族化合物分離單元P1產生)產生之原料1直接導引至苯管柱C9成為可能。In this example, in the pattern where the benzene column C9 according to the present invention is located downstream of the toluene column C10, the content of the C8+ compound (192 kg/h) in the
評估三種分餾組態:
- 組態1 (根據參考分離方法及裝置):向苯管柱進料2種原料之混合物。苯管柱底部向甲苯管柱進料。
- 組態5 (根據本發明):僅向甲苯管柱進料原料2。在甲苯管柱頂部混合原料1。此混合物向苯管柱進料。
- 組態6 (根據本發明):僅向甲苯管柱進料原料2。原料1及甲苯管柱頂部分開向苯管柱進料。Evaluation of three fractionation configurations:
-Configuration 1 (according to the reference separation method and device): feeding a mixture of 2 raw materials to the benzene column. The bottom of the benzene column feeds the toluene column.
-Configuration 5 (according to the invention): feed the raw material 2 to the toluene column only. Mix
根據表5 (根據組態1)之組成及及根據表6 (根據組態5及6)之組成,自分離區段F排出之餾分為各自富含的苯、甲苯及C8+化合物之產物。
原料1中C8+化合物之含量足夠低,使得可在組態5及6 (268 公斤/小時)中的富含甲苯之產物中獲得與組態1中相同的C8+化合物含量。The content of the C8+ compound in the
在組態中之每一者中對進料位置進行最佳化以便使管柱中之每一者中之再沸能耗降至最低。The feed location is optimized in each of the configurations in order to minimize the reboil energy consumption in each of the columns.
組態中之每一者中的幾何結構及能耗展示於表7中。
與根據參考分離方法及裝置之組態1相比,根據本發明之組態5及6在能量上更為高效。Compared to
1‧‧‧管線 10‧‧‧管線 11‧‧‧管線 12‧‧‧管線 13‧‧‧管線 20‧‧‧管線 21‧‧‧管線 22‧‧‧管線 23‧‧‧管線 30‧‧‧管線 31‧‧‧管線 40‧‧‧管線 41‧‧‧管線 42‧‧‧管線 50‧‧‧管線 51‧‧‧管線 60‧‧‧管線 61‧‧‧管線 70‧‧‧管線 71‧‧‧管線 72‧‧‧管線 80‧‧‧管線 81‧‧‧管線 90‧‧‧管線 91‧‧‧管線 92‧‧‧管線 100‧‧‧管線 101‧‧‧管線 102‧‧‧管線 110‧‧‧管線 111‧‧‧管線 112‧‧‧管線 C1‧‧‧重組物管柱 C2‧‧‧二甲苯管柱 C3‧‧‧重芳香族化合物管柱 C4‧‧‧萃餘物管柱 C5‧‧‧萃取管柱 C6‧‧‧純化管柱 C7‧‧‧脫庚烷塔 C8‧‧‧汽提塔 C9‧‧‧苯管柱 C10‧‧‧甲苯管柱 C11‧‧‧穩定管柱 F‧‧‧分離區段 P1‧‧‧芳香族化合物萃取單元 P2‧‧‧對二甲苯分離單元 P3‧‧‧二甲苯異構化單元 P4‧‧‧轉烷化單元1‧‧‧ pipeline 10‧‧‧ pipeline 11‧‧‧ pipeline 12‧‧‧ pipeline 13‧‧‧ pipeline 20‧‧‧ pipeline 21‧‧‧ pipeline 22‧‧‧ pipeline 23‧‧‧ pipeline 30‧‧‧ pipeline 31‧‧‧ pipeline 40‧‧‧ pipeline 41‧‧‧ pipeline 42‧‧‧ pipeline 50‧‧‧ pipeline 51‧‧‧ pipeline 60‧‧‧ pipeline 61‧‧‧ pipeline 70‧‧‧ pipeline 71‧‧‧ pipeline 72‧‧‧ pipeline 80‧‧‧ pipeline 81‧‧‧ pipeline 90‧‧‧ pipeline 91‧‧‧ pipeline 92‧‧‧ pipeline 100‧‧‧ pipeline 101‧‧‧ pipeline 102‧‧‧ pipeline 110‧‧‧ pipeline 111‧‧‧ pipeline 112‧‧‧ pipeline C1‧‧‧recombinant column C2‧‧‧xylene column C3‧‧‧Heavy aromatic compound column C4‧‧‧Raffinate column C5‧‧‧Extraction column C6‧‧‧Purification column C7‧‧‧Deheptane Tower C8‧‧‧Stripping Tower C9‧‧‧Benzene column C10‧‧‧Toluene column C11‧‧‧stable column F‧‧‧ Separation section P1‧‧‧ aromatic compound extraction unit P2‧‧‧paraxylene separation unit P3‧‧‧xylene isomerization unit P4‧‧‧Transalkylation unit
圖1描述包含用於分離苯、甲苯及C8+化合物的參考分離區段F之芳香族化合物複合裝置的圖式。 圖2描述包含用於分離苯、甲苯及C8+化合物之根據本發明的分離區段F之芳香族化合物複合裝置的圖式。FIG. 1 depicts a diagram of an aromatic compound composite device including a reference separation section F for separating benzene, toluene, and C8+ compounds. Fig. 2 depicts a diagram of an aromatic compound compounding device comprising a separation section F according to the invention for separating benzene, toluene and C8+ compounds.
1‧‧‧管線 1‧‧‧ pipeline
10‧‧‧管線 10‧‧‧ pipeline
11‧‧‧管線 11‧‧‧ pipeline
12‧‧‧管線 12‧‧‧ pipeline
13‧‧‧管線 13‧‧‧ pipeline
20‧‧‧管線 20‧‧‧ pipeline
21‧‧‧管線 21‧‧‧ pipeline
22‧‧‧管線 22‧‧‧ pipeline
23‧‧‧管線 23‧‧‧ pipeline
30‧‧‧管線 30‧‧‧ pipeline
31‧‧‧管線 31‧‧‧ pipeline
40‧‧‧管線 40‧‧‧ pipeline
41‧‧‧管線 41‧‧‧ pipeline
42‧‧‧管線 42‧‧‧ pipeline
50‧‧‧管線 50‧‧‧ pipeline
51‧‧‧管線 51‧‧‧ pipeline
60‧‧‧管線 60‧‧‧ pipeline
61‧‧‧管線 61‧‧‧ pipeline
70‧‧‧管線 70‧‧‧ pipeline
71‧‧‧管線 71‧‧‧ pipeline
72‧‧‧管線 72‧‧‧ pipeline
80‧‧‧管線 80‧‧‧ pipeline
81‧‧‧管線 81‧‧‧ pipeline
90‧‧‧管線 90‧‧‧ pipeline
91‧‧‧管線 91‧‧‧ pipeline
92‧‧‧管線 92‧‧‧ pipeline
100‧‧‧管線 100‧‧‧ pipeline
101‧‧‧管線 101‧‧‧ pipeline
102‧‧‧管線 102‧‧‧ pipeline
110‧‧‧管線 110‧‧‧ pipeline
111‧‧‧管線 111‧‧‧ pipeline
112‧‧‧管線 112‧‧‧ pipeline
C1‧‧‧重組物管柱 C1‧‧‧recombinant column
C2‧‧‧二甲苯管柱 C2‧‧‧xylene column
C3‧‧‧重芳香族化合物管柱 C3‧‧‧Heavy aromatic compound column
C4‧‧‧萃餘物管柱 C4‧‧‧Raffinate column
C5‧‧‧萃取管柱 C5‧‧‧Extraction column
C6‧‧‧純化管柱 C6‧‧‧Purification column
C7‧‧‧脫庚烷塔 C7‧‧‧Deheptane Tower
C8‧‧‧汽提塔 C8‧‧‧Stripping Tower
C9‧‧‧苯管柱 C9‧‧‧Benzene column
C10‧‧‧甲苯管柱 C10‧‧‧Toluene column
C11‧‧‧穩定管柱 C11‧‧‧stable column
F‧‧‧分離區段 F‧‧‧ Separation section
P1‧‧‧芳香族化合物萃取單元 P1‧‧‧ aromatic compound extraction unit
P2‧‧‧對二甲苯分離單元 P2‧‧‧paraxylene separation unit
P3‧‧‧二甲苯異構化單元 P3‧‧‧xylene isomerization unit
P4‧‧‧轉烷化單元 P4‧‧‧Transalkylation unit
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1853885A FR3080852B1 (en) | 2018-05-04 | 2018-05-04 | REVERSE AROMATIC SEPARATION PROCESS AND DEVICE |
FR1853885 | 2018-05-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202003426A true TW202003426A (en) | 2020-01-16 |
TWI808166B TWI808166B (en) | 2023-07-11 |
Family
ID=63963087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108114853A TWI808166B (en) | 2018-05-04 | 2019-04-29 | Process and device for the inverted separation of aromatics |
Country Status (10)
Country | Link |
---|---|
US (1) | US10669493B2 (en) |
EP (1) | EP3563916B1 (en) |
JP (1) | JP7369542B2 (en) |
KR (1) | KR20190127597A (en) |
CN (1) | CN110437026B (en) |
ES (1) | ES2867960T3 (en) |
FR (1) | FR3080852B1 (en) |
HR (1) | HRP20210834T1 (en) |
PT (1) | PT3563916T (en) |
TW (1) | TWI808166B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102464478B1 (en) * | 2020-06-16 | 2022-11-07 | 주식회사 엘지화학 | Apparatus for preparing aromatic hydrocarbon |
FR3126977A1 (en) * | 2021-09-10 | 2023-03-17 | IFP Energies Nouvelles | Chemical loop combustion of oxygen-rich hydrocarbon compounds for the production of xylenes. |
FR3126976A1 (en) * | 2021-09-10 | 2023-03-17 | IFP Energies Nouvelles | Oxycombustion of oxygen-rich hydrocarbon compounds for the production of xylenes. |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61186334A (en) * | 1985-02-14 | 1986-08-20 | Mitsubishi Chem Ind Ltd | Separation of 8c aromatic hydrocarbon isomer |
JPS63196528A (en) * | 1985-09-13 | 1988-08-15 | ユ−オ−ピ− インコ−ポレイテツド | Manufacture of xylene by use of both isomerizing/transalkylating zone |
DE3942950A1 (en) * | 1989-12-23 | 1991-06-27 | Krupp Koppers Gmbh | METHOD FOR THE SIMULTANEOUS PRODUCTION OF PURE BENZOL AND PURE TULUOL |
US6740788B1 (en) * | 2002-12-19 | 2004-05-25 | Uop Llc | Integrated process for aromatics production |
JP2007269647A (en) | 2006-03-30 | 2007-10-18 | Mitsubishi Chemicals Corp | METHOD FOR PURIFYING alpha-METHYLSTYRENE |
US8754281B2 (en) * | 2010-08-25 | 2014-06-17 | Uop Llc | Energy conservation in heavy-hydrocarbon distillation |
US8993825B2 (en) * | 2010-08-25 | 2015-03-31 | Uop Llc | Energy conservation in heavy-hydrocarbon distillation |
JP6033050B2 (en) | 2012-11-16 | 2016-11-30 | 東洋エンジニアリング株式会社 | Aromatic hydrocarbon production equipment |
FR2998301B1 (en) | 2012-11-22 | 2016-01-01 | Axens | LOW TEMPERATURE HEAT RECOVERY METHOD AND APPLICATION OF THE METHOD TO THE AROMATIC COMPLEX |
CN105992751B (en) * | 2014-02-13 | 2019-03-22 | Bp北美公司 | For separating the fractionation process for turning the energy efficient of reactor effluent of alkylation process from TOL/A9+ |
US9328040B2 (en) | 2014-03-03 | 2016-05-03 | Uop Llc | Process for recovering benzene and fuel gas in an aromatics complex |
JP6389284B2 (en) * | 2014-06-30 | 2018-09-12 | エクソンモービル・ケミカル・パテンツ・インク | Method for producing para-xylene |
JP2017523157A (en) * | 2014-06-30 | 2017-08-17 | エクソンモービル・ケミカル・パテンツ・インク | Method for producing para-xylene |
US9221729B1 (en) * | 2015-02-23 | 2015-12-29 | Allnew Chemical Technology Company | Extractive distillation for aromatics recovery |
US20160347689A1 (en) * | 2015-05-29 | 2016-12-01 | Uop Llc | Processes and apparatuses for separating streams to provide a transalkylation feed stream in an aromatics complex |
EP3455195B1 (en) * | 2016-03-31 | 2022-06-08 | Uop Llc | Processes and apparatuses for naphthene recycle in the production of aromatic products |
US10865169B2 (en) | 2016-06-07 | 2020-12-15 | Uop Llc | Liquid phase isomerization process integration |
US10023509B2 (en) | 2016-09-30 | 2018-07-17 | Uop Llc | Processes and apparatuses for production of aromatic products |
FR3080857B1 (en) | 2018-05-04 | 2020-05-08 | Axens | METHOD AND DEVICE FOR SEPARATING AROMATICS IN A VACUUM |
-
2018
- 2018-05-04 FR FR1853885A patent/FR3080852B1/en not_active Expired - Fee Related
-
2019
- 2019-04-12 EP EP19169111.2A patent/EP3563916B1/en active Active
- 2019-04-12 ES ES19169111T patent/ES2867960T3/en active Active
- 2019-04-12 PT PT191691112T patent/PT3563916T/en unknown
- 2019-04-26 JP JP2019084808A patent/JP7369542B2/en active Active
- 2019-04-29 TW TW108114853A patent/TWI808166B/en active
- 2019-04-30 CN CN201910360792.6A patent/CN110437026B/en active Active
- 2019-05-03 KR KR1020190052337A patent/KR20190127597A/en active Search and Examination
- 2019-05-03 US US16/402,300 patent/US10669493B2/en active Active
-
2021
- 2021-05-25 HR HRP20210834TT patent/HRP20210834T1/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2019194187A (en) | 2019-11-07 |
CN110437026B (en) | 2023-07-21 |
PT3563916T (en) | 2021-04-14 |
ES2867960T3 (en) | 2021-10-21 |
TWI808166B (en) | 2023-07-11 |
FR3080852B1 (en) | 2020-05-08 |
CN110437026A (en) | 2019-11-12 |
FR3080852A1 (en) | 2019-11-08 |
EP3563916B1 (en) | 2021-03-17 |
HRP20210834T1 (en) | 2021-08-06 |
JP7369542B2 (en) | 2023-10-26 |
US10669493B2 (en) | 2020-06-02 |
US20190338202A1 (en) | 2019-11-07 |
KR20190127597A (en) | 2019-11-13 |
EP3563916A1 (en) | 2019-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI638800B (en) | Aromatics production process | |
KR102343702B1 (en) | Method for the production of high-purity paraxylene from a xylene fraction, using two simulated moving bed separation units operating in series and two isomerisation units | |
KR102343701B1 (en) | Method for the production of paraxylene, comprising two simulated moving bed separation units and two isomerisation units, one being in the gas phase | |
JP2008001699A (en) | Energy-efficient process for producing para-xylene | |
KR102405155B1 (en) | Method for the production of high-purity paraxylene from a xylene fraction, method using a simulated moving bed separation unit and two isomerisation units, one being in the gas phase and the other being in the liquid phase | |
US10059644B2 (en) | Process and apparatus for the production of para-xylene | |
US10351489B2 (en) | Processes for recovering paraxylene | |
KR102181461B1 (en) | Liquid ISOMAR process integration | |
TWI808166B (en) | Process and device for the inverted separation of aromatics | |
WO2016175898A1 (en) | Process and apparatus for the production of para-xylene | |
US10300404B2 (en) | Process for the recovering of paraxylene | |
US9902666B2 (en) | Energy efficient naphthene recycle via the use of a side draw fractionation tower and partial condensation | |
US20200095181A1 (en) | Removal of feed treatment units in aromatics complex designs | |
US20180170834A1 (en) | Removal of feed treatment units in aromatics complex designs | |
TWI805790B (en) | Process for producing para-xylene using a step in a simulated moving bed and a step of fractionation via a three-fraction column | |
US10876051B2 (en) | Process and device for separating aromatics under vacuum |