TW201900358A - Method for calibrating coordinator of robot arm - Google Patents
Method for calibrating coordinator of robot arm Download PDFInfo
- Publication number
- TW201900358A TW201900358A TW106117079A TW106117079A TW201900358A TW 201900358 A TW201900358 A TW 201900358A TW 106117079 A TW106117079 A TW 106117079A TW 106117079 A TW106117079 A TW 106117079A TW 201900358 A TW201900358 A TW 201900358A
- Authority
- TW
- Taiwan
- Prior art keywords
- coordinates
- calibration
- calibration block
- center point
- robot arm
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000001914 filtration Methods 0.000 claims abstract 3
- 238000012937 correction Methods 0.000 claims description 21
- 230000036544 posture Effects 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 3
- 235000015250 liver sausages Nutrition 0.000 abstract 4
- 238000010586 diagram Methods 0.000 description 6
- 239000003086 colorant Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Landscapes
- Manipulator (AREA)
Abstract
Description
本發明有關一種機器手臂,尤其關於工業機器手臂及其工具中心的座標校正方法。 The present invention relates to a robotic arm, and more particularly to a coordinate correction method for an industrial robotic arm and its tool center.
機器手臂具有靈活移動、精確定位及連續性作業的特性,雖然已成為產品生產線上製造組裝的最佳利器。但是機器手臂經由多軸的致動器的驅動、磨耗及構件製造組裝誤差,形成控制及實際移動座標的差異,導致無法精確定位,因此校正座標為機器手臂的重要課題。 The robotic arm has the characteristics of flexible movement, precise positioning and continuous operation, although it has become the best tool for manufacturing and assembly on the production line. However, the robot arm drives the assembly, wear and component assembly errors of the multi-axis actuator to form a difference between the control and the actual moving coordinates, resulting in inaccurate positioning. Therefore, correcting the coordinates is an important issue for the robot arm.
先前技術校正機器手臂的座標時,通常驅動機器手臂的工具中心點(Tool Center Point,簡稱TCP),直接接觸已知座標的參考點,校正機器手臂的工具中心點的座標。但未經校正的機器手臂,移動誤差過大時,常碰撞參考點,造成機器手臂的工具及參考點儀器的毀損。因此另有先前技術,利用雷射測距儀等精密量側儀器,量測工具中心點的座標,雖可非接觸式校正座標,但雷射測距儀費用高,且需要較大的裝設空間,形成使用上的限制。因此另有先前技術美國公開專利案US20110320039,在機器手臂相對的已知座標的方位,設置特定關係黑白相間的校正板,利用機器手臂上的相機擷取黑白相間的校正板的影像,計算相機與已知座標的校正板的相對關係,以校正機器手臂。 When the prior art corrects the coordinates of the robot arm, it usually drives the robot's Tool Center Point (TCP) to directly contact the reference point of the known coordinate to correct the coordinates of the robot's tool center point. However, the uncorrected robot arm often collides with the reference point when the movement error is too large, causing damage to the robot's tool and reference point instrument. Therefore, there is another prior art that uses a precision measuring instrument such as a laser range finder to measure the coordinates of the center point of the tool. Although the coordinate can be non-contact-corrected, the laser range finder is expensive and requires a large installation. Space, forming a limit on the use. Therefore, in the prior art U.S. Patent Publication No. US20110320039, a black-and-white correction plate is set in a specific relationship between the opposite coordinates of the robot arm, and the image of the black and white correction plate is captured by the camera on the robot arm to calculate the camera and The relative relationship of the calibration plates of the coordinates is known to correct the robotic arm.
然而,前述先前技術機器手臂雖然可無接觸式自動進行校正,但是各廠商的校正板種類繁多,每一型式的校正板均有自己獨特安裝架構及計算相對關係的方式,無法交互或相容使用,對使用多種型式或廠牌機器手臂的一般作業員,在使用維護管理上並不容易。因此,機器手臂在校正座標上,仍有亟待解決的問題。 However, although the aforementioned prior art robot arm can be automatically corrected without contact, there are various types of calibration plates of various manufacturers, and each type of calibration plate has its own unique installation structure and a relative relationship of calculation, and cannot be used interactively or compatiblely. For general operators who use a variety of models or brand robots, it is not easy to use maintenance management. Therefore, the robot arm still has problems to be solved on the calibration coordinates.
本發明的目的提供一種機器手臂校正座標的方法,利用機器手臂上的相機擷取標定方塊的影像,藉由標定方塊與環境的差異識別標定方塊的四角,取得中心點座標,以快速對正相機的中心軸線。 The object of the present invention is to provide a method for correcting coordinates of a robot arm, which uses a camera on a robot arm to capture an image of a calibration block, and identifies four corners of the calibration block by calibrating the difference between the square and the environment to obtain a center point coordinate to quickly align the camera. The central axis.
本發明的目的提供一種機器手臂校正座標的方法,利用深色標定方塊過濾雷射光,獲得標定方塊邊緣的亮端點,形成雷射線條,再引導雷射線條沿著相機中心軸線重合標定方塊的中心點,以自動校正TCP的座標。 The object of the present invention is to provide a method for correcting coordinates of a robot arm, which uses a dark calibration block to filter laser light, obtains bright end points of the edge of the calibration block, forms a lightning ray strip, and then guides the lightning ray strip to coincide with the calibration square along the central axis of the camera. Center point to automatically correct the coordinates of the TCP.
本發明的另一目的提供一種機器手臂校正座標的方法,在校正目標設置多種方位的標定方塊,利用不同機器手臂的姿勢,對校正目標的標定方塊,進行校正TCP的座標,以自動校正機器手臂的座標。 Another object of the present invention is to provide a method for correcting coordinates of a robot arm. A calibration block of a plurality of orientations is set in a calibration target, and coordinates of different robot arms are used, coordinates of the calibration target are corrected, and coordinates of the TCP are corrected to automatically correct the robot arm. The coordinates of the coordinates.
為了達到前述發明的目的,本發明機器手臂校正座標的方法,機器手臂的相機與雷射裝置具有固定相對關係,調整設定相機的中心軸線與雷射裝置的雷射光的交點為工具中心點,接著放置標定方塊,利用相機擷取標定方塊的影像,經由影像處理區別出標定方塊的四角,利用對角線相交獲得標定方塊的中心點座標,移動相機的中心軸線對正標定方塊的中心點,過濾投射至標定方塊的雷射光,取得標定方塊兩邊緣的亮端點, 建立雷射線條,在維持相機的中心軸線對正標定方塊的中心點下,移動相機帶動雷射線條重合標定方塊的中心點,將重合時標定方塊的中心點的座標設為控制工具中心點座標。 In order to achieve the object of the foregoing invention, the method for correcting coordinates of the robot arm of the present invention has a fixed relative relationship between the camera of the robot arm and the laser device, and adjusts the intersection of the central axis of the camera and the laser light of the laser device as a tool center point, and then Place the calibration block, use the camera to capture the image of the calibration block, distinguish the four corners of the calibration block through image processing, use the diagonal intersection to obtain the coordinates of the center point of the calibration block, move the center axis of the camera to align the center point of the square, and filter Projecting the laser light to the calibration block, obtaining the bright end points of the two edges of the calibration block, establishing a lightning ray strip, moving the camera to drive the lightning ray strip to coincide with the center point of the calibration square while maintaining the center axis of the camera against the center of the calibration square Set the coordinates of the center point of the calibration block to the center point of the control tool.
本發明機器手臂校正座標的方法的標定方塊為可識別的顏色或深色或黑色正方塊,用以吸收投射的雷射光,在標定方塊兩邊緣產生明顯亮度差異的亮端點,以取得兩亮端點。而重合時為標定方塊的中心點的座標落在雷射線條,並記錄重合時紀錄相機、雷射裝置及標定方塊的中心點的相對固定關係。此外,放置標定方塊的中心點時,實際測量座標,作為實際工具中心點座標,比對控制工具中心點座標與實際工具中心點座標獲得誤差,以校正機器手臂工具中心點的座標。 The calibration block of the method for correcting coordinates of the robot arm of the present invention is an identifiable color or a dark or black positive square for absorbing the projected laser light, and a bright end point which produces a significant difference in brightness at both edges of the calibration block to obtain two bright End point. When coincident, the coordinates of the center point of the calibration block fall on the lightning ray strip, and the relative fixed relationship of the center point of the camera, the laser device and the calibration block is recorded when the coincidence is recorded. In addition, when the center point of the calibration block is placed, the actual measurement coordinates are used as the actual tool center point coordinates, and the coordinates of the center point coordinate of the control tool and the actual tool center point coordinate are obtained to correct the coordinates of the center point of the robot tool.
本發明另一實施例機器手臂校正座標的方法,使機器手臂的相機與雷射裝置具有固定相對關係,接著設置具有已知座標且包含標定方塊的校正目標在相對機器手臂的固定位置,校正目標為立方體且在各方位面上分別設置複數標定方塊,利用機器手臂的姿勢帶動相機擷取校正目標的影像,自動選擇校正目標上的一標定方塊,經由影像處理區別出標定方塊的四角,利用對角線相交獲得該標定方塊的中心點座標,移動相機的中心軸線對正該標定方塊的中心點,過濾投射至標定方塊的雷射光,取得標定方塊兩邊緣的亮端點,建立雷射線條,在維持相機的中心軸線對正該標定方塊的中心點下,移動相機帶動雷射線條重合標定方塊的中心點,重合時紀錄該標定方塊的中心點的控制座標,檢查機器手臂的姿勢數量未達到預設閥值時,改變機器手臂的姿勢帶動相機重複校正步驟,檢查機器手臂的姿勢數量達到預設閥值時,將取得的標定方塊的中心點的控制座標,進 行矩陣數列計算,取得校正參數,以校正機器手臂座標。 In another embodiment of the present invention, a method for correcting coordinates of a robot arm has a fixed relative relationship between a camera of a robot arm and a laser device, and then a calibration target having a known coordinate and including a calibration block is fixed at a position relative to the robot arm, and the target is corrected. For the cube and set the multiple calibration blocks on each plane, use the posture of the robot to drive the camera to capture the image of the calibration target, automatically select a calibration square on the calibration target, and distinguish the four corners of the calibration block by image processing. The intersection of the corner lines obtains the coordinates of the center point of the calibration block, the center axis of the moving camera is aligned with the center point of the calibration block, and the laser light projected to the calibration block is filtered to obtain the bright end points of the two edges of the calibration block, and the thunder beam is established. While maintaining the central axis of the camera aligned with the center point of the calibration block, the moving camera drives the lightning ray bar to coincide with the center point of the calibration block, and when coincident, records the control coordinates of the center point of the calibration block, and checks that the number of postures of the robot arm does not reach When the threshold is preset, changing the posture of the robot arm drives the camera When the complex correction step, the number of position inspection robot arm reaches a preset threshold, the control center point coordinates of the calibration block acquired, calculating the number of columns into rows of the matrix, to obtain correction parameters for correcting the coordinates of the robotic arm.
1‧‧‧機器手臂 1‧‧‧Machine arm
2‧‧‧軸臂 2‧‧‧Axis arm
3‧‧‧致動器 3‧‧‧Actuator
4‧‧‧底座 4‧‧‧Base
5‧‧‧端末器 5‧‧‧End device
6‧‧‧相機 6‧‧‧ camera
7‧‧‧雷射裝置 7‧‧‧ Laser device
8‧‧‧工作架 8‧‧‧Working rack
9‧‧‧標定方塊 9‧‧‧ calibration block
10‧‧‧雷射光 10‧‧‧Laser light
11‧‧‧中心軸線 11‧‧‧ center axis
12‧‧‧影像 12‧‧‧ images
13‧‧‧四角 13‧‧‧ four corners
14‧‧‧中心點 14‧‧‧ center point
15‧‧‧雷射線條 15‧‧‧Ray Bar
16‧‧‧亮端點 16‧‧‧ bright end
17‧‧‧校正目標 17‧‧‧ calibration target
TCP‧‧‧工具中心點 TCP‧‧‧Tool Center Point
圖1 為本發明機器手臂校正座標的示意圖。 Figure 1 is a schematic view of the correction arm of the robot arm of the present invention.
圖2 為本發明相機擷取的標定方塊影像圖。 2 is a calibration block image of the camera captured by the present invention.
圖3 為本發明移動雷射線條的示意圖。 3 is a schematic view of a moving lightning ray strip of the present invention.
圖4 為本發明雷射線條重合標定方塊的中心點的影像圖。 4 is an image diagram of a center point of a lightning bar coincidence calibration block of the present invention.
圖5 為本發明機器手臂校正座標的方法的流程圖。 Figure 5 is a flow chart of a method for correcting coordinates of a robot arm of the present invention.
圖6 為本發明另一實施例機器手臂校正座標的示意圖。 6 is a schematic diagram of a robot arm correction coordinate according to another embodiment of the present invention.
圖7 為本發明另一實施例機器手臂校正座標的方法的流程圖。 7 is a flow chart of a method for correcting coordinates of a robot arm according to another embodiment of the present invention.
有關本發明為達成上述目的,所採用之技術手段及其功效,茲舉較佳實施例,並配合圖式加以說明如下。 The technical means and the efficacies of the present invention for achieving the above objects are as follows, and the preferred embodiments are described below with reference to the drawings.
請同時參考圖1及圖2所示,圖1為本發明機器手臂校正TCP座標的示意圖,圖2為本發明相機擷取的標定方塊影像圖。圖1中本發明的機器手臂1由複數軸臂2間隔串聯致動器3而成,一端固定在底座4,形成機器手臂座標M,另一端在軸臂2的最後連結端末器5,端末器5可藉由致動器3的轉動紀錄,計算出在機器手臂座標M的座標。端末器5上設置相機6及雷射裝置7,相機5與端末器5具有固定相對關係,因此也可計算出在機器手臂座標M的座標。由機器手臂1帶動擷取工作架8上標定方塊9的影像(參圖2),而雷射裝置7用以發射面狀的掃描雷射光10。本發明的相機6與雷射裝置7具有固定相對關係,調整設定相機6的中心軸線11與雷射裝置7掃描雷射光10的 交點為工具中心點(TCP)。 Please refer to FIG. 1 and FIG. 2 simultaneously. FIG. 1 is a schematic diagram of the calibration of the TCP coordinates of the robot arm of the present invention, and FIG. 2 is a calibration block image of the camera captured by the present invention. The robot arm 1 of the present invention in FIG. 1 is formed by a plurality of axial arms 2 spaced apart in series with an actuator 3, one end of which is fixed to the base 4, forming a robot arm coordinate M, and the other end is at the last end of the shaft arm 2, the end device 5, the end device 5 The coordinates of the coordinates M of the robot arm can be calculated by the rotation record of the actuator 3. The camera 6 and the laser device 7 are disposed on the terminal 5, and the camera 5 has a fixed relative relationship with the end device 5, so that the coordinates of the robot arm coordinate M can also be calculated. The robot arm 1 drives the image of the calibration block 9 on the work frame 8 (see Fig. 2), and the laser device 7 emits the planar scanning laser light 10. The camera 6 of the present invention has a fixed relative relationship with the laser device 7, and the intersection of the central axis 11 of the setting camera 6 and the scanning device 10 for scanning the laser light 10 is a tool center point (TCP).
由於相機6虛擬的中心軸線11與雷射裝置7掃描雷射光10的交點TCP無法目視,因此機器手臂的TCP也無法直接目視決定。本發明為了取得機器手臂TCP的座標,在工作架8上放置標定方塊9,標定方塊9可為黑色正方塊,本實施例的標定方塊9雖以黑色正方塊舉例說明,但包含且不限於黑色正方塊,凡可易於識別的顏色或深色,且易於決定中心點的方塊,都屬於本發明的發明範疇。 Since the virtual central axis 11 of the camera 6 and the intersection of the laser device 7 scanning the laser light 10 are not visible, the TCP of the robot arm cannot be directly determined visually. In order to obtain the coordinates of the robot arm TCP, the calibration block 9 is placed on the work frame 8, and the calibration block 9 can be a black positive square. The calibration block 9 of this embodiment is illustrated by a black square, but includes and is not limited to black. Positive squares, which are easily recognizable colors or dark colors, and which are easy to determine the center point, are within the scope of the invention.
本發明的機器手臂1帶動相機6擷取工作架8上標定方塊9的影像12,如圖2中標定方塊9的影像12,利用相機6擷取影像12的焦距、影像12的中心及像素,由已知座標的相機6可計算出影像12各點的座標。由於影像12中黑色的標定方塊9與周圍淺色環境明顯差異,經由影像處理可快速區別出標定方塊9,並決定標定方塊9四角13的座標,利用標定方塊9正方塊的對角線相交形成中心點14,獲得標定方塊9的中心點14的座標。接著利用機器手臂1帶動相機6,使相機6的中心軸線11對正標定方塊9的中心點14。 The robot arm 1 of the present invention drives the camera 6 to capture the image 12 of the calibration block 9 on the work frame 8, such as the image 12 of the calibration block 9 in FIG. 2, and uses the camera 6 to capture the focal length of the image 12, the center of the image 12, and the pixels. The coordinates of the points of the image 12 can be calculated by the camera 6 of the known coordinates. Since the black calibration block 9 in the image 12 is significantly different from the surrounding light color environment, the calibration block 9 can be quickly distinguished through the image processing, and the coordinates of the four corners 13 of the calibration block 9 are determined, and the diagonal intersection of the squares of the calibration squares 9 is formed. At center point 14, the coordinates of the center point 14 of the calibration block 9 are obtained. The camera 6 is then used to drive the camera 6 so that the central axis 11 of the camera 6 aligns the center point 14 of the square 9.
圖2中,雷射裝置7發射面狀的掃描雷射光10,在影像12形成橫越標定方塊9的雷射線條15,雷射光的雷射線條15相對較亮,但投射在黑色的標定方塊9的雷射線條15,受黑色的標定方塊9吸收光線,亮度相對黯淡許多,因而在標定方塊9兩邊緣產生明顯亮度差異的亮端點16,以利取得兩亮端點16的座標,利用兩亮端點16構成的直線就可定位雷射線條15。 In Fig. 2, the laser device 7 emits a planar scanning laser light 10, and in the image 12, a thunder beam 15 traversing the calibration block 9 is formed. The thunder beam 15 of the laser light is relatively bright, but is projected in a black calibration block. The thunder beam 15 of 9 is absorbed by the black calibration block 9 and the brightness is relatively dimmed. Therefore, the bright end point 16 which produces a significant difference in brightness at both edges of the calibration block 9 is used to obtain the coordinates of the two bright end points 16 and utilize The line formed by the two bright ends 16 positions the lightning ray strip 15.
請同時參考圖3及圖4所示,圖3為本發明移動雷射線條的示意圖,圖4為本發明雷射線條重合標定方塊的中心點的影像圖。圖3中在維持相機6的中心軸線11對正標定方塊9的中心點14下,機器手臂帶動相機6沿 著中心軸線11移動雷射裝置7,使雷射裝置7發射的雷射線條15移向標定方塊9的中心點14。圖4中當中心點14的座標落在雷射線條15時,就可確認雷射線條15重合中心點14。再紀錄相機6、雷射裝置7及中心點14的相對固定關係,並利用相機6擷取影像12的焦距、影像12的中心及像素,計算中心點14的座標,將中心點14的座標設為TCP的座標。 Please refer to FIG. 3 and FIG. 4 at the same time. FIG. 3 is a schematic diagram of a moving lightning ray strip according to the present invention, and FIG. 4 is an image diagram of a center point of a lightning ray strip coincident calibration block according to the present invention. In FIG. 3, while maintaining the central axis 11 of the camera 6 against the center point 14 of the positive calibration block 9, the robotic arm drives the camera 6 to move the laser device 7 along the central axis 11 to cause the laser beam 15 emitted by the laser device 7 to move. Point to the center point 14 of block 9. In Fig. 4, when the coordinates of the center point 14 fall on the thunder beam 15, it is confirmed that the thunder beam 15 coincides with the center point 14. The relative fixed relationship between the camera 6, the laser device 7, and the center point 14 is recorded, and the focal length of the image 12, the center of the image 12, and the pixels are captured by the camera 6, and the coordinates of the center point 14 are calculated, and the coordinates of the center point 14 are set. The coordinates of the TCP.
前述TCP的座標為根據機器手臂控制獲得的控制TCP座標,如果機器手臂已經校正,控制TCP座標就是實際的TCP座標。否則在工作架8上放置標定方塊9時,就可藉由實際測量標定方塊9的中心點14座標,以中心點14座標作為實際TCP座標,利用比對控制TCP座標與實際量測的中心點14的座標,獲得控制TCP座標與實際TCP座標的誤差,進一步校正機器手臂TCP的座標。 The coordinates of the aforementioned TCP are the control TCP coordinates obtained according to the robot arm control. If the robot arm has been corrected, the control TCP coordinates are the actual TCP coordinates. Otherwise, when the calibration block 9 is placed on the work frame 8, the coordinates of the center point 14 of the calibration block 9 can be actually measured, and the coordinate of the center point 14 is used as the actual TCP coordinate, and the center point of the TCP coordinate and the actual measurement is controlled by the comparison. The coordinates of 14 obtain the error of controlling the TCP coordinates and the actual TCP coordinates, and further correct the coordinates of the robot arm TCP.
如圖5所示,為本發明機器手臂校正座標的方法的流程圖。本發明機器手臂校正座標的方法的詳細步驟說明如下:在步驟S1,開始校正TCP時,使本發明的相機與雷射裝置具有固定相對關係,調整設定相機的中心軸線與雷射裝置掃描雷射光的交點為TCP;步驟S2,放置標定方塊;步驟S3,利用相機擷取標定方塊的影像;步驟S4,經由影像處理區別出標定方塊,取得標定方塊四角,利用對角線相交獲得標定方塊的中心點座標;接著步驟S5,移動相機的中心軸線對正標定方塊的中心點;步驟S6,過濾雷射裝置發射在標定方塊的雷射光,取得標定方塊兩邊緣明亮的亮端點,建立雷射線條;步驟S7,在維持相機的中心軸線對正標定方塊的中心點下,移動相機帶動雷射線條,使雷射線條重合標定方塊的中心點;步驟S8,紀錄重合時相機、雷射裝置及中心點的相對固定關係,將中心點的座標設為 控制TCP座標;步驟S9,將控制TCP座標比對標定方塊的中心點的已知實際座標,進行校正補償;然後在步驟S10,結束TCP座標校正。 As shown in FIG. 5, it is a flowchart of a method for correcting coordinates of a robot arm of the present invention. The detailed steps of the method for correcting the coordinates of the robot arm of the present invention are as follows: in step S1, when the TCP is started to be corrected, the camera of the present invention has a fixed relative relationship with the laser device, and the central axis of the camera is adjusted and the laser device is scanned for the laser light. The intersection point is TCP; in step S2, the calibration block is placed; in step S3, the image of the calibration block is captured by the camera; in step S4, the calibration block is distinguished by image processing, the four corners of the calibration block are obtained, and the center of the calibration block is obtained by intersecting the diagonal lines. Point coordinates; then, in step S5, the center axis of the moving camera is aligned with the center point of the square; in step S6, the laser device emits the laser light in the calibration block, and obtains bright bright ends of the two sides of the calibration block to establish a lightning ray strip. Step S7, while maintaining the center axis of the camera facing the calibration square, moving the camera to drive the lightning ray strip so that the lightning ray strip coincides with the center point of the calibration square; step S8, recording the coincidence camera, laser device and center The relative fixed relationship of the points, the coordinates of the center point are set to control the TCP coordinates; in step S9, the TCP block is controlled The calibration is corrected for the known actual coordinates of the center point of the calibration block; then, at step S10, the TCP coordinate correction is ended.
因此,本發明機器手臂校正座標的方法,就可利用機器手臂上的相機擷取標定方塊的影像,並藉由標定方塊與環境的顏色明顯差異,快速識別標定方塊的四角的座標,由對角線的交點計算出中心點座標,讓機器手臂自動移動相機的中心軸線,快速對正中心點。再利用深色標定方塊過濾雷射光,獲得標定方塊兩邊緣的亮端點,形成雷射線條,再讓相機沿著中心軸線引導雷射線條重合標定方塊的中心點,在非實體接觸避免毀損下,取得控制的TCP座標,再與實際測量的中心點座標比較,進一步達到自動校正TCP座標的目的。 Therefore, the method for correcting the coordinates of the robot arm of the present invention can use the camera on the robot arm to capture the image of the calibration block, and by identifying the difference between the color of the calibration block and the environment, quickly identify the coordinates of the four corners of the calibration block, from the diagonal The intersection of the lines calculates the coordinates of the center point, allowing the robot to automatically move the center axis of the camera and quickly align the center point. Then use the dark calibration block to filter the laser light, obtain the bright end points of the two edges of the calibration block, form the lightning ray strip, and then let the camera guide the lightning ray strip along the central axis to coincide with the center point of the calibration square, and avoid the damage under non-physical contact. The obtained TCP coordinates are compared with the actual measured center point coordinates to further achieve the purpose of automatically correcting the TCP coordinates.
如圖6所示,為本發明另一實施例機器手臂校正座標的方法的示意圖。本實施例基本上利用前述實施例校正TCP座標的技術,進行校正機器手臂的座標。為簡化說明,與前實施例相同構件沿用相同件號,合先敘明。本實施例在校正目標17的各方位面上,分別設置複數標定方塊9,再將校正目標17設置在相對機器手臂1的底座4的固定位置,並具有已知的機器手臂座標。本實施例校正目標17雖以立方體舉例說明,但包含且不限於立方體,例如多面體亦可。 FIG. 6 is a schematic diagram of a method for correcting coordinates of a robot arm according to another embodiment of the present invention. This embodiment basically uses the technique of correcting the TCP coordinates of the foregoing embodiment to perform the correction of the coordinates of the robot arm. In order to simplify the description, the same components as the previous embodiment are used in the same part number, which will be described first. In this embodiment, a plurality of calibration blocks 9 are respectively disposed on the respective planes of the correction target 17, and the correction target 17 is disposed at a fixed position relative to the base 4 of the robot arm 1 and has a known robot arm coordinate. The correction target 17 of the present embodiment is illustrated by a cube, but includes, but is not limited to, a cube, such as a polyhedron.
接著進行校正機器手臂1,由機器手臂1帶動相機6擷取校正目標17的影像,自動選擇校正目標17上的一標定方塊9,進行前實施例TCP校正步驟,即擷取選定的標定方塊9的影像,識別標定方塊9的四角,由對角線決定標定方塊9的中心點,自動移動相機6的中心軸線11對正標定方塊9的中心點,接著過濾雷射裝置7投射雷射光形成雷射線條,使相機6沿著中 心軸線11移動下,帶動雷射線條與標定方塊9的中心點重合,視為TCP與中心點重合,以取得控制的TCP座標,作為選定的標定方塊9的中心點的控制座標。接著改變機器手臂1的姿勢,選定另一標定方塊9,重複前述TCP校正步驟,直到改變機器手臂1的姿勢數量達到預設閥值,再將前述取得的標定方塊9的中心點的控制座標,進行例如Jacobian Matrix等先前技術的矩陣數列計算,取得座標校正的參數,以完成機器手臂座標的校正。 Then, the robot arm 1 is corrected, and the camera 1 drives the camera 6 to capture the image of the calibration target 17, and automatically selects a calibration block 9 on the calibration target 17, and performs the TCP correction step of the previous embodiment, that is, the selected calibration block 9 is captured. The image identifies the four corners of the calibration block 9, the center point of the calibration block 9 is determined by the diagonal line, the central axis 11 of the camera 6 is automatically moved to align the center point of the square 9, and then the laser device 7 is projected to project the laser light to form a thunder. The ray strip moves the camera 6 along the central axis 11 to cause the lightning ray strip to coincide with the center point of the calibration block 9, which is considered to coincide with the center point of the TCP to obtain the controlled TCP coordinates as the center of the selected calibration block 9. The control coordinates of the point. Then changing the posture of the robot arm 1, selecting another calibration block 9, repeating the aforementioned TCP correction step until the number of postures of the robot arm 1 is changed to a preset threshold, and then the control coordinates of the center point of the obtained calibration block 9 are A matrix sequence calculation of a prior art such as the Jacobian Matrix is performed to obtain coordinates correction parameters to complete the correction of the robotic coordinates.
如圖7所示,為本發明另一實施例機器手臂校正座標的方法的流程圖。本實施例機器手臂校正座標的方法的詳細步驟說明如下:在步驟T1,開始校正機器手臂的座標;步驟T2,將已知座標且包含標定方塊的校正目標設置在相對機器手臂的固定位置;步驟T3,自動選擇校正目標上的一標定方塊,進行TCP校正;步驟T4,紀錄選擇標定方塊中心點控制座標;接著步T5,檢查改變機器手臂的姿勢數量是否達到預設閥值?假如姿勢數量未達到預設閥值,則進入步驟T6,改變機器手臂的姿勢,再回到步驟T3重複步驟,假如姿勢數量達到預設閥值,則進入步驟T7,取得的標定方塊的中心點的控制座標,進行矩陣數列計算,取得校正參數,以進行校正機器手臂座標;然後在步驟T8,結束座標校正。 FIG. 7 is a flow chart of a method for correcting coordinates of a robot arm according to another embodiment of the present invention. The detailed steps of the method for correcting coordinates of the robot arm in this embodiment are as follows: in step T1, the coordinates of the robot arm are started to be corrected; in step T2, the correction target including the known coordinates and including the calibration block is set at a fixed position relative to the robot arm; T3, automatically selects a calibration block on the calibration target to perform TCP correction; in step T4, records the selection center point control coordinate of the calibration block; then, in step T5, checks whether the number of postures of the changing robot arm reaches a preset threshold value. If the number of postures does not reach the preset threshold, proceed to step T6 to change the posture of the robot arm, and then return to step T3 to repeat the step. If the number of postures reaches the preset threshold, proceed to step T7 to obtain the center point of the calibration block. The control coordinates are subjected to matrix sequence calculation to obtain correction parameters for correcting the robot arm coordinates; then, at step T8, the coordinate correction is ended.
因此,本發明機器手臂校正座標的方法,就可在校正目標設置多種方位的標定方塊,利用不同機器手臂的姿勢,對校正目標的標定方塊,進行校正TCP的座標,再將取得的標定方塊的中心點座標,利用矩陣數列計算校正參數,達到未接觸的自動校正機器手臂座標的目的。 Therefore, in the method for correcting the coordinates of the robot arm of the present invention, a calibration block of a plurality of orientations can be set in the calibration target, and the coordinates of the different robot arms can be used to correct the coordinate coordinates of the calibration target, and then the obtained calibration block is obtained. The coordinates of the center point are used to calculate the calibration parameters using the matrix sequence to achieve the purpose of automatically adjusting the coordinates of the robot arm without contact.
以上所述者,僅為用以方便說明本發明之較佳實施例,本發明之範圍不限於該等較佳實施例,凡依本發明所做的任何變更,於不脫離 本發明之精神下,皆屬本發明申請專利之範圍。 The above is only a preferred embodiment for facilitating the description of the present invention, and the scope of the present invention is not limited to the preferred embodiments, and any changes made in accordance with the present invention may be made without departing from the spirit of the present invention. All of them are within the scope of the patent application of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106117079A TWI712473B (en) | 2017-05-22 | 2017-05-22 | Method for calibrating coordinate of robot arm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106117079A TWI712473B (en) | 2017-05-22 | 2017-05-22 | Method for calibrating coordinate of robot arm |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201900358A true TW201900358A (en) | 2019-01-01 |
TWI712473B TWI712473B (en) | 2020-12-11 |
Family
ID=65803345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106117079A TWI712473B (en) | 2017-05-22 | 2017-05-22 | Method for calibrating coordinate of robot arm |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI712473B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI701123B (en) * | 2019-12-18 | 2020-08-11 | 財團法人工業技術研究院 | Automated calibration system and method for workpiece coordinate frame of a robot |
US11433541B2 (en) | 2019-12-18 | 2022-09-06 | Industrial Technology Research Institute | Automated calibration system and method for a workpiece coordinate frame of a robot |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2696969B1 (en) * | 1992-10-21 | 1995-01-06 | Univ Joseph Fourier | Method for calibrating a robot. |
US8989897B2 (en) * | 2004-11-19 | 2015-03-24 | Dynalog, Inc. | Robot-cell calibration |
CN105157725B (en) * | 2015-07-29 | 2018-06-29 | 华南理工大学 | A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot |
-
2017
- 2017-05-22 TW TW106117079A patent/TWI712473B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI701123B (en) * | 2019-12-18 | 2020-08-11 | 財團法人工業技術研究院 | Automated calibration system and method for workpiece coordinate frame of a robot |
US11433541B2 (en) | 2019-12-18 | 2022-09-06 | Industrial Technology Research Institute | Automated calibration system and method for a workpiece coordinate frame of a robot |
Also Published As
Publication number | Publication date |
---|---|
TWI712473B (en) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI672206B (en) | Method and apparatus of non-contact tool center point calibration for a mechanical arm, and a mechanical arm system with said calibration function | |
US9193073B1 (en) | Robot calibration apparatus for calibrating a robot arm | |
US10112301B2 (en) | Automatic calibration method for robot systems using a vision sensor | |
JP6280525B2 (en) | System and method for runtime determination of camera miscalibration | |
US20210291376A1 (en) | System and method for three-dimensional calibration of a vision system | |
US11087457B1 (en) | Digital projection system and associated method | |
CN111278608B (en) | Calibration article for 3D vision robot system | |
CN108326850B (en) | Method and system for robot to accurately move mechanical arm to reach specified position | |
WO2021012122A1 (en) | Robot hand-eye calibration method and apparatus, computing device, medium and product | |
CN110815201B (en) | Method for correcting coordinates of robot arm | |
US20190132560A1 (en) | Method for calibrating image capturing sensor consisting of at least one sensor camera, using time coded patterned target | |
CN110298888B (en) | Camera calibration method based on single-axis high-precision displacement platform | |
TW201947078A (en) | Method and System for Automatic Calibration of Needle Position | |
CN110695520A (en) | Vision-based full-automatic galvanometer field calibration system and calibration method thereof | |
TW201900358A (en) | Method for calibrating coordinator of robot arm | |
TW201603979A (en) | Calibration device and method for robot arm | |
CN111344119B (en) | Apparatus and method for robot | |
TWI504859B (en) | Method for photographing and piecing together the images of an object | |
JPH0820207B2 (en) | Optical 3D position measurement method | |
CN111716340B (en) | Correcting device and method for coordinate system of 3D camera and mechanical arm | |
US12109714B1 (en) | Kinematics parameter calibration method and system of multi-axis motion platform | |
TW202114838A (en) | Method for calibrating 3d camera | |
TWI758626B (en) | Positioning method for a vision system of a robot arm | |
TWI696536B (en) | Calibration method for robot arm and calibration device thereof | |
CN111383274B (en) | Calibration method of camera module and target for camera module calibration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |