TW201824227A - Display device and electronic device having a signal generating circuit with a function of outputting a signal to the second gate driver for stopping the output of the second scanning signal that controls the second pixel circuit in an arbitrary row - Google Patents
Display device and electronic device having a signal generating circuit with a function of outputting a signal to the second gate driver for stopping the output of the second scanning signal that controls the second pixel circuit in an arbitrary row Download PDFInfo
- Publication number
- TW201824227A TW201824227A TW105138110A TW105138110A TW201824227A TW 201824227 A TW201824227 A TW 201824227A TW 105138110 A TW105138110 A TW 105138110A TW 105138110 A TW105138110 A TW 105138110A TW 201824227 A TW201824227 A TW 201824227A
- Authority
- TW
- Taiwan
- Prior art keywords
- pixel
- display
- display device
- light
- transistor
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 119
- 239000004065 semiconductor Substances 0.000 claims description 88
- 229910044991 metal oxide Inorganic materials 0.000 claims description 37
- 150000004706 metal oxides Chemical class 0.000 claims description 36
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 226
- 230000006870 function Effects 0.000 description 53
- 239000000758 substrate Substances 0.000 description 52
- 239000010408 film Substances 0.000 description 45
- 239000000463 material Substances 0.000 description 45
- 239000011701 zinc Substances 0.000 description 41
- 238000010586 diagram Methods 0.000 description 39
- 238000000034 method Methods 0.000 description 34
- 125000004429 atom Chemical group 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 26
- 239000013078 crystal Substances 0.000 description 24
- 239000003990 capacitor Substances 0.000 description 23
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 22
- 229910001882 dioxygen Inorganic materials 0.000 description 22
- 229910052732 germanium Inorganic materials 0.000 description 21
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 21
- 230000015654 memory Effects 0.000 description 16
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 15
- 238000003079 width control Methods 0.000 description 15
- 238000009413 insulation Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 230000005693 optoelectronics Effects 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 229910052738 indium Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000005211 surface analysis Methods 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 229910052758 niobium Inorganic materials 0.000 description 10
- 239000010955 niobium Substances 0.000 description 10
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 10
- 238000003917 TEM image Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 238000010894 electron beam technology Methods 0.000 description 9
- 229910052733 gallium Inorganic materials 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 102100040858 Dual specificity protein kinase CLK4 Human genes 0.000 description 5
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 5
- 101000749298 Homo sapiens Dual specificity protein kinase CLK4 Proteins 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- UWCWUCKPEYNDNV-LBPRGKRZSA-N 2,6-dimethyl-n-[[(2s)-pyrrolidin-2-yl]methyl]aniline Chemical compound CC1=CC=CC(C)=C1NC[C@H]1NCCC1 UWCWUCKPEYNDNV-LBPRGKRZSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 238000002524 electron diffraction data Methods 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 238000012905 input function Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 239000005264 High molar mass liquid crystal Substances 0.000 description 2
- 239000004990 Smectic liquid crystal Substances 0.000 description 2
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 1
- 102100040856 Dual specificity protein kinase CLK3 Human genes 0.000 description 1
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 1
- 101000749304 Homo sapiens Dual specificity protein kinase CLK3 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010027146 Melanoderma Diseases 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910002668 Pd-Cu Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910009367 Zn M Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005499 laser crystallization Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
- Liquid Crystal Display Device Control (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Control Of El Displays (AREA)
Abstract
Description
本發明的一個實施方式係關於一種顯示裝置及電子裝置。 One embodiment of the present invention relates to a display device and an electronic device.
具備顯示裝置的電子裝置已經普及。該電子裝置在攜帶地使用時,作為電源使用二次電池。為了延長二次電池可以供應電源的時間,顯示裝置的低功耗化是有效的。 Electronic devices equipped with display devices have become popular. When the electronic device is used in a portable manner, a secondary battery is used as a power source. In order to extend the time during which the secondary battery can supply power, the power consumption of the display device is effective.
為了實現示裝置的低功耗化,在專利文獻1中提出了組合反射型元件與發光型元件的顯示裝置(專利文獻1)。藉由在明亮環境下使用反射型元件並在昏暗環境下使用發光型元件,可以提供一種實現不依賴於外光環境的良好的顯示品質及低功耗化的顯示裝置。 In order to achieve a reduction in power consumption of the display device, Patent Document 1 proposes a display device in which a reflective element and an illuminating element are combined (Patent Document 1). By using a reflective element in a bright environment and using an illuminating element in a dim environment, it is possible to provide a display device that achieves good display quality and low power consumption without depending on the external light environment.
已提出將氧化物半導體電晶體(Oxide Semiconductor電晶體,下面稱為“OS電晶體”)用於液晶顯示裝置及有機EL(電致發光)顯示裝置等顯示裝置的技術。OS電晶體的關態電流(off-state current)非常小,因此公開了利用該特徵的如下技術:藉由減少顯示靜 態影像時的更新頻率,降低液晶顯示裝置及有機EL顯示裝置的功耗(專利文獻2、專利文獻3)。注意,在本說明書中,將上述降低顯示裝置的功耗的技術稱為“Idling stop”或“IDS驅動”。 A technique of using an oxide semiconductor transistor (Oxide Semiconductor transistor, hereinafter referred to as "OS transistor") for a display device such as a liquid crystal display device or an organic EL (electroluminescence) display device has been proposed. Since the off-state current of the OS transistor is very small, a technique using the feature is disclosed in which the power consumption of the liquid crystal display device and the organic EL display device is reduced by reducing the update frequency when the still image is displayed ( Patent Document 2 and Patent Document 3). Note that in the present specification, the above-described technique of reducing the power consumption of the display device is referred to as "Idling stop" or "IDS drive".
[專利文獻1]日本專利申請公開第2003-157026號公報 [Patent Document 1] Japanese Patent Application Publication No. 2003-157026
[專利文獻2]日本專利申請公開第2011-141522號公報 [Patent Document 2] Japanese Patent Application Laid-Open No. 2011-141522
[專利文獻3]日本專利申請公開第2011-141524號公報 [Patent Document 3] Japanese Patent Application Laid-Open No. 2011-141524
IDS驅動由於間歇性地更新資料,所以在實現低功耗化上是有效的。然而,減少資料更新的頻率,因此方便性有可能會不高。為了提高方便性,對需要更新資料的部分的顯示進行更新的結構是重要的。 Since the IDS driver intermittently updates the data, it is effective in achieving low power consumption. However, the frequency of data updates is reduced, so the convenience may not be high. In order to improve convenience, it is important to update the structure of the display of the portion where the data needs to be updated.
本發明的一個實施方式的目的之一是提供一種功耗低且方便性優異的顯示裝置及電子裝置。本發明的一個實施方式的目的之一是提供一種即使使用在屋外或屋內也可見性優異的顯示裝置及電子裝置。 One of the objects of one embodiment of the present invention is to provide a display device and an electronic device which are low in power consumption and excellent in convenience. One of the objects of one embodiment of the present invention is to provide a display device and an electronic device which are excellent in visibility even when used outdoors or indoors.
上述目的的記載不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。另外,可以從說明書、圖式、申請專利範圍等的記載得知並衍生 上述以外的目的。 The above description of the purpose does not prevent the existence of other purposes. One embodiment of the present invention does not need to achieve all of the above objects. Further, objects other than the above can be known from the descriptions of the specification, the drawings, the scope of the patent application, and the like.
本發明的一個實施方式是一種顯示裝置,該顯示裝置包括信號生成電路、第一閘極驅動器、第二閘極驅動器以及具有像素的顯示面板,其中,像素包括液晶元件、發光元件、控制液晶元件的顯示的第一像素電路以及控制發光元件的顯示的第二像素電路,第一閘極驅動器具有對第一像素電路輸出第一掃描信號的功能,第二閘極驅動器具有對第二像素電路輸出第二掃描信號的功能,信號生成電路具有對第二閘極驅動器輸出如下信號的功能,該信號是停止對任意行的第二像素電路進行控制的第二掃描信號的輸出的信號。 One embodiment of the present invention is a display device including a signal generation circuit, a first gate driver, a second gate driver, and a display panel having pixels, wherein the pixel includes a liquid crystal element, a light emitting element, and a control liquid crystal element a first pixel circuit for displaying and a second pixel circuit for controlling display of the light emitting element, the first gate driver having a function of outputting a first scan signal to the first pixel circuit, and the second gate driver having a second pixel circuit output The function of the second scan signal, the signal generating circuit has a function of outputting a signal to the second gate driver that is a signal that stops outputting the second scan signal that controls the second pixel circuit of an arbitrary row.
本發明的一個實施方式是一種顯示裝置,該顯示裝置包括信號生成電路、第一閘極驅動器、第二閘極驅動器以及具有像素的顯示面板,其中,像素包括液晶元件、發光元件、控制液晶元件的顯示的第一像素電路以及控制發光元件的顯示的第二像素電路,第一閘極驅動器具有對第一像素電路輸出第一掃描信號的功能,第二閘極驅動器具有對第二像素電路輸出第二掃描信號的功能,信號生成電路具有對第二閘極驅動器輸出停止對任意行的第二像素電路進行控制的第二掃描信號的輸出的信號的功能並具有對第一閘極驅動器輸出停止對各行的第一像素電路進行控制的第一掃描信號的輸出的信號的功能。 One embodiment of the present invention is a display device including a signal generation circuit, a first gate driver, a second gate driver, and a display panel having pixels, wherein the pixel includes a liquid crystal element, a light emitting element, and a control liquid crystal element a first pixel circuit for displaying and a second pixel circuit for controlling display of the light emitting element, the first gate driver having a function of outputting a first scan signal to the first pixel circuit, and the second gate driver having a second pixel circuit output a function of the second scan signal, the signal generating circuit having a function of outputting a signal of the second gate driver outputting the output of the second scan signal for controlling the second pixel circuit of the arbitrary row and having the output of the first gate driver stopped The function of the signal of the output of the first scan signal that controls the first pixel circuit of each row.
本發明的一個實施方式是一種顯示裝置,其中較佳的是:第一像素電路及第二像素電路包括電晶體, 該電晶體在半導體層中具有金屬氧化物。 One embodiment of the present invention is a display device, wherein preferably, the first pixel circuit and the second pixel circuit include a transistor having a metal oxide in the semiconductor layer.
本發明的一個實施方式是一種顯示裝置,其中較佳的是:第一像素電路所包括的電晶體與第二像素電路所包括的電晶體設置在同一層中。 One embodiment of the present invention is a display device in which it is preferable that a transistor included in the first pixel circuit is disposed in the same layer as a transistor included in the second pixel circuit.
本發明的一個實施方式是一種顯示裝置,其中較佳的是:液晶元件包括設置有開口的反射電極,並具有由反射電極反射外光進行顯示的功能,發光元件具有經過開口發射光而進行顯示的功能。 One embodiment of the present invention is a display device, wherein preferably, the liquid crystal element includes a reflective electrode provided with an opening, and has a function of reflecting external light for reflection by the reflective electrode, and the light emitting element has a function of emitting light through the opening for display. The function.
本發明的一個實施方式是一種電子裝置,該電子裝置包括上述本發明的一個實施方式的顯示裝置、外殼以及電源按鈕。其中,該顯示裝置具有切換如下第一顯示模式與如下第二顯示模式進行顯示的功能,該第一顯示模式是如下模式:將用來輸出控制各行的第一像素電路及第二像素電路的第一掃描信號及第二掃描信號的信號輸出到第一閘極驅動器及第二閘極驅動器的顯示模式,該第二顯示模式是如下模式:將用來停止控制任意行的第二像素電路的第二掃描信號的輸出的信號輸出到第二閘極驅動器的顯示模式,藉由電源按鈕的操作可以切換第一顯示模式的控制和第二顯示模式的控制。 One embodiment of the present invention is an electronic device including the display device, the housing, and the power button of one embodiment of the present invention described above. The display device has a function of switching between a first display mode and a second display mode, wherein the first display mode is a mode for outputting a first pixel circuit and a second pixel circuit for controlling each row. a scan signal and a second scan signal are output to a display mode of the first gate driver and the second gate driver, and the second display mode is a mode: a second pixel circuit for stopping control of an arbitrary row The output signal of the two scan signals is output to the display mode of the second gate driver, and the control of the first display mode and the control of the second display mode can be switched by the operation of the power button.
注意,本發明的其他實施方式記載於下面所述的實施方式中的說明及圖式中。 Note that other embodiments of the present invention are described in the description and drawings of the embodiments described below.
根據本發明的一個實施方式,可以提供一種功耗低且方便性優異的顯示裝置及電子裝置。根據本發明的一個實施方式,可以提供一種即使使用在屋外或屋內也 可見性優異的顯示裝置及電子裝置。 According to an embodiment of the present invention, it is possible to provide a display device and an electronic device which are low in power consumption and excellent in convenience. According to an embodiment of the present invention, it is possible to provide a display device and an electronic device which are excellent in visibility even when used outdoors or indoors.
a1‧‧‧黑點 A1‧‧‧ black spots
a2‧‧‧黑點 A2‧‧‧ black spots
a3‧‧‧黑點 A3‧‧‧ black spots
a4‧‧‧黑點 A4‧‧‧ black spots
a5‧‧‧黑點 A5‧‧‧ black spots
b1‧‧‧黑點 B1‧‧‧ black spots
b2‧‧‧黑點 B2‧‧‧ black spots
b3‧‧‧黑點 B3‧‧‧ black spots
b4‧‧‧黑點 B4‧‧‧ black spots
b5‧‧‧黑點 B5‧‧‧ black spots
C1‧‧‧狀態 C1‧‧‧ Status
C2‧‧‧狀態 C2‧‧‧ Status
C3‧‧‧狀態 C3‧‧‧ Status
C4‧‧‧狀態 C4‧‧‧ Status
C5‧‧‧狀態 C5‧‧‧ Status
CLK1‧‧‧時脈信號 CLK1‧‧‧ clock signal
CLK2‧‧‧時脈信號 CLK2‧‧‧ clock signal
CLK3‧‧‧時脈信號 CLK3‧‧‧ clock signal
CLK4‧‧‧時脈信號 CLK4‧‧‧ clock signal
M1‧‧‧電晶體 M1‧‧‧O crystal
M2‧‧‧電晶體 M2‧‧‧O crystal
M3‧‧‧電晶體 M3‧‧‧O crystal
OUT_m‧‧‧輸出端子 OUT_m‧‧‧ output terminal
OUT_1‧‧‧輸出端子 OUT_1‧‧‧ output terminal
P1‧‧‧期間 During the period of P1‧‧
P2‧‧‧期間 During the period of P2‧‧
PWC1‧‧‧脈衝寬度控制信號 PWC1‧‧‧ pulse width control signal
PWC2‧‧‧脈衝寬度控制信號 PWC2‧‧‧ pulse width control signal
PWC3‧‧‧脈衝寬度控制信號 PWC3‧‧‧ pulse width control signal
PWC4‧‧‧脈衝寬度控制信號 PWC4‧‧‧ pulse width control signal
10‧‧‧顯示裝置 10‧‧‧ display device
10A‧‧‧顯示裝置 10A‧‧‧ display device
11‧‧‧像素電路 11‧‧‧Pixel Circuit
12‧‧‧反射光 12‧‧‧ Reflected light
13‧‧‧顯示部 13‧‧‧Display Department
14‧‧‧顯示部 14‧‧‧Display Department
15‧‧‧像素電路 15‧‧‧pixel circuit
16‧‧‧光 16‧‧‧Light
17‧‧‧像素電路 17‧‧‧Pixel circuit
18‧‧‧顯示部 18‧‧‧Display Department
19‧‧‧像素 19‧‧ ‧ pixels
20‧‧‧閘極驅動器 20‧‧‧gate driver
21‧‧‧開口 21‧‧‧ openings
22‧‧‧閘極驅動器 22‧‧‧ gate driver
23‧‧‧虛線箭頭 23‧‧‧dotted arrows
24‧‧‧源極驅動器 24‧‧‧Source Driver
25‧‧‧虛線箭頭 25‧‧‧dotted arrows
26‧‧‧信號生成電路 26‧‧‧Signal generation circuit
28‧‧‧信號生成電路 28‧‧‧Signal generation circuit
30‧‧‧圖框記憶體 30‧‧‧ Frame memory
31‧‧‧源極驅動器IC 31‧‧‧Source Driver IC
31A‧‧‧源極驅動器IC 31A‧‧‧Source Driver IC
32‧‧‧圖框記憶體 32‧‧‧ Frame memory
34‧‧‧控制電路 34‧‧‧Control circuit
35‧‧‧時序控制器 35‧‧‧Timing controller
36‧‧‧介面 36‧‧‧ interface
40‧‧‧電子裝置 40‧‧‧Electronic devices
42‧‧‧外殼 42‧‧‧Shell
44‧‧‧光感測器 44‧‧‧Light sensor
46‧‧‧電源按鈕 46‧‧‧Power button
47‧‧‧靜態影像顯示部 47‧‧‧Static image display department
48‧‧‧背景部 48‧‧‧Background
49‧‧‧動態影像顯示部 49‧‧‧Dynamic Image Display Department
50‧‧‧鐘錶顯示部 50‧‧‧ Watch display department
51‧‧‧靜態影像顯示部 51‧‧‧Static image display department
52‧‧‧長針、短針及秒針 52‧‧‧Long, short and second hands
53‧‧‧錶盤 53‧‧‧ dial
54‧‧‧形象 54‧‧‧ Image
99‧‧‧應用處理器 99‧‧‧Application Processor
102‧‧‧顯示部 102‧‧‧Display Department
104‧‧‧顯示部 104‧‧‧Display Department
107‧‧‧介面 107‧‧‧ interface
201‧‧‧基板 201‧‧‧Substrate
202‧‧‧基板 202‧‧‧Substrate
203‧‧‧發光元件 203‧‧‧Lighting elements
204‧‧‧液晶元件 204‧‧‧Liquid Crystal Components
205‧‧‧電晶體 205‧‧‧Optoelectronics
206‧‧‧電晶體 206‧‧‧Optoelectronics
207‧‧‧像素電極 207‧‧‧pixel electrode
208‧‧‧共用電極 208‧‧‧Common electrode
209‧‧‧液晶層 209‧‧‧Liquid layer
210‧‧‧層 210‧‧‧ layers
210a‧‧‧層 210a‧‧ layer
210b‧‧‧層 210b‧‧ layer
250‧‧‧基板 250‧‧‧Substrate
251‧‧‧基板 251‧‧‧Substrate
252‧‧‧黏合層 252‧‧‧Adhesive layer
300‧‧‧像素 300‧‧ ‧ pixels
301‧‧‧液晶元件 301‧‧‧Liquid crystal components
302‧‧‧發光元件 302‧‧‧Lighting elements
303‧‧‧電晶體 303‧‧‧Optoelectronics
304‧‧‧電容器 304‧‧‧ capacitor
305‧‧‧電晶體 305‧‧‧Optoelectronics
306‧‧‧電晶體 306‧‧‧Optoelectronics
307‧‧‧電容器 307‧‧‧ capacitor
308‧‧‧電晶體 308‧‧‧Optoelectronics
309‧‧‧電晶體 309‧‧‧Optoelectronics
310‧‧‧電晶體 310‧‧‧Optoelectronics
311‧‧‧導電層 311‧‧‧ Conductive layer
312‧‧‧絕緣層 312‧‧‧Insulation
313‧‧‧半導體層 313‧‧‧Semiconductor layer
314‧‧‧導電層 314‧‧‧ Conductive layer
315‧‧‧導電層 315‧‧‧ Conductive layer
316‧‧‧絕緣層 316‧‧‧Insulation
317‧‧‧導電層 317‧‧‧ Conductive layer
318‧‧‧絕緣層 318‧‧‧Insulation
319‧‧‧導電層 319‧‧‧ Conductive layer
320‧‧‧導電層 320‧‧‧ Conductive layer
321‧‧‧導電層 321‧‧‧ Conductive layer
322‧‧‧半導體層 322‧‧‧Semiconductor layer
323‧‧‧導電層 323‧‧‧ Conductive layer
324‧‧‧絕緣層 324‧‧‧Insulation
325‧‧‧絕緣層 325‧‧‧Insulation
326‧‧‧導電層 326‧‧‧ Conductive layer
327‧‧‧導電層 327‧‧‧ Conductive layer
328‧‧‧絕緣層 328‧‧‧Insulation
329‧‧‧導電層 329‧‧‧ Conductive layer
330‧‧‧絕緣層 330‧‧‧Insulation
331‧‧‧EL層 331‧‧‧EL layer
332‧‧‧導電層 332‧‧‧ Conductive layer
333‧‧‧黏合層 333‧‧‧Adhesive layer
334‧‧‧彩色層 334‧‧‧Color layer
335‧‧‧間隔物 335‧‧‧ spacers
336‧‧‧遮光層 336‧‧‧Lighting layer
340‧‧‧導電層 340‧‧‧ Conductive layer
341‧‧‧絕緣層 341‧‧‧Insulation
342‧‧‧半導體層 342‧‧‧Semiconductor layer
343‧‧‧絕緣層 343‧‧‧Insulation
344‧‧‧導電層 344‧‧‧ Conductive layer
345‧‧‧絕緣層 345‧‧‧Insulation
346‧‧‧導電層 346‧‧‧ Conductive layer
347‧‧‧導電層 347‧‧‧ Conductive layer
348‧‧‧導電層 348‧‧‧ Conductive layer
349‧‧‧導電層 349‧‧‧ Conductive layer
350‧‧‧像素 350‧‧ ‧ pixels
351‧‧‧像素 351‧‧ ‧ pixels
351a‧‧‧像素 351a‧‧ pixels
351b‧‧‧像素 351b‧‧ ‧ pixels
351c‧‧‧像素 351c‧‧ ‧ pixels
351d‧‧‧像素 351d‧‧‧ pixels
360‧‧‧絕緣層 360‧‧‧Insulation
361‧‧‧導電層 361‧‧‧ Conductive layer
362‧‧‧黏合層 362‧‧‧Adhesive layer
363‧‧‧絕緣層 363‧‧‧Insulation
364‧‧‧配向膜 364‧‧‧Alignment film
365‧‧‧配向膜 365‧‧‧ alignment film
366‧‧‧液晶層 366‧‧‧Liquid layer
406‧‧‧顯示裝置 406‧‧‧ display device
700‧‧‧電路 700‧‧‧ circuits
701‧‧‧電晶體 701‧‧‧Optoelectronics
709‧‧‧電晶體 709‧‧‧Optoelectronics
710‧‧‧電路 710‧‧‧ Circuit
711‧‧‧電晶體 711‧‧‧Optoelectronics
713‧‧‧電晶體 713‧‧‧Optoelectronics
720‧‧‧電路 720‧‧‧ Circuitry
721‧‧‧電晶體 721‧‧‧Optoelectronics
723‧‧‧電晶體 723‧‧‧Optoelectronics
900‧‧‧電子裝置 900‧‧‧Electronic devices
901‧‧‧外殼 901‧‧‧Shell
901a‧‧‧外殼 901a‧‧‧ Shell
901b‧‧‧外殼 901b‧‧‧ Shell
902‧‧‧顯示部 902‧‧‧Display Department
902a‧‧‧顯示部 902a‧‧‧Display Department
902b‧‧‧顯示部 902b‧‧‧Display Department
903‧‧‧鉸鏈 903‧‧‧Hinges
910‧‧‧電子裝置 910‧‧‧Electronic devices
911a‧‧‧外殼 911a‧‧‧ Shell
911b‧‧‧外殼 911b‧‧‧ Shell
912‧‧‧顯示部 912‧‧‧Display Department
913‧‧‧鉸鏈 913‧‧‧Hinges
914a‧‧‧操作按鈕 914a‧‧‧ operation button
914b‧‧‧操作按鈕 914b‧‧‧ operation button
915‧‧‧盒 915‧‧‧ box
6000‧‧‧顯示模組 6000‧‧‧Display Module
6001‧‧‧上蓋 6001‧‧‧Upper cover
6002‧‧‧下蓋 6002‧‧‧Undercover
6005‧‧‧FPC 6005‧‧‧FPC
6006‧‧‧顯示面板 6006‧‧‧ display panel
6009‧‧‧框架 6009‧‧‧Frame
6010‧‧‧印刷電路板 6010‧‧‧Printed circuit board
6011‧‧‧電池 6011‧‧‧Battery
6015‧‧‧發光部 6015‧‧‧Lighting Department
6016‧‧‧受光部 6016‧‧‧Receiving Department
6017a‧‧‧導光部 6017a‧‧‧Light Guide
6017b‧‧‧導光部 6017b‧‧‧Light Guide
6018‧‧‧光 6018‧‧‧Light
5001‧‧‧外殼 5001‧‧‧shell
5002‧‧‧外殼 5002‧‧‧ Shell
5003‧‧‧顯示裝置 5003‧‧‧ display device
5004‧‧‧顯示裝置 5004‧‧‧ display device
5005‧‧‧麥克風 5005‧‧‧ microphone
5006‧‧‧揚聲器 5006‧‧‧Speakers
5007‧‧‧操作鍵 5007‧‧‧ operation keys
5008‧‧‧觸控筆 5008‧‧‧ stylus
5201‧‧‧外殼 5201‧‧‧Shell
5202‧‧‧顯示裝置 5202‧‧‧Display device
5203‧‧‧手錶帶 5203‧‧‧ watch band
5204‧‧‧光感測器 5204‧‧‧Light sensor
5205‧‧‧開關 5205‧‧‧Switch
5301‧‧‧外殼 5301‧‧‧Shell
5302‧‧‧外殼 5302‧‧‧Shell
5303‧‧‧顯示裝置 5303‧‧‧Display device
5304‧‧‧光感測器 5304‧‧‧Photosensor
5305‧‧‧光感測器 5305‧‧‧Photosensor
5306‧‧‧開關 5306‧‧‧Switch
5307‧‧‧鉸鏈 5307‧‧‧Hinges
5701‧‧‧外殼 5701‧‧‧Shell
5702‧‧‧顯示裝置 5702‧‧‧Display device
5801‧‧‧外殼 5801‧‧‧Shell
5802‧‧‧外殼 5802‧‧‧Shell
5803‧‧‧顯示裝置 5803‧‧‧Display device
5804‧‧‧操作鍵 5804‧‧‧ operation keys
5805‧‧‧鏡頭 5805‧‧‧ lens
5806‧‧‧連接部 5806‧‧‧Connecting Department
5901‧‧‧外殼 5901‧‧‧Shell
5902‧‧‧顯示裝置 5902‧‧‧Display device
5903‧‧‧相機 5903‧‧‧ camera
5904‧‧‧揚聲器 5904‧‧‧Speakers
5905‧‧‧按鈕 5905‧‧‧ button
5906‧‧‧外部連接部 5906‧‧‧External connection
5907‧‧‧麥克風 5907‧‧‧Microphone
6200‧‧‧可攜式終端 6200‧‧‧Portable Terminal
6201‧‧‧可攜式終端 6201‧‧‧Portable terminal
6221‧‧‧外殼 6221‧‧‧Shell
6222‧‧‧顯示裝置 6222‧‧‧Display device
6223‧‧‧操作按鈕 6223‧‧‧ operation button
6224‧‧‧揚聲器 6224‧‧‧Speakers
6225X‧‧‧光感測器 6225X‧‧‧Light sensor
6225Y‧‧‧光感測器 6225Y‧‧‧Photosensor
在圖式中:圖1是示出顯示裝置的結構實例的圖:圖2A和圖2B是示出顯示裝置的結構實例的圖:圖3是示出顯示裝置的結構實例的圖:圖4A和圖4B是示出顯示裝置的像素的結構實例的圖:圖5A和圖5B是示出顯示裝置的工作例子的圖:圖6是示出顯示裝置的工作例子的圖:圖7A和圖7B是示出顯示裝置的工作例子的圖:圖8A和圖8B是示出顯示裝置的工作例子的圖:圖9A至圖9D是示出顯示裝置的工作例子的圖:圖10是示出顯示裝置的工作例子的圖:圖11A和圖11B是示出顯示裝置的工作例子的圖:圖12A和圖12B是示出顯示裝置的工作例子的圖:圖13A至圖13E是示出顯示裝置的工作例子的圖:圖14A至圖14C是示出顯示裝置的驅動電路的結構實例的圖:圖15A和圖15B是示出顯示裝置的驅動電路的結構實例的圖:圖16是示出顯示裝置的驅動電路的工作例子的圖;圖17A至圖17C是示出顯示裝置的像素的結構實例 的圖;圖18A和圖18B是示出顯示裝置的像素的結構實例的圖;圖19A和圖19B是示出顯示裝置的像素的結構實例的圖;圖20是示出顯示裝置的像素的結構實例的圖;圖21是示出顯示裝置的像素的結構實例的圖;圖22是示出顯示裝置的剖面結構的一個例子的圖;圖23是示出顯示裝置的剖面結構的一個例子的圖;圖24是示出顯示裝置的剖面結構的一個例子的圖;圖25是說明樣本的XRD譜的測量結果的圖;圖26A至圖26L是說明樣本的TEM影像及電子繞射圖案的圖;圖27A至圖27C是說明樣本的EDX面分析影像的圖;圖28A和圖28B是示出顯示模組的外觀的一個例子的圖;圖29A和圖29B是示出電子裝置的例子的圖;圖30A至圖30F是示出電子裝置的例子的圖。 In the drawings: FIG. 1 is a view showing a structural example of a display device: FIGS. 2A and 2B are diagrams showing a structural example of a display device: FIG. 3 is a view showing a structural example of the display device: FIG. 4A and 4B is a diagram showing a structural example of a pixel of a display device: FIGS. 5A and 5B are diagrams showing an operation example of the display device: FIG. 6 is a diagram showing an operation example of the display device: FIGS. 7A and 7B are diagrams A diagram showing a working example of the display device: FIGS. 8A and 8B are diagrams showing an operation example of the display device: FIGS. 9A to 9D are diagrams showing an operation example of the display device: FIG. 10 is a view showing a display device FIG. 11A and FIG. 11B are diagrams showing an operation example of the display device: FIGS. 12A and 12B are diagrams showing an operation example of the display device: FIGS. 13A to 13E are diagrams showing a working example of the display device 14A to 14C are diagrams showing a configuration example of a driving circuit of a display device: FIGS. 15A and 15B are diagrams showing a configuration example of a driving circuit of the display device: FIG. 16 is a diagram showing driving of the display device A diagram of a working example of the circuit; FIGS. 17A to 17C are diagrams showing a display device FIG. 18A and FIG. 18B are diagrams showing a structural example of a pixel of a display device; FIGS. 19A and 19B are diagrams showing a structural example of a pixel of the display device; FIG. 20 is a view showing a display; FIG. 21 is a diagram showing a structural example of a pixel of a display device; FIG. 22 is a view showing an example of a cross-sectional structure of the display device; and FIG. 23 is a cross-sectional structure showing the display device. FIG. 24 is a view showing an example of a cross-sectional structure of a display device; FIG. 25 is a view for explaining a measurement result of an XRD spectrum of a sample; and FIGS. 26A to 26L are diagrams illustrating a TEM image and electron winding of a sample; FIG. 27A to FIG. 27C are diagrams illustrating an EDX surface analysis image of a sample; FIGS. 28A and 28B are diagrams showing an example of an appearance of a display module; and FIGS. 29A and 29B are diagrams showing an electronic device. FIG. 30A to FIG. 30F are diagrams showing an example of an electronic device.
下面參照圖式對本發明的實施方式進行詳細說明。注意,本發明不侷限於以下說明,所屬技術領域的通常知識者可以很容易地理解一個事實就是其方式及詳細 內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。 Embodiments of the present invention will be described in detail below with reference to the drawings. It is to be noted that the present invention is not limited to the following description, and one of ordinary skill in the art can easily understand the fact that the manner and details can be changed into various kinds without departing from the spirit and scope of the present invention. form. Therefore, the present invention should not be construed as being limited to the contents described in the embodiments shown below.
圖1是說明顯示裝置的結構的方塊圖。顯示裝置10包括源極驅動器IC31、閘極驅動器20、閘極驅動器22、顯示部14以及顯示部18。 Fig. 1 is a block diagram showing the structure of a display device. The display device 10 includes a source driver IC 31, a gate driver 20, a gate driver 22, a display portion 14, and a display portion 18.
顯示部14包括反射型顯示元件的液晶元件LC以及發光型顯示元件的發光元件EL。顯示部14具有重疊於顯示部18的區域。並且,在上述重疊的區域中,具有顯示部18的發光元件EL所發射的光穿過顯示部14的結構。發光元件EL及液晶元件LC設置在顯示部14及顯示部18所具有的每一個像素(或每一個子像素)中。 The display unit 14 includes a liquid crystal element LC of a reflective display element and a light-emitting element EL of the light-emitting display element. The display unit 14 has a region that is superposed on the display unit 18. Further, in the overlapped region, the light emitted from the light-emitting element EL having the display portion 18 passes through the display portion 14. The light-emitting element EL and the liquid crystal element LC are provided in each of the pixels (or each sub-pixel) included in the display unit 14 and the display unit 18.
在本說明書等中,像素指的是例如能夠控制明亮度的一個單元。因此,作為一個例子,一個像素指的是一個色彩單元,並用該一個色彩單元來顯示明亮度。因此,在採用由R(紅色)、G(綠色)和B(藍色)這些色彩單元構成的彩色顯示裝置的情況下,像素的最小單位由R的像素、G的像素以及B的像素這三個像素構成。在此情況下,將RGB的每一個像素稱為子像素,將RGB的子像素總稱為像素。 In the present specification and the like, a pixel refers to, for example, one unit capable of controlling brightness. Thus, as an example, a pixel refers to a color unit and uses that one color unit to display brightness. Therefore, in the case of using a color display device composed of color units such as R (red), G (green), and B (blue), the minimum unit of the pixel is the pixel of R, the pixel of G, and the pixel of B. Pixel composition. In this case, each pixel of RGB is referred to as a sub-pixel, and sub-pixels of RGB are collectively referred to as a pixel.
源極驅動器IC31包括源極驅動器24、信號生 成電路26、信號生成電路28、圖框記憶體30、圖框記憶體32、控制電路34以及介面36。 The source driver IC 31 includes a source driver 24, a signal generating circuit 26, a signal generating circuit 28, a frame memory 30, a frame memory 32, a control circuit 34, and an interface 36.
源極驅動器IC31從應用處理器99接收用來顯示影像的信號(影像資料)等。應用處理器99具有將影像資料轉換為規定形式的信號而輸出到介面36的功能。作為介面36,可以舉出轉換為適合於LVDS(Low voltage differential signaling:低壓差分信號)、MIPI(Mobile Industry Processor Interface:移動產業處理器介面)等的信號的電路。 The source driver IC 31 receives a signal (image material) or the like for displaying an image from the application processor 99. The application processor 99 has a function of converting image data into a predetermined format and outputting it to the interface 36. The interface 36 is a circuit that is converted into a signal suitable for LVDS (Low Voltage Differential Signaling), MIPI (Mobile Industry Processor Interface), or the like.
圖框記憶體30及圖框記憶體32是用來暫時儲存經過介面36從控制電路34輸入的一個幀的影像資料的電路。圖1示出多個圖框記憶體,但是也可以為一個圖框記憶體。另外,也可以使用線記憶體。圖框記憶體的記憶單元可以使用SRAM(Static RAM:靜態隨機存取記憶體)或DRAM(Dynamic RAM:動態隨機存取記憶體)。藉由使用關態電流小的電晶體作為DRAM的電晶體,可以減少更新頻率,從而在實現低功耗化上是較佳的。 The frame memory 30 and the frame memory 32 are circuits for temporarily storing image data of one frame input from the control circuit 34 via the interface 36. Fig. 1 shows a plurality of frame memories, but may also be a frame memory. In addition, line memory can also be used. The memory unit of the frame memory can use SRAM (Static RAM: Static Random Access Memory) or DRAM (Dynamic RAM: Dynamic Random Access Memory). By using a transistor having a small off-state current as a transistor of a DRAM, the update frequency can be reduced, which is preferable in achieving low power consumption.
信號生成電路26是生成用來控制閘極驅動器20所輸出的掃描信號的信號的電路。信號生成電路28是生成用來控制閘極驅動器22所輸出的掃描信號的信號的電路。信號生成電路26及信號生成電路28對閘極驅動器20及閘極驅動器22輸出時脈信號CLK、脈衝寬度控制信號PWC、重設信號RES以及起動脈衝等信號,控制掃描信號的輸出。 The signal generating circuit 26 is a circuit that generates a signal for controlling a scan signal output from the gate driver 20. The signal generating circuit 28 is a circuit that generates a signal for controlling the scanning signal output from the gate driver 22. The signal generating circuit 26 and the signal generating circuit 28 output signals such as the clock signal CLK, the pulse width control signal PWC, the reset signal RES, and the start pulse to the gate driver 20 and the gate driver 22, and control the output of the scan signal.
例如,在信號生成電路26或信號生成電路28中,藉由將脈衝寬度控制信號PWC及時脈信號CLK固定為L位準,可以設置將從閘極驅動器20或閘極驅動器22輸出的掃描信號設定為L位準的期間,可以減少寫入到像素的影像資料的更新速率。另外,在閘極驅動器20或閘極驅動器22中,將作為掃描信號輸出的脈衝信號設定為L位準的信號也是指“停止掃描信號的輸出”。 For example, in the signal generating circuit 26 or the signal generating circuit 28, the scan signal output from the gate driver 20 or the gate driver 22 can be set by fixing the pulse width control signal PWC and the pulse signal CLK to the L level. The period of the L level can reduce the update rate of the image data written to the pixel. Further, in the gate driver 20 or the gate driver 22, the signal for setting the pulse signal output as the scan signal to the L level also means "stopping the output of the scan signal".
另外,在信號生成電路26或信號生成電路28中,藉由將對應於任意行的脈衝寬度控制信號PWC固定為L位準,可以設置將從閘極驅動器20或閘極驅動器22的任意行輸出的掃描信號設定為L位準的期間,可以將掃描信號輸出到一部分的行,並且將輸出到其他行的掃描信號設定為L位準的信號。另外,在閘極驅動器20或閘極驅動器22中,將作為掃描信號輸出到任意行的脈衝信號設定為L位準的信號也是指“停止輸出到任意行的像素的掃描信號的輸出”。 Further, in the signal generating circuit 26 or the signal generating circuit 28, by fixing the pulse width control signal PWC corresponding to an arbitrary line to the L level, it is possible to set an arbitrary line output from the gate driver 20 or the gate driver 22. While the scan signal is set to the L level, the scan signal can be output to a part of the line, and the scan signal output to the other line can be set to the L level signal. Further, in the gate driver 20 or the gate driver 22, a signal in which a pulse signal output as an arbitrary signal to a scanning signal is set to an L level is also referred to as "output of a scanning signal that stops outputting to a pixel of an arbitrary line".
源極驅動器24是用來對各列的源極線供應基於影像資料的電壓(視頻電壓)的電路。閘極驅動器20是用來對選擇了的行的像素中的液晶元件LC供應控制基於施加到源極線的視頻電壓的灰階的掃描信號的電路。閘極驅動器22是用來對選擇了的行的像素中的發光元件EL供應控制基於施加到源極線的視頻電壓的灰階的掃描信號的電路。藉由控制液晶元件LC的灰階,顯示部14可以顯示影像。另外,藉由控制發光元件EL的灰階,顯示部 18可以顯示影像。 The source driver 24 is a circuit for supplying a voltage (video voltage) based on image data to the source lines of the respective columns. The gate driver 20 is a circuit for supplying a liquid crystal element LC in a pixel of the selected row to a scanning signal based on a gray scale of a video voltage applied to the source line. The gate driver 22 is a circuit for supplying a scanning signal based on the gray scale of the video voltage applied to the source line to the light-emitting element EL in the pixels of the selected row. The display unit 14 can display an image by controlling the gray scale of the liquid crystal element LC. Further, by controlling the gray scale of the light-emitting element EL, the display portion 18 can display an image.
在圖1所示的顯示裝置10中,顯示部14和顯示部18中的顯示部14只可以顯示影像。由於在顯示部14中使用反射型顯示元件的液晶元件LC,所以可以在顯示影像時利用外光作為光源。當利用外光時,藉由只在顯示部14中顯示影像,可以抑制顯示裝置10的功耗。另外,藉由在顯示部18中使用發光型顯示元件的發光元件EL,可以不利用外光而顯示影像。由此,藉由只在顯示部14和顯示部18中的顯示部14顯示影像,即使外光的強度低也可以提高影像的顯示品質。就是說,即使顯示裝置10的使用環境如何也可以確保高顯示品質。 In the display device 10 shown in FIG. 1, the display unit 14 and the display unit 14 in the display unit 18 can display only images. Since the liquid crystal element LC of the reflective display element is used in the display unit 14, external light can be used as a light source when displaying an image. When external light is used, power consumption of the display device 10 can be suppressed by displaying an image only on the display unit 14. Further, by using the light-emitting element EL of the light-emitting display element in the display unit 18, it is possible to display an image without using external light. Thereby, by displaying the image only on the display unit 14 of the display unit 14 and the display unit 18, the display quality of the image can be improved even if the intensity of the external light is low. That is to say, high display quality can be ensured even if the display device 10 is used.
另外,在根據本發明的一個實施方式的顯示裝置10中,也可以使用顯示部14和顯示部18的兩者顯示影像。藉由採用上述結構,可以提高能夠在顯示裝置10中顯示的影像的灰階數。或者,可以擴大能夠在顯示裝置10中顯示的影像的色域的範圍。 Further, in the display device 10 according to an embodiment of the present invention, it is also possible to display an image using both the display unit 14 and the display unit 18. By adopting the above configuration, the number of gray scales of the image that can be displayed on the display device 10 can be increased. Alternatively, the range of the color gamut of the image that can be displayed on the display device 10 can be expanded.
另外,在根據本發明的一個實施方式的顯示裝置10中,在使用顯示部14和顯示部18的兩者顯示影像時,信號生成電路28對應於顯示的影像採用如下結構:對閘極驅動器22輸出在任意行中停止用來對像素寫入視頻電壓的掃描信號的輸出的信號的結構。由此,可以在外光的強度低時,抑制不需要更新資料的像素中的發光元件EL的發光。換句話說,在外光的強度低時,可以在提高影像的顯示品質的同時,只在需要更新資料的區域中 進行發光元件EL的發光。由此,可以實現功耗低且方便性優異的顯示裝置。 Further, in the display device 10 according to the embodiment of the present invention, when the image is displayed using both the display portion 14 and the display portion 18, the signal generating circuit 28 has the following structure corresponding to the displayed image: the gate driver 22 The structure of the signal that stops the output of the scan signal for writing the video voltage to the pixel in any row is output. Thereby, it is possible to suppress the light emission of the light-emitting element EL in the pixel which does not require updating of the material when the intensity of the external light is low. In other words, when the intensity of the external light is low, the light-emitting element EL can be illuminated only in the area where the data needs to be updated while improving the display quality of the image. Thereby, it is possible to realize a display device which is low in power consumption and excellent in convenience.
另外,在根據本發明的一個實施方式的顯示裝置10中,在使用顯示部14和顯示部18的兩者顯示影像時,信號生成電路26對應於顯示的影像採用如下結構:對閘極驅動器22輸出在所有行中停止用來對像素寫入視頻電壓的掃描信號的輸出的信號的結構。由此,在外光的強度低時,可以間歇性地,亦即,以低更新速率進行不需要更新資料的像素中的液晶元件LC的顯示的更新而進行顯示。由此,可以實現功耗低且方便性優異的顯示裝置。 Further, in the display device 10 according to an embodiment of the present invention, when the image is displayed using both the display portion 14 and the display portion 18, the signal generating circuit 26 corresponds to the displayed image in the following configuration: the gate driver 22 The structure of the signal that stops the output of the scan signal for writing the video voltage to the pixel in all the lines is output. Thereby, when the intensity of the external light is low, the display of the liquid crystal element LC in the pixel which does not require updating of the material can be displayed intermittently, that is, at a low update rate. Thereby, it is possible to realize a display device which is low in power consumption and excellent in convenience.
注意,上述資料是指在像素所具有的各顯示部上顯示的資料。就是說,相當於輸入到各顯示部的影像資料。另外,資料更新是指對像素所具有的各顯示部上顯示的資料進行更新。就是說,相當於輸入到各顯示部的影像資料的改寫(更新)頻率。 Note that the above information refers to data displayed on each display portion of the pixel. That is, it corresponds to the image data input to each display unit. Further, the data update means updating the data displayed on each display unit of the pixel. In other words, it corresponds to the rewriting (update) frequency of the video material input to each display unit.
另外,顯示裝置的結構不侷限於圖1所示的顯示裝置10的結構。例如,如圖2A所示的顯示裝置10A那樣,也可以採用省略源極驅動器IC31A中的信號生成電路26、信號生成電路28、圖框記憶體30及圖框記憶體32的結構。在該結構中,源極驅動器IC31A包括源極驅動器24及介面36。 In addition, the structure of the display device is not limited to the structure of the display device 10 shown in FIG. For example, as in the display device 10A shown in FIG. 2A, the signal generating circuit 26, the signal generating circuit 28, the frame memory 30, and the frame memory 32 in the source driver IC 31A may be omitted. In this configuration, the source driver IC 31A includes a source driver 24 and an interface 36.
在圖2A所示的源極驅動器IC31A中,使外部的時序控制器等具有信號生成電路26、信號生成電路 28、圖框記憶體30以及圖框記憶體32等的功能。並且,藉由介面36對源極驅動器24及閘極驅動器(未圖示)傳送用來控制的信號。介面36為了以高速進行與外部的時序控制器之間的通信,較佳為選擇DVI(Digital Visual Interface:數字顯示介面)、EPI(External Presentation Interface:外部顯示介面)、SPI(Serial Peripheral Interface:串列外設介面)等。藉由採用上述結構,可以實現源極驅動器IC31A的小型化,這適合於將顯示裝置安裝到小型的電子裝置的情況。 In the source driver IC 31A shown in FIG. 2A, an external timing controller or the like has functions of the signal generation circuit 26, the signal generation circuit 28, the frame memory 30, the frame memory 32, and the like. Further, a signal for control is transmitted to the source driver 24 and the gate driver (not shown) via the interface 36. In order to communicate with an external timing controller at a high speed, the interface 36 preferably selects DVI (Digital Visual Interface), EPI (External Presentation Interface), and SPI (Serial Peripheral Interface). Column peripheral interface) and so on. By adopting the above configuration, the size of the source driver IC 31A can be reduced, which is suitable for the case where the display device is mounted to a small electronic device.
另外,如圖2B所示的顯示裝置10A那樣,也可以採用使用多個源極驅動器IC31A的結構。藉由採用該結構,可以實現源極驅動器IC31A的小型化,同時這適合於將顯示裝置安裝到大型的電子裝置的情況。另外,可以採用由外部的時序控制器35控制多個源極驅動器IC31A的結構。 Further, as in the display device 10A shown in FIG. 2B, a configuration in which a plurality of source driver ICs 31A are used may be employed. By adopting this configuration, the miniaturization of the source driver IC 31A can be achieved, and this is suitable for the case where the display device is mounted to a large electronic device. In addition, the configuration of the plurality of source driver ICs 31A may be controlled by the external timing controller 35.
圖3是說明顯示裝置的顯示部的結構的方塊圖。顯示部13相當於合併圖1所示的顯示部14和顯示部18的區域。顯示部13包括多個像素19。像素19包括像素電路15及像素電路17。另外,圖3示出圖1所示的源極驅動器24、閘極驅動器20及閘極驅動器22。 3 is a block diagram showing the structure of a display portion of a display device. The display unit 13 corresponds to a region in which the display unit 14 and the display unit 18 shown in FIG. 1 are combined. The display section 13 includes a plurality of pixels 19. The pixel 19 includes a pixel circuit 15 and a pixel circuit 17. In addition, FIG. 3 shows the source driver 24, the gate driver 20, and the gate driver 22 shown in FIG.
像素電路15是藉由被寫入視頻電壓控制液晶元件LC(未圖示)的灰階的電路。像素電路15包括電晶 體及電容器。藉由源極線SLLC被供應寫入到像素電路15的視頻電壓。從閘極驅動器20藉由閘極線GLLC被供應用來對像素電路15寫入視頻電壓的掃描信號。 The pixel circuit 15 is a circuit that controls the gray scale of the liquid crystal element LC (not shown) by being written into a video voltage. The pixel circuit 15 includes a transistor and a capacitor. The video voltage written to the pixel circuit 15 is supplied by the source line SL LC . A scan signal for writing a video voltage to the pixel circuit 15 is supplied from the gate driver 20 via the gate line GL LC .
像素電路17是藉由被寫入視頻電壓控制發光元件EL(未圖示)的灰階的電路。像素電路17包括電晶體及電容器。藉由源極線SLEL被供應寫入到像素電路17的視頻電壓。從閘極驅動器22藉由閘極線GLEL被供應用來對像素電路17寫入視頻電壓的掃描信號。 The pixel circuit 17 is a circuit that controls the gray scale of the light-emitting element EL (not shown) by being written into a video voltage. The pixel circuit 17 includes a transistor and a capacitor. The video voltage written to the pixel circuit 17 is supplied by the source line SL EL . A scan signal for writing a video voltage to the pixel circuit 17 is supplied from the gate driver 22 via the gate line GL EL .
另外,在圖式等中,作為源極線SLEL、源極線SLLC、閘極線GLLC及閘極線GLEL示出源極線SLEL[1]、源極線SLLC[1]、閘極線GLLC[1]及閘極線GLEL[1],這些佈線表示第一行或第一列。另外,在以m行n列(m、n都是自然數)表示像素19時,顯示部13所包括的像素連接到源極線SLEL[1]至[n]中的任一列、源極線SLLC[1]至[n]中的任一列、閘極線GLLC[1]至[m]中的任一行及閘極線GLEL[1]至[m]中的任一行。 Further, in the drawing or the like, the source line SL EL [1] and the source line SL LC [1] are shown as the source line SL EL , the source line SL LC , the gate line GL LC , and the gate line GL EL . ], the gate line GL LC [1] and the gate line GL EL [1], these wirings represent the first row or the first column. Further, when the pixel 19 is represented by m rows and n columns (m and n are natural numbers), the pixels included in the display portion 13 are connected to any one of the source lines SL EL [1] to [n], the source. Any one of the lines SL LC [1] to [n], any of the gate lines GL LC [1] to [m], and any one of the gate lines GL EL [1] to [m].
接著,說明像素19。圖4A是像素19的電路圖的一個例子。像素19包括像素電路15、像素電路17、液晶元件LC及發光元件EL。 Next, the pixel 19 will be described. FIG. 4A is an example of a circuit diagram of the pixel 19. The pixel 19 includes a pixel circuit 15, a pixel circuit 17, a liquid crystal element LC, and a light-emitting element EL.
在圖4A中,像素電路15包括電晶體M1及電容器CsLC。像素電路17包括電晶體M2、M3及電容器CsEL。如圖4A所示,像素19所包括的各元件連接到閘極線GLLC[1]、閘極線GLEL[1]、信號線SLLC[1]、信號線SLEL[1]、電容線LCS、電流供應線Lano以及共用電位線 Lcas。 In FIG. 4A, the pixel circuit 15 includes a transistor M1 and a capacitor Cs LC . The pixel circuit 17 includes transistors M2, M3 and a capacitor Cs EL . As shown in FIG. 4A, the elements included in the pixel 19 are connected to the gate line GL LC [1], the gate line GL EL [1], the signal line SL LC [1], the signal line SL EL [1], and the capacitor. Line L CS , current supply line L ano , and common potential line L cas .
另外,電容器CsEL是為了將用來驅動發光元件EL的灰階電壓儲存在電晶體M3的閘極中而設置的。藉由採用該結構,可以更確實地保持用來驅動發光元件EL的灰階電壓。 Further, the capacitor Cs EL is provided to store the gray scale voltage for driving the light emitting element EL in the gate of the transistor M3. By adopting this configuration, the gray scale voltage for driving the light emitting element EL can be more surely maintained.
另外,電晶體M3是具有背閘極的電晶體。藉由採用該結構,可以提高流過電晶體的電流量。另外,施加到背閘極的電壓也可以從其他佈線供應。藉由採用該結構,可以控制電晶體的臨界電壓。 In addition, the transistor M3 is a transistor having a back gate. By adopting this structure, the amount of current flowing through the transistor can be increased. In addition, the voltage applied to the back gate can also be supplied from other wiring. By adopting this structure, the threshold voltage of the transistor can be controlled.
藉由控制電晶體M1的導通狀態,將用來驅動液晶元件LC的灰階電壓供應給電容器CsLC。藉由控制電晶體M2的導通狀態,將用來驅動發光元件EL的灰階電壓供應給電晶體M3的閘極。電晶體M3根據閘極電壓使電流流過電流供應線Lano與共用電位線Lcas之間以驅動發光元件EL。 The gray scale voltage for driving the liquid crystal element LC is supplied to the capacitor Cs LC by controlling the on state of the transistor M1. The gray scale voltage for driving the light emitting element EL is supplied to the gate of the transistor M3 by controlling the conduction state of the transistor M2. The transistor M3 causes a current to flow between the current supply line Lan and the common potential line L cas according to the gate voltage to drive the light-emitting element EL.
電晶體M1至M3可以使用n通道型電晶體。藉由改變各佈線的電壓的大小關係,也可以使用p通道型電晶體代替n通道型電晶體。電晶體M1至M3的半導體材料可以使用矽。作為矽,可以適當地選擇單晶矽、多晶矽、微晶矽或非晶矽等。 The transistors M1 to M3 can use an n-channel type transistor. Instead of the n-channel type transistor, a p-channel type transistor can also be used by changing the magnitude relationship of the voltages of the respective wirings. The semiconductor material of the transistors M1 to M3 may use germanium. As the ruthenium, a single crystal germanium, a polycrystalline germanium, a microcrystalline germanium or an amorphous germanium can be appropriately selected.
或者,電晶體M1至M3的半導體材料可以使用金屬氧化物。作為金屬氧化物,可以使用包含銦的金屬氧化物或包含銦、鎵以及鋅的金屬氧化物等。 Alternatively, the semiconductor material of the transistors M1 to M3 may use a metal oxide. As the metal oxide, a metal oxide containing indium or a metal oxide containing indium, gallium, and zinc can be used.
另外,像素19所具有的電晶體M1至M3可 以使用底閘極型電晶體或頂閘極型電晶體等各種形態的電晶體來製造。 Further, the transistors M1 to M3 of the pixel 19 can be fabricated using various types of transistors such as a bottom gate type transistor or a top gate type transistor.
另外,像素19所具有的電晶體M1至M3也可以為具有背閘極的電晶體。供應給背閘極的電壓也可以從與閘極線GLLC[j]或閘極線GLEL[j]不同的其他佈線供應。另外,也可以只有電晶體M3具有背閘極。藉由採用該結構,可以控制電晶體的臨界電壓或者提高流過電晶體的電流量。 In addition, the transistors M1 to M3 of the pixel 19 may also be a transistor having a back gate. The voltage supplied to the back gate can also be supplied from other wirings different from the gate line GL LC [j] or the gate line GL EL [j]. Alternatively, only the transistor M3 may have a back gate. By adopting this structure, it is possible to control the threshold voltage of the transistor or to increase the amount of current flowing through the transistor.
另外,可以藉由IPS(In-Plane-Switching:平面內切換)模式、TN(Twisted Nematic:扭曲向列)模式、FFS(Fringe Field Switching:邊緣電場切換)模式、ASM(Axially Symmetric aligned Micro-cell:軸對稱排列微單元)模式、OCB(Optically Compensated Birefringence:光學補償彎曲)模式、FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式以及AFLC(Anti Ferroelectric Liquid Crystal:反鐵電性液晶)模式等驅動方法驅動液晶元件LC。或者,可以藉由如下模式驅動液晶元件:垂直配向(VA)模式諸如MVA(Multi-Domain Vertical Alignment:多象限垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ECB(Electrically Controlled Birefringence:電控雙折射)模式、CPA(Continuous Pinwheel Alignment:連續焰火狀排列)模式、ASV(Advanced Super-View:高級超視覺)模式等。 In addition, IPS (In-Plane-Switching) mode, TN (Twisted Nematic) mode, FFS (Fringe Field Switching) mode, ASM (Axially Symmetric aligned Micro-cell) : Axisymmetric array of microcells), OCB (Optically Compensated Birefringence) mode, FLC (Ferroelectric Liquid Crystal) mode, and AFLC (Anti Ferroelectric Liquid Crystal) mode The method drives the liquid crystal element LC. Alternatively, the liquid crystal element can be driven by a vertical alignment (VA) mode such as MVA (Multi-Domain Vertical Alignment) mode, PVA (Patterned Vertical Alignment) mode, and ECB (Electrically Controlledled mode). Birefringence: electronically controlled birefringence mode, CPA (Continuous Pinwheel Alignment) mode, ASV (Advanced Super-View) mode.
作為液晶元件所具有的液晶材料,例如,可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶、鐵電液晶、反鐵電液晶等。或者,可以使用呈現膽固醇相、層列相、立方相、手性向列相、各向同性相等的液晶材料。或者,可以使用呈現藍相的液晶材料。 As the liquid crystal material of the liquid crystal element, for example, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. Alternatively, a liquid crystal material exhibiting a cholesterol phase, a smectic phase, a cubic phase, a chiral nematic phase, and an isotropic phase may be used. Alternatively, a liquid crystal material exhibiting a blue phase can be used.
作為發光元件EL,可以使用有機電致發光元件、無機電致發光元件等EL元件或發光二極體等。 As the light-emitting element EL, an EL element such as an organic electroluminescence element or an inorganic electroluminescence element, a light-emitting diode, or the like can be used.
EL元件可以使用以發射白色光的方式層疊的疊層體。明確而言,可以使用層疊有使用包含發射藍色光的螢光材料的發光有機化合物的層及使用包含發射綠色光及紅色光的螢光材料以外的材料的層或使用包含發射黃色光的螢光材料以外的材料的層的疊層體。 The EL element can use a laminate in which white light is emitted to be laminated. Specifically, a layer laminated with a light-emitting organic compound containing a fluorescent material emitting blue light and a layer using a material other than a fluorescent material emitting green light and red light or a fluorescent light containing yellow-emitting light may be used. A laminate of layers of material other than the material.
接著,說明像素19的層結構的示意圖。在圖4B所示的像素19中,示出像素電路15、像素電路17、液晶元件LC及發光元件EL的配置。圖4B所示的液晶元件LC具有開口21。該開口21表示設置於反射電極中的開口。圖4B所示的發光元件EL與液晶元件LC所具有的開口21重疊地設置。圖4B所示的像素電路15及像素電路17設置於設置有液晶元件LC的層與設置有發光元件EL的層之間。另外,圖4B所示的像素電路15及像素電路17也可以設置在不同的層中。 Next, a schematic diagram of the layer structure of the pixel 19 will be described. In the pixel 19 shown in FIG. 4B, the arrangement of the pixel circuit 15, the pixel circuit 17, the liquid crystal element LC, and the light-emitting element EL is shown. The liquid crystal element LC shown in FIG. 4B has an opening 21. This opening 21 represents an opening provided in the reflective electrode. The light-emitting element EL shown in FIG. 4B is provided to overlap the opening 21 of the liquid crystal element LC. The pixel circuit 15 and the pixel circuit 17 shown in FIG. 4B are disposed between a layer in which the liquid crystal element LC is provided and a layer in which the light emitting element EL is provided. In addition, the pixel circuit 15 and the pixel circuit 17 shown in FIG. 4B may be disposed in different layers.
藉由採用圖4B所示的結構,可以控制由液晶元件LC的反射光12的強度以及經過開口21的發光元件EL所發射的光16的強度來控制像素19的灰階。另外, 發射反射光12的方向及發射發光元件EL所發射的光16的方向成為顯示裝置10的顯示面。 By employing the structure shown in FIG. 4B, the gray scale of the pixel 19 can be controlled by controlling the intensity of the reflected light 12 of the liquid crystal element LC and the intensity of the light 16 emitted by the light emitting element EL of the opening 21. Further, the direction in which the reflected light 12 is emitted and the direction in which the light 16 emitted from the light-emitting element EL is emitted become the display surface of the display device 10.
在圖4B所示的結構中,可以將用來驅動像素的電路諸如像素電路15及像素電路17等配置於液晶元件LC所包括的反射電極下。由此,可以抑制由於用來驅動發光元件EL的像素電路17的增加所導致的開口率的降低。 In the configuration shown in FIG. 4B, a circuit for driving a pixel such as the pixel circuit 15 and the pixel circuit 17 can be disposed under the reflective electrode included in the liquid crystal element LC. Thereby, it is possible to suppress a decrease in the aperture ratio due to an increase in the pixel circuit 17 for driving the light emitting element EL.
另外,圖4B所示的結構包括能夠按像素19控制液晶元件LC的像素電路15及能夠按像素19控制發光元件EL的像素電路17。就是說,可以按像素19分別控制液晶元件LC及發光元件EL的灰階顯示。在上述結構中,與使多個像素的全部都發射光的背光源的控制不同,可以以像素的最小單位控制對應於顯示的影像的發光元件EL的發光,因此可以抑制剩餘的發光。由此,包括圖4B所示的像素的顯示裝置可以實現低功耗化。 Further, the structure shown in FIG. 4B includes a pixel circuit 15 capable of controlling the liquid crystal element LC by the pixel 19 and a pixel circuit 17 capable of controlling the light-emitting element EL by the pixel 19. That is, the gray scale display of the liquid crystal element LC and the light emitting element EL can be controlled by the pixels 19, respectively. In the above configuration, unlike the control of the backlight that causes all of the plurality of pixels to emit light, the light emission of the light-emitting element EL corresponding to the displayed image can be controlled in the minimum unit of the pixel, so that the remaining light emission can be suppressed. Thereby, the display device including the pixel shown in FIG. 4B can achieve low power consumption.
另外,像素電路15及像素電路17都包括用來控制灰階顯示的電晶體。作為該電晶體,較佳為採用在通道形成區域中具有金屬氧化物的電晶體。金屬氧化物被用作氧化物半導體,在通道形成區域中具有該氧化物半導體的OS電晶體的關態電流極小。由此,當使用顯示裝置顯示靜態影像時,可以在像素電路中長時間保持對應於視頻電壓的電荷。藉由採用在像素電路中長時間保持對應於視頻電壓的電荷的結構,可以減少像素的改寫頻率(更新速率)(例如,圖框頻率為30Hz以下),因此可以實現 低功耗化。 In addition, the pixel circuit 15 and the pixel circuit 17 each include a transistor for controlling gray scale display. As the transistor, a transistor having a metal oxide in a channel formation region is preferably used. A metal oxide is used as an oxide semiconductor, and an off-state current of an OS transistor having the oxide semiconductor in a channel formation region is extremely small. Thereby, when a still image is displayed using the display device, the electric charge corresponding to the video voltage can be held for a long time in the pixel circuit. By adopting a configuration in which the charge corresponding to the video voltage is held for a long time in the pixel circuit, the rewriting frequency (update rate) of the pixel can be reduced (for example, the frame frequency is 30 Hz or less), so that power consumption can be reduced.
接著,舉出具備該顯示裝置的電子裝置的工作說明圖1所示的顯示裝置的工作。圖5A示出具備圖1所示的顯示裝置的電子裝置40。 Next, the operation of the display device shown in FIG. 1 will be described with respect to the operation of the electronic device including the display device. FIG. 5A shows an electronic device 40 including the display device shown in FIG. 1.
圖5A所示的電子裝置40是具有顯示部的可攜式電子裝置,在外殼42中具備顯示裝置,作為其他組件還示出光感測器44及電源按鈕46。在顯示裝置的顯示部中示出背景部48及鐘錶顯示部50。在鐘錶顯示部50中示出錶盤、長針、短針及秒針等顯示時間的組件。 The electronic device 40 shown in FIG. 5A is a portable electronic device having a display unit, and the display device is provided in the casing 42, and the photo sensor 44 and the power button 46 are also shown as other components. The background portion 48 and the timepiece display portion 50 are shown on the display portion of the display device. The timepiece display unit 50 shows components such as a dial, a long needle, a short needle, and a second hand.
當在外殼42的長軸方向上配置閘極驅動器輸出掃描信號時,可以將只顯示上述背景部48的像素連接於閘極線的區域設定為如圖5A的靜態影像顯示部47、51所示的不需要更新資料的區域。另一方面,可以將顯示上述鐘錶顯示部50的像素連接於閘極線的區域設定為如圖5A的動態影像顯示部49所示的需要更新資料的區域。 When the gate driver output scan signal is disposed in the long axis direction of the casing 42, the area where only the pixel of the background portion 48 is connected to the gate line can be set as shown by the still image display portions 47, 51 of FIG. 5A. The area where you do not need to update the data. On the other hand, an area in which the pixel on which the timepiece display unit 50 is displayed is connected to the gate line can be set as an area in which the data needs to be updated as shown by the moving image display unit 49 of FIG. 5A.
圖5B示出包括圖5A的動態影像顯示部49及靜態影像顯示部47、51的顯示部13以及周邊的驅動電路的方塊圖。圖5B所示的顯示部13包括多個像素19。像素19包括像素電路15及像素電路17。另外,圖5A和圖5B示出源極驅動器24、閘極驅動器20及閘極驅動器22。 FIG. 5B is a block diagram showing the display unit 13 including the moving image display unit 49 and the still image display units 47 and 51 of FIG. 5A and the drive circuit in the periphery. The display portion 13 shown in FIG. 5B includes a plurality of pixels 19. The pixel 19 includes a pixel circuit 15 and a pixel circuit 17. In addition, FIG. 5A and FIG. 5B show the source driver 24, the gate driver 20, and the gate driver 22.
另外,與圖3同樣,圖5B示出第一列的源極 線SLEL[1]及源極線SLLC[1]以及第一行的閘極線GLLC[1]及閘極線GLEL[1]。並且,圖5B示出第二行的閘極線GLLC[2]及閘極線GLEL[2]、第j行(j為3以上且(m-1)以下(m為5以上的自然數)的自然數)的閘極線GLLC[j]及閘極線GLEL[j]、第j+1行的閘極線GLLC[j+1]及閘極線GLEL[j+1]、第m-1行的閘極線GLLC[m-1]及閘極線GLEL[m-1]、第m行的閘極線GLLC[m]及閘極線GLEL[m]。 In addition, as in FIG. 3, FIG. 5B shows the source line SL EL [1] and the source line SL LC [1] of the first column, and the gate line GL LC [1] of the first row and the gate line GL. EL [1]. 5B shows the gate line GL LC [2] and the gate line GL EL [2] and the jth row in the second row (j is 3 or more and (m-1) or less (m is 5 or more in nature) The gate line GL LC [j] of the number) and the gate line GL EL [j], the gate line GL LC [j+1] of the j+1th row, and the gate line GL EL [j+ 1], the gate line GL LC [m-1] of the m-1th row and the gate line GL EL [m-1], the gate line GL LC [m] of the mth row, and the gate line GL EL [ m].
另外,圖5B所示的第一行的閘極線GLLC[1]及閘極線GLEL[1]以及第二行的閘極線GLLC[2]及閘極線GLEL[2]為對圖5A的靜態影像顯示部47的像素供應掃描信號的閘極線。另外,圖5B所示的第j行的閘極線GLLC[j]及閘極線GLEL[j]以及第j+1行的閘極線GLLC[j+1]及閘極線GLEL[j+1]為對圖5A的動態影像顯示部49的像素供應掃描信號的閘極線。另外,圖5B所示的第m-1行的閘極線GLLC[m-1]及閘極線GLEL[m-1]以及第m行的閘極線GLLC[m]及閘極線GLEL[m]為對圖5A的靜態影像顯示部51的像素供應掃描信號的閘極線。 In addition, the gate line GL LC [1] and the gate line GL EL [1] of the first row and the gate line GL LC [2] of the second row and the gate line GL EL [2] of the first row shown in FIG. 5B A gate line for supplying a scan signal is supplied to the pixels of the still image display portion 47 of FIG. 5A. In addition, the gate line GL LC [j] and the gate line GL EL [j] of the jth row shown in FIG. 5B and the gate line GL LC [j+1] of the j+1th row and the gate line GL EL [j+1] is a gate line that supplies a scan signal to the pixels of the motion picture display unit 49 of FIG. 5A. Further, FIG. 5B first gate line m-1 line GL LC shown in [m-1] and the gate line GL EL [m-1] and the m-th gate line GL LC row [m] and gate The line GL EL [m] is a gate line that supplies a scan signal to the pixels of the still image display portion 51 of FIG. 5A.
圖6再次示出圖5A所示的電子裝置40。電子裝置40中的動態影像顯示部49可以為需要更新資料的區域。電子裝置40中的靜態影像顯示部47、51如上所述可以為不需要更新資料的區域。由此,在靜態影像顯示部47、51中,在間歇性地進行使用液晶元件LC的顯示的更新,就是說減少更新速率的情況下進行顯示。另一方面, 在動態影像顯示部49中,與使用液晶元件LC的顯示對應地進行使用發光元件EL的發光的顯示。就是說,如圖6所示,在靜態影像顯示部47、51中,利用使用液晶元件LC的反射光12進行顯示,在動態影像顯示部49中,利用液晶元件LC的反射光12及發光元件EL的光16進行顯示。 FIG. 6 again shows the electronic device 40 shown in FIG. 5A. The motion picture display unit 49 in the electronic device 40 may be an area in which data needs to be updated. The still image display units 47 and 51 in the electronic device 40 may be areas where the data need not be updated as described above. As a result, in the still image display units 47 and 51, the display using the liquid crystal element LC is intermittently updated, that is, when the update rate is reduced. On the other hand, in the moving image display unit 49, display using the light emission of the light-emitting element EL is performed in accordance with the display using the liquid crystal element LC. In other words, as shown in FIG. 6, the still image display units 47 and 51 display by the reflected light 12 using the liquid crystal element LC, and the moving image display unit 49 uses the reflected light 12 of the liquid crystal element LC and the light-emitting element. The light 16 of the EL is displayed.
在圖7A和圖7B中,使用圖5B所示的方塊圖說明進行圖6所示的工作時的圖1的顯示裝置的工作。 In Figs. 7A and 7B, the operation of the display device of Fig. 1 when the operation shown in Fig. 6 is performed will be described using the block diagram shown in Fig. 5B.
在圖7A中,虛線箭頭23是使閘極驅動器20依次輸出掃描信號的掃描方向視覺化的箭頭。另外,在圖7A中,虛線箭頭25是使閘極驅動器22依次輸出掃描信號的掃描方向視覺化的箭頭。 In FIG. 7A, the dotted arrow 23 is an arrow that visualizes the scanning direction in which the gate driver 20 sequentially outputs the scanning signal. In addition, in FIG. 7A, the dotted arrow 25 is an arrow which visualizes the scanning direction which the gate driver 22 sequentially outputs a scanning signal.
本發明的一個實施方式的顯示裝置的工作為如下工作:如圖7A所示那樣,在進行圖6所示的工作時,在需要更新資料的區域中,以進行寫入到發光元件EL的視頻電壓的更新的方式輸出掃描信號。就是說,在閘極驅動器20如虛線箭頭23所示那樣依次輸出掃描信號時,在閘極驅動器22中以不從第一行的閘極線GLEL[1]、第二行的閘極線GLEL[2]輸出掃描信號,從第j行的閘極線GLEL[j]、第j+1行的閘極線GLEL[j+1]輸出掃描信號,不從第m-1行的閘極線GLEL[m-1]、第m行的閘極線GLEL[m]輸出掃描信號的方式進行工作。以從閘極驅動器22輸出掃描信號的方式切換由圖1所示的信號生成電路26生成的各控制信號,而實現該掃描信號的切換。 The display device according to an embodiment of the present invention operates as follows: as shown in FIG. 7A, in the operation shown in FIG. 6, in the area where the material needs to be updated, the video written to the light-emitting element EL is performed. The scan signal is output in a manner that the voltage is updated. That is, when the gate driver 20 sequentially outputs the scan signals as indicated by the broken line arrow 23, the gate lines GL EL [1] and the gate lines of the second row are not in the gate driver 22. GL EL [2] outputs a scan signal, and outputs a scan signal from the gate line GL EL [j] of the jth row and the gate line GL EL [j+1] of the j+1th row, not from the m-1th line The gate line GL EL [m-1] and the gate line GL EL [m] of the mth row operate in a manner of outputting a scan signal. The switching of the scanning signal is realized by switching the respective control signals generated by the signal generating circuit 26 shown in FIG. 1 in such a manner that the scanning signal is output from the gate driver 22.
由此,在外光的強度低時,可以抑制不需要更新資料的像素中的發光元件EL的發光。就是說,只在需要資料更新的區域中進行發光元件EL的發光。由此,可以實現功耗低且方便性優異的顯示裝置。 Thereby, when the intensity of the external light is low, it is possible to suppress the light emission of the light-emitting element EL in the pixel which does not require updating of the material. That is, the light emission of the light-emitting element EL is performed only in the area where the data update is required. Thereby, it is possible to realize a display device which is low in power consumption and excellent in convenience.
另外,圖7B是說明與圖7A不同的本發明的一個實施方式的顯示裝置的工作的圖。如圖7A所示那樣,圖7B所示的工作為如下工作:使由閘極驅動器20輸出掃描信號的間隔大而間歇性地進行使用掃描信號的顯示的更新,因此定期停止由閘極驅動器20的掃描信號的輸出。在圖7B中,由於不示出圖7A所示的虛線箭頭23而示出掃描信號的輸出的定期停止。在停止由上述閘極驅動器20的掃描信號的輸出的狀態下,在閘極驅動器22中以不從第一行的閘極線GLEL[1]、第二行的閘極線GLEL[2]輸出掃描信號,從第j行的閘極線GLEL[j]、第j+1行的閘極線GLEL[j+1]輸出掃描信號,不從第m-1行的閘極線GLEL[m-1]、第m行的閘極線GLEL[m]輸出掃描信號的方式進行工作。以從閘極驅動器22輸出掃描信號的方式切換由圖1所示的信號生成電路26產生的各控制信號,而實現該掃描信號的切換。另外,藉由由圖1所示的信號生成電路28生成的各控制信號,實現掃描信號的輸出的停止。 In addition, FIG. 7B is a view for explaining the operation of the display device of one embodiment of the present invention which is different from FIG. 7A. As shown in FIG. 7A, the operation shown in FIG. 7B is such that the interval at which the scan signal is outputted by the gate driver 20 is large and the display of the scan signal is intermittently updated, so that the gate driver 20 is periodically stopped. The output of the scan signal. In FIG. 7B, the periodic stop of the output of the scan signal is shown because the dotted arrow 23 shown in FIG. 7A is not shown. In the state where the output of the scan signal by the gate driver 20 is stopped, the gate line GL EL [1] of the first row and the gate line GL EL of the second row are not in the gate driver 22 The output scan signal outputs a scan signal from the gate line GL EL [j] of the jth row and the gate line GL EL [j+1] of the j+1th row, not from the gate line of the m-1th row GL EL [m-1], the m-th gate line GL EL [m] outputs a scan signal to operate. The switching of the scanning signal is realized by switching the respective control signals generated by the signal generating circuit 26 shown in FIG. 1 in such a manner that the scanning signal is output from the gate driver 22. Further, the stop of the output of the scan signal is realized by each control signal generated by the signal generating circuit 28 shown in Fig. 1 .
由此,在外光的強度低時,可以抑制不需要更新資料的像素中的發光元件EL的發光,同時間歇性地,亦即,以低更新速率進行不需要更新資料的像素中的 液晶元件LC的顯示的更新而進行顯示。由此,可以實現功耗低且方便性優異的顯示裝置。 Thereby, when the intensity of the external light is low, it is possible to suppress the light emission of the light-emitting element EL in the pixel which does not require updating of the material, and intermittently, that is, to perform the liquid crystal element LC in the pixel which does not require updating of the material at a low update rate. The display of the update is displayed. Thereby, it is possible to realize a display device which is low in power consumption and excellent in convenience.
另外,在根據本發明的一個實施方式的顯示裝置10中,在使用顯示部14和顯示部18的兩者顯示影像時,信號生成電路26對應於顯示的影像採用如下結構:對閘極驅動器22輸出在所有行中停止用來對像素寫入視頻電壓的掃描信號的輸出的信號的結構。由此,可以在外光的強度低時,間歇性地,亦即,以低更新速率進行不需要更新資料的像素中的液晶元件LC的顯示的更新而進行顯示。由此,可以實現功耗低且方便性優異的顯示裝置。 Further, in the display device 10 according to an embodiment of the present invention, when the image is displayed using both the display portion 14 and the display portion 18, the signal generating circuit 26 corresponds to the displayed image in the following configuration: the gate driver 22 The structure of the signal that stops the output of the scan signal for writing the video voltage to the pixel in all the lines is output. Thereby, when the intensity of the external light is low, the display of the liquid crystal element LC in the pixel which does not require updating of the material is intermittently displayed, that is, at a low update rate. Thereby, it is possible to realize a display device which is low in power consumption and excellent in convenience.
另外,在圖6至圖8B的說明中,作為顯示部的顯示的一個例子,說明在動態影像顯示部與靜態影像顯示部之間使向具有對應於各區域的顯示元件的像素電路的掃描信號的輸出不同的結構,但是也可以採用其他結構。 In addition, in the description of FIG. 6 to FIG. 8B, as an example of the display of the display unit, a scanning signal for causing a pixel circuit having display elements corresponding to the respective areas between the moving image display unit and the still image display unit will be described. The output differs in structure, but other structures can be used.
例如,如圖8A所示,在驅動液晶元件LC而以低更新速率進行顯示的顯示部14中顯示鐘錶的錶盤53,在驅動發光元件EL進行顯示的顯示部18中顯示長針、短針及秒針52。另外,驅動發光元件EL進行顯示的顯示部18的更新速率為1次/每一秒,亦即,1Hz以下即可。另外,驅動液晶元件LC進行顯示的顯示部14的更新速率較佳為比顯示部18小。 For example, as shown in FIG. 8A, the dial 53 of the timepiece is displayed on the display unit 14 that drives the liquid crystal element LC to display at a low update rate, and the long needle, the short needle, and the second hand 52 are displayed in the display unit 18 that drives the light-emitting element EL to display. . Further, the update rate of the display unit 18 that drives the light-emitting element EL to display is one time per second, that is, 1 Hz or less. Further, the update rate of the display unit 14 for driving the liquid crystal element LC to display is preferably smaller than that of the display unit 18.
作為其他例子,如圖8B所示,在驅動液晶元件LC而以低更新速率進行顯示的顯示部14中顯示地圖 55,在驅動發光元件EL進行顯示的顯示部14中顯示形象54。另外,驅動發光元件EL進行顯示的顯示部18的更新速率為1次/每一秒,亦即,1Hz以下即可。另外,驅動液晶元件LC進行顯示的顯示部14的更新速率較佳為比顯示部18小。 As another example, as shown in Fig. 8B, the map 55 is displayed on the display unit 14 that drives the liquid crystal element LC to display at a low update rate, and the image 54 is displayed on the display unit 14 that drives the light-emitting element EL to display. Further, the update rate of the display unit 18 that drives the light-emitting element EL to display is one time per second, that is, 1 Hz or less. Further, the update rate of the display unit 14 for driving the liquid crystal element LC to display is preferably smaller than that of the display unit 18.
使用圖9A至圖9D說明上述顯示裝置的工作例子所說明的降低更新速率的顯示模式。另外,使用圖10至圖12B說明圖5A所說明的利用電源按鈕46的顯示模式的切換。另外,使用圖13A至圖13E說明利用圖5A所說明的光感測器44的顯示模式的切換。 The display mode for reducing the update rate explained in the operation example of the above display device will be described with reference to FIGS. 9A to 9D. In addition, switching of the display mode using the power button 46 illustrated in FIG. 5A will be described using FIG. 10 to FIG. 12B. In addition, switching of the display mode of the photo sensor 44 explained using FIG. 5A will be described using FIGS. 13A to 13E.
下面,將上述顯示裝置的工作例子所說明的降低更新速率的顯示模式稱為空轉停止(IDS)驅動模式,而進行說明。另外,作為顯示裝置10可能會進行的顯示模式,舉出以通常的圖框頻率進行工作的通常驅動模式(Normal mode)及空轉停止(IDS)驅動模式進行說明。 Hereinafter, the display mode in which the update rate is reduced as described in the operation example of the display device will be referred to as an idle stop (IDS) drive mode. Further, as a display mode that the display device 10 may perform, a normal drive mode (Normal mode) and an idle stop (IDS) drive mode that operate at a normal frame frequency will be described.
另外,IDS驅動是指在執行影像資料的寫入處理之後停止影像資料的改寫的驅動方法。藉由延長從影像資料的寫入起下一次的影像資料的寫入為止的間隔時間,可以減少該間隔時間中的影像資料的寫入所需要的功耗。 Further, the IDS drive is a drive method for stopping the rewriting of the image data after the execution of the writing process of the image data. By extending the interval from the writing of the image data to the next writing of the image data, the power consumption required for writing the image data during the interval can be reduced.
在圖9A至圖9D中舉出一個例子說明上述通常驅動模式及IDS驅動。另外,在圖9A至圖9D中說明 對液晶元件LC及像素電路15適用通常驅動模式及IDS驅動的情況,但是也可以對發光元件EL及像素電路17適用通常驅動模式及IDS驅動。 An example of the above-described normal drive mode and IDS drive will be described with reference to an example in FIGS. 9A to 9D. Further, although the normal driving mode and the IDS driving are applied to the liquid crystal element LC and the pixel circuit 15 in Figs. 9A to 9D, the normal driving mode and the IDS driving may be applied to the light emitting element EL and the pixel circuit 17.
圖9A示出由液晶元件LC及像素電路15構成的像素的電路圖。圖9A示出連接於源極線SL及閘極線GL的電晶體M1、電容器CsLC及液晶元件LC。源極線SL及閘極線GL相當於圖3等所示的源極線SLLC及閘極線GLLC。 FIG. 9A shows a circuit diagram of a pixel composed of the liquid crystal element LC and the pixel circuit 15. FIG. 9A shows a transistor M1, a capacitor Cs LC, and a liquid crystal element LC connected to the source line SL and the gate line GL. The source line SL and the gate line GL correspond to the source line SL LC and the gate line GL LC shown in FIG. 3 and the like.
圖9B是示出分別對通常驅動模式下的源極線SL及閘極線GL供應的信號的波形的時序圖。在通常驅動模式下以通常的圖框頻率(例如60Hz)工作。一個圖框期間以期間T1至T3表示,在各圖框期間中進行對閘極線供應掃描信號並且將源極線的視頻電壓D1寫入到像素中的工作。該工作在期間T1至T3中寫入相同的視頻電壓D1時或寫入不同的視頻電壓時都一樣。 FIG. 9B is a timing chart showing waveforms of signals supplied to the source line SL and the gate line GL in the normal driving mode, respectively. It operates at the normal frame frequency (for example, 60 Hz) in the normal drive mode. During one frame period T 1 to T 3 to represent, a scan signal is supplied to the gate line and the source line is written into the video voltage D 1 during the operation of the pixel in each block of FIG. This operation is the same when the same video voltage D 1 is written in the period T 1 to T 3 or when a different video voltage is written.
另一方面,圖9C是示出分別對IDS驅動下的源極線SL及閘極線GL供應的信號的波形的時序圖。在IDS驅動中以低速的圖框頻率(例如1Hz)工作。一個圖框期間用期間T1表示,其中將寫入視頻電壓的期間表示為期間TW,將視頻電壓的保持期間表示為期間TRET。在IDS驅動中,在期間TW中對閘極線供應掃描信號,將源極線的視頻電壓D1寫入到像素,在期間TRET中將閘極線固定為L位準的電壓,使電晶體M1成為非導通狀態而將暫時寫入到的視頻電壓D1保持在像素中。 On the other hand, FIG. 9C is a timing chart showing waveforms of signals supplied to the source line SL and the gate line GL driven by the IDS, respectively. It operates at a low frame frequency (eg 1 Hz) in the IDS drive. One frame period is represented by a period T 1 in which a period in which a video voltage is written is expressed as a period T W , and a period in which a video voltage is held is represented as a period T RET . In the IDS driving, a scan signal is supplied to the gate line during the period T W , the video voltage D 1 of the source line is written to the pixel, and the gate line is fixed to the L level voltage during the period T RET . The transistor M1 is rendered non-conductive and the video voltage D 1 temporarily written is held in the pixel.
圖9D示出切換上述通常驅動模式與IDS驅動時的狀態遷移圖。狀態C1表示IDS驅動模式,狀態C2表示通常驅動模式。 Fig. 9D shows a state transition diagram when the above-described normal driving mode and IDS driving are switched. State C1 represents the IDS drive mode and state C2 represents the normal drive mode.
狀態C1及C2對應於顯示內容而不同。例如,在進行圖5A和圖5B所示的鐘錶的顯示時,在液晶元件LC及發光元件EL的兩者中進行IDS驅動是有效的。另外,例如,驅動液晶元件LC及發光元件EL在畫面的整體上顯示動態影像時,進行通常驅動模式是有效的。 The states C1 and C2 differ depending on the display content. For example, when the display of the timepiece shown in FIGS. 5A and 5B is performed, it is effective to perform IDS driving in both of the liquid crystal element LC and the light-emitting element EL. Further, for example, when the liquid crystal element LC and the light-emitting element EL are driven to display a moving image on the entire screen, it is effective to perform the normal driving mode.
另外,使用圖10至圖12B說明利用圖5A所說明的電源按鈕46的電子裝置40中的顯示裝置的顯示模式的切換。 In addition, switching of the display mode of the display device in the electronic device 40 using the power button 46 illustrated in FIG. 5A will be described using FIGS. 10 to 12B.
在電子裝置40中,在電源為導通時,進行是否待機模式(休眠模式)的判斷(步驟S11)。待機模式是指開啟電子裝置的電源的狀態且沒有進行顯示部上的顯示的狀態。 In the electronic device 40, when the power source is turned on, it is determined whether or not the standby mode (sleep mode) is determined (step S11). The standby mode refers to a state in which the power of the electronic device is turned on and the display on the display unit is not performed.
在待機模式下,進行是否按下電源按鈕46(第一次)的判斷(步驟S12)。接著,進行是否按下電源按鈕46(第二次)的判斷(步驟S13)。就是說,根據是否連續按下電源按鈕46兩次,進行顯示模式A或顯示模式B的切換。 In the standby mode, a determination is made as to whether or not the power button 46 is pressed (first time) (step S12). Next, a determination is made as to whether or not the power button 46 is pressed (second time) (step S13). That is, switching between the display mode A or the display mode B is performed depending on whether or not the power button 46 is continuously pressed twice.
圖11A和圖11B是對設想圖2A所說明的小型電子裝置時的顯示模式A及顯示模式B的工作進行說明的流程圖。 11A and 11B are flowcharts for explaining the operation of the display mode A and the display mode B when the small electronic device illustrated in Fig. 2A is assumed.
圖11A是顯示模式A下,就是說按下電源按鈕46兩次時的工作的流程圖。顯示模式A是進行通常顯示的模式。 Fig. 11A is a flow chart showing the operation in mode A, that is, when the power button 46 is pressed twice. The display mode A is a mode in which normal display is performed.
首先,在按下電源按鈕46兩次時,為了進行通常顯示,從應用處理器經過SPI等介面向源極驅動器IC傳送設定資料(步驟S21)。接著,以進行通常驅動模式的方式進行用來驅動源極驅動器及閘極驅動器的信號生成電路的設定(步驟S22)。接著,經過MIPI等介面向源極驅動器IC傳送動態影像的影像資料(步驟S23)。接著,從信號生成電路輸出用來驅動源極驅動器及閘極驅動器的各種控制信號及視頻電壓(步驟S24)。並且,從閘極驅動器輸出掃描信號,從源極驅動器輸出視頻電壓以進行通常顯示(步驟S25)。 First, when the power button 46 is pressed twice, in order to perform normal display, the setting data is transmitted from the application processor to the source driver IC via the SPI or the like (step S21). Next, setting of a signal generating circuit for driving the source driver and the gate driver is performed in a normal driving mode (step S22). Next, the video data of the motion image is transmitted to the source driver IC via MIPI or the like (step S23). Next, various control signals and video voltages for driving the source driver and the gate driver are output from the signal generating circuit (step S24). Then, a scan signal is output from the gate driver, and a video voltage is output from the source driver for normal display (step S25).
圖11B是顯示模式B下,就是說按下電源按鈕46一次時的工作的流程圖。顯示模式B是進行鐘錶顯示的模式。 Fig. 11B is a flow chart showing the operation in mode B, that is, when the power button 46 is pressed once. The display mode B is a mode in which the timepiece display is performed.
首先,在按下電源按鈕46一次時,為了進行通常顯示,從應用處理器經過SPI等介面向源極驅動器IC傳送設定資料(步驟S31)。接著,以進行IDS驅動模式的方式進行用來驅動源極驅動器及閘極驅動器的信號生成電路的設定(步驟S32)。接著,經過MIPI等介面向源極驅動器IC傳送靜態影像,亦即,一個圖框期間的影像資料(步驟S33)。接著,將一個圖框期間的影像資料儲存於圖框記憶體中(步驟S34)。接著,從信號生成電 路輸出用來驅動源極驅動器及閘極驅動器的各種控制信號及視頻電壓(步驟S35)。並且,從閘極驅動器輸出掃描信號,從源極驅動器輸出視頻電壓以進行鐘錶顯示(步驟S36)。 First, when the power button 46 is pressed once, in order to perform normal display, the setting data is transmitted from the application processor to the source driver IC via the SPI or the like (step S31). Next, the setting of the signal generation circuit for driving the source driver and the gate driver is performed in the IDS driving mode (step S32). Next, a still image, that is, image data during one frame period, is transmitted to the source driver IC via MIPI or the like (step S33). Next, the image data during one frame period is stored in the frame memory (step S34). Next, various control signals and video voltages for driving the source driver and the gate driver are output from the signal generating circuit (step S35). Then, a scan signal is output from the gate driver, and a video voltage is output from the source driver for clock display (step S36).
藉由判斷按下電源按鈕46的次數,可以進行顯示模式的切換,並減少進行鐘錶顯示時的功耗。 By judging the number of times the power button 46 is pressed, the display mode can be switched, and the power consumption when the watch is displayed is reduced.
圖12A和圖12B是對設想圖2B所說明的大型電子裝置時的顯示模式A及顯示模式B的工作進行說明的流程圖。 12A and 12B are flowcharts for explaining the operation of the display mode A and the display mode B when the large-sized electronic device illustrated in FIG. 2B is assumed.
圖12A是顯示模式A下,就是說按下電源按鈕46兩次時的工作的流程圖。顯示模式A是進行通常顯示的模式。 Fig. 12A is a flow chart showing the operation in mode A, that is, when the power button 46 is pressed twice. The display mode A is a mode in which normal display is performed.
首先,在按下電源按鈕46兩次時,為了進行通常顯示,從時序控制器向源極驅動器IC傳送設定資料(步驟S41)。接著,以進行通常驅動模式的方式設定信號生成電路(步驟S42)。接著,經過EPI等介面向源極驅動器IC傳送動態影像的影像資料(步驟S43)。接著,從時序控制器及源極驅動器輸出用來驅動閘極驅動器的各種控制信號及視頻電壓(步驟S44)。然後,進行通常顯示(步驟S45)。 First, when the power button 46 is pressed twice, the setting data is transmitted from the timing controller to the source driver IC for the normal display (step S41). Next, the signal generation circuit is set in such a manner as to perform the normal drive mode (step S42). Next, the image data of the motion image is transmitted to the source driver IC via the EPI or the like (step S43). Next, various control signals and video voltages for driving the gate driver are output from the timing controller and the source driver (step S44). Then, the normal display is performed (step S45).
圖12B是顯示模式B下,就是說按下電源按鈕46一次時的工作的流程圖。顯示模式B是進行鐘錶顯示的模式。 Fig. 12B is a flow chart showing the operation in mode B, that is, when the power button 46 is pressed once. The display mode B is a mode in which the timepiece display is performed.
首先,在按下電源按鈕46一次時,為了進行 通常顯示,從應用處理器經過SPI等介面向源極驅動器IC傳送設定資料(步驟S51)。接著,以進行IDS驅動模式的方式設定源極驅動器及閘極驅動器(步驟S52)。接著,經過EPI等介面向源極驅動器IC間歇性地傳送與更新速率同步的影像資料(步驟S53)。接著,從時序控制器及源極驅動器輸出用來驅動閘極驅動器的各種控制信號及視頻電壓(步驟S54)。然後,進行鐘錶顯示(步驟S55)。 First, when the power button 46 is pressed once, in order to perform normal display, the setting data is transmitted from the application processor to the source driver IC via the SPI or the like (step S51). Next, the source driver and the gate driver are set such that the IDS driving mode is performed (step S52). Next, the image data synchronized with the update rate is intermittently transmitted to the source driver IC via the EPI or the like (step S53). Next, various control signals and video voltages for driving the gate driver are output from the timing controller and the source driver (step S54). Then, the timepiece display is performed (step S55).
藉由判斷按下上述電源按鈕46的次數,可以進行顯示模式的切換,並減少進行鐘錶顯示時的功耗。 By judging the number of times the power button 46 is pressed, the display mode can be switched, and the power consumption when the watch is displayed can be reduced.
另外,使用圖13A至圖13E說明利用圖5A所說明的光感測器44的電子裝置40中的顯示裝置的顯示模式的切換。 In addition, the switching of the display mode of the display device in the electronic device 40 using the photo sensor 44 illustrated in FIG. 5A will be described using FIGS. 13A to 13E.
電子裝置40可以根據包含藉由光感測器44取得的照度資訊的信號切換工作模式。在圖13A的方塊圖中示出光感測器44及應用處理器99。 The electronic device 40 can switch the operating mode according to a signal including the illuminance information obtained by the photo sensor 44. Photosensor 44 and application processor 99 are shown in the block diagram of FIG. 13A.
在圖13A中,光感測器44例如具有生成對應於照度的信號SILL的功能。應用處理器99具有根據信號SILL切換顯示模式的功能。 In FIG. 13A, the photo sensor 44 has, for example, a function of generating a signal S ILL corresponding to illuminance. The application processor 99 has a function of switching the display mode in accordance with the signal S ILL .
另外,圖13B至圖13D是用來說明顯示裝置根據照度可能會採用的顯示模式的像素的示意圖。在圖13B至圖13D中,與圖4B同樣地,示出像素電路15、像素電路17、液晶元件LC、發光元件EL、開口21、液晶元件LC所具有的反射電極所反射的反射光12以及從開 口21射出的發光元件EL所發射的光16。 In addition, FIGS. 13B to 13D are schematic views for explaining pixels of a display mode that the display device may adopt according to illuminance. 13B to 13D, similarly to FIG. 4B, the pixel circuit 15, the pixel circuit 17, the liquid crystal element LC, the light-emitting element EL, the opening 21, and the reflected light 12 reflected by the reflective electrode of the liquid crystal element LC are shown. The light 16 emitted from the light-emitting element EL emitted from the opening 21.
作為顯示裝置10可取的顯示模式舉出圖13B至圖13D所示的反射顯示模式(R mode)、反射+發光顯示模式(ER mode)以及發光顯示模式(E mode)來進行說明。 The display mode that can be taken as the display device 10 will be described with reference to the reflective display mode (R mode), the reflective + light-emitting display mode (ER mode), and the light-emitting display mode (E mode) shown in FIGS. 13B to 13D.
反射顯示模式是指藉由驅動像素所具有的液晶元件調節反射光的強度來控制灰階的顯示模式。明確而言,如圖13B所示的像素的示意圖那樣,利用液晶元件LC所具有的反射電極調節反射光12的強度來控制灰階。 The reflective display mode refers to a display mode in which the gray scale is controlled by adjusting the intensity of the reflected light by the liquid crystal element of the driving pixel. Specifically, as shown in the schematic diagram of the pixel shown in FIG. 13B, the intensity of the reflected light 12 is adjusted by the reflective electrode included in the liquid crystal element LC to control the gray scale.
反射+發光顯示模式(ER mode)是指藉由利用液晶元件的驅動及發光元件的驅動調節反射光及發光元件的光的強度的兩者來控制灰階的顯示模式。明確而言,如圖13C所示的像素的示意圖那樣,利用液晶元件LC所具有的反射電極調節反射光12的強度,並且調節發光元件EL從開口21射出的光16的強度,來控制灰階。藉由將上述圖6所示的顯示裝置的工作適用於圖13C中的反射+發光顯示模式下的工作,可以實現顯示品質的提高及功耗的減少。 The ER mode refers to a display mode in which the gray scale is controlled by both the driving of the liquid crystal element and the driving of the light emitting element to adjust the intensity of the reflected light and the light of the light emitting element. Specifically, as shown in the schematic diagram of the pixel shown in FIG. 13C, the intensity of the reflected light 12 is adjusted by the reflective electrode of the liquid crystal element LC, and the intensity of the light 16 emitted from the opening 21 by the light-emitting element EL is adjusted to control the gray scale. . By applying the operation of the display device shown in FIG. 6 described above to the operation in the reflection + illumination display mode of FIG. 13C, it is possible to achieve an improvement in display quality and a reduction in power consumption.
注意,在本說明書中,將像上述反射+發光顯示模式(ER mode)那樣的組合發光元件EL(第一顯示元件)和液晶元件LC(第二顯示元件)的顯示稱為混合型顯示方法。另外,混合型顯示方法是指在同一像素或同一子像素中顯示多個光並顯示文字及/或影像的方法。另外,混合型顯示器是指在顯示部所包括的同一像素或同一 子像素中顯示多個光並顯示文字及/或影像的集合體。 Note that in the present specification, the display of the combined light-emitting element EL (first display element) and the liquid crystal element LC (second display element) such as the above-described reflection + light-emitting display mode (ER mode) is referred to as a hybrid display method. In addition, the hybrid display method refers to a method of displaying a plurality of lights in the same pixel or the same sub-pixel and displaying characters and/or images. Further, the hybrid display is an aggregate in which a plurality of lights are displayed on the same pixel or the same sub-pixel included in the display unit, and characters and/or images are displayed.
作為混合型顯示方法的一個例子,有在同一像素或同一子像素中以不同的顯示時序顯示第一光及第二光而進行顯示的方法。此時,在同一像素或同一子像素中,可以同時顯示同一色調(紅色、綠色和藍色中的任一個或者青色(cyan)、洋紅色(magenta)和黃色(yellow)中的任一個)的第一光及第二光,而在顯示部中顯示文字及/或影像。 As an example of the hybrid display method, there is a method of displaying the first light and the second light at different display timings in the same pixel or the same sub-pixel. At this time, in the same pixel or the same sub-pixel, the same color tone (any one of red, green, and blue or any of cyan, magenta, and yellow) may be simultaneously displayed. The first light and the second light display characters and/or images on the display unit.
另外,作為混合型顯示方法的一個例子,有在同一像素或同一子像素中顯示反射光及自發光的方法。在同一像素或同一子像素中,可以同時顯示同一色調的反射光及自發光(例如,有機EL的發光、發光二極體的發光等)。 Further, as an example of the hybrid display method, there is a method of displaying reflected light and self-luminous light in the same pixel or the same sub-pixel. In the same pixel or the same sub-pixel, reflected light of the same color tone and self-luminescence (for example, light emission of an organic EL, light emission of a light-emitting diode, or the like) can be simultaneously displayed.
另外,混合型顯示器是在同一像素或同一子像素中具有多個顯示元件且在同一期間多個顯示元件的每一個進行顯示的集合體。另外,混合型顯示器在同一像素或同一子像素中具有多個顯示元件及用來驅動顯示元件的主動元件。作為主動元件,有開關、電晶體、薄膜電晶體等。由於多個顯示元件的每一個與主動元件連接,所以可以獨立地控制多個顯示元件的每一個的顯示。 Further, the hybrid display is an aggregate having a plurality of display elements in the same pixel or the same sub-pixel and displaying each of the plurality of display elements in the same period. In addition, the hybrid display has a plurality of display elements and active elements for driving the display elements in the same pixel or the same sub-pixel. As the active element, there are switches, transistors, thin film transistors, and the like. Since each of the plurality of display elements is connected to the active element, the display of each of the plurality of display elements can be independently controlled.
發光顯示模式(E mode)是驅動發光元件調節光的強度來控制灰階的顯示模式。明確而言,如圖13D所示的像素的示意圖那樣,發光元件EL調節從開口21發射的光16的強度控制灰階。藉由將上述圖6所示的顯示 裝置的工作適用於圖13D中的發光顯示模式下的工作,可以實現功耗的減少。 The light mode (E mode) is a display mode in which the light-emitting element is driven to adjust the intensity of light to control the gray scale. Specifically, as in the schematic diagram of the pixel shown in FIG. 13D, the light-emitting element EL adjusts the intensity of the light 16 emitted from the opening 21 to control the gray scale. By applying the operation of the display device shown in Fig. 6 described above to the operation in the light-emitting display mode of Fig. 13D, power consumption can be reduced.
圖13E示出上述三種模式(反射顯示模式、反射+發光顯示模式、發光顯示模式)的狀態遷移圖。狀態C3示出反射顯示模式,狀態C4示出反射+發光顯示模式,狀態C5示出發光顯示模式。 Fig. 13E shows a state transition diagram of the above three modes (reflective display mode, reflective + light emitting display mode, and light emitting display mode). State C3 shows a reflective display mode, state C4 shows a reflective + illuminated display mode, and state C5 shows a lighted display mode.
如圖13E所示,根據照度可取處於狀態C3至狀態C5中的任一個狀態的顯示模式。例如,在如室外等照度高的情況下,可取狀態C3。另外,在如從室外移動到室內時等照度變低的情況下,從狀態C3轉移到狀態C5。另外,在即使在室內照度也高且能夠進行利用反射光的灰階顯示的情況下,從狀態C5轉移到狀態C4。 As shown in FIG. 13E, a display mode in any of the states C3 to C5 can be taken according to the illuminance. For example, in the case where the illuminance such as outdoor is high, the state C3 is preferable. Further, when the illuminance is low when moving from the outdoor to the indoor, the state transitions from the state C3 to the state C5. Further, even when the indoor illuminance is high and the gray scale display using the reflected light can be performed, the state transitions from the state C5 to the state C4.
如上所述,藉由採用根據照度切換顯示模式的結構,可以減少利用發光元件的光的強度的灰階顯示的頻率,該發光元件的功耗較大。由此,可以降低顯示裝置的功耗。 As described above, by adopting a configuration in which the display mode is switched in accordance with the illuminance, the frequency of the gray scale display using the intensity of the light of the light-emitting element can be reduced, and the power consumption of the light-emitting element is large. Thereby, the power consumption of the display device can be reduced.
接著,對可用於上述圖1等所說明的閘極驅動器20、22的移位暫存器的具體例子進行說明。 Next, a specific example of a shift register which can be used for the gate drivers 20 and 22 described above with reference to FIG. 1 and the like will be described.
圖14A示出可以輸出m+2級脈衝的移位暫存器的電路結構的一個例子。圖14A的移位暫存器可以藉由來自外部的起動脈衝SP、時脈信號CLK1至CLK4、脈衝寬度控制信號PWC1至PWC4、重設信號RES對輸出端子 OUT_1至OUT_m+2輸出脈衝。雖然未圖示,但是重設信號RES、控制信號Φ及控制信號ΦB是分別供應到不同佈線的信號。另外,輸出端子OUT_1至OUT_m相當於上述閘極線GLEL[1]至[m]、GLLC[1]至[m],脈衝相當於掃描信號。 Fig. 14A shows an example of a circuit configuration of a shift register which can output m+2 stage pulses. The shift register of FIG. 14A can output pulses to the output terminals OUT_1 to OUT_m+2 by the start pulse SP, the clock signals CLK1 to CLK4, the pulse width control signals PWC1 to PWC4, and the reset signal RES from the outside. Although not shown, the reset signal RES, the control signal Φ, and the control signal ΦB are signals respectively supplied to different wirings. Further, the output terminals OUT_1 to OUT_m correspond to the above-described gate lines GL EL [1] to [m], GL LC [1] to [m], and the pulses correspond to scan signals.
電路SR被供應圖14B所示的各信號。電路SRDUM被供應圖14C所示的各信號。供應到電路SR及電路SRDUM的時脈信號CLK1至CLK4、脈衝寬度控制信號PWC1至PWC4根據級而不同。LIN是從移位暫存器的移位方向的上級一側供應的信號。RIN是從移位暫存器的移位方向的下級一側供應的信號。SROUT是供應到下一級移位暫存器的信號。OUT是供應到成為負載的閘極線的信號。 The circuit SR is supplied with the respective signals shown in Fig. 14B. The circuit SR DUM is supplied with the signals shown in Fig. 14C. The clock signals CLK1 to CLK4 supplied to the circuit SR and the circuit SR DUM and the pulse width control signals PWC1 to PWC4 differ depending on the stages. LIN is a signal supplied from the upper side of the shift direction of the shift register. RIN is a signal supplied from the lower side of the shift register of the shift register. SROUT is the signal supplied to the next stage shift register. OUT is the signal supplied to the gate line that becomes the load.
圖15A示出電路SR的電路結構的一個例子。圖15A所示的電路700包括電晶體701至電晶體709。圖15A所示的電路710包括電晶體711至電晶體713。圖15A所示的電路720包括電晶體721至電晶體723。在圖式中,電晶體701至電晶體709、電晶體711至電晶體713以及電晶體721至電晶體723是單閘極電晶體,但是也可以是具有背閘極的雙閘極電晶體。同樣地,圖15B示出電路SRDUM的電路結構的一個例子。 Fig. 15A shows an example of the circuit configuration of the circuit SR. The circuit 700 shown in FIG. 15A includes a transistor 701 to a transistor 709. The circuit 710 shown in FIG. 15A includes a transistor 711 to a transistor 713. The circuit 720 shown in FIG. 15A includes a transistor 721 to a transistor 723. In the drawings, the transistors 701 to 709, the transistors 711 to 713, and the transistors 721 to 723 are single gate transistors, but may also be double gate transistors having back gates. Similarly, Fig. 15B shows an example of the circuit configuration of the circuit SR DUM .
圖16為示出脈衝寬度控制信號PWC1至PWC4、時脈信號CLK1至CLK4、起動脈衝SP及輸出端子OUT_1至OUT_m的波形的時序圖。在圖16所示的時 序圖中,上半期間相當於圖7A所示的以虛線箭頭23表示的依次對各行輸出掃描信號的期間P1。另外,下半期間相當於圖7A所示的以虛線箭頭25表示的只對規定的行輸出掃描信號的期間P2。 16 is a timing chart showing waveforms of the pulse width control signals PWC1 to PWC4, the clock signals CLK1 to CLK4, the start pulse SP, and the output terminals OUT_1 to OUT_m. In the timing chart shown in Fig. 16, the upper half period corresponds to the period P1 in which the scanning signals are sequentially output to the respective lines indicated by the broken line arrow 23 shown in Fig. 7A. Further, the lower half period corresponds to the period P2 in which the scanning signal is output only to the predetermined line indicated by the broken line arrow 25 shown in FIG. 7A.
在期間P1中,根據起動脈衝SP、脈衝寬度控制信號PWC1至PWC4、時脈信號CLK1至CLK4,依次輸出脈衝。 In the period P1, pulses are sequentially output in accordance with the start pulse SP, the pulse width control signals PWC1 to PWC4, and the clock signals CLK1 to CLK4.
另一方面,在第二期間P2中,為了只對規定的行輸出脈衝,在一定期間將脈衝寬度控制信號PWC1至PWC4固定為L位準。例如,在圖16中,對輸出端子OUT_1、輸出端子OUT_2、輸出端子OUT_m-1及OUT_m輸出脈衝,而不對輸出端子OUT_j及OUT_j+1輸出脈衝。在此情況下,在期間Pa、期間Pc與期間P1同樣地進行利用脈衝寬度控制信號PWC1至PWC4的觸發式操作(toggle operation),在期間Pb將脈衝寬度控制信號PWC1至PWC4固定為L位準。藉由將脈衝寬度控制信號PWC1至PWC4固定為L位準,輸出端子OUT_j及OUT_j+1成為L位準,因此不輸出脈衝。 On the other hand, in the second period P2, in order to output a pulse only to a predetermined line, the pulse width control signals PWC1 to PWC4 are fixed to the L level for a certain period of time. For example, in FIG. 16, pulses are output to the output terminal OUT_1, the output terminal OUT_2, the output terminals OUT_m-1, and OUT_m, and the output terminals OUT_j and OUT_j+1 are not output. In this case, the trigger operation using the pulse width control signals PWC1 to PWC4 is performed in the period Pa and the period Pc in the same manner as the period P1, and the pulse width control signals PWC1 to PWC4 are fixed to the L level during the period Pb. . By fixing the pulse width control signals PWC1 to PWC4 to the L level, the output terminals OUT_j and OUT_j+1 become the L level, and therefore no pulse is output.
如上所述,可以在不按區域分割閘極驅動器的情況下停止對規定的行的掃描信號的輸出。 As described above, the output of the scan signal for the prescribed line can be stopped without dividing the gate driver by the area.
注意,可以將本實施方式的一部分或整體自由地組合於其他實施方式的一部分或整體而實施。 Note that a part or the whole of the present embodiment can be freely combined with a part or the whole of other embodiments.
在本實施方式中,對上述實施方式1所說明的使用反射型顯示元件及發光型顯示元件的顯示裝置的結構實例進行說明。另外,在本實施方式中,以作為反射型顯示元件利用液晶元件且作為發光型顯示元件利用使用EL材料的發光元件的情況為例子說明顯示裝置的結構實例。 In the present embodiment, a configuration example of a display device using a reflective display element and an illuminating display element described in the first embodiment will be described. In the present embodiment, a configuration example of a display device will be described by way of an example in which a liquid crystal element is used as a reflective display element and a light-emitting element using an EL material is used as an emission-type display element.
圖17A示出根據本發明的一個實施方式的顯示裝置406的剖面結構作為一個例子。圖17A所示的顯示裝置406包括發光元件203、液晶元件204、具有控制向發光元件203的電流的供應的功能的電晶體205、具有控制向液晶元件204的電壓的供應的功能的電晶體206。並且,發光元件203、液晶元件204、電晶體205以及電晶體206位於基板201與基板202之間。 FIG. 17A shows a cross-sectional structure of a display device 406 according to an embodiment of the present invention as an example. The display device 406 shown in FIG. 17A includes a light-emitting element 203, a liquid crystal element 204, a transistor 205 having a function of controlling supply of current to the light-emitting element 203, and a transistor 206 having a function of controlling supply of a voltage to the liquid crystal element 204. . Further, the light-emitting element 203, the liquid crystal element 204, the transistor 205, and the transistor 206 are located between the substrate 201 and the substrate 202.
另外,在顯示裝置406中,液晶元件204包括像素電極207、共用電極208以及液晶層209。像素電極207與電晶體206電連接。並且,藉由施加到像素電極207與共用電極208之間的電壓,液晶層209的配向被控制。另外,在圖17A中例示出像素電極207具有反射可見光的功能且共用電極208具有使可見光透過的功能的情況,從基板202一側入射的光如輪廓箭頭所示那樣由像素電極207發射,再次從基板202一側發射。 Further, in the display device 406, the liquid crystal element 204 includes a pixel electrode 207, a common electrode 208, and a liquid crystal layer 209. The pixel electrode 207 is electrically connected to the transistor 206. Further, the alignment of the liquid crystal layer 209 is controlled by the voltage applied between the pixel electrode 207 and the common electrode 208. In addition, in FIG. 17A, the pixel electrode 207 has a function of reflecting visible light and the common electrode 208 has a function of transmitting visible light, and light incident from the substrate 202 side is emitted by the pixel electrode 207 as indicated by a contour arrow, again. It is emitted from the side of the substrate 202.
另外,發光元件203與電晶體205電連接。從發光元件203發射的光向基板202一側發射。另外,在圖17A中例示出像素電極207具有反射可見光的功能且共用電極208具有使可見光透過的功能的情況,因此,從發 光元件203發射的光如輪廓箭頭所示那樣穿過沒有重疊於像素電極207的區域及存在共用電極208的區域,而從基板202一側發射。 Further, the light emitting element 203 is electrically connected to the transistor 205. Light emitted from the light emitting element 203 is emitted toward the side of the substrate 202. In addition, in FIG. 17A, the pixel electrode 207 has a function of reflecting visible light and the common electrode 208 has a function of transmitting visible light, and therefore, light emitted from the light-emitting element 203 passes through as shown by the outline arrow without overlapping with the pixel. The region of the electrode 207 and the region where the common electrode 208 is present are emitted from the substrate 202 side.
在圖17A所示的顯示裝置406中,電晶體205及電晶體206位於同一層210中,包括電晶體205及電晶體206的層210具有液晶元件204與發光元件203之間的區域。另外,在電晶體205所包括的半導體層及電晶體206所包括的半導體層至少位於同一絕緣表面上的情況下,可以說電晶體205及電晶體206包括在同一層210中。 In the display device 406 shown in FIG. 17A, the transistor 205 and the transistor 206 are located in the same layer 210, and the layer 210 including the transistor 205 and the transistor 206 has a region between the liquid crystal element 204 and the light-emitting element 203. In addition, in the case where the semiconductor layer included in the transistor 205 and the semiconductor layer included in the transistor 206 are located on at least the same insulating surface, it can be said that the transistor 205 and the transistor 206 are included in the same layer 210.
藉由採用上述結構,可以在共同的製程中形成電晶體205及電晶體206。 By employing the above structure, the transistor 205 and the transistor 206 can be formed in a common process.
接著,圖17B示出根據本發明的一個實施方式的顯示裝置406的其他結構的剖面結構作為一個例子。在圖17B所示的顯示裝置406與圖17A所示的顯示裝置406的不同之處在於:電晶體205及電晶體206分別包括在不同的層中。 Next, Fig. 17B shows a cross-sectional structure of another structure of the display device 406 according to an embodiment of the present invention as an example. The display device 406 shown in FIG. 17B is different from the display device 406 shown in FIG. 17A in that the transistor 205 and the transistor 206 are respectively included in different layers.
明確而言,圖17B所示的顯示裝置406具有包括電晶體205的層210a以及包括電晶體206的層210b,層210a及層210b具有液晶元件204與發光元件203之間的區域。並且,在圖17B所示的顯示裝置406中,層210a設置得比層210b靠近發光元件203一側。另外,在電晶體205所包括的半導體層及電晶體206所包括的半導體層至少位於不同的絕緣表面上的情況下,可以說 電晶體205及電晶體206包括在不同層中。 Specifically, the display device 406 illustrated in FIG. 17B has a layer 210a including a transistor 205 and a layer 210b including a transistor 206 having a region between the liquid crystal element 204 and the light emitting element 203. Further, in the display device 406 shown in FIG. 17B, the layer 210a is disposed closer to the side of the light-emitting element 203 than the layer 210b. Further, in the case where the semiconductor layer included in the transistor 205 and the semiconductor layer included in the transistor 206 are located on at least different insulating surfaces, it can be said that the transistor 205 and the transistor 206 are included in different layers.
藉由採用上述結構,可以使電晶體205、電連接於電晶體205的各種佈線與電晶體206、電連接於電晶體206的各種佈線部分地重疊,因此可以將像素的尺寸抑制得小,並實現顯示裝置406的高解析度。 By adopting the above configuration, the various wirings of the transistor 205, the electrical connection to the transistor 205, and the various wirings electrically connected to the transistor 206 can be partially overlapped, so that the size of the pixel can be suppressed small, and The high resolution of the display device 406 is achieved.
接著,圖17C示出根據本發明的一個實施方式的顯示裝置406的其他結構的剖面結構作為一個例子。在圖17C所示的顯示裝置406與圖17A所示的顯示裝置406的不同之處在於:電晶體205及電晶體206分別包括在不同的層中。另外,在圖17C所示的顯示裝置406與圖17B所示的顯示裝置406的不同之處在於:包括電晶體205的層210a設置得比發光元件203靠近基板201一側。 Next, Fig. 17C shows a cross-sectional structure of another structure of the display device 406 according to an embodiment of the present invention as an example. The display device 406 shown in FIG. 17C is different from the display device 406 shown in FIG. 17A in that the transistor 205 and the transistor 206 are respectively included in different layers. In addition, the display device 406 shown in FIG. 17C is different from the display device 406 shown in FIG. 17B in that the layer 210a including the transistor 205 is disposed closer to the substrate 201 than the light-emitting element 203.
明確而言,圖17C所示的顯示裝置406具有包括電晶體205的層210a及包括電晶體206的層210b。並且,層210a具有發光元件203與基板201之間的區域。另外,層210b具有液晶元件204與發光元件203之間的區域。 Specifically, the display device 406 shown in FIG. 17C has a layer 210a including a transistor 205 and a layer 210b including a transistor 206. Also, the layer 210a has a region between the light emitting element 203 and the substrate 201. In addition, the layer 210b has a region between the liquid crystal element 204 and the light-emitting element 203.
藉由採用上述結構,與圖17B所示的情況相比,可以進一步增大電晶體205、電連接於電晶體205的各種佈線與電晶體206、電連接於電晶體206的各種佈線重疊的面積,因此可以將像素的尺寸抑制得小,並實現顯示裝置406的高解析度。 By adopting the above configuration, the area in which the transistor 205, the various wirings electrically connected to the transistor 205 and the transistor 206, and the various wirings electrically connected to the transistor 206 overlap can be further increased as compared with the case shown in Fig. 17B. Therefore, the size of the pixel can be suppressed to be small, and high resolution of the display device 406 can be achieved.
另外,圖17A至圖17C例示出一個發光元件 203對應於兩個液晶元件204的剖面結構,但是根據本發明的一個實施方式的顯示裝置既可以具有一個發光元件203對應於一個液晶元件204的剖面結構,又可以具有多個發光元件203對應於一個液晶元件204的剖面結構。 In addition, FIGS. 17A to 17C illustrate a cross-sectional structure of one light-emitting element 203 corresponding to two liquid crystal elements 204, but the display device according to an embodiment of the present invention may have a cross section of one light-emitting element 203 corresponding to one liquid crystal element 204. The structure may have a cross-sectional structure in which a plurality of light-emitting elements 203 correspond to one liquid crystal element 204.
另外,圖17A至圖17C例示出液晶元件204所包括的像素電極207具有反射可見光的功能的情況,但是像素電極207也可以具有使可見光透過的功能。在此情況下,既可以將背光源及前光源等光源設置在顯示裝置406中,又可以在使用液晶元件204顯示影像時使用發光元件203作為光源。 17A to 17C illustrate a case where the pixel electrode 207 included in the liquid crystal element 204 has a function of reflecting visible light, but the pixel electrode 207 may have a function of transmitting visible light. In this case, a light source such as a backlight or a front light source may be provided in the display device 406, or the light-emitting element 203 may be used as a light source when displaying an image using the liquid crystal element 204.
本實施方式相當於對其他實施方式的一部分進行更改、應用、上位概念化或下位概念化的方式。因此,本實施方式的一部分或全部可以和其他實施方式組合或替換而實施。 The present embodiment corresponds to a method of changing, applying, super-conceptualizing, or sub-conceptualizing a part of other embodiments. Therefore, some or all of the embodiments may be combined or replaced with other embodiments.
在本實施方式中,對使用反射型顯示元件及發光型顯示元件的顯示裝置所包括的像素的結構實例進行說明。另外,在本實施方式中,以作為反射型顯示元件利用液晶元件且作為發光型顯示元件利用使用EL材料的發光元件的情況為例子說明根據本發明的一個實施方式的像素300的結構實例。 In the present embodiment, a configuration example of a pixel included in a display device using a reflective display element and a light-emitting display element will be described. In the present embodiment, a configuration example of the pixel 300 according to an embodiment of the present invention will be described by taking a case where a liquid crystal element is used as a reflective display element and a light-emitting element using an EL material as an emission-type display element.
圖18A所示的像素300包括像素350及像素351。像素350包括液晶元件301,像素351包括發光元 件302。 The pixel 300 shown in FIG. 18A includes a pixel 350 and a pixel 351. The pixel 350 includes a liquid crystal element 301, and the pixel 351 includes a light emitting element 302.
明確而言,像素350包括液晶元件301、具有控制施加到液晶元件301的電壓的功能的電晶體303及電容器304。電晶體303的閘極與佈線GL電連接,源極和汲極中的一個與佈線SL電連接,源極和汲極中的另一個與液晶元件301的像素電極電連接。另外,液晶元件301的共用電極與被供應指定的電位的佈線或電極電連接。另外,電容器304的一個電極與液晶元件301的像素電極電連接,另一個電極與被供應指定的電位的佈線或電極電連接。 Specifically, the pixel 350 includes a liquid crystal element 301, a transistor 303 having a function of controlling a voltage applied to the liquid crystal element 301, and a capacitor 304. The gate of the transistor 303 is electrically connected to the wiring GL, one of the source and the drain is electrically connected to the wiring SL, and the other of the source and the drain is electrically connected to the pixel electrode of the liquid crystal element 301. Further, the common electrode of the liquid crystal element 301 is electrically connected to a wiring or an electrode to which a predetermined potential is supplied. Further, one electrode of the capacitor 304 is electrically connected to the pixel electrode of the liquid crystal element 301, and the other electrode is electrically connected to a wiring or electrode to which a specified potential is supplied.
明確而言,像素351包括發光元件302、具有控制供應到發光元件302的電流的功能的電晶體305、具有控制對電晶體305的閘極供應電位的功能的電晶體306及電容器307。電晶體306的閘極與佈線GE電連接,源極和汲極中的一個與佈線DL電連接,源極和汲極中的另一個與電晶體305的閘極電連接。電晶體305的源極和汲極中的一個與佈線AL電連接,源極和汲極中的另一個與發光元件302電連接。電容器307的一個電極與佈線AL電連接,另一個電極與電晶體305的閘極電連接。 Specifically, the pixel 351 includes a light-emitting element 302, a transistor 305 having a function of controlling a current supplied to the light-emitting element 302, a transistor 306 having a function of controlling a potential supply to the gate of the transistor 305, and a capacitor 307. The gate of the transistor 306 is electrically connected to the wiring GE, one of the source and the drain is electrically connected to the wiring DL, and the other of the source and the drain is electrically connected to the gate of the transistor 305. One of the source and the drain of the transistor 305 is electrically connected to the wiring AL, and the other of the source and the drain is electrically connected to the light-emitting element 302. One electrode of the capacitor 307 is electrically connected to the wiring AL, and the other electrode is electrically connected to the gate of the transistor 305.
在圖18A所示的像素300中,藉由將對應於液晶元件301的影像信號供應到佈線SL,來將對應於發光元件302的影像信號供應到佈線DL,由此可以獨立地控制液晶元件301所表達的灰階及發光元件302所表達的灰階。 In the pixel 300 shown in FIG. 18A, the image signal corresponding to the light-emitting element 302 is supplied to the wiring DL by supplying the image signal corresponding to the liquid crystal element 301 to the wiring SL, whereby the liquid crystal element 301 can be independently controlled. The gray scale expressed and the gray scale expressed by the light-emitting element 302.
注意,圖18A示出包括一個包括液晶元件301的像素350及一個包括發光元件302的像素351的像素300的結構實例,但是像素300也可以包括多個像素350或者多個像素351。 Note that FIG. 18A shows a structural example of a pixel 300 including a pixel 350 including a liquid crystal element 301 and a pixel 351 including a light-emitting element 302, but the pixel 300 may also include a plurality of pixels 350 or a plurality of pixels 351.
圖18B示出包括一個像素350及四個像素351的像素300的結構實例。 FIG. 18B shows a structural example of a pixel 300 including one pixel 350 and four pixels 351.
明確而言,圖18B所示的像素300包括包括液晶元件301的像素350及各自包括發光元件302的像素351a至像素351d。 Specifically, the pixel 300 illustrated in FIG. 18B includes a pixel 350 including a liquid crystal element 301 and pixels 351a to 351d each including a light emitting element 302.
關於圖18B所示的像素350的結構,可以參照圖18A所示的像素350的結構。 Regarding the structure of the pixel 350 shown in FIG. 18B, the structure of the pixel 350 shown in FIG. 18A can be referred to.
圖18B所示的像素351a至像素351d與圖18A所示的像素351同樣分別包括發光元件302、具有控制供應到發光元件302的電流的功能的電晶體305、具有控制對電晶體305的閘極供應電位的功能的電晶體306及電容器307。藉由使從像素351a至像素351d各自包括的發光元件302發射的光具有不同區域的波長,可以在顯示裝置中顯示彩色影像。 The pixel 351a to the pixel 351d shown in FIG. 18B respectively include a light-emitting element 302, a transistor 305 having a function of controlling a current supplied to the light-emitting element 302, and a gate having a control pair of the transistor 305, similarly to the pixel 351 shown in FIG. 18A. A transistor 306 and a capacitor 307 that supply the function of the potential. The color image can be displayed on the display device by causing the light emitted from the light-emitting elements 302 included in each of the pixels 351a to 351d to have wavelengths of different regions.
在圖18B所示的像素351a至像素351d中,像素351a所包括的電晶體306的閘極及像素351c所包括的電晶體306的閘極與佈線GEb電連接。另外,像素351b所包括的電晶體306的閘極及像素351d所包括的電晶體306的閘極與佈線GEa電連接。 In the pixel 351a to the pixel 351d shown in FIG. 18B, the gate of the transistor 306 included in the pixel 351a and the gate of the transistor 306 included in the pixel 351c are electrically connected to the wiring GEb. Further, the gate of the transistor 306 included in the pixel 351b and the gate of the transistor 306 included in the pixel 351d are electrically connected to the wiring GEa.
另外,在圖18B所示的像素351a至像素351d 中,像素351a所包括的電晶體306的源極和汲極中的一個及像素351b所包括的電晶體306的源極和汲極中的一個與佈線DLa電連接。另外,像素351c所包括的電晶體306的源極和汲極中的一個及像素351d所包括的電晶體306的源極和汲極中的一個與佈線DLb電連接。 In addition, in the pixel 351a to the pixel 351d illustrated in FIG. 18B, one of the source and the drain of the transistor 306 included in the pixel 351a and one of the source and the drain of the transistor 306 included in the pixel 351b Electrically connected to the wiring DLa. Further, one of the source and the drain of the transistor 306 included in the pixel 351c and one of the source and the drain of the transistor 306 included in the pixel 351d are electrically connected to the wiring DLb.
在圖18B所示的像素351a至像素351d中,所有的電晶體305的源極和汲極中的一個與佈線AL電連接。 In the pixel 351a to the pixel 351d shown in FIG. 18B, one of the source and the drain of all the transistors 305 is electrically connected to the wiring AL.
如上所述,在圖18B所示的像素351a至像素351d中,像素351a及像素351c共同使用佈線GEb,像素351b及像素351d共同使用佈線GEa,但是像素351a至像素351d也可以共同使用一個佈線GE。在此情況下,像素351a至像素351d較佳為與彼此不同的四個佈線DL電連接。 As described above, in the pixel 351a to the pixel 351d shown in FIG. 18B, the pixel 351a and the pixel 351c use the wiring GEb in common, and the pixel 351b and the pixel 351d use the wiring GEa in common, but the pixel 351a to the pixel 351d may also use one wiring GE in common. . In this case, the pixels 351a to 351d are preferably electrically connected to four wirings DL different from each other.
接著,圖19A示出與圖18A不同的像素300的結構實例。圖19A所示的像素300與圖18A所示的像素300的不同之處在於像素351所包括的電晶體305包括背後通道。 Next, Fig. 19A shows a structural example of a pixel 300 different from Fig. 18A. The pixel 300 shown in FIG. 19A is different from the pixel 300 shown in FIG. 18A in that the transistor 305 included in the pixel 351 includes a back channel.
明確而言,在圖19A所示的像素300中,電晶體305的背閘極與閘極(前閘極)電連接。由於圖19A所示的像素300具有上述結構,因此可以抑制電晶體305的臨界電壓的漂移,而可以提高電晶體305的可靠性。另外,由於圖19A所示的像素300具有上述結構,因此可以減小電晶體305的尺寸,同時可以提高電晶體305的通態 電流。 Specifically, in the pixel 300 shown in FIG. 19A, the back gate of the transistor 305 is electrically connected to the gate (front gate). Since the pixel 300 shown in FIG. 19A has the above structure, the drift of the threshold voltage of the transistor 305 can be suppressed, and the reliability of the transistor 305 can be improved. In addition, since the pixel 300 shown in Fig. 19A has the above structure, the size of the transistor 305 can be reduced, and the on-state current of the transistor 305 can be increased.
在本發明的一個實施方式的顯示裝置中,像素300也可以包括多個圖19A所示的像素350或者圖19A所示的像素351。明確而言,與圖18B所示的像素300同樣,可以包括圖19A所示的一個像素350及四個像素351。在此情況下,關於各種佈線與四個像素351的連接關係可以參照圖18B所示的像素300。 In the display device of one embodiment of the present invention, the pixel 300 may also include a plurality of pixels 350 shown in FIG. 19A or pixels 351 shown in FIG. 19A. Specifically, as with the pixel 300 shown in FIG. 18B, one pixel 350 and four pixels 351 shown in FIG. 19A may be included. In this case, regarding the connection relationship of the various wirings to the four pixels 351, reference may be made to the pixel 300 shown in FIG. 18B.
接著,圖19B示出與圖18A不同的像素300的結構實例。圖19B所示的像素300與圖18A所示的像素300的不同之處在於像素351所包括的電晶體305包括背閘極。圖19B所示的像素300與圖19A所示的像素300的不同之處在於電晶體305的背閘極與發光元件302電連接,而不與閘極電連接。 Next, Fig. 19B shows a structural example of a pixel 300 different from Fig. 18A. The pixel 300 shown in FIG. 19B is different from the pixel 300 shown in FIG. 18A in that the transistor 305 included in the pixel 351 includes a back gate. The pixel 300 shown in FIG. 19B is different from the pixel 300 shown in FIG. 19A in that the back gate of the transistor 305 is electrically connected to the light-emitting element 302 without being electrically connected to the gate.
由於圖19B所示的像素300具有上述結構,因此可以抑制電晶體305的臨界電壓的漂移,而可以提高電晶體305的可靠性。 Since the pixel 300 shown in FIG. 19B has the above structure, the drift of the threshold voltage of the transistor 305 can be suppressed, and the reliability of the transistor 305 can be improved.
在本發明的一個實施方式的顯示裝置中,像素300也可以包括多個圖19B所示的像素350或者圖19B所示的像素351。明確而言,與圖18B所示的像素300同樣,可以包括圖19B所示的一個像素350及四個像素351。在此情況下,關於各種佈線與四個像素351的連接關係可以參照圖18B所示的像素300。 In the display device of one embodiment of the present invention, the pixel 300 may also include a plurality of pixels 350 shown in FIG. 19B or pixels 351 shown in FIG. 19B. Specifically, as with the pixel 300 shown in FIG. 18B, one pixel 350 and four pixels 351 shown in FIG. 19B may be included. In this case, regarding the connection relationship of the various wirings to the four pixels 351, reference may be made to the pixel 300 shown in FIG. 18B.
接著,圖20示出與圖18A不同的像素300的結構實例。圖20所示的像素300包括像素350及像素 351,像素351的結構與圖18A不同。 Next, Fig. 20 shows a structural example of a pixel 300 different from Fig. 18A. The pixel 300 shown in Fig. 20 includes a pixel 350 and a pixel 351, and the structure of the pixel 351 is different from that of Fig. 18A.
明確而言,圖20所示的像素351包括發光元件302、具有控制供應到發光元件302的電流的功能的電晶體305、具有控制對電晶體305的閘極供應電位的功能的電晶體306、具有對發光元件302的像素電極供應指定電位的功能的電晶體308及電容器307。另外,電晶體305、電晶體306及電晶體308都包括背閘極。 Specifically, the pixel 351 shown in FIG. 20 includes a light-emitting element 302, a transistor 305 having a function of controlling a current supplied to the light-emitting element 302, and a transistor 306 having a function of controlling a potential supply to the gate of the transistor 305, The transistor 308 and the capacitor 307 have a function of supplying a predetermined potential to the pixel electrode of the light-emitting element 302. Additionally, transistor 305, transistor 306, and transistor 308 all include a back gate.
電晶體306的閘極(前閘極)與佈線ML電連接,背閘極與佈線GE電連接,源極和汲極中的一個與佈線DL電連接,源極和汲極中的另一個與電晶體305的閘極及背閘極電連接。電晶體305的源極和汲極中的一個與佈線AL電連接,源極和汲極中的另一個與發光元件302電連接。 The gate (front gate) of the transistor 306 is electrically connected to the wiring ML, the back gate is electrically connected to the wiring GE, and one of the source and the drain is electrically connected to the wiring DL, and the other of the source and the drain The gate and back gate of transistor 305 are electrically connected. One of the source and the drain of the transistor 305 is electrically connected to the wiring AL, and the other of the source and the drain is electrically connected to the light-emitting element 302.
電晶體308的閘極(前閘極)與佈線ML電連接,背閘極與佈線GE電連接,源極和汲極中的一個與佈線ML電連接,源極和汲極中的另一個與發光元件302電連接。電容器307的一個電極與佈線AL電連接,另一個電極與電晶體305的閘極電連接。 The gate (front gate) of the transistor 308 is electrically connected to the wiring ML, the back gate is electrically connected to the wiring GE, and one of the source and the drain is electrically connected to the wiring ML, and the other of the source and the drain The light emitting elements 302 are electrically connected. One electrode of the capacitor 307 is electrically connected to the wiring AL, and the other electrode is electrically connected to the gate of the transistor 305.
注意,圖20示出包括一個包括液晶元件301的像素350及一個包括發光元件302的像素351的像素300的結構實例,但是像素300也可以包括多個像素350或者多個像素351。 Note that FIG. 20 shows a structural example of a pixel 300 including a pixel 350 including a liquid crystal element 301 and a pixel 351 including a light-emitting element 302, but the pixel 300 may also include a plurality of pixels 350 or a plurality of pixels 351.
圖21示出包括一個像素351及四個像素351的像素300的結構實例。 FIG. 21 shows a structural example of a pixel 300 including one pixel 351 and four pixels 351.
明確而言,圖21所示的像素300包括包括液晶元件301的像素350及各自包括發光元件302的像素351a至像素351d。 Specifically, the pixel 300 illustrated in FIG. 21 includes a pixel 350 including a liquid crystal element 301 and pixels 351a to 351d each including a light emitting element 302.
關於圖21所示的像素350的結構,可以參照圖20所示的像素350的結構。 Regarding the configuration of the pixel 350 shown in FIG. 21, the structure of the pixel 350 shown in FIG. 20 can be referred to.
圖21所示的像素351a至像素351d與圖20所示的像素351同樣分別包括發光元件302、具有控制供應到發光元件302的電流的功能的電晶體305、具有控制對電晶體305的閘極供應電位的功能的電晶體306、具有對發光元件302的像素電極供應指定電位的功能的電晶體308及電容器307。藉由使從像素351a至像素351d各自包括的發光元件302發射的光具有不同區域的波長,可以在顯示裝置中顯示彩色影像。 The pixels 351a to 351d shown in FIG. 21 respectively include a light-emitting element 302, a transistor 305 having a function of controlling a current supplied to the light-emitting element 302, and a gate having a control pair of the transistor 305, similarly to the pixel 351 shown in FIG. A transistor 306 that supplies a function of a potential, a transistor 308 having a function of supplying a predetermined potential to a pixel electrode of the light-emitting element 302, and a capacitor 307. The color image can be displayed on the display device by causing the light emitted from the light-emitting elements 302 included in each of the pixels 351a to 351d to have wavelengths of different regions.
在圖21所示的像素351a至像素351d中,像素351a所包括的電晶體306的閘極及像素351b所包括的電晶體306的閘極與佈線MLa電連接。另外,像素351c所包括的電晶體306的閘極及像素351d所包括的電晶體306的閘極與佈線MLb電連接。 In the pixel 351a to the pixel 351d shown in FIG. 21, the gate of the transistor 306 included in the pixel 351a and the gate of the transistor 306 included in the pixel 351b are electrically connected to the wiring MLa. Further, the gate of the transistor 306 included in the pixel 351c and the gate of the transistor 306 included in the pixel 351d are electrically connected to the wiring MLb.
在圖21所示的像素351a至像素351d中,像素351a所包括的電晶體306的背閘極及像素351c所包括的電晶體306的背閘極與佈線GEb電連接。另外,像素351b所包括的電晶體306的背閘極及像素351d所包括的電晶體306的背閘極與佈線GEa電連接。 In the pixel 351a to the pixel 351d shown in FIG. 21, the back gate of the transistor 306 included in the pixel 351a and the back gate of the transistor 306 included in the pixel 351c are electrically connected to the wiring GEb. In addition, the back gate of the transistor 306 included in the pixel 351b and the back gate of the transistor 306 included in the pixel 351d are electrically connected to the wiring GEa.
另外,在圖21所示的像素351a至像素351d 中,像素351a所包括的電晶體306的源極和汲極中的一個及像素351b所包括的電晶體306的源極和汲極中的一個與佈線DLa電連接。另外,像素351c所包括的電晶體306的源極和汲極中的一個及像素351d所包括的電晶體306的源極和汲極中的一個與佈線DLb電連接。 Further, in the pixel 351a to the pixel 351d shown in FIG. 21, one of the source and the drain of the transistor 306 included in the pixel 351a and one of the source and the drain of the transistor 306 included in the pixel 351b Electrically connected to the wiring DLa. Further, one of the source and the drain of the transistor 306 included in the pixel 351c and one of the source and the drain of the transistor 306 included in the pixel 351d are electrically connected to the wiring DLb.
在圖21所示的像素351a至像素351d中,像素351a所包括的電晶體308的背閘極及像素351c所包括的電晶體308的背閘極與佈線GEb電連接。另外,像素351b所包括的電晶體308的背閘極及像素351d所包括的電晶體308的背閘極與佈線GEa電連接。 In the pixel 351a to the pixel 351d shown in FIG. 21, the back gate of the transistor 308 included in the pixel 351a and the back gate of the transistor 308 included in the pixel 351c are electrically connected to the wiring GEb. In addition, the back gate of the transistor 308 included in the pixel 351b and the back gate of the transistor 308 included in the pixel 351d are electrically connected to the wiring GEa.
在圖21所示的像素351a至像素351d中,像素351a所包括的電晶體308的閘極及源極和汲極中的一個與佈線MLa電連接,像素351b所包括的電晶體308的閘極及源極和汲極中的一個與佈線MLa電連接。另外,像素351c所包括的電晶體308的閘極及源極和汲極中的一個與佈線MLb電連接,像素351b所包括的電晶體308的閘極及源極和汲極中的一個與佈線MLb電連接。 In the pixel 351a to the pixel 351d shown in FIG. 21, the gate of the transistor 308 included in the pixel 351a and one of the source and the drain are electrically connected to the wiring MLa, and the gate of the transistor 308 included in the pixel 351b And one of the source and the drain is electrically connected to the wiring MLa. In addition, the gate of the transistor 308 included in the pixel 351c and one of the source and the drain are electrically connected to the wiring MLb, and the gate and the source and the drain of the transistor 308 included in the pixel 351b are wired. MLb is electrically connected.
在圖21所示的像素351a至像素351d中,所有的電晶體305的源極和汲極中的一個與佈線AL電連接。 In the pixel 351a to the pixel 351d shown in FIG. 21, one of the source and the drain of all the transistors 305 is electrically connected to the wiring AL.
如上所述,在圖21所示的像素351a至像素351d中,像素351a及像素351c共同使用佈線GEb,像素351b及像素351d共同使用佈線GEa,但是像素351a至像素351d也可以共同使用一個佈線GE。在此情況下,像素 351a至像素351d較佳為與彼此不同的四個佈線DL電連接。 As described above, in the pixel 351a to the pixel 351d shown in FIG. 21, the pixel 351a and the pixel 351c use the wiring GEb in common, and the pixel 351b and the pixel 351d use the wiring GEa in common, but the pixel 351a to the pixel 351d may also use one wiring GE in common. . In this case, the pixels 351a to 351d are preferably electrically connected to four wirings DL different from each other.
藉由在像素350中使用關態電流低的電晶體,可以在不需要改寫顯示畫面的情況(換言之,顯示靜態影像的情況)下暫時停止驅動電路(以下,稱為“空轉停止(idling stop)”或者“IDS驅動”)。藉由進行IDS驅動,可以降低顯示裝置406的功耗。 By using a transistor having a low off-state current in the pixel 350, it is possible to temporarily stop the driving circuit when it is not necessary to rewrite the display screen (in other words, a case where a still image is displayed) (hereinafter, referred to as "idling stop" "Or "IDS driver"). By performing IDS driving, the power consumption of the display device 406 can be reduced.
本實施方式相當於對其他實施方式的一部分進行更改、應用、上位概念化或下位概念化的方式。因此,本實施方式的一部分或全部可以和其他實施方式組合或替換而實施。 The present embodiment corresponds to a method of changing, applying, super-conceptualizing, or sub-conceptualizing a part of other embodiments. Therefore, some or all of the embodiments may be combined or replaced with other embodiments.
在實施方式中,以圖17C所示的顯示裝置406為例子,參照圖22說明使用反射型顯示元件及發光型顯示元件的顯示裝置406的具體結構實例。另外,關於圖17A、圖17B所示的顯示裝置406,圖23及圖24示出使用反射型顯示元件及發光型顯示元件的顯示裝置406的具體結構實例的剖面結構,但是省略詳細的說明。注意,在圖23、圖24中對與圖22相同的組件附上相同符號。 In the embodiment, a specific configuration example of the display device 406 using the reflective display element and the light-emitting display element will be described with reference to FIG. 22, taking the display device 406 shown in FIG. 17C as an example. 17 and FIG. 24 show a cross-sectional structure of a specific configuration example of the display device 406 using the reflective display element and the light-emitting display element, but detailed description thereof will be omitted. Note that the same components as those of FIG. 22 are attached with the same reference numerals in FIGS. 23 and 24.
圖22示出顯示裝置406的剖面結構的一個例子。 FIG. 22 shows an example of a cross-sectional structure of the display device 406.
圖22所示的顯示裝置406具有在基板250與基板251之間層疊有顯示部102和顯示部104的結構。明 確而言,在圖22中,使用黏合層252黏合顯示部102和顯示部104。 The display device 406 shown in FIG. 22 has a configuration in which a display portion 102 and a display portion 104 are laminated between a substrate 250 and a substrate 251. Specifically, in Fig. 22, the display portion 102 and the display portion 104 are bonded using the adhesive layer 252.
圖22示出顯示部102的像素所具有的發光元件302、電晶體305和電容器307以及顯示部102的驅動電路所具有的電晶體309。另外,圖22示出顯示部104的像素所具有的液晶元件301、電晶體303和電容器304以及顯示部104的驅動電路所具有的電晶體310。 22 shows a light-emitting element 302, a transistor 305, a capacitor 307, and a transistor 309 of a driving circuit of the display unit 102, which are included in the pixels of the display unit 102. In addition, FIG. 22 shows the transistor 310 of the liquid crystal element 301, the transistor 303, the capacitor 304, and the drive circuit of the display unit 104 which the pixel of the display unit 104 has.
電晶體305包括:被用作背閘極的導電層311、導電層311上的絕緣層312、位於絕緣層312上且與導電層311重疊的半導體層313、半導體層313上的絕緣層316、位於絕緣層316上且被用作閘極的導電層317、位於導電層317上的絕緣層318上且與半導體層313電連接的導電層314及導電層315。 The transistor 305 includes a conductive layer 311 used as a back gate, an insulating layer 312 on the conductive layer 311, a semiconductor layer 313 on the insulating layer 312 and overlapping the conductive layer 311, and an insulating layer 316 on the semiconductor layer 313. A conductive layer 317 on the insulating layer 316 and used as a gate, a conductive layer 314 on the insulating layer 318 on the conductive layer 317 and electrically connected to the semiconductor layer 313, and a conductive layer 315.
導電層315與導電層319電連接,導電層319與導電層320電連接。導電層319和導電層317形成在同一個層中,導電層320和導電層311形成在同一個層中。 The conductive layer 315 is electrically connected to the conductive layer 319, and the conductive layer 319 is electrically connected to the conductive layer 320. The conductive layer 319 and the conductive layer 317 are formed in the same layer, and the conductive layer 320 and the conductive layer 311 are formed in the same layer.
電晶體306(未圖示)的被用作背閘極的導電層321與導電層311及導電層320位於同一個層中。絕緣層312位於導電層321上,具有與導電層321重疊的區域的半導體層322位於絕緣層312上。半導體層322包括電晶體306(未圖示)的通道形成區。絕緣層318位於半導體層322上,導電層323位於絕緣層318上。導電層323與半導體層322電連接,導電層323被用作電晶體306(未圖示)的源極電極或者汲極。 The conductive layer 321 of the transistor 306 (not shown) used as the back gate is located in the same layer as the conductive layer 311 and the conductive layer 320. The insulating layer 312 is located on the conductive layer 321, and the semiconductor layer 322 having a region overlapping the conductive layer 321 is located on the insulating layer 312. The semiconductor layer 322 includes a channel formation region of a transistor 306 (not shown). The insulating layer 318 is on the semiconductor layer 322, and the conductive layer 323 is on the insulating layer 318. The conductive layer 323 is electrically connected to the semiconductor layer 322, and the conductive layer 323 is used as a source electrode or a drain of the transistor 306 (not shown).
由於電晶體309具有與電晶體305相同的結構,因此省略詳細說明。 Since the transistor 309 has the same structure as the transistor 305, detailed description is omitted.
絕緣層324位於電晶體305、導電層323及電晶體309上,絕緣層325位於絕緣層324上。導電層326及導電層327位於絕緣層325上。導電層326與導電層314電連接,導電層327與導電層323電連接。絕緣層328位於導電層326及導電層327上,導電層329位於絕緣層328上。導電層329與導電層326電連接,被用作發光元件302的像素電極。 The insulating layer 324 is located on the transistor 305, the conductive layer 323, and the transistor 309, and the insulating layer 325 is located on the insulating layer 324. The conductive layer 326 and the conductive layer 327 are located on the insulating layer 325. The conductive layer 326 is electrically connected to the conductive layer 314, and the conductive layer 327 is electrically connected to the conductive layer 323. The insulating layer 328 is located on the conductive layer 326 and the conductive layer 327, and the conductive layer 329 is located on the insulating layer 328. The conductive layer 329 is electrically connected to the conductive layer 326 and is used as a pixel electrode of the light-emitting element 302.
導電層327、絕緣層328及導電層329彼此重疊的區域被用作電容器307。 A region where the conductive layer 327, the insulating layer 328, and the conductive layer 329 overlap each other is used as the capacitor 307.
絕緣層330位於導電層329上,EL層331位於絕緣層330上,被用作相對電極的導電層332位於EL層331上。導電層329、EL層331及導電層332在絕緣層330的開口部中彼此電連接,導電層329、EL層331及導電層332彼此電連接的區域被用作發光元件302。發光元件302具有從導電層332一側向虛線的箭頭所示的方向發射光的頂部發射結構。 The insulating layer 330 is on the conductive layer 329, the EL layer 331 is on the insulating layer 330, and the conductive layer 332 serving as the opposite electrode is on the EL layer 331. The conductive layer 329, the EL layer 331, and the conductive layer 332 are electrically connected to each other in the opening portion of the insulating layer 330, and a region where the conductive layer 329, the EL layer 331, and the conductive layer 332 are electrically connected to each other is used as the light-emitting element 302. The light-emitting element 302 has a top emission structure that emits light from the side of the conductive layer 332 toward the direction indicated by the arrow of the broken line.
導電層329和導電層332中的一個被用作陽極,另一個被用作陰極。當對導電層329和導電層332之間施加高於發光元件302的臨界電壓的電壓時,電洞從陽極一側注入到EL層331中,而電子從陰極一側注入到EL層331中。被注入的電子和電洞在EL層331中再結合,而使包含在EL層331中的發光物質發光。 One of the conductive layer 329 and the conductive layer 332 is used as an anode, and the other is used as a cathode. When a voltage higher than the threshold voltage of the light-emitting element 302 is applied between the conductive layer 329 and the conductive layer 332, the hole is injected into the EL layer 331 from the anode side, and electrons are injected into the EL layer 331 from the cathode side. The injected electrons and holes are recombined in the EL layer 331, and the luminescent substance contained in the EL layer 331 is caused to emit light.
在作為半導體層313、322使用金屬氧化物的情況下,為了提高顯示裝置的可靠性,較佳為作為絕緣層318使用包含氧的絕緣材料且作為絕緣層324使用不容易擴散水或氫等雜質的材料。 When a metal oxide is used as the semiconductor layers 313 and 322, in order to improve the reliability of the display device, it is preferable to use an insulating material containing oxygen as the insulating layer 318, and it is not easy to diffuse water or hydrogen or the like as the insulating layer 324. s material.
在作為絕緣層325或絕緣層330使用有機材料的情況下,如果絕緣層325或絕緣層330在顯示裝置的端部中露出,水分等雜質則有可能從顯示器的外部經過絕緣層325或絕緣層330進入發光元件302等。如果雜質的侵入使發光元件302劣化,則導致顯示裝置的劣化。因此,如圖22所示,絕緣層325及絕緣層330較佳為不位於顯示裝置的端部。 In the case where an organic material is used as the insulating layer 325 or the insulating layer 330, if the insulating layer 325 or the insulating layer 330 is exposed in the end portion of the display device, impurities such as moisture may pass through the insulating layer 325 or the insulating layer from the outside of the display. 330 enters the light-emitting element 302 and the like. If the intrusion of impurities causes the light-emitting element 302 to deteriorate, deterioration of the display device is caused. Therefore, as shown in FIG. 22, the insulating layer 325 and the insulating layer 330 are preferably not located at the end of the display device.
發光元件302隔著黏合層333與彩色層334重疊。間隔物335隔著黏合層333與遮光層336重疊。圖22示出在導電層332與遮光層336之間有間隔的情況,但是,它們也可以接觸。 The light emitting element 302 overlaps the color layer 334 via the adhesive layer 333. The spacer 335 overlaps the light shielding layer 336 via the adhesive layer 333. Fig. 22 shows a case where there is a space between the conductive layer 332 and the light shielding layer 336, but they may also be in contact.
彩色層334是使特定波長區域的光透射的有色層。例如,可以使用使紅色、綠色、藍色或黃色波長範圍的光透過的濾色片等。 The color layer 334 is a colored layer that transmits light of a specific wavelength region. For example, a color filter or the like that transmits light in a wavelength range of red, green, blue, or yellow can be used.
另外,本發明的一個實施方式不侷限於濾色片方式,也可以採用塗佈方式、顏色轉換方法或量子點方式等。 Further, an embodiment of the present invention is not limited to the color filter method, and a coating method, a color conversion method, a quantum dot method, or the like may be employed.
在顯示部104中,電晶體303包括被用作背閘極的導電層340、導電層340上的絕緣層341、位於絕緣層341上且與導電層340重疊的半導體層342、半導體 層342上的絕緣層343、位於絕緣層343上且被用作閘極的導電層344、位於導電層344上的絕緣層345上且與半導體層342電連接的導電層346及導電層347。 In the display portion 104, the transistor 303 includes a conductive layer 340 used as a back gate, an insulating layer 341 on the conductive layer 340, a semiconductor layer 342 on the insulating layer 341 and overlapping the conductive layer 340, and a semiconductor layer 342. The insulating layer 343, the conductive layer 344 on the insulating layer 343 and used as a gate, the conductive layer 346 on the insulating layer 345 on the conductive layer 344 and electrically connected to the semiconductor layer 342, and the conductive layer 347.
導電層340和導電層348位於同一個層中。絕緣層341位於導電層348上,導電層347位於絕緣層341上的與導電層348重疊的區域。導電層347、絕緣層341和導電層348彼此重疊的區域被用作電容器304。 Conductive layer 340 and conductive layer 348 are located in the same layer. The insulating layer 341 is on the conductive layer 348, and the conductive layer 347 is located on the insulating layer 341 in a region overlapping the conductive layer 348. A region where the conductive layer 347, the insulating layer 341, and the conductive layer 348 overlap each other is used as the capacitor 304.
由於電晶體310具有與電晶體303相同的結構,因此省略詳細說明。 Since the transistor 310 has the same structure as the transistor 303, detailed description is omitted.
絕緣層360位於電晶體303、電容器304及電晶體310上,導電層349位於絕緣層360上。導電層349與導電層347電連接,被用作液晶元件301的像素電極。配向膜364位於導電層349上。 The insulating layer 360 is located on the transistor 303, the capacitor 304, and the transistor 310, and the conductive layer 349 is located on the insulating layer 360. The conductive layer 349 is electrically connected to the conductive layer 347, and is used as a pixel electrode of the liquid crystal element 301. The alignment film 364 is on the conductive layer 349.
基板251設置有被用作共用電極的導電層361。明確而言,在圖22中,使用黏合層362將絕緣層363黏合到基板251,導電層361位於絕緣層363上。配向膜365位於導電層361上,液晶層366位於配向膜364與配向膜365之間。 The substrate 251 is provided with a conductive layer 361 which is used as a common electrode. Specifically, in FIG. 22, the insulating layer 363 is bonded to the substrate 251 using the adhesive layer 362, and the conductive layer 361 is positioned on the insulating layer 363. The alignment film 365 is located on the conductive layer 361, and the liquid crystal layer 366 is located between the alignment film 364 and the alignment film 365.
在圖22中,由於導電層349具有反射可見光的功能,導電層361具有透過可見光的功能,因此如虛線的箭頭所示,可以使從基板251一側入射的光被導電層349反射且從基板251一側射出。 In FIG. 22, since the conductive layer 349 has a function of reflecting visible light, the conductive layer 361 has a function of transmitting visible light, so that light incident from the side of the substrate 251 can be reflected by the conductive layer 349 and reflected from the substrate as indicated by a broken arrow. 251 side shot.
作為透射可見光的導電材料,例如較佳為使用包含選自銦(In)、鋅(Zn)、錫(Sn)中的一種的材 料。明確而言,可以舉出氧化銦、銦錫氧化物(ITO:Indium Tin Oxide)、銦鋅氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、包含氧化矽的銦錫氧化物(ITSO)、氧化鋅、包含鎵的氧化鋅等。另外,也可以使用包含石墨烯的膜。包含石墨烯的膜例如可以藉由還原形成為膜狀的氧化石墨烯而形成。 As the conductive material that transmits visible light, for example, a material containing one selected from the group consisting of indium (In), zinc (Zn), and tin (Sn) is preferably used. Specifically, indium oxide, indium tin oxide (ITO: Indium Tin Oxide), indium zinc oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, and indium oxidation containing titanium oxide may be mentioned. An indium tin oxide containing titanium oxide, indium tin oxide containing cerium oxide (ITSO), zinc oxide, zinc oxide containing gallium, or the like. Further, a film containing graphene may also be used. The film containing graphene can be formed, for example, by reducing graphene oxide formed into a film shape.
作為反射可見光的導電材料,例如可以舉出鋁、銀或包含這些金屬材料的合金等。另外,可以使用金、鉑、鎳、鎢、鉻、鉬、鐵、鈷、銅或鈀等金屬材料或包含這些金屬材料的合金。另外,也可以在上述金屬材料或合金中添加有鑭、釹或鍺等。另外,也可以使用鋁和鈦的合金、鋁和鎳的合金、鋁和釹的合金、鋁、鎳和鑭的合金(Al-Ni-La)等包含鋁的合金(鋁合金)、銀和銅的合金、銀、鈀和銅的合金(Ag-Pd-Cu,也記為APC)或者銀和鎂的合金等包含銀的合金。 Examples of the conductive material that reflects visible light include aluminum, silver, and an alloy containing these metal materials. Further, a metal material such as gold, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper or palladium or an alloy containing these metal materials may be used. Further, ruthenium, osmium or iridium may be added to the above metal material or alloy. In addition, alloys of aluminum and titanium, alloys of aluminum and nickel, alloys of aluminum and niobium, alloys of aluminum, nickel and niobium (Al-Ni-La), alloys containing aluminum (aluminum alloy), silver and copper may also be used. An alloy containing silver, such as an alloy of alloy, silver, palladium, and copper (Ag-Pd-Cu, also referred to as APC) or an alloy of silver and magnesium.
圖22至圖24示出使用包括背閘極的頂閘極型電晶體的顯示裝置的結構,但是本發明的一個實施方式的顯示裝置也可以使用不包括背閘極的電晶體,還可以使用頂閘極型電晶體。 22 to 24 illustrate a structure of a display device using a top gate type transistor including a back gate, but the display device of one embodiment of the present invention may also use a transistor not including a back gate, and may also be used. Top gate type transistor.
對用於電晶體的半導體材料的結晶性也沒有特別的限制,可以使用非晶半導體或具有結晶性的半導體(微晶半導體、多晶半導體、單晶半導體或其一部分具有結晶區域的半導體)。當使用具有結晶性的半導體時可以 抑制電晶體的特性劣化,所以是較佳的。 The crystallinity of the semiconductor material used for the transistor is also not particularly limited, and an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor having a crystal region in a part thereof) can be used. It is preferable to use a semiconductor having crystallinity to suppress deterioration of characteristics of the crystal.
此外,作為用於電晶體的半導體材料,可以使用金屬氧化物。典型地,可以使用包含銦的金屬氧化物等。尤其是,當使用其能帶間隙比矽寬且載子密度小的半導體材料時,可以降低電晶體的關閉狀態下的電流,所以是較佳的。 Further, as the semiconductor material for the transistor, a metal oxide can be used. Typically, a metal oxide containing indium or the like can be used. In particular, when a semiconductor material having a band gap wider than that of 矽 and having a small carrier density is used, it is preferable to reduce the current in the closed state of the transistor.
當使用金屬氧化物時,作為半導體層例如可以採用包含銦、鋅及M(鋁、鈦、鎵、鍺、釔、鋯、鑭、鈰、錫、釹或鉿等金屬)的以“In-M-Zn類氧化物”表示的膜。 When a metal oxide is used, as the semiconductor layer, for example, "In-M" including indium, zinc, and M (a metal such as aluminum, titanium, gallium, germanium, antimony, zirconium, hafnium, tantalum, tin, antimony, or antimony) may be used. a film represented by a -Zn-based oxide.
當構成半導體層的金屬氧化物為In-M-Zn類氧化物時,較佳為用來形成In-M-Zn氧化物膜的濺射靶材的金屬元素的原子數比滿足InM及ZnM。這種濺射靶材的金屬元素的原子數比較佳為In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等。注意,所形成的半導體層的原子數比分別可以在上述濺射靶材中的金屬元素的原子數比的±40%的範圍內變動。 When the metal oxide constituting the semiconductor layer is an In-M-Zn-based oxide, it is preferred that the atomic ratio of the metal element of the sputtering target for forming the In-M-Zn oxide film satisfies In M and Zn M. The atomic number of the metal element of the sputtering target is preferably In:M:Zn=1:1:1, In:M:Zn=1:1:1.2, In:M:Zn=3:1:2 , In:M:Zn=4:2:3, In:M:Zn=4:2:4.1, In:M:Zn=5:1:6, In:M:Zn=5:1:7, In :M:Zn=5:1:8 and so on. Note that the atomic ratio of the formed semiconductor layer may vary within a range of ±40% of the atomic ratio of the metal elements in the sputtering target.
本實施方式所示的底閘極結構的電晶體由於能夠減少製程,所以是較佳的。另外,此時藉由使用金屬氧化物,可以在比多晶矽低的溫度下形成金屬氧化物,並且作為半導體層下方的佈線或電極的材料及基板材料可以使用耐熱性低的材料,由此可以擴大材料的選擇範圍。例 如,可以適當地使用極大面積的玻璃基板等。 The transistor of the bottom gate structure shown in this embodiment is preferable because it can reduce the number of processes. Further, at this time, by using a metal oxide, a metal oxide can be formed at a temperature lower than that of the polycrystalline silicon, and a material having low heat resistance can be used as a material of the wiring or the electrode under the semiconductor layer and the substrate material, thereby being able to be expanded The range of materials to choose from. For example, a glass substrate or the like having a very large area can be suitably used.
作為半導體層,可以使用載子密度低的金屬氧化物膜。例如,作為半導體層可以使用載子密度為1×1017/cm3以下,較佳為1×1015/cm3以下,更佳為1×1013/cm3以下,進一步較佳為1×1011/cm3以下,更進一步較佳為小於1×1010/cm3,1×10-9/cm3以上的金屬氧化物。將這樣的金屬氧化物稱為高純度本質或實質上高純度本質的金屬氧化物。由此,因為雜質濃度及缺陷能階密度低,可以說是具有穩定的特性的金屬氧化物。 As the semiconductor layer, a metal oxide film having a low carrier density can be used. For example, as the semiconductor layer, a carrier density of 1 × 10 17 /cm 3 or less, preferably 1 × 10 15 /cm 3 or less, more preferably 1 × 10 13 /cm 3 or less, further preferably 1 × can be used. Further, 10 11 /cm 3 or less is more preferably a metal oxide of less than 1 × 10 10 /cm 3 and 1 × 10 -9 /cm 3 or more. Such metal oxides are referred to as metal oxides of high purity nature or substantially high purity nature. Thus, since the impurity concentration and the defect energy level density are low, it can be said that it is a metal oxide having stable characteristics.
注意,本發明不侷限於上述記載,可以根據所需的電晶體的半導體特性及電特性(場效移動率、臨界電壓等)來使用具有適當的組成的材料。另外,較佳為適當地設定半導體層的載子密度、雜質濃度、缺陷密度、金屬元素與氧的原子數比、原子間距離、密度等,以得到所需的電晶體的半導體特性。 Note that the present invention is not limited to the above description, and a material having an appropriate composition can be used depending on semiconductor characteristics and electrical characteristics (field effect mobility, threshold voltage, and the like) of a desired transistor. Further, it is preferable to appropriately set the carrier density, the impurity concentration, the defect density, the atomic ratio of the metal element to oxygen, the interatomic distance, the density, and the like of the semiconductor layer to obtain the desired semiconductor characteristics of the transistor.
當構成半導體層的金屬氧化物包含第14族元素之一的矽或碳時,半導體層中的氧缺陷增加,會使該半導體層變為n型。因此,將半導體層中的矽或碳的濃度(藉由二次離子質譜分析法測得的濃度)設定為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。 When the metal oxide constituting the semiconductor layer contains tantalum or carbon of one of the Group 14 elements, an increase in oxygen defects in the semiconductor layer causes the semiconductor layer to become n-type. Therefore, the concentration of ruthenium or carbon (concentration measured by secondary ion mass spectrometry) in the semiconductor layer is set to 2 × 10 18 atoms / cm 3 or less, preferably 2 × 10 17 atoms / cm 3 or less. .
另外,有時當鹼金屬及鹼土金屬與金屬氧化物鍵合時生成載子,而使電晶體的關態電流增大。因此,將藉由二次離子質譜分析法測得的半導體層的鹼金屬或鹼土金屬的濃度設定為1×1018atoms/cm3以下,較佳為 2×1016atoms/cm3以下。 Further, when an alkali metal and an alkaline earth metal are bonded to a metal oxide, a carrier is sometimes generated to increase an off-state current of the transistor. Therefore, the concentration of the alkali metal or alkaline earth metal of the semiconductor layer measured by secondary ion mass spectrometry is set to 1 × 10 18 atoms / cm 3 or less, preferably 2 × 10 16 atoms / cm 3 or less.
另外,當構成半導體層的金屬氧化物含有氮時生成作為載子的電子,載子密度增加而容易n型化。其結果是,使用具有含有氮的金屬氧化物的電晶體容易變為常開特性。因此,利用二次離子質譜分析法測得的半導體層的氮濃度較佳為5×1018atoms/cm3以下。 Further, when the metal oxide constituting the semiconductor layer contains nitrogen, electrons as carriers are generated, and the carrier density is increased to facilitate n-type formation. As a result, the use of a transistor having a metal oxide containing nitrogen tends to become a normally-on property. Therefore, the nitrogen concentration of the semiconductor layer measured by secondary ion mass spectrometry is preferably 5 × 10 18 atoms / cm 3 or less.
另外,半導體層例如也可以具有非單晶結構。非單晶結構例如包括具有c軸配向的結晶的CAAC-OS(C-Axis Aligned Crystalline Oxide Semiconductor或者C-Axis Aligned and A-B-plane Anchored Crystalline Oxide Semiconductor)、多晶結構、微晶結構或非晶結構。在非單晶結構中,非晶結構的缺陷態密度最高,而CAAC-OS的缺陷態密度最低。 Further, the semiconductor layer may have a non-single crystal structure, for example. The non-single crystal structure includes, for example, CAAC-OS (C-Axis Aligned Crystalline Oxide Semiconductor or C-Axis Aligned and AB-plane Anchored Crystalline Oxide Semiconductor) having a c-axis alignment, a polycrystalline structure, a microcrystalline structure, or an amorphous structure. . In the non-single crystal structure, the amorphous structure has the highest defect state density, while the CAAC-OS has the lowest defect state density.
非晶結構的金屬氧化物膜例如具有無秩序的原子排列且不具有結晶成分。或者,非晶結構的氧化物膜例如是完全的非晶結構且不具有結晶部。 The metal oxide film of an amorphous structure has, for example, an disordered atomic arrangement and does not have a crystalline component. Alternatively, the oxide film of the amorphous structure is, for example, a completely amorphous structure and does not have a crystal portion.
此外,半導體層也可以為具有非晶結構的區域、微晶結構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的混合膜。混合膜有時例如具有包括上述區域中的兩種以上的區域的單層結構或疊層結構。 Further, the semiconductor layer may be a mixed film of a region having an amorphous structure, a region of a microcrystalline structure, a region of a polycrystalline structure, a region of a CAAC-OS, and a region of a single crystal structure. The mixed film sometimes has, for example, a single layer structure or a laminated structure including two or more regions in the above regions.
另外,在本實施方式中例示出使用液晶元件作為反射型顯示元件的顯示裝置的結構,但是作為反射型顯示元件,可以使用快門方式的MEMS(Micro Electro Mechanical Systems:微機電系統)元件、光干涉方式的MEMS元件、應用微囊方式、電泳方式、電潤濕方式、電子粉流體(日本的註冊商標)方式等的顯示元件等。 In the present embodiment, a configuration of a display device using a liquid crystal element as a reflective display element is exemplified. However, as a reflective display element, a MEMS (Micro Electro Mechanical Systems) element and a light interference can be used. A display element such as a MEMS element, a microcapsule method, an electrophoresis method, an electrowetting method, or an electronic powder fluid (registered trademark in Japan).
另外,作為發光型顯示元件,例如可以使用OLED(Organic Light Emitting Diode:有機發光二極體)、LED(Light Emitting Diode:發光二極體)、QLED(Quantum-dot Light Emitting Diode:量子點發光二極體)等自發光發光元件。 Further, as the light-emitting display element, for example, an OLED (Organic Light Emitting Diode), an LED (Light Emitting Diode), or a QLED (Quantum-dot Light Emitting Diode) can be used. Self-luminous light-emitting elements such as polar bodies).
作為液晶元件,可以採用使用VA(Vertical Alignment:垂直配向)模式的元件。作為垂直配向模式,可以使用MVA(Multi-Domain Vertical Alignment:多象限垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ASV(Advanced Super View:高級超視覺)模式等。 As the liquid crystal element, an element using a VA (Vertical Alignment) mode can be used. As the vertical alignment mode, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV (Advanced Super View) mode, or the like can be used.
另外,作為液晶元件,可以採用使用各種模式的液晶元件。例如,除了VA模式以外,可以使用TN(Twisted Nematic:扭曲向列)模式、IPS(In-Plane-Switching:平面切換)模式、FFS(Fringe Field Switching:邊緣電場切換)模式;ASM(Axially Symmetric Aligned Micro-cell:軸對稱排列微單元)模式、OCB(Optically Compensated Birefringence:光學補償彎曲)模式、FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式、AFLC(AntiFerroelectric Liquid Crystal:反鐵電液晶)模式等的液晶元件。 Further, as the liquid crystal element, a liquid crystal element using various modes can be employed. For example, in addition to the VA mode, TN (Twisted Nematic) mode, IPS (In-Plane-Switching) mode, FFS (Fringe Field Switching) mode, and ASM (Axially Symmetric Aligned) can be used. Micro-cell: axisymmetric array of microcells) mode, OCB (Optically Compensated Birefringence) mode, FLC (Ferroelectric Liquid Crystal) mode, AFLC (AntiFerroelectric Liquid Crystal) mode, etc. Liquid crystal element.
作為用於液晶元件的液晶可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal:聚合物分散液晶)、鐵電液晶、反鐵電液晶等。這些液晶材料根據條件呈現出膽固醇相、層列相、立方相、手向列相、各向同性相等。 As the liquid crystal used for the liquid crystal element, thermotropic liquid crystal, low molecular liquid crystal, polymer liquid crystal, polymer dispersed liquid crystal (PDLC: Polymer Dispersed Liquid Crystal), ferroelectric liquid crystal, antiferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesterol phase, a smectic phase, a cubic phase, a nematic phase, and an isotropic phase according to conditions.
另外,作為液晶材料,可以使用正型液晶和負型液晶中的任一種,根據所使用的模式或設計採用適當的液晶材料即可。 Further, as the liquid crystal material, any of a positive liquid crystal and a negative liquid crystal may be used, and an appropriate liquid crystal material may be used depending on the mode or design to be used.
另外,為了控制液晶的配向,可以設置配向膜。在採用橫向電場方式的情況下,也可以使用不使用配向膜的呈現藍相的液晶。藍相是液晶相的一種,是指當使膽固醇液晶的溫度上升時即將從膽固醇相轉變到各向同性相之前出現的相。因為藍相只在窄的溫度範圍內出現,所以將其中混合了幾wt%以上的手性試劑的液晶組合物用於液晶層,以擴大溫度範圍。包含呈現藍相的液晶和手性試劑的液晶組成物的回應速度快,並且其具有光學各向同性。此外,包含呈現藍相的液晶和手性試劑的液晶組成物不需要配向處理,並且視角依賴性小。另外,由於不需要設置配向膜而不需要摩擦處理,因此可以防止由於摩擦處理而引起的靜電破壞,並可以降低製程中的液晶顯示裝置的不良、破損。 Further, in order to control the alignment of the liquid crystal, an alignment film may be provided. In the case of the transverse electric field method, a liquid crystal exhibiting a blue phase without using an alignment film can also be used. The blue phase is a kind of liquid crystal phase, and refers to a phase which occurs immediately before the temperature of the cholesteric liquid crystal rises from the transition of the cholesterol phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition in which several wt% or more of a chiral agent is mixed is used for the liquid crystal layer to expand the temperature range. A liquid crystal composition comprising a liquid crystal exhibiting a blue phase and a chiral agent has a fast response speed and is optically isotropic. Further, the liquid crystal composition containing the liquid crystal exhibiting a blue phase and a chiral agent does not require an alignment treatment, and the viewing angle dependency is small. Further, since it is not necessary to provide the alignment film without the need of the rubbing treatment, it is possible to prevent electrostatic breakdown due to the rubbing treatment, and it is possible to reduce the defects and breakage of the liquid crystal display device in the process.
本實施方式相當於對其他實施方式的一部分進行更改、應用、上位概念化或下位概念化的方式。因 此,本實施方式的一部分或全部可以和其他實施方式組合或替換而實施。 The present embodiment corresponds to a method of changing, applying, super-conceptualizing, or sub-conceptualizing a part of other embodiments. Therefore, some or all of the embodiments may be combined or replaced with other embodiments.
在本實施方式中,對可用於本發明的一個實施方式所公開的電晶體的CAC(Cloud-Aligned Composite)-OS的構成進行說明。 In the present embodiment, a configuration of a CAC (Cloud-Aligned Composite)-OS that can be used in the transistor disclosed in one embodiment of the present invention will be described.
在本說明書等中,金屬氧化物(metal oxide)是指廣義上的金屬的氧化物。金屬氧化物被分類為氧化物絕緣體、氧化物導電體(包括透明氧化物導電體)和氧化物半導體(Oxide Semiconductor,也可以簡稱為OS)等。例如,在將金屬氧化物用於電晶體的活性層的情況下,有時將該金屬氧化物稱為氧化物半導體。換言之,可以將OS FET換稱為包含金屬氧化物或氧化物半導體的電晶體。 In the present specification and the like, a metal oxide refers to an oxide of a metal in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), and oxide semiconductors (Oxide Semiconductor, also abbreviated as OS). For example, when a metal oxide is used for an active layer of a transistor, the metal oxide is sometimes referred to as an oxide semiconductor. In other words, the OS FET can be referred to as a transistor including a metal oxide or an oxide semiconductor.
在本說明書中,將如下金屬氧化物定義為CAC(Cloud Aligned Composite)-OS(Oxide Semiconductor)或CAC-metal oxide:金屬氧化物中具有導電體的功能的區域和具有電介質的功能的區域混合而使金屬氧化物在整體上具有半導體的功能。 In the present specification, the following metal oxide is defined as CAC (Cloud Aligned Composite)-OS (Oxide Semiconductor) or CAC-metal oxide: a region of a metal oxide having a function of a conductor and a region having a function of a dielectric are mixed The metal oxide has a semiconductor function as a whole.
換言之,CAC-OS例如是指包含在氧化物半導體中的元素不均勻地分佈的構成,其中包含不均勻地分佈 的元素的材料的尺寸為0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下或近似的尺寸。注意,在下面也將在氧化物半導體中一個或多個元素不均勻地分佈且包含該元素的區域混合的狀態稱為馬賽克(mosaic)狀或補丁(patch)狀,該區域的尺寸為0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下或近似的尺寸。 In other words, CAC-OS is, for example, a configuration in which elements contained in an oxide semiconductor are unevenly distributed, and a material including an element which is unevenly distributed has a size of 0.5 nm or more and 10 nm or less, preferably 0.5 nm or more. Below 3 nm or approximate size. Note that a state in which one or more elements in the oxide semiconductor are unevenly distributed and a region including the element is mixed is also referred to as a mosaic or patch shape, and the size of the region is 0.5 nm. The above and 10 nm or less are preferably 0.5 nm or more and 3 nm or less or approximately the same size.
包含不均勻地分佈的特定的元素的區域其物理特性由該元素所具有的性質決定。例如,包含不均勻地分佈的包含在金屬氧化物中的元素中更趨於成為絕緣體的元素的區域成為電介質區域。另一方面,包含不均勻地分佈的包含在金屬氧化物中的元素中更趨於成為導體的元素的區域成為導電體區域。藉由使導電體區域及電介質區域以馬賽克狀混合,該材料具有半導體的功能。 The physical characteristics of a region containing a specific element that is unevenly distributed are determined by the properties possessed by the element. For example, a region including an element which is unevenly distributed and contains an element which is more likely to be an insulator among the elements in the metal oxide becomes a dielectric region. On the other hand, a region including an element which is unevenly distributed and contained in the metal oxide and which tends to become an element of the conductor becomes a conductor region. The material has a semiconductor function by mixing the conductor region and the dielectric region in a mosaic form.
換言之,本發明的一個實施方式的金屬氧化物是物理特性不同的材料混合的基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)的一種。 In other words, the metal oxide of one embodiment of the present invention is one of a matrix composite or a metal matrix composite in which materials having different physical properties are mixed.
氧化物半導體較佳為至少包含銦。尤其較佳為包含銦及鋅。除此之外,也可以還包含元素M(M選自鎵、鋁、矽、硼、釔、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種)。 The oxide semiconductor preferably contains at least indium. It is especially preferred to include indium and zinc. In addition, it may further comprise an element M (M is selected from the group consisting of gallium, aluminum, lanthanum, boron, lanthanum, copper, vanadium, niobium, titanium, iron, nickel, cerium, zirconium, molybdenum, niobium, tantalum, niobium, tantalum, niobium One or more of bismuth, antimony, tungsten and magnesium).
例如,In-Ga-Zn氧化物中的CAC-OS(在CAC-OS中,尤其可以將In-Ga-Zn氧化物稱為CAC- IGZO)是指材料分成銦氧化物(以下,稱為InOX1(X1為大於0的實數))或銦鋅氧化物(以下,稱為InX2ZnY2OZ2(X2、Y2及Z2為大於0的實數))以及鎵氧化物(以下,稱為GaOX3(X3為大於0的實數))或鎵鋅氧化物(以下,稱為GaX4ZnY4OZ4(X4、Y4及Z4為大於0的實數))等而成為馬賽克狀,且馬賽克狀的InOX1或InX2ZnY2OZ2均勻地分佈在膜中的構成(以下,也稱為雲狀)。 For example, CAC-OS in In-Ga-Zn oxide (in the case of CAC-OS, in particular, In-Ga-Zn oxide is referred to as CAC-IGZO) means that the material is divided into indium oxide (hereinafter, referred to as InO) X1 (X1 is a real number greater than 0) or indium zinc oxide (hereinafter, referred to as In X2 Zn Y2 O Z2 (X2, Y2 and Z2 are real numbers greater than 0)) and gallium oxide (hereinafter, referred to as GaO X3) (X3 is a real number greater than 0) or gallium zinc oxide (hereinafter, referred to as Ga X4 Zn Y4 O Z4 (X4, Y4, and Z4 are real numbers greater than 0)), and is mosaic-like, and mosaic-like InO X1 Or a composition in which In X2 Zn Y2 O Z2 is uniformly distributed in the film (hereinafter, also referred to as a cloud shape).
換言之,CAC-OS是具有以GaOX3為主要成分的區域和以InX2ZnY2OZ2或InOX1為主要成分的區域混在一起的構成的複合氧化物半導體。在本說明書中,例如,當第一區域的In對元素M的原子數比大於第二區域的In對元素M的原子數比時,第一區域的In濃度高於第二區域。 In other words, CAC-OS is a composite oxide semiconductor having a structure in which a region containing GaO X3 as a main component and a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component are mixed. In the present specification, for example, when the atomic ratio of the In to element M of the first region is larger than the atomic ratio of the In to the element M of the second region, the In concentration of the first region is higher than that of the second region.
注意,IGZO是通稱,有時是指包含In、Ga、Zn及O的化合物。作為典型例子,可以舉出以InGaO3(ZnO)m1(m1為自然數)或In(1+x0)Ga(1-x0)O3(ZnO)m0(-1x01,m0為任意數)表示的結晶性化合物。 Note that IGZO is a generic term and sometimes refers to a compound containing In, Ga, Zn, and O. As a typical example, InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1+x0) Ga (1-x0) O 3 (ZnO) m0 (-1) X0 1, m0 is an arbitrary number of crystalline compounds.
上述結晶性化合物具有單晶結構、多晶結構或CAAC結構。CAAC結構是多個IGZO的奈米晶具有c軸配向性且在a-b面上以不配向的方式連接的結晶結構。 The above crystalline compound has a single crystal structure, a polycrystalline structure or a CAAC structure. The CAAC structure is a crystal structure in which a plurality of nanocrystals of IGZO have c-axis alignment and are connected in an unaligned manner on the a-b plane.
另一方面,CAC-OS與氧化物半導體的材料構成有關。CAC-OS是指如下構成:在包含In、Ga、Zn及O的材料構成中,一部分中觀察到以Ga為主要成分的奈 米粒子狀區域,一部分中觀察到以In為主要成分的奈米粒子狀區域,並且,這些區域以馬賽克狀無規律地分散。因此,在CAC-OS中,結晶結構是次要因素。 On the other hand, CAC-OS is related to the material composition of an oxide semiconductor. CAC-OS is a structure in which a nanoparticle-like region containing Ga as a main component is observed in a part of a material composition containing In, Ga, Zn, and O, and a portion containing In as a main component is observed in a part. Particle-like regions, and these regions are irregularly dispersed in a mosaic shape. Therefore, in CAC-OS, the crystal structure is a secondary factor.
CAC-OS不包含組成不同的兩種以上的膜的疊層結構。例如,不包含由以In為主要成分的膜與以Ga為主要成分的膜的兩層構成的結構。 The CAC-OS does not include a laminated structure of two or more different compositions. For example, a structure composed of two layers of a film containing In as a main component and a film containing Ga as a main component is not included.
注意,有時觀察不到以GaOX3為主要成分的區域與以InX2ZnY2OZ2或InOX1為主要成分的區域之間的明確的邊界。 Note that a clear boundary between a region containing GaO X3 as a main component and a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component may not be observed.
在CAC-OS中包含選自鋁、矽、硼、釔、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種以代替鎵的情況下,CAC-OS是指如下結構:一部分中觀察到以該元素為主要成分的奈米粒子狀區域,一部分中觀察到以In為主要成分的奈米粒子狀區域,並且,這些區域以馬賽克狀無規律地分散。 Included in CAC-OS is selected from the group consisting of aluminum, lanthanum, boron, lanthanum, copper, vanadium, niobium, titanium, iron, nickel, cerium, zirconium, molybdenum, niobium, tantalum, niobium, tantalum, niobium, tungsten and magnesium. In the case of replacing one or more of gallium, CAC-OS refers to a structure in which a nanoparticle-like region containing the element as a main component is observed in a part, and a nanoparticle-like region containing In as a main component is observed in a part thereof. And, these areas are scattered irregularly in a mosaic shape.
接著,說明使用各種測定方法對在基板上形成的氧化物半導體進行測定的結果。 Next, the results of measurement of the oxide semiconductor formed on the substrate using various measurement methods will be described.
以下,對本發明的一個實施方式的九個樣本進行說明。各樣本在形成氧化物半導體時的基板溫度及氧氣體流 量比上不同。各樣本包括基板及基板上的氧化物半導體。 Hereinafter, nine samples of one embodiment of the present invention will be described. Each sample differs in substrate temperature and oxygen gas flow ratio at the time of forming an oxide semiconductor. Each sample includes a substrate and an oxide semiconductor on the substrate.
對各樣本的製造方法進行說明。 A method of manufacturing each sample will be described.
作為基板使用玻璃基板。使用濺射裝置在玻璃基板上作為氧化物半導體形成厚度為100nm的In-Ga-Zn氧化物。成膜條件為如下:將腔室內的壓力設定為0.6Pa,作為靶材使用氧化物靶材(In:Ga:Zn=4:2:4.1[原子數比])。另外,對設置在濺射裝置內的氧化物靶材供應2500W的AC功率。 A glass substrate is used as the substrate. An In-Ga-Zn oxide having a thickness of 100 nm was formed as an oxide semiconductor on a glass substrate using a sputtering apparatus. The film formation conditions were as follows: the pressure in the chamber was set to 0.6 Pa, and an oxide target (In:Ga:Zn=4:2:4.1 [atomic ratio]) was used as a target. In addition, an AC power of 2500 W was supplied to the oxide target provided in the sputtering apparatus.
在形成氧化物時採用如下條件來製造九個樣本:將基板溫度設定為不進行意圖性的加熱時的溫度(以下,也稱為室溫或R.T.)、130℃或170℃。另外,將氧氣體對Ar和氧的混合氣體的流量比(以下,也稱為氧氣體流量比)設定為10%、30%或100%。 In the formation of an oxide, nine samples were produced under the following conditions: the substrate temperature was set to a temperature at which the intended heating was not performed (hereinafter, also referred to as room temperature or R.T.), 130 ° C or 170 ° C. Further, the flow ratio of the oxygen gas to the mixed gas of Ar and oxygen (hereinafter also referred to as the oxygen gas flow ratio) is set to 10%, 30% or 100%.
在本節中,說明對九個樣本進行X射線繞射(XRD:X-ray diffraction)測定的結果。作為XRD裝置,使用Bruker公司製造的D8 ADVANCE。條件為如下:利用Out-of-plane法進行θ/2θ掃描,掃描範圍為15deg.至50deg.,步進寬度為0.02deg.,掃描速度為3.0deg./分。 In this section, the results of X-ray diffraction (XRD) measurement of nine samples are described. As the XRD apparatus, D8 ADVANCE manufactured by Bruker Corporation was used. The conditions were as follows: θ/2θ scanning was performed by the Out-of-plane method, the scanning range was 15 deg. to 50 deg., the step width was 0.02 deg., and the scanning speed was 3.0 deg. / min.
圖25示出利用Out-of-plane法測定XRD譜的結果。在圖25中,最上行示出成膜時的基板溫度為170℃的樣本的測定結果,中間行示出成膜時的基板溫度為130℃的樣本的測定結果,最下行示出成膜時的基板溫度 為R.T.的樣本的測定結果。另外,最左列示出氧氣體流量比為10%的樣本的測定結果,中間列示出氧氣體流量比為30%的樣本的測定結果,最右列示出氧氣體流量比為100%的樣本的測定結果。 Fig. 25 shows the results of measuring the XRD spectrum by the Out-of-plane method. In Fig. 25, the measurement results of the sample having a substrate temperature of 170 ° C at the time of film formation are shown in the uppermost row, and the measurement results of the sample having a substrate temperature of 130 ° C at the time of film formation are shown in the middle row, and the film formation is shown in the lowermost row. The substrate temperature is the measurement result of the sample of RT. Further, the leftmost column shows the measurement results of the sample having an oxygen gas flow rate ratio of 10%, the middle column shows the measurement results of the sample having the oxygen gas flow rate ratio of 30%, and the rightmost column shows that the oxygen gas flow ratio is 100%. The measurement result of the sample.
圖25所示的XRD譜示出成膜時的基板溫度越高或成膜時的氧氣體流量比越高,2θ=31°附近的峰值強度則越高。另外,已知2θ=31°附近的峰值來源於在大致垂直於被形成面或頂面的方向上具有c軸配向性的結晶性IGZO化合物(也稱為CAAC(c-axis aligned crystalline)-IGZO)。 The XRD spectrum shown in FIG. 25 shows that the higher the substrate temperature at the time of film formation or the higher the oxygen gas flow rate ratio at the time of film formation, the higher the peak intensity in the vicinity of 2θ=31°. Further, it is known that a peak near 2θ=31° is derived from a crystalline IGZO compound having a c-axis alignment in a direction substantially perpendicular to a surface to be formed or a top surface (also referred to as CAAC (c-axis aligned crystalline)-IGZO ).
另外,如圖25的XRD譜所示,成膜時的基板溫度越低或氧氣體流量比越低,峰值則越不明顯。因此,可知在成膜時的基板溫度低或氧氣體流量比低的樣本中,觀察不到測定區域的a-b面方向及c軸方向的配向。 Further, as shown by the XRD spectrum of FIG. 25, the lower the substrate temperature at the time of film formation or the lower the oxygen gas flow rate ratio, the less the peak value is. Therefore, it was found that in the samples in which the substrate temperature at the time of film formation was low or the oxygen gas flow rate ratio was low, the alignment of the measurement region in the a-b plane direction and the c-axis direction was not observed.
在本節中,說明對在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本利用HAADF-STEM(High-Angle Annular Dark Field Scanning Transmission Electron Microscope:高角度環形暗場-掃描穿透式電子顯微鏡)進行觀察及分析的結果(以下,也將利用HAADF-STEM取得的影像稱為TEM影像)。 In this section, the HAADF-STEM (High-Angle Annular Dark Field Scanning Transmission Electron Microscope) is used for the sample manufactured under the condition that the substrate temperature at the time of film formation is RT and the oxygen gas flow ratio is 10%. - Scanning electron microscope) The results of observation and analysis (hereinafter, images obtained by HAADF-STEM are also referred to as TEM images).
說明對利用HAADF-STEM取得的平面影像(以下,也稱為平面TEM影像)及剖面影像(以下,也 稱為剖面TEM影像)進行影像分析的結果。利用球面像差校正功能觀察TEM影像。在取得HAADF-STEM影像時,使用日本電子株式會社製造的原子解析度分析電子顯微鏡JEM-ARM200F,將加速電壓設定為200kV,照射束徑大致為0.1nmΦ的電子束。 The results of image analysis are performed on a planar image (hereinafter also referred to as a planar TEM image) and a cross-sectional image (hereinafter also referred to as a cross-sectional TEM image) obtained by HAADF-STEM. The TEM image is observed using the spherical aberration correction function. In the case of obtaining the HAADF-STEM image, an electron beam JEM-ARM200F manufactured by JEOL Ltd. was used, and an acceleration voltage was set to 200 kV, and an electron beam having a beam diameter of approximately 0.1 nm Φ was irradiated.
圖26A為在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的平面TEM影像。圖26B為在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面TEM影像。 Fig. 26A is a plan TEM image of a sample produced under the conditions that the substrate temperature at the time of film formation is R.T. and the oxygen gas flow rate ratio is 10%. Fig. 26B is a cross-sectional TEM image of a sample produced under the conditions that the substrate temperature at the time of film formation is R.T. and the oxygen gas flow rate ratio is 10%.
在本節中,說明藉由對在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本照射束徑為1nm的電子束(也稱為奈米束),來取得電子繞射圖案的結果。 In this section, an electron beam (also referred to as a nanobeam) having a beam diameter of 1 nm is irradiated to a sample produced under the condition that the substrate temperature at the time of film formation is RT and the oxygen gas flow rate ratio is 10%. The result of the electronic diffraction pattern.
觀察圖26A所示的在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的平面TEM影像中的黑點a1、黑點a2、黑點a3、黑點a4及黑點a5的電子繞射圖案。電子繞射圖案的觀察以以固定速度照射電子束35秒鐘的方式進行。圖26C示出黑點a1的結果,圖26D示出黑點a2的結果,圖26E示出黑點a3的結果,圖26F示出黑點a4的結果,圖26G示出黑點a5的結果。 The black dot a1, the black dot a2, the black dot a3, and the black dot a4 in the planar TEM image of the sample prepared under the condition that the substrate temperature at the time of film formation is RT and the oxygen gas flow ratio is 10% as shown in FIG. 26A are observed. And an electronic diffraction pattern of black dots a5. The observation of the electronic diffraction pattern was performed by irradiating the electron beam at a fixed speed for 35 seconds. 26C shows the result of the black dot a1, FIG. 26D shows the result of the black dot a2, FIG. 26E shows the result of the black dot a3, FIG. 26F shows the result of the black dot a4, and FIG. 26G shows the result of the black dot a5.
在圖26C、圖26D、圖26E、圖26F及圖26G 中,觀察到如圓圈那樣的(環狀的)亮度高的區域。另外,在環狀區域內觀察到多個斑點。 In FIGS. 26C, 26D, 26E, 26F, and 26G, a region having a high (bright) brightness such as a circle is observed. In addition, a plurality of spots were observed in the annular region.
觀察圖26B所示的在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面TEM影像中的黑點b1、黑點b2、黑點b3、黑點b4及黑點b5的電子繞射圖案。圖26H示出黑點b1的結果,圖26I示出黑點b2的結果,圖26J示出黑點b3的結果,圖26K示出黑點b4的結果,圖26L示出黑點b5的結果。 The black spot b1, the black dot b2, the black dot b3, and the black dot b4 in the cross-sectional TEM image of the sample prepared under the condition that the substrate temperature at the time of film formation is RT and the oxygen gas flow ratio is 10% as shown in FIG. 26B is observed. And the electronic diffraction pattern of the black point b5. 26H shows the result of the black dot b1, FIG. 26I shows the result of the black dot b2, FIG. 26J shows the result of the black dot b3, FIG. 26K shows the result of the black dot b4, and FIG. 26L shows the result of the black dot b5.
在圖26H、圖26I、圖26J、圖26K及圖26L中,觀察到環狀的亮度高的區域。另外,在環狀區域內觀察到多個斑點。 In FIGS. 26H, 26I, 26J, 26K, and 26L, a region having a high luminance of a ring shape was observed. In addition, a plurality of spots were observed in the annular region.
例如,當對包含InGaZnO4結晶的CAAC-OS在平行於樣本面的方向上入射束徑為300nm的電子束時,獲得了包含起因於InGaZnO4結晶的(009)面的斑點的繞射圖案。換言之,CAAC-OS具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。另一方面,當對相同的樣本在垂直於樣本面的方向上入射束徑為300nm的電子束時,確認到環狀繞射圖案。換言之,CAAC-OS不具有a軸配向性及b軸配向性。 For example, when an electron beam having a beam diameter of 300 nm is incident on a CAAC-OS containing InGaZnO 4 crystal in a direction parallel to the sample surface, a diffraction pattern containing spots derived from the (009) plane of the InGaZnO 4 crystal is obtained. In other words, the CAAC-OS has a c-axis orientation, and the c-axis faces a direction substantially perpendicular to the surface to be formed or the top surface. On the other hand, when an electron beam having a beam diameter of 300 nm was incident on the same sample in a direction perpendicular to the sample surface, an annular diffraction pattern was confirmed. In other words, CAAC-OS does not have a-axis alignment and b-axis alignment.
當使用大束徑(例如,50nm以上)的電子束對具有微晶的氧化物半導體(nano crystalline oxide semiconductor。以下稱為nc-OS)進行電子繞射時,觀察到類似光暈圖案的繞射圖案。另外,當使用小束徑(例如,小於50nm)的電子束對nc-OS進行奈米束電子繞射 時,觀察到亮點(斑點)。另外,在nc-OS的奈米束電子繞射圖案中,有時觀察到如圓圈那樣的(環狀的)亮度高的區域。而且,有時在環狀區域內觀察到多個亮點。 When an electron beam having a large beam diameter (for example, 50 nm or more) is used for electron diffraction of a nanocrystalline oxide semiconductor (hereinafter referred to as nc-OS), a diffraction pattern similar to a halo pattern is observed. . Further, when electron beam of a small beam diameter (for example, less than 50 nm) is used to perform nanobeam electron diffraction on the nc-OS, bright spots (spots) are observed. Further, in the nanobeam electron diffraction pattern of the nc-OS, a region having a high (bright) brightness such as a circle may be observed. Moreover, a plurality of bright spots are sometimes observed in the annular region.
在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的電子繞射圖案具有環狀的亮度高的區域且在該環狀區域內出現多個亮點。因此,在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本呈現與nc-OS類似的電子繞射圖案,在平面方向及剖面方向上不具有配向性。 The electron diffraction pattern of the sample produced under the condition that the substrate temperature at the time of film formation was R.T. and the oxygen gas flow rate ratio was 10% had a region having a high ring-shaped luminance and a plurality of bright spots appeared in the annular region. Therefore, the sample produced under the condition that the substrate temperature at the time of film formation was R.T. and the oxygen gas flow rate ratio was 10% exhibited an electron diffraction pattern similar to that of nc-OS, and had no alignment in the planar direction and the cross-sectional direction.
如上所述,成膜時的基板溫度低或氧氣體流量比低的氧化物半導體的性質與非晶結構的氧化物半導體膜及單晶結構的氧化物半導體膜都明顯不同。 As described above, the properties of the oxide semiconductor having a low substrate temperature or a low oxygen gas flow rate at the time of film formation are significantly different from those of the oxide semiconductor film of the amorphous structure and the oxide semiconductor film of the single crystal structure.
在本節中,說明使用能量色散型X射線分析法(EDX:Energy Dispersive X-ray spectroscopy)取得EDX面分析影像且進行評價,由此進行在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的元素分析的結果。在EDX測定中,作為元素分析裝置使用日本電子株式會社製造的能量色散型X射線分析裝置JED-2300T。在檢測從樣本發射的X射線時,使用矽漂移探測器。 In this section, an EDX surface analysis image is obtained by EDS (Energy Dispersive X-ray spectroscopy) and evaluated, whereby the substrate temperature at the time of film formation is RT and the oxygen gas flow ratio is The results of elemental analysis of samples made under 10% conditions. In the EDX measurement, an energy dispersive X-ray analyzer JED-2300T manufactured by JEOL Ltd. was used as the elemental analysis device. A chirped drift detector is used when detecting X-rays emitted from the sample.
在EDX測定中,對樣本的分析目標區域的各點照射電子束,並測定此時發生的樣本的特性X射線的能 量及發生次數,獲得對應於各點的EDX譜。在本實施方式中,各點的EDX譜的峰值歸屬於In原子中的向L殼層的電子躍遷、Ga原子中的向K殼層的電子躍遷、Zn原子中的向K殼層的電子躍遷及O原子中的向K殼層的電子躍遷,並算出各點的各原子的比率。藉由在樣本的分析目標區域中進行上述步驟,可以獲得示出各原子的比率分佈的EDX面分析影像。 In the EDX measurement, an electron beam is irradiated to each point of the analysis target region of the sample, and the energy and the number of occurrences of the characteristic X-ray of the sample occurring at this time are measured, and an EDX spectrum corresponding to each point is obtained. In the present embodiment, the peak of the EDX spectrum at each point is attributed to the electron transition to the L shell in the In atom, the electron transition to the K shell in the Ga atom, and the electronic transition to the K shell in the Zn atom. And the electron transition to the K shell in the O atom, and the ratio of each atom at each point is calculated. By performing the above steps in the analysis target region of the sample, an EDX surface analysis image showing the ratio distribution of each atom can be obtained.
圖27A至圖27C示出在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面的EDX面分析影像。圖27A示出Ga原子的EDX面分析影像(在所有的原子中Ga原子所佔的比率為1.18至18.64[atomic%])。圖27B示出In原子的EDX面分析影像(在所有的原子中In原子所佔的比率為9.28至33.74[atomic%])。圖27C示出Zn原子的EDX面分析影像(在所有的原子中Zn原子所佔的比率為6.69至24.99[atomic%])。另外,圖27A、圖27B及圖27C示出在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本的剖面中的相同區域。在EDX面分析影像中,由明暗表示元素的比率:該區域內的測定元素越多該區域越亮,測定元素越少該區域就越暗。圖27A至圖27C所示的EDX面分析影像的倍率為720萬倍。 27A to 27C show an EDX surface analysis image of a cross section of a sample produced under the condition that the substrate temperature at the time of film formation is R.T. and the oxygen gas flow rate ratio is 10%. Fig. 27A shows an EDX surface analysis image of Ga atoms (the ratio of Ga atoms in all atoms is 1.18 to 18.64 [atomic%]). Fig. 27B shows an EDX surface analysis image of In atoms (the ratio of In atoms in all atoms is 9.28 to 33.74 [atomic%]). Fig. 27C shows an EDX surface analysis image of Zn atoms (the ratio of Zn atoms in all atoms is 6.69 to 24.99 [atomic%]). 27A, 27B, and 27C show the same region in the cross section of the sample produced under the condition that the substrate temperature at the time of film formation is R.T. and the oxygen gas flow rate ratio is 10%. In the EDX surface analysis image, the ratio of elements is indicated by light and dark: the more the measurement elements in the area, the brighter the area, and the less the measurement element, the darker the area. The magnification of the EDX surface analysis image shown in Figs. 27A to 27C is 7.2 million times.
在圖27A、圖27B及圖27C所示的EDX面分析影像中,確認到明暗的相對分佈,在成膜時的基板溫度為R.T.且氧氣體流量比為10%的條件下製造的樣本中確認 到各原子具有分佈。在此,著眼於圖27A、圖27B及圖27C所示的由實線圍繞的區域及由虛線圍繞的區域。 In the EDX surface analysis image shown in FIG. 27A, FIG. 27B, and FIG. 27C, the relative distribution of light and dark was confirmed, and it was confirmed in the sample manufactured under the condition that the substrate temperature at the time of film formation was RT and the oxygen gas flow rate ratio was 10%. There is a distribution to each atom. Here, attention is paid to the area surrounded by the solid line and the area surrounded by the broken line shown in FIGS. 27A, 27B, and 27C.
在圖27A中,在由實線圍繞的區域內相對較暗的區域較多,在由虛線圍繞的區域內相對較亮的區域較多。另外,在圖27B中,在由實線圍繞的區域內相對較亮的區域較多,在由虛線圍繞的區域內相對較暗的區域較多。 In Fig. 27A, relatively dark areas are more in the area surrounded by the solid lines, and relatively bright areas are more in the area surrounded by the broken lines. In addition, in FIG. 27B, a relatively bright region is more in a region surrounded by a solid line, and a relatively dark region is more in a region surrounded by a broken line.
換言之,由實線圍繞的區域為In原子相對較多的區域,由虛線圍繞的區域為In原子相對較少的區域。在圖27C中,在由實線圍繞的區域內,右側是相對較亮的區域,左側是相對較暗的區域。因此,由實線圍繞的區域為以InX2ZnY2OZ2或InOX1等為主要成分的區域。 In other words, the area surrounded by the solid line is a relatively large area of In atoms, and the area surrounded by the dotted line is a relatively small area of In atoms. In Fig. 27C, in the area surrounded by the solid line, the right side is a relatively bright area, and the left side is a relatively dark area. Therefore, the region surrounded by the solid line is a region mainly composed of In X2 Zn Y2 O Z2 or InO X1 or the like.
另外,由實線圍繞的區域為Ga原子相對較少的區域,由虛線圍繞的區域為Ga原子相對較多的區域。在圖27C中,在由虛線圍繞的區域內,左上方的區域為相對較亮的區域,右下方的區域為相對較暗的區域。因此,由虛線圍繞的區域為以GaOX3或GaX4ZnY4OZ4等為主要成分的區域。 In addition, a region surrounded by a solid line is a region in which Ga atoms are relatively small, and a region surrounded by a broken line is a region in which Ga atoms are relatively large. In FIG. 27C, in the area surrounded by the broken line, the upper left area is a relatively bright area, and the lower right area is a relatively dark area. Therefore, the region surrounded by the broken line is a region mainly composed of GaO X3 or Ga X4 Zn Y4 O Z4 or the like.
如圖27A、圖27B及圖27C所示,In原子的分佈與Ga原子的分佈相比更均勻,以InOX1為主要成分的區域看起來像是藉由以InX2ZnY2OZ2為主要成分的區域互相連接的。如此,以InX2ZnY2OZ2或InOX1為主要成分的區域以雲狀展開形成。 As shown in FIG. 27A, FIG. 27B, and FIG. 27C, the distribution of In atoms is more uniform than that of Ga atoms, and the region containing InO X1 as a main component appears to be composed of In X2 Zn Y2 O Z2 as a main component. The areas are interconnected. In this way, a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is formed in a cloud shape.
如此,可以將具有以GaOX3等為主要成分的 區域及以InX2ZnY2OZ2或InOX1為主要成分的區域不均勻地分佈而混合的構成的In-Ga-Zn氧化物稱為CAC-OS。 In this way, an In-Ga-Zn oxide having a composition mainly composed of GaO X3 or the like and a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component may be unevenly distributed and referred to as CAC- OS.
CAC-OS的結晶結構具有nc結構。在具有nc結構的CAC-OS的電子繞射圖案中,除了起因於包含單晶、多晶或CAAC結構的IGZO的亮點(斑點)以外,還出現多個亮點(斑點)。或者,該結晶結構定義為除了出現多個亮點(斑點)之外,還出現環狀的亮度高的區域。 The crystal structure of CAC-OS has an nc structure. In the electronic diffraction pattern of CAC-OS having the nc structure, in addition to the bright spots (spots) of IGZO containing a single crystal, polycrystalline or CAAC structure, a plurality of bright spots (spots) appear. Alternatively, the crystal structure is defined as a region in which a ring-shaped luminance is high in addition to a plurality of bright spots (spots).
另外,如圖27A、圖27B及圖27C所示,以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域的尺寸為0.5nm以上且10nm以下或者1nm以上且3nm以下。在EDX面分析影像中,以各元素為主要成分的區域的直徑較佳為1nm以上且2nm以下。 In addition, as shown in FIG. 27A, FIG. 27B and FIG. 27C, the region containing GaO X3 or the like as a main component and the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component have a size of 0.5 nm or more and 10 nm or less or 1 nm. Above and below 3 nm. In the EDX surface analysis image, the diameter of a region containing each element as a main component is preferably 1 nm or more and 2 nm or less.
如上所述,CAC-OS的結構與金屬元素均勻地分佈的IGZO化合物不同,具有與IGZO化合物不同的性質。換言之,CAC-OS具有以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域互相分離且以各元素為主要成分的區域為馬賽克狀的構成。 As described above, the structure of CAC-OS is different from the IGZO compound in which metal elements are uniformly distributed, and has properties different from those of IGZO compounds. In other words, CAC-OS has a structure in which a region containing GaO X3 or the like as a main component and a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component are separated from each other, and a region containing each element as a main component is a mosaic.
在此,以InX2ZnY2OZ2或InOX1為主要成分的區域的導電性高於以GaOX3等為主要成分的區域。換言之,當載子流過以InX2ZnY2OZ2或InOX1為主要成分的區域時,呈現氧化物半導體的導電性。因此,當以InX2ZnY2OZ2或InOX1為主要成分的區域在氧化物半導體中以雲狀分佈時,可以實現高場效移動率(μ)。 Here, the conductivity of a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is higher than a region containing GaO X3 or the like as a main component. In other words, when the carrier flows through a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component, the conductivity of the oxide semiconductor is exhibited. Therefore, when a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is distributed in a cloud shape in an oxide semiconductor, a high field effect mobility (μ) can be achieved.
另一方面,以GaOX3等為主要成分的區域的 絕緣性高於以InX2ZnY2OZ2或InOX1為主要成分的區域。換言之,當以GaOX3等為主要成分的區域在氧化物半導體中分佈時,可以抑制洩漏電流而實現良好的切換工作。 On the other hand, the region containing GaO X3 or the like as a main component has higher insulation than the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component. In other words, when a region containing GaO X3 or the like as a main component is distributed in the oxide semiconductor, a leakage current can be suppressed to achieve a good switching operation.
因此,當將CAC-OS用於半導體元件時,起因於GaOX3等的絕緣性及起因於InX2ZnY2OZ2或InOX1的導電性的互補作用可以實現高通態電流(Ion)及高場效移動率(μ)。 Therefore, when CAC-OS is used for a semiconductor element, high on-state current (I on ) and high can be achieved due to insulation of GaO X3 or the like and complementation of conductivity due to In X2 Zn Y2 O Z2 or InO X1 . Field effect mobility (μ).
另外,使用CAC-OS的半導體元件具有高可靠性。因此,CAC-OS適於顯示器等各種半導體裝置。 In addition, semiconductor elements using CAC-OS have high reliability. Therefore, the CAC-OS is suitable for various semiconductor devices such as displays.
由於在半導體層中具有CAC-OS的電晶體中其場效移動率高並驅動能量高,所以藉由將該電晶體用於驅動電路,典型地是生成閘極信號的掃描線驅動電路,可以提供邊框寬度窄(也稱為窄邊框)的顯示裝置。另外,藉由將該電晶體用於供應來自顯示裝置所包括的信號線的信號的信號線驅動電路(尤其是,與信號線驅動電路所包括的移位暫存器的輸出端子連接的解多工器),可以提供連接於顯示裝置的佈線數少的顯示裝置。 Since the field effect mobility is high and the driving energy is high in a transistor having a CAC-OS in a semiconductor layer, by using the transistor for a driving circuit, typically a scanning line driving circuit that generates a gate signal, A display device with a narrow border width (also called a narrow bezel) is provided. In addition, a signal line driving circuit for supplying a signal from a signal line included in a display device by the transistor (in particular, a solution connected to an output terminal of a shift register included in the signal line driving circuit) The device can provide a display device with a small number of wires connected to the display device.
另外,半導體層具有CAC-OS的電晶體像使用低溫多矽的電晶體那樣不需要進行雷射晶化製程。由此,即使為使用大面積基板的顯示裝置,也可以減少製造成本。並且,在如超高清(也稱為“4K解析度”、“4K2K”或“4K”)、超高清(也稱為“8K解析度”、“8K4K”或“8K”)等具有高解析度的大型顯示裝置中,藉由將在半導體層具有CAC-OS的電晶體用於驅動電 路及顯示部,可以在短時間內進行寫入並降低顯示不良,所以是較佳的。 In addition, the transistor having a semiconductor layer having a CAC-OS does not require a laser crystallization process like the use of a low-temperature multi-turn transistor. Thereby, even if it is a display device using a large-area substrate, the manufacturing cost can be reduced. Also, high resolution such as Ultra HD (also called "4K resolution", "4K2K" or "4K"), Ultra HD (also called "8K resolution", "8K4K" or "8K") In the large display device, it is preferable to use a transistor having a CAC-OS in a semiconductor layer for a driving circuit and a display portion, thereby enabling writing in a short time and reducing display defects.
另外,可以將矽用於電晶體的形成有通道的半導體。作為矽可以使用非晶矽,尤其較佳為使用具有結晶性的矽。例如,較佳為使用微晶矽、多晶矽、單晶矽等。尤其是,多晶矽與單晶矽相比能夠在低溫下形成,並且其場效移動率比非晶矽高,所以多晶矽的可靠性高。 In addition, germanium can be used for the channel-forming semiconductor of the transistor. As the germanium, an amorphous germanium can be used, and it is particularly preferable to use a germanium having crystallinity. For example, microcrystalline germanium, polycrystalline germanium, single crystal germanium or the like is preferably used. In particular, polycrystalline germanium can be formed at a low temperature as compared with single crystal germanium, and its field effect mobility is higher than that of amorphous germanium, so that the reliability of polycrystalline germanium is high.
本實施方式所示的底閘極結構的電晶體由於能夠減少製程,所以是較佳的。另外,此時藉由使用非晶矽,可以在比多晶矽低的溫度下形成氧化物半導體,並且作為半導體層下方的佈線或電極的材料及基板材料可以使用耐熱性低的材料,由此可以擴大材料的選擇範圍。例如,可以適當地使用極大面積的玻璃基板等。另一方面,頂閘極型電晶體容易自對準地形成雜質區域,從而可以減少特性的不均勻等,所以是較佳的。此時,尤其較佳為使用多晶矽或單晶矽等。 The transistor of the bottom gate structure shown in this embodiment is preferable because it can reduce the number of processes. Further, at this time, by using an amorphous germanium, an oxide semiconductor can be formed at a temperature lower than that of the polycrystalline germanium, and a material having low heat resistance can be used as a material of the wiring or the electrode under the semiconductor layer and the substrate material, thereby being able to expand The range of materials to choose from. For example, a glass substrate or the like having a very large area can be suitably used. On the other hand, the top gate type transistor is easy to form an impurity region in a self-aligned manner, so that unevenness in characteristics and the like can be reduced, which is preferable. At this time, it is particularly preferable to use polycrystalline germanium or single crystal germanium or the like.
本實施方式相當於對其他實施方式的一部分進行更改、應用、上位概念化或下位概念化的方式。因此,本實施方式的一部分或全部可以和其他實施方式組合或替換而實施。 The present embodiment corresponds to a method of changing, applying, super-conceptualizing, or sub-conceptualizing a part of other embodiments. Therefore, some or all of the embodiments may be combined or replaced with other embodiments.
在本實施方式中,對可使用本發明的一個實施方式製造的顯示模組進行說明。 In the present embodiment, a display module that can be manufactured using one embodiment of the present invention will be described.
圖28A所示的顯示模組6000在上蓋6001與下蓋6002之間包括連接到FPC6005的顯示面板6006、框架6009、印刷電路板6010及電池6011。 The display module 6000 shown in FIG. 28A includes a display panel 6006, a frame 6009, a printed circuit board 6010, and a battery 6011 connected to the FPC 6005 between the upper cover 6001 and the lower cover 6002.
例如,可以將上述使用本發明的一個實施方式製造的顯示裝置用於顯示面板6006。由此,可以以高良率製造顯示模組。 For example, the display device manufactured using one embodiment of the present invention described above can be used for the display panel 6006. Thereby, the display module can be manufactured with high yield.
上蓋6001及下蓋6002可以根據顯示面板6006的尺寸適當地改變其形狀或尺寸。 The upper cover 6001 and the lower cover 6002 may be appropriately changed in shape or size according to the size of the display panel 6006.
可以與顯示面板6006重疊地設置觸控面板。觸控面板可以是電阻膜式觸控面板或靜電容量式觸控面板,並且可以與顯示面板6006重疊地設置。此外,也可以使顯示面板6006具有觸控面板功能,而不設置觸控面板。 The touch panel may be disposed to overlap the display panel 6006. The touch panel may be a resistive touch panel or a capacitive touch panel, and may be disposed to overlap the display panel 6006. In addition, the display panel 6006 can also have a touch panel function without providing a touch panel.
框架6009具有保護顯示面板6006的功能,還具有阻擋因印刷電路板6010的工作產生的電磁波的電磁屏蔽的功能。此外,框架6009也可以具有散熱板的功能。 The frame 6009 has a function of protecting the display panel 6006, and also has a function of blocking electromagnetic shielding of electromagnetic waves generated by the operation of the printed circuit board 6010. In addition, the frame 6009 can also have the function of a heat sink.
印刷電路板6010包括電源電路以及用來輸出視訊信號及時脈信號的信號生成電路等電路。作為對電源電路供應電力的電源,可以使用外部的商用電源,也可以使用利用另行設置的電池6011的電源。當使用商用電源時可以省略電池6011。 The printed circuit board 6010 includes a power supply circuit and a signal generating circuit for outputting a video signal and a pulse signal. As the power source for supplying power to the power supply circuit, an external commercial power source may be used, or a power source using a separately provided battery 6011 may be used. The battery 6011 can be omitted when a commercial power source is used.
此外,在顯示模組6000中還可以設置偏光板、相位差板、稜鏡片等構件。 In addition, members such as a polarizing plate, a phase difference plate, and a cymbal sheet may be disposed in the display module 6000.
圖28B是具備光學觸控感測器的顯示模組6000的剖面示意圖。 28B is a schematic cross-sectional view of a display module 6000 having an optical touch sensor.
顯示模組6000包括設置在印刷電路板6010上的發光部6015及受光部6016。另外,由上蓋6001與下蓋6002圍繞的區域設置有一對導光部(導光部6017a、導光部6017b)。 The display module 6000 includes a light emitting portion 6015 and a light receiving portion 6016 which are disposed on the printed circuit board 6010. Further, a pair of light guiding portions (the light guiding portion 6017a and the light guiding portion 6017b) are provided in a region surrounded by the upper cover 6001 and the lower cover 6002.
作為上蓋6001和下蓋6002例如可以使用塑膠。上蓋6001和下蓋6002的厚度可以為薄(例如0.5mm以上且5mm以下)。因此,可以使顯示模組6000的重量極輕。另外,可以用很少的材料製造上蓋6001和下蓋6002,因此可以降低製造成本。 As the upper cover 6001 and the lower cover 6002, for example, plastic can be used. The thickness of the upper cover 6001 and the lower cover 6002 may be thin (for example, 0.5 mm or more and 5 mm or less). Therefore, the weight of the display module 6000 can be made extremely light. In addition, the upper cover 6001 and the lower cover 6002 can be manufactured with a small amount of material, so that the manufacturing cost can be reduced.
顯示面板6006隔著框架6009與印刷電路板6010、電池6011重疊。顯示面板6006及框架6009固定在導光部6017a、導光部6017b。 The display panel 6006 overlaps the printed circuit board 6010 and the battery 6011 via the frame 6009. The display panel 6006 and the frame 6009 are fixed to the light guiding portion 6017a and the light guiding portion 6017b.
從發光部6015發射的光6018經過導光部6017a、顯示面板6006的頂部及導光部6017b到達受光部6016。例如,當光6018被指頭或觸控筆等被檢測體阻擋時,可以檢測觸摸操作。 The light 6018 emitted from the light-emitting portion 6015 passes through the light guiding portion 6017a, the top of the display panel 6006, and the light guiding portion 6017b to reach the light receiving portion 6016. For example, when the light 6018 is blocked by a subject such as a finger or a stylus, a touch operation can be detected.
例如,多個發光部6015沿著顯示面板6006的相鄰的兩個邊設置。多個受光部6016配置在隔著顯示面板6006與發光部6015對置的位置。由此,可以取得觸摸操作的位置的資訊。 For example, the plurality of light emitting portions 6015 are disposed along adjacent two sides of the display panel 6006. The plurality of light receiving units 6016 are disposed at positions facing the light emitting unit 6015 via the display panel 6006. Thereby, information on the position of the touch operation can be obtained.
作為發光部6015例如可以使用LED元件等光源。尤其是,作為發光部6015,較佳為使用發射不被使 用者看到且對使用者無害的紅外線的光源。 As the light-emitting portion 6015, for example, a light source such as an LED element can be used. In particular, as the light-emitting portion 6015, it is preferable to use a light source that emits infrared rays that are not seen by the user and are harmless to the user.
作為受光部6016可以使用接收發光部6015所發射的光且將其轉換為電信號的光電元件。較佳為使用能夠接收紅外線的光電二極體。 As the light receiving portion 6016, a photoelectric element that receives the light emitted from the light emitting portion 6015 and converts it into an electrical signal can be used. It is preferable to use a photodiode capable of receiving infrared rays.
作為導光部6017a、導光部6017b可以使用至少透過光6018的構件。藉由使用導光部6017a及導光部6017b,可以將發光部6015及受光部6016配置在顯示面板6006中的下側,可以抑制外光到達受光部6016而導致觸控感測器的錯誤工作。尤其較佳為使用吸收可見光且透過紅外線的樹脂。由此,更有效地抑制觸控感測器的錯誤工作。 As the light guiding portion 6017a and the light guiding portion 6017b, a member that transmits at least the light 6018 can be used. By using the light guiding portion 6017a and the light guiding portion 6017b, the light emitting portion 6015 and the light receiving portion 6016 can be disposed on the lower side of the display panel 6006, and the external light can be prevented from reaching the light receiving portion 6016, resulting in malfunction of the touch sensor. . It is particularly preferable to use a resin which absorbs visible light and transmits infrared rays. Thereby, the erroneous operation of the touch sensor is more effectively suppressed.
本實施方式相當於對其他實施方式的一部分進行更改、應用、上位概念化或下位概念化的方式。因此,本實施方式的一部分或全部可以和其他實施方式組合或替換而實施。 The present embodiment corresponds to a method of changing, applying, super-conceptualizing, or sub-conceptualizing a part of other embodiments. Therefore, some or all of the embodiments may be combined or replaced with other embodiments.
在本實施方式中示出使用根據本發明的一個實施方式的顯示裝置或顯示模組的電子裝置的一個例子。 An example of an electronic device using a display device or a display module according to an embodiment of the present invention is shown in the present embodiment.
圖29A是平板電腦型可攜式終端6200,其包括外殼6221、顯示裝置6222、操作按鈕6223及揚聲器6224。可以對本發明的一個實施方式的顯示裝置6222附加位置輸入功能。另外,可以藉由在顯示裝置中設置觸控面板來附加位置輸入功能。或者,也可以藉由在顯示裝置 的像素部中設置被稱為光感測器的光電轉換元件來附加位置輸入功能。另外,可以將操作按鈕6223用作打開可攜式終端6200的電源開關、操作可攜式終端6200的應用程式的按鈕、音量調整按鈕或者開啟/關閉顯示裝置6222的開關等。另外,圖29A示出可攜式終端6200包括四個操作按鈕6223的例子,但是可攜式終端6200所具有的操作按鈕的個數及配置不侷限於此。 29A is a tablet type portable terminal 6200 including a housing 6221, a display device 6222, an operation button 6223, and a speaker 6224. A position input function can be added to the display device 6222 of one embodiment of the present invention. In addition, the position input function can be added by providing a touch panel in the display device. Alternatively, the position input function may be added by providing a photoelectric conversion element called a photo sensor in the pixel portion of the display device. In addition, the operation button 6223 can be used as a power switch for turning on the portable terminal 6200, a button for operating an application of the portable terminal 6200, a volume adjustment button, a switch for turning on/off the display device 6222, and the like. In addition, FIG. 29A shows an example in which the portable terminal 6200 includes four operation buttons 6223, but the number and configuration of the operation buttons that the portable terminal 6200 has are not limited thereto.
另外,可攜式終端6200包括檢測外光的照度的光感測器6225X及光感測器6225Y。光感測器6225X及光感測器6225Y配置在外殼6221的框架(bezel)上。尤其是,光感測器6225X配置在外殼6221的框架的兩個短邊中之一,光感測器6225Y配置在外殼6221的框架的兩個長邊中之一。在本發明的一個實施方式中,可以使用光感測器6225X及光感測器6225Y檢測出外光的照度,根據該照度的資料調整顯示在顯示裝置6222上的顯示元件的切換等。 In addition, the portable terminal 6200 includes a photo sensor 6225X and a photo sensor 6225Y that detect the illuminance of the external light. The photo sensor 6225X and the photo sensor 6225Y are disposed on a bezel of the housing 6221. In particular, the photo sensor 6225X is disposed in one of the two short sides of the frame of the housing 6221, and the photo sensor 6225Y is disposed in one of the two long sides of the frame of the housing 6221. In one embodiment of the present invention, the illuminance of the external light can be detected using the photo sensor 6225X and the photo sensor 6225Y, and the switching of the display elements displayed on the display device 6222 can be adjusted based on the illuminance data.
另外,配置光感測器6225X及光感測器6225Y的位置不侷限於圖29A所示的可攜式終端6200。例如,如圖29B所示的可攜式終端6201那樣,光感測器6225X可以配置在外殼6221的框架的兩個短邊的兩者,光感測器6225Y配置在外殼6221的框架的兩個長邊的兩者。 In addition, the position at which the photo sensor 6225X and the photo sensor 6225Y are disposed is not limited to the portable terminal 6200 shown in FIG. 29A. For example, as in the portable terminal 6201 shown in FIG. 29B, the photo sensor 6225X may be disposed on both of the short sides of the frame of the housing 6221, and the photo sensor 6225Y is disposed in the frame of the housing 6221. Both of the long sides.
另外,雖然未圖示,但是圖29A所示的可攜式終端6200可以在外殼6221的內部設置感測器(該感測 器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)。尤其是,藉由設置具有陀螺儀感測器或加速度感測器等測定傾斜度的感測器的測定裝置,可以判斷圖29A所示的可攜式終端6200的方向(可攜式終端相對於垂直方向朝向哪個方向)而將顯示裝置6222的畫面顯示根據可攜式終端6200的方向自動切換。 In addition, although not shown, the portable terminal 6200 shown in FIG. 29A may be provided with a sensor inside the housing 6221 (the sensor has functions of measuring factors such as force, displacement, position, speed, acceleration, Angular velocity, rotational speed, distance, light, liquid, magnetic, temperature, chemical, sound, time, hardness, electric field, current, voltage, electricity, radiation, flow, humidity, inclination, vibration, odor, or infrared. In particular, by providing a measuring device having a sensor for measuring the inclination such as a gyro sensor or an acceleration sensor, the direction of the portable terminal 6200 shown in FIG. 29A can be determined (the portable terminal is opposite to the portable terminal) The screen display of the display device 6222 is automatically switched according to the direction of the portable terminal 6200 in which direction the vertical direction is directed.
本實施方式相當於對其他實施方式的一部分進行更改、應用、上位概念化或下位概念化的方式。因此,本實施方式的一部分或全部可以和其他實施方式組合或替換而實施。 The present embodiment corresponds to a method of changing, applying, super-conceptualizing, or sub-conceptualizing a part of other embodiments. Therefore, some or all of the embodiments may be combined or replaced with other embodiments.
圖30A至圖30F示出可用於具有根據本發明的一個實施方式的顯示裝置的可攜式終端的電子裝置的具體例子。 30A to 30F illustrate specific examples of an electronic device that can be used for a portable terminal having a display device according to an embodiment of the present invention.
圖30A示出一種可攜式遊戲機,其包括外殼5001、外殼5002、根據本發明的一個實施方式的顯示裝置5003、根據本發明的一個實施方式的顯示裝置5004、麥克風5005、揚聲器5006、操作鍵5007以及觸控筆5008等。雖然圖30A所示的可攜式遊戲機包括兩個顯示裝置亦即顯示裝置5003和顯示裝置5004,但是可攜式遊 戲機所具有的顯示裝置的數量不限於兩個。藉由將根據本發明的一個實施方式的顯示裝置5003及顯示裝置5004用於可攜式遊戲機,無論使用環境下的外光的強度如何,也可以將顯示品質高的影像顯示在顯示裝置5003和顯示裝置5004上,並可以抑制功耗。 FIG. 30A illustrates a portable game machine including a housing 5001, a housing 5002, a display device 5003 according to an embodiment of the present invention, a display device 5004, a microphone 5005, a speaker 5006, and an operation according to an embodiment of the present invention. Key 5007, stylus pen 5008, and the like. Although the portable game machine shown in Fig. 30A includes two display devices, that is, the display device 5003 and the display device 5004, the number of display devices possessed by the portable game machine is not limited to two. By using the display device 5003 and the display device 5004 according to an embodiment of the present invention for a portable game machine, it is possible to display an image with high display quality on the display device 5003 regardless of the intensity of the external light in the use environment. And on the display device 5004, and power consumption can be suppressed.
圖30B是一種手錶型可攜式終端,其包括外殼5201、根據本發明的一個實施方式的顯示裝置5202、手錶帶5203、光感測器5204以及開關5205等。藉由將根據本發明的一個實施方式的顯示裝置5202用於手錶型可攜式終端,無論使用環境下的外光的強度如何,也可以將顯示品質高的影像顯示在顯示裝置5202上,並可以抑制功耗。 FIG. 30B is a watch type portable terminal including a housing 5201, a display device 5202, a wristwatch strap 5203, a photo sensor 5204, a switch 5205, and the like according to an embodiment of the present invention. By using the display device 5202 according to an embodiment of the present invention for a watch type portable terminal, an image with high display quality can be displayed on the display device 5202 regardless of the intensity of external light in the use environment, and Power consumption can be suppressed.
圖30C是一種平板電腦式個人電腦,其包括外殼5301、外殼5302、根據本發明的一個實施方式的顯示裝置5303、光感測器5304、光感測器5305、開關5306等。顯示裝置5303由外殼5301及外殼5302支撐。由於顯示裝置5303使用具有撓性的基板形成,因此可以被彎曲。藉由利用鉸鏈5307及5308改變外殼5301與外殼5302之間的角度,可以以外殼5301與外殼5302重疊的方式折疊顯示裝置5303。雖然未圖示,但是也可以內置開閉感測器來將上述角度的變化用於顯示裝置5303的使用條件的資訊。藉由將根據本發明的一個實施方式的顯示裝置5303用於平板電腦式個人電腦,無論使用環境下的外光的強度如何,也可以將顯示品質高的影像顯示在顯示 裝置5303上,並可以抑制功耗。 30C is a tablet type personal computer including a housing 5301, a housing 5302, a display device 5303 according to an embodiment of the present invention, a photo sensor 5304, a photo sensor 5305, a switch 5306, and the like. The display device 5303 is supported by the housing 5301 and the housing 5302. Since the display device 5303 is formed using a substrate having flexibility, it can be bent. By changing the angle between the outer casing 5301 and the outer casing 5302 by means of the hinges 5307 and 5308, the display device 5303 can be folded in such a manner that the outer casing 5301 overlaps the outer casing 5302. Although not shown, an open/close sensor may be incorporated to use the above-described change in angle for information on the use condition of the display device 5303. By using the display device 5303 according to an embodiment of the present invention for a tablet type personal computer, an image with high display quality can be displayed on the display device 5303 regardless of the intensity of the external light in the use environment. Suppress power consumption.
圖30D是一種視頻攝影機,其包括外殼5801、外殼5802、根據本發明的一個實施方式的顯示裝置5803、操作鍵5804、鏡頭5805、連接部5806等。操作鍵5804及鏡頭5805設置在外殼5801中,而顯示裝置5803設置在外殼5802中。並且,外殼5801和外殼5802由連接部5806連接,由連接部5806可以改變外殼5801和外殼5802之間的角度。顯示裝置5803的影像也可以根據連接部5806所形成的外殼5801和外殼5802之間的角度切換。藉由將根據本發明的一個實施方式的顯示裝置5803用於視頻攝影機,無論使用環境下的外光的強度如何,也可以將顯示品質高的影像顯示在顯示裝置5803上,並可以抑制功耗。 FIG. 30D is a video camera including a housing 5801, a housing 5802, a display device 5803 according to an embodiment of the present invention, an operation key 5804, a lens 5805, a connecting portion 5806, and the like. The operation key 5804 and the lens 5805 are disposed in the housing 5801, and the display device 5803 is disposed in the housing 5802. Also, the outer casing 5801 and the outer casing 5802 are connected by a connecting portion 5806, and the angle between the outer casing 5801 and the outer casing 5802 can be changed by the connecting portion 5806. The image of the display device 5803 can also be switched according to the angle between the outer casing 5801 and the outer casing 5802 formed by the connecting portion 5806. By using the display device 5803 according to an embodiment of the present invention for a video camera, it is possible to display an image with high display quality on the display device 5803 regardless of the intensity of the external light in the use environment, and it is possible to suppress power consumption. .
圖30E是一種手錶型可攜式終端,其包括具有曲面的外殼5701以及根據本發明的一個實施方式的顯示裝置5702。藉由將具有撓性的基板用於根據本發明的一個實施方式的顯示裝置5702,可以使具有曲面的外殼5701支撐顯示裝置5702,從而可以提供撓性、輕量且使用方便的手錶型可攜式終端。並且,藉由將根據本發明的一個實施方式的顯示裝置5702用於手錶型可攜式終端,無論使用環境下的外光的強度如何,也可以將顯示品質高的影像顯示在顯示裝置5702上,並可以抑制功耗。 Figure 30E is a watch type portable terminal including a housing 5701 having a curved surface and a display device 5702 according to an embodiment of the present invention. By using the flexible substrate for the display device 5702 according to an embodiment of the present invention, the outer casing 5701 having a curved surface can support the display device 5702, thereby providing a flexible, lightweight, and convenient watch type portable. Terminal. Further, by using the display device 5702 according to an embodiment of the present invention for a watch type portable terminal, an image with high display quality can be displayed on the display device 5702 regardless of the intensity of external light in the use environment. And can suppress power consumption.
圖30F是一種行動電話,在具有曲面的外殼5901中設置有根據本發明的一個實施方式的顯示裝置 5902、麥克風5907、揚聲器5904、相機5903、外部連接部5906以及操作按鈕5905。藉由將根據本發明的一個實施方式的顯示裝置5902用於行動電話,無論使用環境下的外光的強度如何,也可以將顯示品質高的影像顯示在顯示裝置5902上,並可以抑制功耗。 Fig. 30F is a mobile phone in which a display device 5902, a microphone 5907, a speaker 5904, a camera 5903, an external connection portion 5906, and an operation button 5905 according to an embodiment of the present invention are disposed in a housing 5901 having a curved surface. By using the display device 5902 according to an embodiment of the present invention for a mobile phone, it is possible to display an image with high display quality on the display device 5902 regardless of the intensity of the external light in the use environment, and it is possible to suppress power consumption. .
本實施方式相當於對其他實施方式的一部分進行更改、應用、上位概念化或下位概念化的方式。因此,本實施方式的一部分或全部可以和其他實施方式組合或替換而實施。 The present embodiment corresponds to a method of changing, applying, super-conceptualizing, or sub-conceptualizing a part of other embodiments. Therefore, some or all of the embodiments may be combined or replaced with other embodiments.
在本說明書等中,“第一”、“第二”、“第三”等序數詞是為了避免組件的混淆而附加的。因此,該序數詞不限制組件的個數。此外,該序數詞不限制組件的順序。 In the present specification and the like, ordinal numbers such as "first", "second", and "third" are added in order to avoid confusion of components. Therefore, the ordinal does not limit the number of components. Moreover, the ordinal does not limit the order of the components.
在本說明書等中,在方塊圖中根據功能對組件進行分類並以彼此獨立的方塊表示。然而,在實際的電路等中難以根據功能對組件進行分類,有時一個電路係關於到多個功能或者多個電路係關於到一個功能。因此,方塊圖中的方塊的分割不侷限於說明書中說明的組件,而可以根據情況適當地不同。 In this specification and the like, components are classified according to functions in block diagrams and are represented by blocks independent of each other. However, it is difficult to classify components according to functions in actual circuits and the like, and sometimes one circuit is related to a plurality of functions or a plurality of circuits related to one function. Therefore, the division of the blocks in the block diagram is not limited to the components described in the specification, but may be appropriately different depending on the situation.
在圖式中,有時使用同一元件符號表示同一組件、具有相同功能的組件、由同一材料形成的組件或者同時形成的組件等,並且有時省略重複說明。 In the drawings, the same component symbols are sometimes used to denote the same component, a component having the same function, a component formed of the same material, or a component formed at the same time, and the like, and the repeated description is sometimes omitted.
在本說明書等中,當說明電晶體的連接關係 時,記載為“源極和汲極中的一個”(或者第一電極或第一端子)和“源極和汲極中的另一個”(或者第二電極或第二端子)。這是因為電晶體的源極和汲極根據電晶體的結構或工作條件等改變的緣故。注意,根據情況可以將電晶體的源極和汲極適當地換稱為源極(汲極)端子或源極(汲極)電極等。 In the present specification and the like, when describing the connection relationship of the transistors, it is described as "one of the source and the drain" (or the first electrode or the first terminal) and "the other of the source and the drain" ( Or a second electrode or a second terminal). This is because the source and the drain of the transistor are changed depending on the structure or operating conditions of the transistor. Note that the source and drain of the transistor may be appropriately referred to as a source (drain) terminal or a source (drain) electrode or the like as the case may be.
另外,在本說明書等中,可以適當地對電壓和電位進行換稱。電壓是指與參考電位之間的電位差,例如在參考電位為地電位(接地電位)時,可以將電壓換稱為電位。接地電位不一定意味著0V。注意,電位是相對的,對佈線等供應的電位有時根據參考電位而變化。 Further, in the present specification and the like, the voltage and the potential can be appropriately changed. The voltage refers to the potential difference from the reference potential. For example, when the reference potential is the ground potential (ground potential), the voltage can be referred to as the potential. The ground potential does not necessarily mean 0V. Note that the potentials are relative, and the potential supplied to the wiring or the like sometimes varies depending on the reference potential.
在本說明書等中,開關是指具有藉由變為導通狀態(開啟狀態)或非導通狀態(關閉狀態)來控制是否使電流流過的功能的元件。或者,開關是指具有選擇並切換電流路徑的功能的元件。 In the present specification and the like, the switch refers to an element having a function of controlling whether or not a current flows by changing to an on state (on state) or a non-conduction state (off state). Alternatively, a switch refers to an element having the function of selecting and switching a current path.
例如,可以使用電開關或機械開關等。換而言之,開關只要可以控制電流,就不侷限於特定的元件。 For example, an electric switch or a mechanical switch or the like can be used. In other words, the switch is not limited to a specific component as long as it can control the current.
當作為開關使用電晶體時,電晶體的“導通狀態”是指視電晶體的源極與汲極為電短路的狀態。另外,電晶體的“非導通狀態”是指視電晶體的源極與汲極為電斷開的狀態。當將電晶體僅用作開關時,對電晶體的極性(導電型)沒有特別的限制。 When a transistor is used as a switch, the "on state" of the transistor means a state in which the source and the NMOS of the transistor are extremely electrically short-circuited. In addition, the "non-conducting state" of the transistor means a state in which the source of the transistor is extremely electrically disconnected from the crucible. When the transistor is used only as a switch, there is no particular limitation on the polarity (conductivity type) of the transistor.
在本說明書等中,像素指的是例如能夠控制明亮度的一個單元。因此,作為一個例子,一個像素指的 是一個色彩單元,並用該一個色彩單元來顯示明亮度。因此,在採用由R(紅色)、G(綠色)和B(藍色)這些色彩單元構成的彩色顯示裝置的情況下,將像素的最小單位設置為由R的像素、G的像素以及B的像素這三個像素構成的像素。有時,將RGB的每一個像素稱為子像素,將RGB的子像素總稱為像素。 In the present specification and the like, a pixel refers to, for example, one unit capable of controlling brightness. Thus, as an example, a pixel refers to a color unit and the color unit is used to display brightness. Therefore, in the case of using a color display device composed of color units such as R (red), G (green), and B (blue), the minimum unit of the pixel is set to be a pixel of R, a pixel of G, and B. A pixel composed of three pixels of pixels. Sometimes, each pixel of RGB is referred to as a sub-pixel, and sub-pixels of RGB are collectively referred to as a pixel.
再者,色彩單元並不侷限於三種顏色,也可以使用三種以上的顏色,例如有RGBW(W是白色)或對RGB追加黃色(yellow)、青色(cyan)、洋紅色(magenta)的顏色等。 Furthermore, the color unit is not limited to three colors, and three or more colors may be used, for example, RGBW (W is white) or yellow (yellow), cyan (myan), magenta (magenta), etc. for RGB. .
在本說明書等中,“A與B連接”除了包括A與B直接連接的情況以外,還包括A與B電連接的情況。在此,“A與B電連接”是指當在A與B之間存在具有某種電作用的物件時,能夠在A和B之間進行電信號的交換的情況。 In the present specification and the like, "A and B are connected" include a case where A and B are electrically connected in addition to the case where A and B are directly connected. Here, "A and B are electrically connected" means a case where an electrical signal can be exchanged between A and B when an object having a certain electrical action exists between A and B.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-185831 | 2016-09-23 | ||
JP2016185831 | 2016-09-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201824227A true TW201824227A (en) | 2018-07-01 |
TWI753870B TWI753870B (en) | 2022-02-01 |
Family
ID=61836715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105138110A TWI753870B (en) | 2016-09-23 | 2016-11-21 | Display device and electronic device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6983597B2 (en) |
TW (1) | TWI753870B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI842361B (en) * | 2023-01-31 | 2024-05-11 | 瑞鼎科技股份有限公司 | Timing controller applied to cholesteric liquid display device |
TWI842254B (en) * | 2022-12-05 | 2024-05-11 | 瑞鼎科技股份有限公司 | Display driving circuit |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11210048B2 (en) | 2019-10-04 | 2021-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Display device, display module, and electronic device |
TWI753660B (en) * | 2020-11-19 | 2022-01-21 | 友達光電股份有限公司 | Display panel |
WO2024127199A1 (en) * | 2022-12-16 | 2024-06-20 | 株式会社半導体エネルギー研究所 | Electronic device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3898012B2 (en) * | 2001-09-06 | 2007-03-28 | シャープ株式会社 | Display device |
US20060262055A1 (en) * | 2005-01-26 | 2006-11-23 | Toshiba Matsushita Display Technology | Plane display device |
JP2006350304A (en) * | 2005-05-20 | 2006-12-28 | Semiconductor Energy Lab Co Ltd | Display device, method for driving the same, and electronic device |
JP4475321B2 (en) * | 2007-11-26 | 2010-06-09 | ソニー株式会社 | Display device |
US20110122111A1 (en) * | 2008-06-03 | 2011-05-26 | Christopher Brown | Display device |
US20110080391A1 (en) * | 2008-06-03 | 2011-04-07 | Christopher Brown | Display device |
CN102576507B (en) * | 2009-09-28 | 2015-08-05 | 凸版印刷株式会社 | Active-matrix substrate and manufacture method thereof and image display device |
US20150235589A1 (en) * | 2014-02-19 | 2015-08-20 | Electronics And Telecommunications Research Institute | Display device and driving method thereof |
TWI679624B (en) * | 2014-05-02 | 2019-12-11 | 日商半導體能源研究所股份有限公司 | Semiconductor device |
-
2016
- 2016-11-21 TW TW105138110A patent/TWI753870B/en not_active IP Right Cessation
-
2017
- 2017-09-20 JP JP2017180269A patent/JP6983597B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI842254B (en) * | 2022-12-05 | 2024-05-11 | 瑞鼎科技股份有限公司 | Display driving circuit |
TWI842361B (en) * | 2023-01-31 | 2024-05-11 | 瑞鼎科技股份有限公司 | Timing controller applied to cholesteric liquid display device |
Also Published As
Publication number | Publication date |
---|---|
TWI753870B (en) | 2022-02-01 |
JP2018055097A (en) | 2018-04-05 |
JP6983597B2 (en) | 2021-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7463445B2 (en) | Display device | |
US11881177B2 (en) | Display device and electronic device | |
US10452218B2 (en) | Display device and electronic device | |
JP2024026505A (en) | light emitting device | |
JP6983597B2 (en) | Display devices and electronic devices | |
JPWO2018197985A1 (en) | Display unit, display device, and electronic device | |
US10770482B2 (en) | Display device and electronic device | |
US20220180834A1 (en) | Display device and electronic device | |
JP6938233B2 (en) | Display device | |
US10163989B2 (en) | Display device and electronic device | |
JP2024056861A (en) | Display device | |
JP2018081308A (en) | Method for the operation of a display device | |
JP6965065B2 (en) | Display device | |
TWI814754B (en) | Display device and its working method | |
JP2018031944A (en) | Display system and electronic apparatus | |
TW201824219A (en) | Display device and electronic device include a signal generation circuit, a first gate driver, a second gate driver, and a second display section stopping the first scanning signal outputted by the first gate driver and the second scanning signal outputted by the second gate driver, etc. | |
US10216999B2 (en) | Display system, electronic device, and display method | |
JP6999374B2 (en) | Electronic devices and touch panel input method | |
JP2018106069A (en) | Display device and electronic apparatus | |
JP7374886B2 (en) | display device | |
JP2018072483A (en) | Display device and electronic apparatus | |
JP2018054901A (en) | Display system and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |