TW201830685A - Photonics interposer optoelectronics - Google Patents
Photonics interposer optoelectronics Download PDFInfo
- Publication number
- TW201830685A TW201830685A TW106140266A TW106140266A TW201830685A TW 201830685 A TW201830685 A TW 201830685A TW 106140266 A TW106140266 A TW 106140266A TW 106140266 A TW106140266 A TW 106140266A TW 201830685 A TW201830685 A TW 201830685A
- Authority
- TW
- Taiwan
- Prior art keywords
- interposer structure
- prefabricated
- functional interposer
- photonic
- functional
- Prior art date
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims description 73
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 31
- 238000001465 metallisation Methods 0.000 claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- 239000004065 semiconductor Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 125
- 235000012431 wafers Nutrition 0.000 description 110
- 238000004519 manufacturing process Methods 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 30
- 239000002184 metal Substances 0.000 description 30
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 15
- 239000004020 conductor Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000004888 barrier function Effects 0.000 description 10
- 238000000059 patterning Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000007772 electroless plating Methods 0.000 description 5
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000004093 laser heating Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- -1 Ar or Ar + ) Chemical compound 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000009417 prefabrication Methods 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/4232—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
- G02B6/428—Electrical aspects containing printed circuit boards [PCB]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12061—Silicon
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12121—Laser
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
相關申請的交叉引用 本申請主張於2016年11月23日提交的美國臨時申請案第62/426,100號的「具有光子中介層的光電系統」的優先權,其整體内容茲以提述方式納入。本申請亦主張於2017年10月27日提交的美國非臨時申請案第15/975,349號的「具有光子中介層的光電系統」的優先權,其整體内容茲以提述方式納入。CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority from US Provisional Application No. 62 / 426,100, "Photoelectric System with Photonic Interposer" filed on November 23, 2016, the entire contents of which are hereby incorporated by reference. This application also claims the priority of “Photonic System with Photonic Intermediate Layer” in US Non-Provisional Application No. 15 / 975,349, filed on October 27, 2017, the entire contents of which are hereby incorporated by reference.
政府權利聲明 本發明是根據合約號FA8650-15-2-5220於美國國防部的政府支持下進行的。政府可能在本發明中具有某些權利。Government Rights Statement This invention was made with government support of the United States Department of Defense under contract number FA8650-15-2-5220. The government may have certain rights in the invention.
本發明大體上相關於光子,特別是相關於光子結構及製造的過程。The present invention is generally related to photons, and particularly to photonic structures and manufacturing processes.
市售的光子積體電路被製造在像是本體矽晶圓(bulk silicon wafer)或絕緣層上矽晶圓(silicon-on-insulator wafers)。市售的預製光子積體電路晶片可包括用以在一預製光子積體電路晶片的不同區域之間傳遞光訊號的波導構件。市售的波導構件為矩形或脊形幾何形狀,且以矽(單晶或多晶)或氮化矽製成。市售的光子積體電路晶片可使用在具有設置在一印刷電路板上的一光子積體電路晶片的系統上。Commercially available photonic integrated circuits are fabricated on, for example, bulk silicon wafers or silicon-on-insulator wafers. A commercially available pre-made photonic integrated circuit wafer may include a waveguide member for transmitting optical signals between different regions of a pre-made photonic integrated circuit wafer. Commercially available waveguide members have a rectangular or ridged geometry and are made of silicon (single or polycrystalline) or silicon nitride. A commercially available photonic integrated circuit wafer can be used on a system having a photonic integrated circuit wafer disposed on a printed circuit board.
透過在一個方面中的光子結構的提供,現有技術的缺點係被克服,並提供額外的優點。Through the provision of photonic structures in one aspect, the disadvantages of the prior art are overcome and provide additional advantages.
在一個實施例中,一光電系統可包括一光子中介層,其具有一基板及形成於該基板上之一功能性中介層結構,複數個通道延伸通過該基板及該功能性中介層結構而傳遞電訊號,複數條導線係將電訊號傳遞至該功能性中介層結構的不同區域。該系統可進一步包括一個或多個光子元件,整體形成於該功能性中介層結構中;以及一個或多個預製構件,附接於該功能性中介層結構。In one embodiment, a photovoltaic system may include a photonic interposer having a substrate and a functional interposer structure formed on the substrate, and a plurality of channels extending through the substrate and the functional interposer structure to be transmitted. The electrical signals, the plurality of wires, transmit electrical signals to different regions of the functional interposer structure. The system may further include one or more photonic elements integrally formed in the functional interposer structure; and one or more prefabricated components attached to the functional interposer structure.
附加的特徵及優點係透過本發明的技術而被予以了解。Additional features and advantages are understood through the techniques of the present invention.
本發明的各方面及其一些特徵、優點及細節參照以下附圖中所示的非限制性實施例而被更徹底地解釋。公知的材料、製造工具、處理技術等描述係被予以省略以避免於細節上模糊本發明。然而,應當理解的是,雖然詳細的描述及具體的例子係指出本發明的各個方面,但其僅做為示例提出而非限制。根據本公開內容,在本發明的基本發明概念的精神及/或範圍內的各種置換、修飾、添加及/或排列對於本領域之技術人員而言是顯而易見的。Aspects of the invention and some of its features, advantages, and details are explained more thoroughly with reference to the non-limiting embodiments shown in the following drawings. Descriptions of well-known materials, manufacturing tools, processing techniques and so on are omitted to avoid obscuring the invention in detail. It should be understood, however, that while the detailed description and specific examples, while pointing out various aspects of the invention, are presented by way of example only and not limitation. Various substitutions, modifications, additions, and / or permutations within the spirit and / or scope of the basic inventive concept of the present invention will be apparent to those skilled in the art from the present disclosure.
參照第1圖的示意圖,其示出一光電系統10的一實施例。一光電系統10可包括一光子中介層100,其具有一基板110及形成在基板110之上的一功能性中介層結構120,複數個通道130延伸通過基板110。光電系統10可包括:一個或多個預製構件160,附接於功能性中介層結構120;以及一個或多個光子元件150,形成於功能性中介層結構120中。Referring to the schematic diagram of FIG. 1, an embodiment of a photovoltaic system 10 is shown. A photovoltaic system 10 may include a photonic interposer 100 having a substrate 110 and a functional interposer structure 120 formed on the substrate 110. A plurality of channels 130 extend through the substrate 110. The photovoltaic system 10 may include: one or more prefabricated members 160 attached to the functional interposer structure 120; and one or more photonic elements 150 formed in the functional interposer structure 120.
一個或多個預製構件160可包括選自一預製雷射晶粒晶片、一預製光子積體電路晶片及一預製半導體晶片所組成之群組中的一個或多個預製構件。一預製半導體晶片可為具有主動及/或被動電子裝置(互補式金屬氧化物半導體、射頻元件、微機電系統、離散式元件)的一晶片。The one or more prefabricated components 160 may include one or more prefabricated components selected from the group consisting of a prefabricated laser die wafer, a preformed photonic integrated circuit wafer, and a prefabricated semiconductor wafer. A prefabricated semiconductor wafer may be a wafer with active and / or passive electronic devices (complementary metal oxide semiconductors, radio frequency components, micro-electro-mechanical systems, discrete components).
整體形成於功能性中介層結構120中的一個或多個光子元件可例如包括一個或多個光子元件,例如:一個或多個波導、光偵測器、耦合器、調制器、偏振器、分路器或共振器。The one or more photonic elements integrally formed in the functional interposer structure 120 may, for example, include one or more photonic elements, such as: one or more waveguides, photodetectors, couplers, modulators, polarizers, Circuit or resonator.
在一個實施例中用以製造一光電系統10的一方法係搭配第2~6圖進行描述。In one embodiment, a method for manufacturing an optoelectronic system 10 is described with reference to FIGS. 2 to 6.
參照第2圖,其示出在一製造的初步階段的一光電系統10。光電系統10可包括一基板110及一功能性中介層結構120。基板110能以各種替代性材料形成,例如矽、二氧化矽、玻璃、或藍寶石。功能性中介層結構120可使用多個中介層材料層透過適當沉積及圖形化被製造而出,這些層可界定功能性中介層結構120的一主體122。界定功能性中介層結構120的主體122的中介層材料層可包括,例如:矽、二氧化矽或具有這種材料之層的組合。Referring to Fig. 2, a photovoltaic system 10 is shown in an initial stage of manufacturing. The photovoltaic system 10 may include a substrate 110 and a functional interposer structure 120. The substrate 110 can be formed of various alternative materials, such as silicon, silicon dioxide, glass, or sapphire. The functional interposer structure 120 may be manufactured by using a plurality of interposer material layers through appropriate deposition and patterning. These layers may define a body 122 of the functional interposer structure 120. The interposer material layer defining the body 122 of the functional interposer structure 120 may include, for example, silicon, silicon dioxide, or a combination of layers having such materials.
功能性中介層結構120可包括一個或多個形成特徵的層,例如一個或多個金屬化層、硬停止層、或光子裝置,例如波導材料層,以在形成在功能性中介層結構120中的多個功能性特徵之間的區域中形成功能性特徵及中介層材料層。界定功能性中介層結構120的主體122的功能性特徵的中介層材料中間體可提供例如一個或多個電絕緣、光絕緣、結構完整性或結構間距。界定由介電材料形成的功能性中介層結構120的中介層材料層可被視為光子中介層100的介電層。The functional interposer structure 120 may include one or more feature-forming layers, such as one or more metallization layers, hard-stop layers, or photonic devices, such as waveguide material layers, to be formed in the functional interposer structure 120. A functional feature and an interposer material layer are formed in a region between the plurality of functional features. The interposer material intermediate that defines the functional characteristics of the body 122 of the functional interposer structure 120 may provide, for example, one or more electrical insulation, optical insulation, structural integrity, or structural spacing. The interposer material layer defining the functional interposer structure 120 formed of a dielectric material may be considered as the dielectric layer of the photonic interposer 100.
在一個實施例中,如第2圖所示,功能性中介層結構120可為一多層結構,具有界定有各種特徵的層。延伸通過基板110及功能性中介層結構120的通道130可透過適當地圖形化而形成,例如沉積中介層材料層至高度202之後進行光罩、進行蝕刻以界定出通道溝槽、於沉積金屬化層1404之前以導電性材料填充通道溝槽及平坦化至高度202。延伸通過功能性中介層結構120的通道134可透過適當地圖形化而形成,例如在一個或多個中介層材料層沉積至高度202(用於較低的通孔)或高度204(用於較高的通孔)之後進行光罩、進行蝕刻以界定出通道溝槽、於金屬化層1404(用於較低的通孔)或金屬化層1406(用於較高的通孔)沉積之前以導電性材料填充通道溝槽以及平坦化至高度202(用於較低的通孔)或高度204(用於較高的通孔)。In one embodiment, as shown in FIG. 2, the functional interposer structure 120 may be a multi-layer structure having layers defining various characteristics. The channels 130 extending through the substrate 110 and the functional interposer structure 120 can be formed by appropriate patterning. For example, a layer of interposer material is deposited to a height of 202, and then a photomask is formed, an etching is performed to define a channel trench, and a metallization is deposited. Prior to layer 1404, the channel trench is filled with a conductive material and planarized to a height 202. The channels 134 extending through the functional interposer structure 120 may be formed by appropriate patterning, such as deposition on one or more layers of interposer material to a height of 202 (for lower vias) or a height of 204 (for lower vias) High vias) followed by photomasks, etching to define channel trenches, and before metallization layer 1404 (for lower vias) or metallization layer 1406 (for higher vias) is deposited. The conductive material fills the channel trenches and is planarized to a height of 202 (for lower vias) or a height of 204 (for higher vias).
金屬化層1402、1404、1406界定複數條導線140。由金屬化層1402、1404、1406所界定的複數條導線140可水平地延伸通過功能性中介層結構120的複數個區域。金屬化層1402、1404、1406通常可透過:將一個或多個中介層材料層沉積至相應的金屬化層1402、1404、1406的至少頂部高度、蝕刻以界定出用於容納導電性材料的凹穴、以導電性材料填充凹穴以及平坦化至相應的金屬化層1402、1404、1406的該頂部高度而形成。金屬化層1402、1404、1406亦通常可透過沉積厚度均勻的金屬化層然後光罩及蝕刻以自不需要的區域去除層材而形成。金屬化層1402、1404、1406亦可由金屬或其他導電性材料形成。由金屬化層1402界定的導線140可電連接至一個或多個通道130,用以將一個或多個控制邏輯及/或功率訊號垂直地及水平地分配至功能性中介層結構120的不同區域。由金屬化層1404界定的導線140可電連接至一個或多個通道134,用以將一個或多個電控制、邏輯及/或功率訊號水平地分配至功能性中介層結構120的不同區域。由金屬化層1406界定的導線140可電連接至一個或多個通道134,用以將一個或多個控制、邏輯及/或功率訊號水平地分配至功能性中介層結構120的不同區域。The metallization layers 1402, 1404, 1406 define a plurality of wires 140. The plurality of wires 140 defined by the metallization layers 1402, 1404, and 1406 may extend horizontally through the plurality of regions of the functional interposer structure 120. The metallization layers 1402, 1404, 1406 are generally transparent: one or more interposer material layers are deposited to at least the top height of the corresponding metallization layers 1402, 1404, 1406, and etched to define recesses for receiving conductive materials Formed by filling a cavity with a conductive material and planarizing to the top height of the corresponding metallization layers 1402, 1404, 1406. The metallization layers 1402, 1404, and 1406 are also generally formed by depositing a metallization layer with a uniform thickness and then photomasking and etching to remove the layer material from the unwanted areas. The metallization layers 1402, 1404, and 1406 may also be formed of metal or other conductive materials. The wires 140 defined by the metallization layer 1402 may be electrically connected to one or more channels 130 for vertically and horizontally distributing one or more control logic and / or power signals to different regions of the functional interposer structure 120. . The wires 140 defined by the metallization layer 1404 may be electrically connected to one or more channels 134 for horizontally distributing one or more electrical control, logic, and / or power signals to different regions of the functional interposer structure 120. The wires 140 defined by the metallization layer 1406 may be electrically connected to one or more channels 134 for horizontally distributing one or more control, logic, and / or power signals to different regions of the functional interposer structure 120.
功能性中介層結構120可於其中形成有由一硬停止材料層提供的一對齊構件210以對齊一預製構件。由本實施例可知,透過提供精確對齊可實現預製構件操作方面的改善。在第2圖的實施例中,對齊構件210可由沉積於一中介層材料層上的一硬停止材料層提供。由一硬停止材料層提供的對齊構件210可沉積在功能性中介層結構120的一精確抬昇位置以提供如本說明書所述用於將預製構件附接至功能性中介層結構120的一預製構件的精確垂直對齊。精確的抬昇控制可以減少在數個光子元件之間的邊緣耦合損耗。由一硬停止材料層提供的對齊構件210可由具有相對於界定有功能性中介層結構120的主體122的一材料層的不同的蝕刻選擇性的一材料形成。由一硬停止材料層提供的對齊構件210可被沉積至約10 nm至200 nm的厚度,且在一個實施例中,至約20 nm至80 nm之間的厚度。為了製造對齊構件210,中介層材料可被沉積在界定對齊構件210的一硬停止材料層上,然後可被回蝕以形成凹穴402以顯露對齊構件210。在一個實施例中,在主體122由二氧化矽形成的情況下,對齊構件210可由具有與二氧化矽相區分的蝕刻選擇性的材料,例如氮化鈦、碳氮化矽或非晶矽而形成。The functional interposer structure 120 may be formed therein with an alignment member 210 provided by a hard stop material layer to align a prefabricated member. As can be seen from this embodiment, improvements in the operation of prefabricated components can be achieved by providing precise alignment. In the embodiment of FIG. 2, the alignment member 210 may be provided by a hard stop material layer deposited on an interposer material layer. An alignment member 210 provided by a layer of hard stop material may be deposited at a precise lift position of the functional interposer structure 120 to provide a preform for attaching a prefabricated member to the functional interposer structure 120 as described in this specification. Precise vertical alignment of components. Precise lift control can reduce edge coupling losses between several photonic elements. The alignment member 210 provided by a hard-stop material layer may be formed of a material having a different etch selectivity than a material layer defining the body 122 of the functional interposer structure 120. The alignment member 210 provided by a layer of hard stop material may be deposited to a thickness of about 10 nm to 200 nm, and in one embodiment, to a thickness between about 20 nm to 80 nm. To manufacture the alignment member 210, an interposer material may be deposited on a layer of hard stop material defining the alignment member 210, and then may be etched back to form a cavity 402 to expose the alignment member 210. In one embodiment, in the case where the body 122 is formed of silicon dioxide, the alignment member 210 may be made of a material having an etch selectivity different from that of silicon dioxide, such as titanium nitride, silicon carbonitride or amorphous silicon form.
參照第2圖的中間製造階段所示的附加特徵,光電系統10可包括由金屬層疊提供的對齊構件220。第2圖的製造中間階段視圖所示的金屬層疊提供的對齊構件220可包括金屬柱221、阻障層222及構造420(如第4圖的後面階段視圖所示)。由金屬層疊提供的對齊構件220可提供沿著平行於參考座標系15的z軸的一軸線而垂直對齊,以精確地垂直對齊於一預製構件以附接至功能性中介層結構120,使得預製構件的高度可被精確地建立。精確的抬昇控制可以減少數個光子元件之間的邊緣耦合損耗。由金屬層疊提供的對齊構件220可被製造成具有在小公差內的預定總厚度,使得金屬化層1404與界定對齊構件220的金屬層疊的頂部高度之間的距離可被精確地建立。一般而言,頂部高度形成構造420,例如形成為金屬凸塊結構或電鍍結構(第4圖),可經加熱及迴焊以將一預製構件連接至其上。頂部高度形成構造420的分佈及體積以及加熱參數可被控制,使得界定對齊構件220的金屬層疊的高度不會意外地受頂部高度形成構造420的迴焊影響(第4圖)。Referring to the additional features shown in the middle manufacturing stage of FIG. 2, the photovoltaic system 10 may include an alignment member 220 provided by a metal stack. The alignment member 220 provided by the metal stack shown in the manufacturing intermediate stage view in FIG. 2 may include a metal pillar 221, a barrier layer 222, and a structure 420 (as shown in a later stage view in FIG. 4). The alignment member 220 provided by the metal stack may provide vertical alignment along an axis parallel to the z-axis of the reference coordinate system 15 to accurately vertically align with a prefabricated member for attachment to the functional interposer structure 120 such that the prefabrication The height of the component can be accurately established. Accurate lift control can reduce edge coupling losses between several photonic elements. The alignment member 220 provided by the metal stack may be manufactured to have a predetermined total thickness within a small tolerance, so that the distance between the metallization layer 1404 and the top height of the metal stack defining the alignment member 220 may be accurately established. Generally speaking, the top-height formation structure 420, such as a metal bump structure or a plated structure (FIG. 4), may be heated and re-welded to connect a prefabricated component thereto. The distribution and volume of the top height forming structure 420 and the heating parameters can be controlled so that the height of the metal stack defining the alignment member 220 is not accidentally affected by the reflow of the top height forming structure 420 (FIG. 4).
參照第2圖的中間製造階段視圖所示的附加特徵,光電系統10可包括與該功能性中介層結構120整體形成的一個或多個光子元件。如第2圖所示,與該功能性中介層結構120整體形成的一個或多個光子元件可包括由波導材料層1502界定的波導150A。在一個實施例中,波導150A可透過沉積波導材料層1502、光罩及蝕刻以去除波導材料層1502的不需要區域、以及在波導材料層的剩餘部分上沉積中介層材料層而被予以製造。界定波導150A的波導材料層1502可包括例如單晶矽、多晶矽、非晶矽、氮化矽、或氮氧化矽。在功能性中介層結構120內不同材料所製成的波導可使用在執行不同的功能。例如,由矽形成的波導可被選擇來製造包括在例如光偵測器或調制器等主動裝置中的波導。介電波導,例如以氮化矽形成,可適用在將光訊號傳輸至更遠的距離。其他材料,例如非晶矽,可能被選擇用於強調電流傳導特性與光傳導特性之平衡的應用。波導150A的圖形化可包括界定波導150的材料的圖形化以及圍繞波導150A的材料的圖形化,該材料的折射率不同於波導150A的材料的折射率。波導150A的圖形化可包括圖形化以界定不同的替代幾何形狀。Referring to the additional features shown in the intermediate manufacturing stage view of FIG. 2, the optoelectronic system 10 may include one or more photonic elements integrally formed with the functional interposer structure 120. As shown in FIG. 2, one or more photonic elements integrally formed with the functional interposer structure 120 may include a waveguide 150A defined by a waveguide material layer 1502. In one embodiment, the waveguide 150A may be fabricated by depositing a waveguide material layer 1502, a mask, and etching to remove unnecessary areas of the waveguide material layer 1502, and depositing an interposer material layer on the remaining portion of the waveguide material layer. The waveguide material layer 1502 defining the waveguide 150A may include, for example, single crystal silicon, polycrystalline silicon, amorphous silicon, silicon nitride, or silicon oxynitride. Waveguides made of different materials within the functional interposer structure 120 may be used to perform different functions. For example, a waveguide formed of silicon may be selected to manufacture a waveguide included in an active device such as a photodetector or modulator. Dielectric waveguides, such as formed from silicon nitride, are suitable for transmitting optical signals over longer distances. Other materials, such as amorphous silicon, may be selected for applications that emphasize the balance between current-conducting and light-conducting characteristics. The patterning of the waveguide 150A may include a patterning of the material defining the waveguide 150 and a patterning of the material surrounding the waveguide 150A, the refractive index of the material being different from the refractive index of the material of the waveguide 150A. The patterning of the waveguide 150A may include patterning to define different alternative geometries.
功能性中介層結構120可包括一個或多個整體成形的光子元件,其做為一個或多個波導(例如波導150)的補充或替代。例如,功能性中介層結構120可包括一個或多個積體光子區域,例如光子區域240,其可形成在例如:形成於基板110上的位置A、或形成於光子中介層100的一基板110上方的高度處的功能性中介層結構120中的位置B。如第7圖所示,積體光子區域240可包括一個或多個界定功能性中介層結構120的層,該界定功能性中介層結構120的層經圖形化而界定一光子元件150B,亦即光偵測器。如第8圖所示,積體光子區域240可包括一個或多個界定功能性中介層結構120的層,該界定有功能性中介層結構120的層經圖形化而界定不同尺寸、材料及形狀的波導,亦即光子元件150C、150D、150E。如第9圖所示,積體光子區域240可包括一個或多個界定有功能性中介層結構120的層,該界定有功能性中介層結構120的層經圖形化而界定一光子元件150F,亦即光柵耦合器。如第10圖所示,積體光子區域240可包括一個或多個界定功能性中介層結構120的層,該界定有功能性中介層結構120的層經圖形化而界定一光子元件150G,亦即調制器。在一個實施例中,光子中介層100可包括光子區域240,其分佈於整個光子中介層100中,以及光子中介層100可包括參照第7-10圖所述的各個積體光子元件150B-150G。在一個實施例中,光子區域240代表一個經製造而用以界定一個或多個偏振鏡、分光鏡、或共振器的光子區域。The functional interposer structure 120 may include one or more integrally formed photonic elements that supplement or replace one or more waveguides (eg, waveguide 150). For example, the functional interposer structure 120 may include one or more integrated photon regions, such as the photon region 240, which may be formed at, for example, a position A formed on the substrate 110, or a substrate 110 formed on the photon interposer 100. Position B in the functional interposer structure 120 at the height above. As shown in FIG. 7, the integrated photon region 240 may include one or more layers defining the functional interposer structure 120, and the layers defining the functional interposer structure 120 are patterned to define a photonic element 150B, that is, Light detector. As shown in FIG. 8, the integrated photon region 240 may include one or more layers defining the functional interposer structure 120, and the layers defining the functional interposer structure 120 are patterned to define different sizes, materials, and shapes. Waveguides, that is, photonic elements 150C, 150D, 150E. As shown in FIG. 9, the integrated photonic region 240 may include one or more layers defining a functional interposer structure 120, and the layers defining the functional interposer structure 120 are patterned to define a photonic element 150F. That is the grating coupler. As shown in FIG. 10, the integrated photon region 240 may include one or more layers defining the functional interposer structure 120. The layer defining the functional interposer structure 120 is patterned to define a photonic element 150G. Modulator. In one embodiment, the photon interposer 100 may include a photon region 240, which is distributed throughout the photon interposer 100, and the photon interposer 100 may include each of the integrated photonic elements 150B-150G described with reference to FIGS. 7-10. . In one embodiment, the photon region 240 represents a photon region that is manufactured to define one or more polarizers, beam splitters, or resonators.
在一些實施例中,用以形成光子元件的材料,例如單晶矽、多晶矽、鍺可磊晶成長。於此實施例可了解到,厚矽層可容納磊晶成長的同時,得到的光子元件可能透過該厚矽層而呈現光損失。在一個實施例中,為了容納磊晶成長材料的磊晶成長,可提供在一絕緣體上具有矽晶種層(矽模板)的結構。為了提供具有矽晶種層的結構,絕緣體上矽(SOI)晶圓(具有在主體矽基材上的一薄氧化物層及在該氧化物上的一薄矽層)可被選擇用來製造基板110。在一絕緣體上矽晶圓用於製造光子中介層100的一個實施例中,基板110由一絕緣體上矽晶圓的一主體矽基材提供。In some embodiments, the material used to form the photonic device, such as monocrystalline silicon, polycrystalline silicon, and germanium can be epitaxially grown. It can be understood in this embodiment that while the thick silicon layer can accommodate epitaxial growth, the obtained photonic element may exhibit light loss through the thick silicon layer. In one embodiment, in order to accommodate the epitaxial growth of the epitaxial growth material, a structure having a silicon seed layer (silicon template) on an insulator may be provided. To provide a structure with a silicon seed layer, a silicon-on-insulator (SOI) wafer (having a thin oxide layer on the bulk silicon substrate and a thin silicon layer on the oxide) can be selected for fabrication Substrate 110. In an embodiment where a silicon-on-insulator wafer is used to fabricate the photonic interposer 100, the substrate 110 is provided by a main silicon substrate of a silicon-on-insulator wafer.
磊晶成長也可以透過在玻璃上形成的矽晶種層上的磊晶成長來進行。因此,用以製造基板110的玻璃晶圓(具有一薄矽層形成在一主體矽基材上)上的矽的選擇可容納磊晶成長材料的磊晶成長以及由磊晶成長材料(例如單晶矽、多晶矽或鍺)形成的光子元件的製造。在玻璃晶片上的矽使用於製造光子中介層100的一個實施例中,基板110由玻璃晶圓上的矽的一玻璃基板提供。Epitaxial growth can also be performed by epitaxial growth on a silicon seed layer formed on glass. Therefore, the choice of silicon on the glass wafer (having a thin silicon layer formed on a bulk silicon substrate) used to fabricate the substrate 110 can accommodate epitaxial growth of epitaxial growth materials and Crystalline silicon, polycrystalline silicon or germanium). In one embodiment, the silicon on the glass wafer is used to make the photonic interposer 100. The substrate 110 is provided by a glass substrate of silicon on the glass wafer.
在一個實施例中,功能性中介層結構120可被製造為包括在基板110之上的一高度處的一絕緣層上矽介面。例如,在基板110上的一頂部高度之上的厚矽層,例如在由矽形成的一基板110上的磊晶成長,可以透過局部或非局部注入氧(SIMOX)的處理而進行分離,以界定一薄矽層及該薄矽層之下的埋入氧化物層。In one embodiment, the functional interposer structure 120 may be fabricated as a silicon-on-insulator interface at a height above the substrate 110. For example, a thick silicon layer above a top height on the substrate 110, such as epitaxial growth on a substrate 110 formed of silicon, can be separated by a process of local or non-local injection of oxygen (SIMOX) to Define a thin silicon layer and a buried oxide layer under the thin silicon layer.
利用適當的製造方法,由不同波導材料的波導提供或具有不同波導材料的波導的光子元件可被製造在功能性中介層結構120的任意高度處。在一個實施例中,磊晶成長的光子元件可被製造在功能性中介層結構120的基板位置上,且由沉積材料,例如沉積的氮化矽或氮氧化矽形成的光子元件,可形成在功能性中介層結構120的基板高度處之上。功能性中介層結構120可被製造成透過在不同高度處的各個波導之間的漸逝波耦合(evanescent coupling)在各個高度處之間傳導光。With appropriate manufacturing methods, photonic elements provided by or having waveguides of different waveguide materials can be fabricated at any height of the functional interposer structure 120. In one embodiment, the epitaxially grown photonic element can be fabricated on the substrate position of the functional interposer structure 120, and a photonic element formed from a deposition material, such as deposited silicon nitride or silicon oxynitride, can be formed on Above the substrate height of the functional interposer structure 120. The functional interposer structure 120 may be manufactured to conduct light between the various heights through evanescent coupling between the various waveguides at different heights.
可執行各種處理以修改可製造各種光子元件的一材料層的晶粒結構。在一個實施例中,一材料層可由多晶矽組成。在一個實施例中,可執行離子注入以修改一材料層的矽晶體結構。在修改中,多晶矽材料可轉變成非多晶矽材料。離子注入物種可包括一個或多個矽、氬(例如Ar或Ar+ )、氙(例如Xe或Xe+ )、或鍺。另一方面,可進行退火處理,例如再結晶退火處理,以進一步改善一材料層的一晶粒結構。在一個實施例中,在有無離子注入的情況下,一材料層可進行退火以修改一晶粒結構。Various processes may be performed to modify the grain structure of a material layer from which various photonic elements may be manufactured. In one embodiment, a material layer may be composed of polycrystalline silicon. In one embodiment, ion implantation may be performed to modify the silicon crystal structure of a material layer. In the modification, polycrystalline silicon materials can be transformed into non-polycrystalline silicon materials. The ion-implanted species may include one or more silicon, argon (such as Ar or Ar + ), xenon (such as Xe or Xe + ), or germanium. On the other hand, an annealing treatment, such as a recrystallization annealing treatment, may be performed to further improve a grain structure of a material layer. In one embodiment, with or without ion implantation, a material layer may be annealed to modify a grain structure.
為了增強功能性中介層結構120中整體形成的光子元件的性能,光子中介層100可包括用以減少在整體形成的光子元件與基板110之間的耦合的特徵。在一個實施例中,基板110可由玻璃形成以減少耦合。在一個實施例中,基板110可包括在有整體形成的光子元件的光子中介層100的區域中的深溝槽絕緣特徵。In order to enhance the performance of the photonic element integrally formed in the functional interposer structure 120, the photonic interposer 100 may include a feature to reduce the coupling between the integrally formed photonic element and the substrate 110. In one embodiment, the substrate 110 may be formed of glass to reduce coupling. In one embodiment, the substrate 110 may include deep trench insulation features in a region of the photonic interposer 100 with a photonic element integrally formed.
第3圖示出於隨後的製造中間階段中的第2圖的光電系統10。參照第3圖,基板110可經研磨以露出通道130的導電材料,並且額外的圖形化可被執行以形成再分佈層導線170。舉例而言,一中介層材料層,例如材料為界定主體122的中介層材料層,可在對如第2圖所示階段中經平坦化至通道130的一底部高度的基板進行研磨後被沉積在基板110上,然後沉積再分佈層1702、進行光罩及蝕刻以去除再分佈層1702的不需要的材料,以界定再分佈層導線170以及沉積另外一個或多個中介層材料層,然後對該一個或多個中介層材料層進行凹陷以容納凸塊底層金屬結構。在另一實施例中,一個或多個中介層材料層,例如材料為界定主體122的中介層材料層,可進行沉積、蝕刻以界定用以容納導電性材料的凹穴,且該凹穴可填充有導電性材料以界定再分佈層1702,然後沉積另外一個或多個中介層材料層,並對該一個或多個中介層材料層進行凹陷以容納凸塊底層金屬結構。在一個實施例中,一光阻模板可經塗覆及填充導電性材料以形成再分佈層1702。Fig. 3 illustrates the photovoltaic system 10 from Fig. 2 in a subsequent intermediate stage of manufacturing. Referring to FIG. 3, the substrate 110 may be ground to expose the conductive material of the channel 130, and additional patterning may be performed to form a redistribution layer wire 170. For example, an interposer material layer, for example, the interposer material layer defining the body 122, can be deposited after polishing the substrate planarized to a bottom height of the channel 130 in the stage shown in FIG. 2 On the substrate 110, a redistribution layer 1702 is then deposited and masked and etched to remove unwanted materials of the redistribution layer 1702 to define the redistribution layer wires 170 and deposit another one or more interposer material layers, and then The one or more interposer material layers are recessed to accommodate the bump underlying metal structure. In another embodiment, one or more interposer material layers, for example, the material is an interposer material layer defining the body 122, can be deposited, etched to define a cavity for receiving a conductive material, and the cavity can be Filled with a conductive material to define the redistribution layer 1702, and then deposit one or more interposer material layers, and recess the one or more interposer material layers to accommodate the bump underlying metal structure. In one embodiment, a photoresist template may be coated and filled with a conductive material to form a redistribution layer 1702.
通道130、134可在功能性中介層結構120及中介層100的背面之間分佈控制訊號、邏輯訊號及/或功率訊號。通道130、134及導線140、170可有助於扇出電控制及功率訊號。在一個例子中,金屬化層1402、1404、1406可具有奈米尺度間距,以及再分佈層1702可具有微米尺度間距。用於製造再分佈層1702及金屬化層1402、1404、1406的材料可以包括金屬(例如銅、銀、金、鎢或其它導電材料)或其它導電材料(例如適當地摻雜有半導體材料的導電材料)。The channels 130 and 134 may distribute control signals, logic signals, and / or power signals between the functional interposer structure 120 and the back surface of the interposer 100. The channels 130 and 134 and the wires 140 and 170 can help to fan out the power control and power signals. In one example, the metallization layers 1402, 1404, 1406 may have a nano-scale pitch, and the redistribution layer 1702 may have a micro-scale pitch. Materials used to make the redistribution layer 1702 and the metallization layers 1402, 1404, 1406 may include metals (such as copper, silver, gold, tungsten, or other conductive materials) or other conductive materials (such as conductively doped with a semiconductor material as appropriate material).
在形成包括再分佈層1702的背面特徵的製造加工之前,透過使用具有附著層182的一般結構的附著層,具有處理晶圓180之一般結構的一正面處理晶圓(未示)可暫時地被附著至光子中介層100的正面(具有功能性中介層結構120的光子中介層100的正面)。這種正面處理晶圓允許光子中介層100定位在背面朝上的方向,用於形成包括再分佈層1702的背面特徵的製造加工。在形成包括再分佈層1702的背面特徵的製造加工之後,一背面處理晶圓180,例如結合使用附著層182,可暫時地被附著至光子中介層100,如第3圖所示,且該正面處理晶圓可被移除。如第3圖所示,背面處理晶圓180允許光子中介層100定位在正面朝上的方向,以製造加工另外的特徵,例如區域302的特徵的形成、凹穴402、404的形成、以及預製構件的附接。Prior to forming the manufacturing process including the rear surface features of the redistribution layer 1702, a front-side processing wafer (not shown) having the general structure of the processing wafer 180 can be temporarily temporarily used by using an adhesion layer having the general structure of the adhesion layer 182. Attached to the front surface of the photon interposer 100 (the front surface of the photon interposer 100 with the functional interposer structure 120). Such a front-processed wafer allows the photonic interposer 100 to be positioned in a back-up direction for use in a fabrication process that includes a back-surface feature including a redistribution layer 1702. After forming the manufacturing process including the back surface features of the redistribution layer 1702, a back processing wafer 180, such as using an adhesion layer 182, can be temporarily attached to the photonic interposer 100, as shown in FIG. 3, and the front surface The processing wafer can be removed. As shown in FIG. 3, the back-processed wafer 180 allows the photonic interposer 100 to be positioned in a face-up direction to manufacture additional features such as the formation of features of the region 302, the formation of the recesses 402, 404, and prefabrication. Attachment of building blocks.
通道130、134可以垂直地延伸。在一個實施例中,通道130可延伸通過基板,並且也可以延伸通過功能性中介層結構120。在一個實施例中,通道130可透過完全地延伸通過基板110而延伸通過基板110,並且可透過部分地延伸通過基板110而延伸通過功能性中介層結構120。在一個實施例中,通道134可透過部分地延伸通過功能性中介層結構120而延伸通過功能性中介層結構120。The channels 130, 134 may extend vertically. In one embodiment, the channel 130 may extend through the substrate and may also extend through the functional interposer structure 120. In one embodiment, the channel 130 may extend through the substrate 110 by fully extending through the substrate 110 and may extend through the functional interposer structure 120 through partially extending through the substrate 110. In one embodiment, the channel 134 may extend through the functional interposer structure 120 by partially extending through the functional interposer structure 120.
參照第3圖的其他方面,可於區域302處執行另外的製造加工以適用於一預製構件的附接。在該預製構件為一具有錫鉛凸塊的預製的半導體晶片的實施例中,於區域302的加工可包括製造凸塊底層金屬(under bump metallization, UBM)構造。Referring to other aspects of FIG. 3, additional manufacturing processes may be performed at area 302 to accommodate the attachment of a prefabricated component. In an embodiment where the prefabricated component is a prefabricated semiconductor wafer with tin-lead bumps, the processing in the region 302 may include manufacturing an under bump metallization (UBM) structure.
第4圖示出於隨後的製造中間階段中的第3圖的光電系統10。參照第4圖,可形成凹穴402以容納由一預製雷射晶粒晶片160A(第5圖)提供的一預製構件,以及可形成凹穴404以容納由一預製光子積體電路晶片160B(第5圖)提供的一預製構件。凹穴402中可形成構造410,以便於將導線140的電及機械耦合至一預製構件,以及阻障層222上的凹穴402中可形成構造420,以便於將導線140的電及機械耦合至一預製構件。構造420可完成由第3圖的製造中間階段所示的金屬堆疊提供的對齊構件220的製造。構造410可形成在阻障層222上,其中該阻障層222可形成在金屬化層上。構造420可形成在阻障層222上。阻障層222可形成在金屬柱221中,其中該金屬柱221可形成在金屬化層1404上。阻障層212、222可形成為一阻障以抑制可能因相應預製構件,例如預製雷射晶粒晶片160A或預製光子積體電路晶片160B的接觸件160AC、160BC的金或錫接觸金屬化層1404或金屬柱221的反應。Fig. 4 illustrates the photovoltaic system 10 from Fig. 3 in a subsequent intermediate stage of manufacturing. Referring to FIG. 4, a cavity 402 may be formed to accommodate a prefabricated component provided by a prefabricated laser die wafer 160A (FIG. 5), and a cavity 404 may be formed to accommodate a prefabricated photonic integrated circuit wafer 160B ( Figure 5) a prefabricated component. A structure 410 may be formed in the cavity 402 to facilitate the electrical and mechanical coupling of the wire 140 to a prefabricated component, and a structure 420 may be formed in the cavity 402 on the barrier layer 222 to facilitate the electrical and mechanical coupling of the wire 140. To a prefabricated component. The construction 420 may complete the manufacture of the alignment member 220 provided by the metal stack shown in the middle stage of manufacturing in FIG. 3. The structure 410 may be formed on a barrier layer 222, where the barrier layer 222 may be formed on a metallization layer. A structure 420 may be formed on the barrier layer 222. The barrier layer 222 may be formed in the metal pillar 221, wherein the metal pillar 221 may be formed on the metallization layer 1404. The barrier layers 212, 222 can be formed as a barrier to suppress the gold or tin contact metallization layer that may be caused by the corresponding prefabricated components, such as the prefabricated laser die wafer 160A or the prefabricated photonic integrated circuit wafer 160B. 1404 or reaction of metal column 221.
在一個實施例中,構造410及/或構造420可由錫鉛凸塊形成。在一個實施例中,構造410及/或構造420可由透過無電解鍍或電鍍所產生的薄相干金屬塗層(例如:無電鍍形成物或電鍍形成物)形成。根據一個實施例,無電解鍍可由化學或非電力自催化鍍提供,其涉及在無需外部電源的水溶液中的反應。在實施無電解鍍的一個實施例中,氫可透過一還原劑而釋放以在一表面上產生負電荷。無電解鍍可包括,例如無電鍍鎳、無電鍍銀、無電鍍金或無電鍍銅。根據電鍍的一個實施例,可使用電流以還原溶解金屬陽離子,使得它們可在一電極上形成一薄金屬塗層。在一個實施例中,可使用電鍍(例如:無電解鍍或電鍍)以精確控制材料構造410及/或材料構造420的數量及分佈,進而減少因材料構造410及/或材料構造420的迴焊導致的厚度變化。In one embodiment, the structure 410 and / or the structure 420 may be formed of a tin-lead bump. In one embodiment, the structure 410 and / or the structure 420 may be formed of a thin coherent metal coating (eg, an electroless formation or an electroplated formation) produced by electroless plating or electroplating. According to one embodiment, electroless plating may be provided by chemical or non-electric autocatalytic plating, which involves reactions in an aqueous solution that does not require an external power source. In one embodiment where electroless plating is performed, hydrogen can be released through a reducing agent to generate a negative charge on a surface. Electroless plating may include, for example, electroless nickel, electroless silver, electroless gold, or electroless copper. According to one embodiment of electroplating, an electric current can be used to reduce the dissolved metal cations so that they can form a thin metal coating on an electrode. In one embodiment, electroplating (eg, electroless plating or electroplating) can be used to precisely control the quantity and distribution of the material structure 410 and / or the material structure 420, thereby reducing re-welding due to the material structure 410 and / or the material structure 420 Changes in thickness.
在如第4圖所示的另一方面中,預製半導體晶片160C可附接於區域430。預製半導體晶片160C可以是具有主動元件或被動元件(互補式金屬氧化物半導體、射頻元件、微機電系統或離散式元件)的晶片。區域430的處理可包括將預製半導體晶片160C的凸塊焊接至凸塊底層金屬構造的處理。預製半導體晶片160C可以是具有主動元件及/或被動元件(互補式金屬氧化物半導體、靜態隨機存取記憶體、邏輯、特殊應用積體電路、射頻元件、微機電系統或離散式元件)的晶片。In another aspect as shown in FIG. 4, the prefabricated semiconductor wafer 160C may be attached to the region 430. The prefabricated semiconductor wafer 160C may be a wafer having an active element or a passive element (complementary metal oxide semiconductor, radio frequency element, micro-electro-mechanical system, or discrete element). The process of the region 430 may include a process of soldering the bumps of the prefabricated semiconductor wafer 160C to the bump underlying metal structure. The prefabricated semiconductor wafer 160C may be a wafer having active and / or passive components (complementary metal oxide semiconductors, static random access memory, logic, special application integrated circuits, radio frequency components, micro-electro-mechanical systems, or discrete components). .
第5圖示出於隨後的製造中間階段中的第4圖的光電系統10。參照第5圖,預製雷射晶粒晶片160A可附接至凹穴402內的功能性中介層結構120,以及預製光子積體電路晶片160B可附接至凹穴404內的功能性中介層結構120。Fig. 5 illustrates the photovoltaic system 10 from Fig. 4 in a subsequent intermediate stage of manufacturing. Referring to FIG. 5, a prefabricated laser die wafer 160A may be attached to the functional interposer structure 120 in the cavity 402, and a prefabricated photonic integrated circuit wafer 160B may be attached to the functional interposer structure in the cavity 404. 120.
為了附接預製雷射晶粒晶片160A,可向下降低預製雷射晶粒晶片160A直到相鄰於預製雷射晶粒晶片160A的接觸件160AC的預製雷射晶粒晶片160A的底部凸起接觸對齊構件210。當預製雷射晶粒晶片160A接觸對齊構件210,可藉由雷射加熱工具對構造410局部雷射加熱,以將預製雷射晶粒晶片160A電連接及機械連接至功能性中介層結構120。局部雷射加熱可使得構造410迴焊,並且可建立於金屬化層1404與預製雷射晶粒晶片160A的接觸件160AC之間的電及機械耦合。預製雷射晶粒晶片160A可發射預定波長或可變波長的雷射光。預製雷射晶粒晶片160A可以結合一種或多種雷射光發射技術,例如:分佈回饋式雷射、法布里-博羅(Fabry-Perot)及波長分波多工(Wavelength Division Multiplexer, WDM)。In order to attach the prefabricated laser die wafer 160A, the prefabricated laser die wafer 160A may be lowered downward until the bottom of the prefabricated laser die wafer 160A adjacent to the contact 160AC of the prefabricated laser die wafer 160A contacts. Aligning member 210. When the prefabricated laser die wafer 160A contacts the alignment member 210, the structure 410 can be locally laser heated by a laser heating tool to electrically and mechanically connect the prefabricated laser die wafer 160A to the functional interposer 120. Local laser heating can cause the structure 410 to be re-soldered, and can be established by electrical and mechanical coupling between the metallization layer 1404 and the contact 160AC of the prefabricated laser die wafer 160A. The prefabricated laser die wafer 160A can emit laser light of a predetermined wavelength or a variable wavelength. The prefabricated laser die wafer 160A can be combined with one or more laser light emission technologies, such as: distributed feedback laser, Fabry-Perot, and Wavelength Division Multiplexer (WDM).
為了將預製光子積體電路晶片160B附接至功能性中介層結構120,可向下降低預製光子積體電路晶片160B直到預製光子積體電路晶片160B的接觸件160BC接觸於由具有金屬柱221、阻障層222及構造420的金屬堆疊提供的對齊構件220。如圖所示,用以將預製光子積體電路晶片160B附接在凹穴404的附接構件可根據由金屬堆疊提供的對齊構件220的受控厚度,使得垂直對齊可基於接觸於構造420的預製光子積體電路晶片160B的接觸件而被提供,使得預製光子積體電路晶片160B位於當構造420迴焊後實質上仍可保持的特定高度處。當預製光子積體電路晶片160B的接觸件160BC接觸對齊構件220,構造420可藉由雷射加熱工具而被局部雷射加熱。隨著預製光子積體電路晶片160B接觸由金屬堆疊提供的對齊構件220,局部雷射加熱可使得構造420迴焊,並且可建立於金屬化層1404與預製光子積體電路晶片160B的接觸件160BC之間的電及機械耦合。In order to attach the preformed photonic integrated circuit wafer 160B to the functional interposer 120, the preformed photonic integrated circuit wafer 160B may be lowered downward until the contact 160BC of the preformed photonic integrated circuit wafer 160B comes into contact with the metal post 221, The alignment layer 220 provided by the metal stack of the barrier layer 222 and the structure 420. As shown, the attachment member used to attach the pre-made photonic integrated circuit wafer 160B to the recess 404 can be based on the controlled thickness of the alignment member 220 provided by the metal stack, so that vertical alignment can be based on contact with the structure 420 Contacts for the pre-made photonic integrated circuit wafer 160B are provided such that the pre-made photonic integrated circuit wafer 160B is located at a specific height that can be substantially maintained after the structure 420 is re-soldered. When the contact 160BC of the prefabricated photonic integrated circuit wafer 160B contacts the alignment member 220, the structure 420 can be locally heated by the laser by a laser heating tool. As the prefabricated photonic integrated circuit wafer 160B contacts the alignment member 220 provided by the metal stack, local laser heating can cause the structure 420 to be re-soldered, and can be established on the contact 160BC of the metallization layer 1404 and the preformed photonic integrated circuit wafer 160B. Electrical and mechanical coupling.
預製光子積體電路晶片160B可以是用於各種應用的預製光子積體電路晶片,例如生物醫學、波長分波多工、數據通訊、類比射頻、行動、光達及光纖網路等等。預製光子積體電路晶片160B可包括一個或多個光子元件,例如波導150A及/或參照第7-10圖所述製造的光子區域240的一個或多個光子元件150B-150G,一個或多個光子元件例如:波導、光偵測器、耦合器、調制器、偏振器、分路器或共振器。The prefabricated photonic integrated circuit wafer 160B may be a prefabricated photonic integrated circuit wafer for various applications, such as biomedicine, wavelength division multiplexing, data communications, analog radio frequency, mobile, optical fiber, and fiber optic networks. The pre-made photonic integrated circuit wafer 160B may include one or more photonic elements, such as a waveguide 150A and / or one or more photonic elements 150B-150G, one or more of a photonic region 240 manufactured with reference to FIGS. 7-10. Photonic elements such as waveguides, photodetectors, couplers, modulators, polarizers, splitters or resonators.
為了將預製雷射晶粒晶片160A及預製光子積體電路晶片160B附接至功能性中介層結構120,預製雷射晶粒晶片160A及預製光子積體電路晶片160B可藉由具有機器視覺功能的一晶片接合工具定位在它們相應的凹穴402及凹穴404中。對齊構件210、220可提供垂直對齊(於平行於關聯於光子中介層100之圖式整個所示的參考座標系15的z軸的方向),使得預製雷射晶粒晶片160A及預製光子積體電路晶片的高度可被精確建立。可識別圖形可包括在光子中介層100中,以便於預製雷射晶粒晶片160A及預製光子積體電路晶片160B在沿著平行於參考座標系15的y軸的軸線的方向上及沿著平行於參考座標系15的x軸的軸線的方向上而對齊。透過機器視覺圖形辨識而可識別的圖形可透過由金屬化層1402及或金屬化層1404界定的圖形而被方便地製造出。In order to attach the prefabricated laser die wafer 160A and the prefabricated photonic integrated circuit wafer 160B to the functional interposer structure 120, the prefabricated laser die wafer 160A and the prefabricated photonic integrated circuit wafer 160B may be manufactured by machine vision A wafer bonding tool is positioned in their respective pockets 402 and 404. The alignment members 210, 220 may provide vertical alignment (in a direction parallel to the z-axis of the reference coordinate system 15 shown throughout the pattern of the photonic interposer 100), so that the prefabricated laser die wafer 160A and the preformed photonic product The height of the circuit wafer can be accurately established. An identifiable pattern may be included in the photonic interposer 100 to facilitate the prefabricated laser die wafer 160A and the preformed photonic integrated circuit wafer 160B in a direction parallel to the axis parallel to the y-axis of the reference coordinate system 15 and along a parallel Align in the direction of the x-axis axis of the reference coordinate system 15. A pattern recognizable through machine vision pattern recognition can be conveniently manufactured through a pattern defined by the metallization layer 1402 and / or the metallization layer 1404.
可操作以垂直對齊及建立預製雷射晶粒晶片160A的精準高度的對齊構件210可相隔及獨立於用於預製雷射晶粒晶片160A及功能性中介層結構120的電連接的特徵。因此用以定位及提供用於電連接目的之導電材料的要求可預期對預製雷射晶粒晶片160A的垂直對齊具有較小的影響。用於將預製光子積體電路晶片160B附接在凹穴404的附接組件可以獨立於對齊構件210進行操作,並且可自設計配置的對齊構件210移除。Alignment members 210 that are operable to vertically align and establish the precise height of the prefabricated laser die wafer 160A can be separated and independent of the features used for the electrical connection of the prefabricated laser die wafer 160A and the functional interposer structure 120. Therefore, the requirements for positioning and providing conductive materials for electrical connection purposes can be expected to have a small impact on the vertical alignment of the prefabricated laser die wafer 160A. An attachment assembly for attaching a pre-made photonic integrated circuit wafer 160B to the recess 404 can be operated independently of the alignment member 210 and can be removed from the alignment member 210 of the design configuration.
雖然用以將一預製雷射晶粒晶片160A附接在凹穴402以及將預製光子積體電路晶片160B附接在凹穴404的附接組件於第4圖的特定實施例中顯示為不同的附接組件,然而,通用的附接組件可替代地被使用。舉例而言,用以將預製雷射晶粒晶片160A附接在凹穴402的附接組件可用於將預製雷射晶粒晶片160A附接在凹穴402,並且將預製光子積體電路晶片160B附接在凹穴404。在另一實施例中示出的用以將預製光子積體電路晶片160B附接在凹穴404的附接組件可用於將預製雷射晶粒晶片160A附接在凹穴402,並且將預製光子積體電路晶片160B附接在凹穴404。在一替代的實施例中示出的用以將預製雷射晶粒晶片160A附接在凹穴402的附接組件可用於將預製光子積體電路晶片160B附接在凹穴404,以及用以將預製光子積體電路晶片160B附接在凹穴404的附接組件可用於將預製雷射晶粒晶片160A附接在凹穴402。Although the attachment components used to attach a prefabricated laser die wafer 160A to the cavity 402 and to attach a premade photonic integrated circuit wafer 160B to the cavity 404 are shown differently in the specific embodiment of FIG. 4 Attachment components, however, universal attachment components may be used instead. For example, an attachment assembly for attaching a prefabricated laser die wafer 160A to the cavity 402 may be used to attach the prefabricated laser die wafer 160A to the cavity 402 and to prefabricate a photonic integrated circuit wafer 160B Attach in the pocket 404. The attachment assembly shown in another embodiment to attach the pre-made photonic integrated circuit wafer 160B to the cavity 404 may be used to attach the pre-made laser die wafer 160A to the cavity 402 and attach the pre-made photon The integrated circuit wafer 160B is attached to the recess 404. The attachment assembly shown in an alternative embodiment for attaching a prefabricated laser die wafer 160A to the cavity 402 can be used to attach a prefabricated photonic integrated circuit wafer 160B to the cavity 404, and to An attachment assembly that attaches the pre-made photonic integrated circuit wafer 160B to the recess 404 may be used to attach the pre-made laser die wafer 160A to the recess 402.
如第5圖所示,藉由預製雷射晶粒晶片160A附接至功能性中介層結構120,預製雷射晶粒晶片160A可垂直地對齊(在平行於參考座標系15的z軸的方向上)於整體形成在功能性中介層結構120中的波導150A,使得預製雷射晶粒晶片160A的一發光層160AL為垂直對齊於波導150A。預製雷射晶粒晶片160A可以是對齊於z軸,且x軸及y軸對齊於整體形成的波導150A(在平行於參考座標系15的x軸及y軸的方向上)。在預製雷射晶粒晶片160A及波導150A如此對齊情況下,預製雷射晶粒晶片160A與波導150A可以彼此邊緣耦合。根據一個實施例,預製雷射晶粒晶片160A與波導150A之間的邊緣耦合可包括經降低的插入損耗的光耦合,導致增強的系統及訊號完整性。邊緣耦合可包括錐形光接收波導150A,以進一步減少光損失。As shown in FIG. 5, by attaching the prefabricated laser die wafer 160A to the functional interposer structure 120, the prefabricated laser die wafer 160A can be vertically aligned (in a direction parallel to the z-axis of the reference coordinate system 15 Top) The waveguide 150A is integrally formed in the functional interposer structure 120 so that a light emitting layer 160AL of the prefabricated laser die wafer 160A is vertically aligned with the waveguide 150A. The prefabricated laser die wafer 160A may be aligned with the z-axis, and the x-axis and y-axis are aligned with the waveguide 150A (in a direction parallel to the x-axis and y-axis of the reference coordinate system 15). In the case where the prefabricated laser die wafer 160A and the waveguide 150A are so aligned, the prefabricated laser die wafer 160A and the waveguide 150A may be edge-coupled to each other. According to one embodiment, the edge coupling between the prefabricated laser die wafer 160A and the waveguide 150A may include optical coupling with reduced insertion loss, resulting in enhanced system and signal integrity. The edge coupling may include a tapered light receiving waveguide 150A to further reduce light loss.
如第4-5圖所示,藉由預製光子積體電路晶片160B附接至功能性中介層結構120,預製光子積體電路晶片160B可垂直地對齊(在平行於參考座標系15的z軸的方向上)以及x軸及y軸對齊(在平行於參考座標系15的x軸及y軸的方向上)於整體形成在功能性中介層結構120中的波導150A,使得預製光子積體電路晶片160B的波導160BW為對齊於波導150A,並相應的在與波導150A共同的高度上。在預製光子積體電路晶片160B及波導150A如此對齊情況下,預製光子積體電路晶片160B與波導150A可以彼此邊緣耦合。根據一個實施例,預製光子積體電路晶片160B與波導150A之間的邊緣耦合可包括經降低的插入損耗的光耦合,導致增強的系統及訊號完整性。邊緣耦合可包括錐形光接收波導160BW,以進一步減少光損失。As shown in Figures 4-5, by attaching a pre-made photonic integrated circuit wafer 160B to the functional interposer structure 120, the pre-made photonic integrated circuit wafer 160B can be vertically aligned (on the z-axis parallel to the reference coordinate system 15 Direction) and x-axis and y-axis alignment (in a direction parallel to the x-axis and y-axis of the reference coordinate system 15) on the waveguide 150A integrally formed in the functional interposer structure 120, so that the pre-made photonic integrated circuit The waveguide 160BW of the wafer 160B is aligned with the waveguide 150A and correspondingly is at the same height as the waveguide 150A. With the pre-assembled photonic integrated circuit wafer 160B and the waveguide 150A so aligned, the pre-made photonic integrated circuit wafer 160B and the waveguide 150A may be edge-coupled to each other. According to one embodiment, the edge coupling between the pre-made photonic integrated circuit wafer 160B and the waveguide 150A may include optical coupling with reduced insertion loss, resulting in enhanced system and signal integrity. Edge coupling may include a tapered light receiving waveguide 160BW to further reduce light loss.
如第5圖所示,藉由預製雷射晶粒晶片160A及預製光子積體電路晶片160B附接至功能性中介層結構120,預製雷射晶粒晶片160A的發光層160AL、整體形成在功能性中介層結構120中的波導150A及預製光子積體電路晶片160B的波導160BW可沿著一共同的水平軸線502對齊,並且可設置在共同高度處。在一個實施例中,預製雷射晶粒晶片160A的發光層160AL、整體形成於功能性中介層結構120中的波導150A及波導160BW可各自由具有各自軸線504、506、508的直線形結構提供,其中該軸線504、506、508延伸平行於參考座標系15的x軸。如所述般的對準預製雷射晶粒晶片160A的發光層160AL、整體形成在功能性中介層結構120中的波導150A及預製光子積體電路晶片160B的波導160BW可減少光傳輸損失,例如因功能性中介層結構120的內部構件的衍射或反射導致的光傳輸損失。As shown in FIG. 5, the prefabricated laser die wafer 160A and the preformed photonic integrated circuit wafer 160B are attached to the functional interposer structure 120. The light emitting layer 160AL of the prefabricated laser die wafer 160A is integrally formed in the function. The waveguide 150A in the sexual interposer structure 120 and the waveguide 160BW of the pre-made photonic integrated circuit wafer 160B may be aligned along a common horizontal axis 502 and may be disposed at a common height. In one embodiment, the light emitting layer 160AL of the prefabricated laser die wafer 160A, the waveguide 150A and the waveguide 160BW integrally formed in the functional interposer structure 120 may each be provided by a linear structure having respective axes 504, 506, 508 Where the axes 504, 506, 508 extend parallel to the x-axis of the reference coordinate system 15. Aligning the light emitting layer 160AL of the prefabricated laser die wafer 160A, the waveguide 150A integrally formed in the functional interposer structure 120, and the waveguide 160BW of the prefabricated photonic integrated circuit wafer 160B as described can reduce light transmission loss, for example, Light transmission loss due to diffraction or reflection of internal components of the functional interposer structure 120.
在參照第5圖的製造視圖解釋的另一方面中,光子中介層100可經配置使得通道130提供散熱功能以去除由預製雷射晶粒晶片160A及預製光子積體電路晶片160B的熱生成構件所產生的熱。在基板110由導熱材料例如矽形成之情況下,光子中介層100可經配置而使得通過通道130傳導的熱可藉由基板及再分佈層1702傳導以移除來自光子中介層100的熱。在基板110由絕熱材料例如二氧化矽或玻璃形成之情況下,光子中介層100可經配置而使得通過通道130傳導的熱可主要由再分佈層1702傳導以移除來自光子中介層100的熱。In another aspect explained with reference to the manufacturing view of FIG. 5, the photonic interposer 100 may be configured such that the channel 130 provides a heat dissipation function to remove heat-generating components from the prefabricated laser die wafer 160A and the prefabricated photonic integrated circuit wafer 160B. The heat generated. In the case where the substrate 110 is formed of a thermally conductive material such as silicon, the photonic interposer 100 may be configured such that heat conducted through the channel 130 may be conducted through the substrate and the redistribution layer 1702 to remove heat from the photonic interposer 100. In the case where the substrate 110 is formed of a thermally insulating material such as silicon dioxide or glass, the photonic interposer 100 may be configured such that heat conducted through the channel 130 may be mainly conducted by the redistribution layer 1702 to remove heat from the photonic interposer 100. .
對於進一步的製造處理,如第6圖所示的凸塊底層金屬構造176可形成在光子中介層100的背側上的再分佈層1702的暴露區域上(暴露區域是在圍繞再分佈層1702的中介層材料的位置,如所示凹陷處)。這種凸塊底層金屬構造176可適於接受光子中介層100可附接到的子結構的錫鉛凸塊。一處理晶圓(圖未示)可經由黏著劑暫時地附接至功能性中介層結構120,以允許光電系統10在一子結構例如一印刷電路板或中介層的處理及安裝。For further manufacturing processes, the bump underlying metal structure 176 as shown in FIG. 6 may be formed on the exposed area of the redistribution layer 1702 on the back side of the photonic interposer 100 (the exposed area is around the redistribution layer 1702 Location of the interposer material, as shown in the depression). Such a bump underlying metal construction 176 may be adapted to receive tin-lead bumps of a substructure to which the photonic interposer 100 may be attached. A processing wafer (not shown) may be temporarily attached to the functional interposer structure 120 via an adhesive to allow the optoelectronic system 10 to be processed and mounted in a sub-structure such as a printed circuit board or interposer.
第6圖示出透過光子中介層100的錫鉛凸塊192連接至凸塊底層金屬構造176而安裝在子結構190上的光電系統10。所示的印刷電路板子結構190可以由例如一球柵陣列或一中介層所替代。如第6圖所示的在製造階段中的光子中介層100可包括用於將預製雷射晶粒晶片160A的一電極打線接合至功能性中介層結構120的暴露的電壓端的一銲線188。可替代地,功能性中介層結構120的構造410的區域可經配置而界定電絕緣的正電壓端子及負電壓端子,且具有底部電極如所示經配置為分離的正極端子電極和負極端子電極的一預製雷射晶粒晶片160A可附接至相應的構造410的區域中的正電極端子及負電極端子。外部雷射光可耦合至功能性中介層結構120。例如,自外部(中介層外)源(圖未示)傳輸光的一光纖電纜196可耦合至整體形成在功能性中介層結構120中的積體波導150H。光接收波導150H可為錐形以減少光損失。為了將光子中介層100電連接及機械連接至子結構,光子中介層100的凸塊底層金屬構造176可焊接至子結構190的對應的錫鉛凸塊192,並以密封劑194密封。FIG. 6 shows the optoelectronic system 10 with the tin-lead bump 192 passing through the photonic interposer 100 connected to the bump underlying metal structure 176 and mounted on the substructure 190. The printed circuit board substructure 190 shown may be replaced by, for example, a ball grid array or an interposer. The photonic interposer 100 in the manufacturing stage as shown in FIG. 6 may include a bonding wire 188 for wire bonding an electrode of the prefabricated laser die wafer 160A to the exposed voltage terminal of the functional interposer structure 120. Alternatively, the region of the configuration 410 of the functional interposer structure 120 may be configured to define positive and negative voltage terminals that are electrically insulated, and have a bottom electrode configured as separate positive and negative terminal electrodes as shown A prefabricated laser die wafer 160A may be attached to the positive electrode terminal and the negative electrode terminal in the region of the corresponding structure 410. External laser light may be coupled to the functional interposer structure 120. For example, a fiber optic cable 196 that transmits light from an external (outside interposer) source (not shown) may be coupled to the integrated waveguide 150H integrally formed in the functional interposer structure 120. The light receiving waveguide 150H may be tapered to reduce light loss. In order to electrically and mechanically connect the photonic interposer 100 to the substructure, the bump underlying metal structure 176 of the photonic interposer 100 may be soldered to the corresponding tin-lead bump 192 of the substructure 190 and sealed with a sealant 194.
文中使用的術語僅用於描述特定實施例之目的而非意在限制。除非上下文另有明確說明,否則如本說明書所使用的單數形式「一」及「該」旨在亦包括複數形式。應當進一步理解的是,術語「包含」(以及任何形式的包含)、「具有」(以及任何形式的具有)、「包括」(以及任何形式的包括)及「含有」(以及任何形式的含有)皆為開放式連接動詞。因此,「具有」、「包括」或「含有」一個或多個步驟或元件的一方法或一裝置為具備該一個或多個步驟或元件,但不限於僅具備該一個或多個步驟或元件。類似地,「包含」、「具有」、「包括」或「含有」一個或多個特徵的一方法的一步驟或一裝置的一元件為具備該一個或多個特徵,但不限於僅具備該一個或多個特徵。術語「由……界定」的形式包含元件被部分界定及元件被完全界定的關係。文中的數字標識,例如「第一」及「第二」是任意的術語,用於指定不同的元件而不指定元件的順序。此外,以某種方式配置的系統方法或裝置為至少以該方法配置,然而亦可以透過未列出的方式配置。此外,闡述為具有特定數量的元件的系統方法或裝置可透過小於或大於該特定數量的元件而實踐。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. Unless the context clearly indicates otherwise, as used in this specification, the singular forms "a" and "the" are intended to include the plural forms as well. It should be further understood that the terms "including" (and any form of inclusion), "has" (and any form of having), "including" (and any form of including) and "containing" (and any form of containing) All are open-connected verbs. Thus, a method or a device "having", "including" or "containing" one or more steps or elements is provided with the one or more steps or elements, but is not limited to having only the one or more steps or elements . Similarly, a step of a method or an element of a device that "includes," "has," "includes," or "contains" one or more features is provided with the one or more features, but is not limited to having only the One or more characteristics. The form of the term "defined by" includes the relationship that elements are partially defined and elements are fully defined. Numeric identifiers in the text, such as "first" and "second" are arbitrary terms used to designate different components without specifying the order of the components. In addition, a system method or device configured in a certain manner is configured in at least that method, but may also be configured in a manner not listed. Furthermore, a system method or device illustrated as having a specific number of elements may be practiced with less or greater than that specific number of elements.
以下申請專利範圍中所有結合功能元件的裝置或步驟的相應結構、材料、行為及等同物(倘若有)旨在包括用於表現結合於其他具體請求聲明的元件的該功能的任何結構、材料或行為。本發明的描述已經出於說明及描述之目的而呈現出,然而並非旨在窮舉或限制於本發明所公開的形式。在不脫離本發明的範圍及精神的情況下,許多修改及變化對於本領域的通常技術人員將是顯而易見的。經選擇及描述的實施例是為了最佳地解釋本發明的一個或多個方面的原理及實際應用,並且使得本領域的其他通常技術人員能夠理解本發明的用以針對具有適合於預期的特定用途的各種修改的各種實施例的一個或多個方面。The corresponding structures, materials, behaviors, and equivalents (if any) of all devices or steps incorporating functional elements in the scope of the following patent applications are intended to include any structure, material, or behavior. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the forms disclosed. Many modifications and variations will be apparent to those skilled in the art without departing from the scope and spirit of the invention. The embodiments were chosen and described in order to best explain the principles and practical applications of one or more aspects of the invention, and to enable others of ordinary skill in the art to understand the invention's purpose of Various Modifications of Use One or more aspects of various embodiments.
10‧‧‧光電系統 10‧‧‧ Photoelectric System
100‧‧‧光子中介層 100‧‧‧ photon interposer
110‧‧‧基板 110‧‧‧ substrate
120‧‧‧功能性中介層結構 120‧‧‧functional interposer structure
122‧‧‧主體 122‧‧‧ Subject
130、134‧‧‧通道 130, 134‧‧‧ channels
140、170‧‧‧導線 140, 170‧‧‧ wires
1402、1404、1406‧‧‧金屬化層 1402, 1404, 1406‧‧‧ metallization
15‧‧‧參考座標系 15‧‧‧ reference coordinate system
150、150A、150H、160BW‧‧‧波導 150, 150A, 150H, 160BW‧‧‧ waveguide
150B-150G‧‧‧光子元件 150B-150G‧‧‧Photonic Element
1502‧‧‧波導材料層 1502‧‧‧waveguide material layer
160‧‧‧預製構件 160‧‧‧ prefabricated components
160A‧‧‧預製雷射晶粒晶片 160A‧‧‧Prefabricated Laser Chip Wafer
160AC、160BC‧‧‧接觸件 160AC, 160BC‧‧‧Contacts
160AL‧‧‧發光層 160AL‧‧‧Light-emitting layer
160B‧‧‧預製光子積體電路晶片 160B‧‧‧Prefabricated Photonic Integrated Circuit Chip
160C‧‧‧預製半導體晶片 160C‧‧‧Prefabricated semiconductor wafer
1702‧‧‧再分佈層 1702‧‧‧ redistribution layer
176‧‧‧凸塊底層金屬構造 176‧‧‧ Bulk metal structure
180‧‧‧處理晶片 180‧‧‧Processing wafer
182‧‧‧附著層 182‧‧‧ Adhesive layer
188‧‧‧銲線 188‧‧‧ welding wire
190‧‧‧子結構 190‧‧‧Substructure
192‧‧‧錫鉛凸塊 192‧‧‧tin lead bump
194‧‧‧密封劑 194‧‧‧sealant
196‧‧‧光纖電纜 196‧‧‧fiber optic cable
202、204‧‧‧高度 202, 204‧‧‧ height
210、220‧‧‧對齊構件 210, 220‧‧‧ Alignment members
212、222‧‧‧阻障層 212, 222‧‧‧ barrier layer
221‧‧‧金屬柱 221‧‧‧metal pillar
240‧‧‧光子區域 240‧‧‧photon region
302、430‧‧‧區域 302, 430‧‧‧ zones
402、404‧‧‧凹穴 402, 404‧‧‧
410、420‧‧‧構造 410, 420‧‧‧ Structure
502‧‧‧水平軸線 502‧‧‧horizontal axis
504、506、508‧‧‧軸線 504, 506, 508‧‧‧ axis
在說明書結尾處的申請專利範圍中特別指出並清楚地要求保護本發明的一個或多個方面。從以下結合附圖的詳細描述中,本發明的上述及其它目的、特徵及優點是顯而易見的,其中:One or more aspects of the invention are specifically pointed out and distinctly claimed in the scope of the patent application at the end of the specification. The above and other objects, features, and advantages of the present invention will be apparent from the following detailed description in conjunction with the accompanying drawings, in which:
第1圖為一光電系統的剖視示意圖,該光電系統具有一中介層、一個或多個經附接的預製構件及一個或多個經整合的光子元件;Figure 1 is a schematic cross-sectional view of a photovoltaic system having an interposer, one or more attached prefabricated components, and one or more integrated photonic elements;
第2圖為處於製造中間階段的一光電系統的剖視示意圖;Figure 2 is a schematic cross-sectional view of a photovoltaic system in the middle stage of manufacturing;
第3圖為於製造一重分佈層之後的製造中間階段中的一光電系統的剖視示意圖;FIG. 3 is a schematic cross-sectional view of a photovoltaic system in an intermediate stage of manufacturing after manufacturing a redistribution layer; FIG.
第4圖為於製造用以容納一個或多個預製構件之後的製造中間階段中的一光電系統的剖視示意圖;FIG. 4 is a schematic cross-sectional view of a photovoltaic system in an intermediate stage of manufacturing after manufacturing to accommodate one or more prefabricated components;
第5圖為於附接一個或多個預製構件之後的製造中間階段中的一光電系統的剖視示意圖;FIG. 5 is a schematic cross-sectional view of a photovoltaic system in an intermediate stage of manufacturing after attaching one or more prefabricated components;
第6圖為安裝在一底部構造的一光電系統的剖視示意圖;以及FIG. 6 is a schematic cross-sectional view of a photovoltaic system installed in a bottom structure; and
第7-10圖示出可整體形成於一功能性中介層結構中的光子元件的替代性實施例。7-10 illustrate alternative embodiments of photonic elements that can be integrally formed in a functional interposer structure.
Claims (14)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662426100P | 2016-11-23 | 2016-11-23 | |
US62/426,100 | 2016-11-23 | ||
US201715975349A | 2017-10-27 | 2017-10-27 | |
US15/975,349 | 2017-10-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201830685A true TW201830685A (en) | 2018-08-16 |
TWI686943B TWI686943B (en) | 2020-03-01 |
Family
ID=60655105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106140266A TWI686943B (en) | 2016-11-23 | 2017-11-21 | Photonics interposer optoelectronics |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3545349A1 (en) |
KR (1) | KR20190101362A (en) |
CN (1) | CN110192136A (en) |
TW (1) | TWI686943B (en) |
WO (1) | WO2018098146A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI818121B (en) * | 2018-11-29 | 2023-10-11 | 台灣積體電路製造股份有限公司 | Semiconductor package and manufacturing method thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12032216B2 (en) | 2018-04-03 | 2024-07-09 | Corning Incorporated | Integrated circuit packages having electrical and optical connectivity and methods of making the same |
US11550099B2 (en) | 2018-11-21 | 2023-01-10 | The Research Foundation For The State University Of New York | Photonics optoelectrical system |
US11029466B2 (en) | 2018-11-21 | 2021-06-08 | The Research Foundation For The State University Of New York | Photonics structure with integrated laser |
US11215753B2 (en) | 2020-02-27 | 2022-01-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photonic semiconductor device and method |
FR3120739B1 (en) | 2021-03-11 | 2023-02-10 | Commissariat Energie Atomique | optoelectronic device comprising an active photonic interposer to which are connected a microelectronic chip and an electro-optical conversion chip |
WO2024194116A1 (en) * | 2023-03-22 | 2024-09-26 | Ams-Osram International Gmbh | Optoelectronic semiconductor unit as well as components and a production method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110032685A1 (en) * | 2009-08-07 | 2011-02-10 | Sony Corporation | Interposer, module, and electronics device including the same |
US8803269B2 (en) * | 2011-05-05 | 2014-08-12 | Cisco Technology, Inc. | Wafer scale packaging platform for transceivers |
DE102014219792A1 (en) * | 2014-09-30 | 2016-03-31 | Technische Universität Berlin | Optoelectronic component |
US20160291269A1 (en) * | 2015-04-01 | 2016-10-06 | Coriant Advanced Technology, LLC | Photonic integrated circuit chip packaging |
-
2017
- 2017-11-21 CN CN201780072372.7A patent/CN110192136A/en active Pending
- 2017-11-21 EP EP17812163.8A patent/EP3545349A1/en not_active Withdrawn
- 2017-11-21 KR KR1020197014783A patent/KR20190101362A/en active IP Right Grant
- 2017-11-21 WO PCT/US2017/062773 patent/WO2018098146A1/en unknown
- 2017-11-21 TW TW106140266A patent/TWI686943B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI818121B (en) * | 2018-11-29 | 2023-10-11 | 台灣積體電路製造股份有限公司 | Semiconductor package and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20190101362A (en) | 2019-08-30 |
CN110192136A (en) | 2019-08-30 |
EP3545349A1 (en) | 2019-10-02 |
WO2018098146A1 (en) | 2018-05-31 |
TWI686943B (en) | 2020-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10976491B2 (en) | Photonics interposer optoelectronics | |
TWI686943B (en) | Photonics interposer optoelectronics | |
KR102307165B1 (en) | Photonic semiconductor device and method | |
KR101955060B1 (en) | Optical interposer | |
US20210391267A1 (en) | Semiconductor devices having integrated optical components | |
US10983277B2 (en) | Optical dielectric waveguide structure | |
CN110892301A (en) | Wafer scale bonded active photonic interposer | |
US20150205041A1 (en) | Copper Tube Interconnect | |
TW200536134A (en) | Lsi package provided with interface module, and transmission line header employed in the package | |
TWI781650B (en) | Photonic semiconductor device and method of manufacture | |
EP2696229A2 (en) | Method and system for hybrid integration of optical communication systems | |
EP2807509B1 (en) | Glass-silicon wafer-stacked opto-electronic platforms | |
CN102736195A (en) | Optical module, manufacturing method of optical module and optical communication device | |
US11923654B2 (en) | Laser integration techniques | |
TW200849751A (en) | Optical semiconductor device | |
CN112219288B (en) | Photonic chip with embedded laser source | |
CN221783210U (en) | Semiconductor device with a semiconductor device having a plurality of semiconductor chips | |
US20240113056A1 (en) | Semiconductor device and methods of manufacture | |
CN117751444A (en) | Packaging structure and preparation method of optical communication module | |
CN117457625A (en) | Package, semiconductor package and method of forming the same | |
TW202414929A (en) | Optical device and method of manufacturing the same | |
TW202405493A (en) | On-chip optical interconnect structure and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |