TW201805745A - Robot control device and robot operation method - Google Patents
Robot control device and robot operation method Download PDFInfo
- Publication number
- TW201805745A TW201805745A TW105138872A TW105138872A TW201805745A TW 201805745 A TW201805745 A TW 201805745A TW 105138872 A TW105138872 A TW 105138872A TW 105138872 A TW105138872 A TW 105138872A TW 201805745 A TW201805745 A TW 201805745A
- Authority
- TW
- Taiwan
- Prior art keywords
- robot arm
- module
- working
- arm
- mode
- Prior art date
Links
Landscapes
- Manipulator (AREA)
Abstract
Description
本發明是有關於一種機械手臂,且特別是有關於一種機械手臂之控制裝置及操作方法。 The present invention relates to a mechanical arm, and more particularly to a mechanical arm control device and method of operation.
隨著機械手臂技術的日漸成熟,多個自主移動機械手臂在較大範圍內協同工作已成為可能。為了實現多機械手臂協同工作,必須對機械手臂進行協同控制,以使機械手臂不發生任務衝突,提高工作效率。 With the maturity of robotic arm technology, it has become possible for multiple autonomous mobile robots to work together over a wide range. In order to achieve multi-mechanical arm work together, the robot arm must be cooperatively controlled so that the robot arm does not have a conflict of tasks and improves work efficiency.
此外,透過機械手臂與人的協同運作,可提升複雜度高或需要高度彈性之製程的工作效率,但也提高操作人員的危險性。因此,如何規範機械手臂的運動範圍,並設計供人員活動的工作區間,以提早預防機械手臂對人的可能傷害,實為重要。 In addition, through the cooperation of the robot arm and the person, the work efficiency of the process with high complexity or high elasticity can be improved, but the danger of the operator is also increased. Therefore, how to regulate the range of motion of the robot arm and design the working range for personnel activities to prevent the possible injury of the robot arm to the person is very important.
本發明係有關於一種機械手臂之控制裝置及其操作方法,能確保人機協同進行作業時的安全性與便捷性。 The invention relates to a control device for a mechanical arm and an operation method thereof, which can ensure the safety and convenience when the human machine cooperates with the work.
根據本發明之一方面,提出一種機械手臂之控制裝置,包括一壓力感測模組、一工作範圍界定模組以及一控制模 組。壓力感測模組設置於一機械手臂上,壓力感測模組用以偵測一物體是否觸碰機械手臂,藉以切換機械手臂的操作模式。工作範圍界定模組包括一感應區,佈置於機械手臂的周圍區域上,工作範圍界定模組根據物體在感應區的位置,判斷物體是否進入一預定的工作區域(operating space),並根據物體進入的工作區域設定機械手臂的工作範圍以及工作模式。控制模組連接機械手臂、壓力感測模組以及工作範圍界定模組,其中控制模組用以切換機械手臂的操作模式,並根據機械手臂的工作模式輸出一馬達驅動訊號至機械手臂。 According to an aspect of the present invention, a control device for a robot arm includes a pressure sensing module, a working range defining module, and a control module. group. The pressure sensing module is disposed on a robot arm, and the pressure sensing module is configured to detect whether an object touches the robot arm, thereby switching the operating mode of the robot arm. The working range defining module includes a sensing area disposed on a surrounding area of the robot arm, and the working range defining module determines whether the object enters a predetermined operating space according to the position of the object in the sensing area, and enters according to the object. The working area sets the working range and working mode of the robot arm. The control module is connected to the mechanical arm, the pressure sensing module and the working range defining module, wherein the control module is used to switch the operating mode of the mechanical arm and output a motor driving signal to the robot arm according to the working mode of the mechanical arm.
根據本發明之一方面,提出一種機械手臂之操作方法,包括下列步驟:經由佈置一感應區於一機械手臂的周圍區域上,以偵測一物體在感應區的位置,並判斷物體是否進入一預定的工作區域。根據物體進入的工作區域設定機械手臂的工作範圍以及工作模式,並根據機械手臂的工作模式,輸出一馬達驅動訊號至機械手臂。經由設置一壓力感測模組於機械手臂上,以偵測物體是否觸碰機械手臂。當偵測到物體觸碰機械手臂時,發出一停止訊號至機械手臂,以控制機械手臂停止。 According to an aspect of the invention, a method for operating a robot arm is provided, comprising the steps of: arranging a sensing area on a surrounding area of a robot arm to detect the position of an object in the sensing area, and determining whether the object enters a Scheduled work area. The working range and working mode of the robot arm are set according to the working area where the object enters, and a motor driving signal is output to the robot arm according to the working mode of the robot arm. A pressure sensing module is disposed on the robot arm to detect whether the object touches the robot arm. When it is detected that the object touches the robot arm, a stop signal is sent to the robot arm to control the robot arm to stop.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉諸項實施例,並配合所附圖式,作詳細說明如下: In order to provide a better understanding of the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings
100‧‧‧機械手臂之控制裝置 100‧‧‧Control device for robotic arm
101‧‧‧機械手臂 101‧‧‧ Robotic arm
102‧‧‧關節馬達 102‧‧‧ joint motor
110‧‧‧壓力感測模組 110‧‧‧ Pressure Sensing Module
112‧‧‧觸碰感應表面 112‧‧‧Touch touch surface
120‧‧‧工作範圍界定模組 120‧‧‧Working scoping module
122‧‧‧感應區 122‧‧‧Sensor area
130‧‧‧控制模組 130‧‧‧Control Module
132‧‧‧關節馬達控制器 132‧‧‧ Joint Motor Controller
133‧‧‧重力補償器 133‧‧‧Gravity compensator
134‧‧‧模式切換模組 134‧‧‧Mode Switching Module
135‧‧‧摩擦力補償器 135‧‧‧ friction compensator
136‧‧‧關節馬達編碼器 136‧‧‧Joint motor encoder
138‧‧‧手持操作控制器 138‧‧‧Handheld operation controller
140‧‧‧機械手臂之手持操作系統 140‧‧‧Handheld operating system for robotic arm
A1~A3‧‧‧工作區域 A1~A3‧‧‧Working area
A4‧‧‧協作區域 A4‧‧‧Collaborative area
D1‧‧‧第一距離 D1‧‧‧First distance
D2‧‧‧第二距離 D2‧‧‧Second distance
D3‧‧‧第三距離 D3‧‧‧ third distance
F‧‧‧足跡 F‧‧‧ Footprint
第1圖繪示依照本發明一實施例之機械手臂之控制裝置的方塊圖。 1 is a block diagram of a control device for a robot arm in accordance with an embodiment of the present invention.
第2圖繪示依照本發明一實施例之機械手臂之控制裝置的立體示意圖。 2 is a perspective view of a control device for a robot arm according to an embodiment of the invention.
第3圖繪示設定機械手臂的工作範圍的示意圖。 Figure 3 is a schematic diagram showing the working range of the robot arm.
第4圖繪示依照本發明一實施例之機械手臂之操作方法的流程圖。 4 is a flow chart showing a method of operating a robot arm in accordance with an embodiment of the present invention.
第5圖繪示依照本發明一實施例之機械手臂之手持操作系統的方塊圖。 FIG. 5 is a block diagram of a handheld operating system of a robot arm in accordance with an embodiment of the present invention.
以下係提出實施例進行詳細說明,實施例僅用以作為範例說明,並非用以限縮本發明欲保護之範圍。 The embodiments are described in detail below, and the embodiments are only intended to be illustrative and not intended to limit the scope of the invention.
請參照第1及2圖,根據本發明一實施例之機械手臂之控制裝置100包括一壓力感測模組110、一工作範圍界定模組120以及一控制模組130。壓力感測模組110設置於一機械手臂101上,例如位於容易觸碰的任一部位或機械手臂101的端部上,壓力感測模組110用以偵測一物體是否觸碰機械手臂101。此物體例如是操作人員或與機械手臂101協同運作的機器。壓力感測模組110可與機械手臂101機電整合,以做為機械手臂101的觸覺皮膚。 Referring to FIGS. 1 and 2 , the control device 100 for a robot arm according to an embodiment of the present invention includes a pressure sensing module 110 , a working range defining module 120 , and a control module 130 . The pressure sensing module 110 is disposed on a robot arm 101, for example, at any part that is easy to touch or the end of the robot arm 101. The pressure sensing module 110 is configured to detect whether an object touches the robot arm 101. . This object is for example an operator or a machine that cooperates with the robot arm 101. The pressure sensing module 110 can be mechanically integrated with the robot arm 101 as the tactile skin of the robot arm 101.
工作範圍界定模組120用以設定機械手臂101的工作範圍以及工作模式。控制模組130連接機械手臂101、壓力感測模組110以及工作範圍界定模組120,用以切換機械手臂101的操作模式,並根據機械手臂101的工作模式輸出一馬達驅動訊 號至機械手臂101。 The working range defining module 120 is configured to set the working range and working mode of the robot arm 101. The control module 130 is connected to the robot arm 101, the pressure sensing module 110, and the working range defining module 120 for switching the operating mode of the robot arm 101, and outputting a motor driving signal according to the working mode of the robot arm 101. No. to the robotic arm 101.
舉例來說,在一工作模式下,若無人員或物體進入機械手臂101的工作範圍內,控制模組130根據預設的參數值(扭力、速度或移動軌跡等)正常操作機械手臂101,當有人員或物體進入預設的一工作區域(A1~A3其中之一)時,工作範圍界定模組120會根據人員或物體所進入的工作區域屬於A1~A3中何者,來設定機械手臂101的工作範圍以及工作模式,此時,控制模組130根據調整後的參數值(扭力、速度或移動軌跡等)操作機械手臂101。一方面可避免機械手臂101的工作範圍(或移動軌跡)與人員或物體進入的工作區域(A1~A3其中之一)發生重疊以致產生碰撞等異常事件,另一方面可限制機械手臂101的最大移動速度或最大輸出扭力,以避免機械手臂101在高速或高扭力下操作而發生碰撞的危險。 For example, in a working mode, if no person or object enters the working range of the robot arm 101, the control module 130 normally operates the robot arm 101 according to preset parameter values (torque, speed or movement trajectory, etc.). When a person or an object enters a preset working area (one of A1~A3), the working range defining module 120 sets the robot arm 101 according to which of the working areas that the person or the object enters belongs to A1~A3. The working range and the working mode. At this time, the control module 130 operates the robot arm 101 according to the adjusted parameter values (torque, speed or movement trajectory, etc.). On the one hand, it is possible to prevent the working range (or moving trajectory) of the robot arm 101 from overlapping with the working area (one of A1 to A3) where the person or the object enters, so as to generate an abnormal event such as a collision, and on the other hand, the maximum of the robot arm 101 can be restricted. The speed of movement or the maximum output torque is used to avoid the risk of collision of the robot arm 101 operating at high speed or high torque.
請參照第2及3圖,工作範圍界定模組120可包括一感應區122,例如是感應地墊或壓力感測器所設置成的陣列區域,感應區122佈置於機械手臂101的周圍區域上,例如是周圍地面上,且感應區122可區分為多個工作區域A1~A3,每個工作區域A1~A3對應不同的工作模式(或不同的工作參數)。在一實施例中,感應區122可區分為三個或更多個工作區域A1~A3,第一工作區域A1相對於機械手臂101相隔一第一距離D1,第二工作區域A2相對於機械手臂101相隔一第二距離D2,第三工作區域A3相對於機械手臂101相隔一第三距離D3,第一距離D1小於 第二距離D2,第二距離D2小於第三距離D3,依此類推。 Referring to FIGS. 2 and 3, the working range defining module 120 can include a sensing area 122, such as an array area provided by an inductive ground pad or a pressure sensor, and the sensing area 122 is disposed on a surrounding area of the robot arm 101. For example, it is on the surrounding ground, and the sensing area 122 can be divided into a plurality of working areas A1~A3, and each working area A1~A3 corresponds to a different working mode (or different working parameters). In an embodiment, the sensing area 122 can be divided into three or more working areas A1~A3, the first working area A1 is separated from the mechanical arm 101 by a first distance D1, and the second working area A2 is relative to the mechanical arm. 101 is separated by a second distance D2, and the third working area A3 is separated from the mechanical arm 101 by a third distance D3, and the first distance D1 is smaller than The second distance D2, the second distance D2 is smaller than the third distance D3, and so on.
當有人員或物體進入感應區122時,工作範圍界定模組120根據人員或物體在感應區122的位置判斷人員或物體是否進入一預定的工作區域(A1~A3其中之一),藉以調整機械手臂101的參數值。在一實施例中,機械手臂101的工作模式根據不同的參數值大致上可區分為低速度/低扭力工作模式、中速度/中扭力工作模式以及高速度/高扭力工作模式,但本發明不以此為限。 When a person or an object enters the sensing area 122, the working range defining module 120 determines whether the person or object enters a predetermined working area (one of A1 to A3) according to the position of the person or the object in the sensing area 122, thereby adjusting the mechanism. The parameter value of the arm 101. In an embodiment, the operating mode of the robot arm 101 can be roughly divided into a low speed/low torque working mode, a medium speed/medium torque working mode, and a high speed/high torque working mode according to different parameter values, but the present invention does not This is limited to this.
例如,在第3圖中,當人員或物體(以足跡F表示)靠近機械手臂101時,人員或物體與機械手臂101之間相隔一距離,工作範圍界定模組120可根據相隔的距離與機械手臂101的速度或扭力之間的關係表,來設定機械手臂101的工作範圍以及工作模式。當人員或物體越靠近機械手臂101,危險性以及發生碰撞的機率也越高,因而控制模組130可根據上述的關係表(距離vs.移動速度或距離vs.輸出扭力)來控制機械手臂101的最大移動速度或最大輸出扭力,以減少危險性以及發生碰撞的機率。 For example, in FIG. 3, when a person or object (indicated by footprint F) is close to the robot arm 101, the person or object is separated from the robot arm 101 by a distance, and the working range defining module 120 can be separated according to the distance and the machine. The relationship between the speed or torque of the arm 101 is used to set the working range and working mode of the robot arm 101. The closer the person or object is to the robot arm 101, the higher the risk and the probability of collision. Therefore, the control module 130 can control the robot arm 101 according to the above relationship table (distance vs. moving speed or distance vs. output torque). Maximum moving speed or maximum output torque to reduce the risk and probability of collision.
此外,在上述其中一種工作模式下,當人員以手指觸碰壓力感測模組110時,壓力感測模組110產生一觸碰感應訊號至控制模組130,控制模組130再根據觸碰感應訊號發出一停止訊號至機械手臂101,以控制機械手臂101停止。當機械手臂101處於停止狀態時,控制模組130可切換機械手臂101的操作模式,並可進行徒手教導或順應教導等手持操作模式。請參照第 2圖,在另一實施例中,工作範圍界定模組120還可包括一協作區域A4(collaborative workspace),而且協作區域A4的周圍例如設有影像感測器或在地面上設有感應地墊,當有人員或物體進入協作區域A4時,控制模組130可根據影像感測器或感應地墊產生的感應訊號發出一操作訊號至機械手臂101,以控制機械手臂101停止或進入手持操作模式。 In addition, in one of the above modes of operation, when a person touches the pressure sensing module 110 with a finger, the pressure sensing module 110 generates a touch sensing signal to the control module 130, and the control module 130 according to the touch The sensing signal sends a stop signal to the robot arm 101 to control the robot arm 101 to stop. When the robot arm 101 is in a stopped state, the control module 130 can switch the operation mode of the robot arm 101, and can perform a hand-held operation mode such as freehand teaching or compliant teaching. Please refer to the 2, in another embodiment, the working range defining module 120 may further include a collaborative area A4, and the surrounding area of the cooperation area A4 is provided with an image sensor or an inductive ground pad on the ground. When a person or an object enters the cooperation area A4, the control module 130 can send an operation signal to the robot arm 101 according to the sensing signal generated by the image sensor or the inductive floor mat to control the robot arm 101 to stop or enter the handheld operation mode. .
請參照第4圖,根據本發明一實施例之機械手臂101之操作方法包括下列步驟:在步驟S11中,經由佈置一感應區122於機械手臂101的周圍區域上,以偵測人員或物體在感應區122的位置,並判斷人員或物體是否進入一預定的工作區域(A1~A3其中之一);在步驟S12中,根據物體進入的工作區域A1~A3設定機械手臂101的工作範圍以及工作模式,並根據機械手臂101的工作模式,輸出一馬達驅動訊號至機械手臂101;在步驟S13中,經由設置一壓力感測模組110於機械手臂101上,以偵測人員或物體是否觸碰機械手臂101;在步驟S14中,當偵測到物體觸碰機械手臂101時,發出一停止訊號至機械手臂101,以控制機械手臂101停止。在步驟S15中,當機械手臂101停止時,切換機械手臂101的操作模式,以選擇進入手持操作模式或解除停止狀態。在步驟S16中,當機械手臂101解除停止狀態時,回到步驟S13,繼續偵測物體是否觸碰機械手臂101。在步驟S16中,當機械手臂101進入手持操作模式時,可根據施加於機械手臂101的端部的一觸碰感應表面112的操作指令控制機械手臂101,並 根據操作指令產生一組使機械手臂101移動的馬達扭力訊號。在步驟S18中,當機械手臂101結束手持操作模式時,回到步驟S13,繼續偵測物體是否觸碰機械手臂101。 Referring to FIG. 4, a method of operating a robot arm 101 according to an embodiment of the present invention includes the following steps: in step S11, a sensing area 122 is disposed on a surrounding area of the robot arm 101 to detect a person or an object. The position of the sensing area 122 is determined, and it is judged whether the person or the object enters a predetermined working area (one of A1 to A3); in step S12, the working range and working of the robot arm 101 are set according to the working areas A1 to A3 into which the object enters. a mode, and according to the working mode of the robot arm 101, output a motor driving signal to the robot arm 101; in step S13, a pressure sensing module 110 is disposed on the robot arm 101 to detect whether a person or an object touches The robot arm 101; in step S14, when detecting that the object touches the robot arm 101, a stop signal is sent to the robot arm 101 to control the robot arm 101 to stop. In step S15, when the robot arm 101 is stopped, the operation mode of the robot arm 101 is switched to select to enter the hand-held operation mode or release the stop state. In step S16, when the robot arm 101 is released from the stop state, the process returns to step S13 to continue detecting whether the object touches the robot arm 101. In step S16, when the robot arm 101 enters the hand-held operation mode, the robot arm 101 can be controlled according to an operation command applied to a touch sensing surface 112 of the end of the robot arm 101, and A set of motor torque signals for moving the robot arm 101 are generated according to the operation command. In step S18, when the robot arm 101 ends the hand-held operation mode, the process returns to step S13 to continue detecting whether the object touches the robot arm 101.
在一實施例中,上述步驟S12,設定機械手臂101的工作範圍以及工作模式之步驟中,該控制模組130內預先設有工作區域A1~A3與機械手臂101的速度或扭力之間的一關係表,當判斷人員或物體進入的工作區域(A1~A3其中之一)相對於機械手臂101相隔一距離,更包括步驟S12-1及步驟S12-2,其中步驟S12-1是根據距離選擇該關係表中進入的工作區域(A1~A3其中之一)與機械手臂101的速度或扭力之間的一對應值,步驟S12-2是根據該對應值控制機械手臂101的最大移動速度或最大輸出扭力。也就是說,當人員或物體越靠近機械手臂101時,根據人機相隔的距離,例如可依序設定為降低機械手臂101的移動速度或輸出扭力為最大值的80%、50%、30%等,以降低危險性以及發生碰撞的機率,但本發明不以此設定方式為限。 In an embodiment, in the step S12, in the step of setting the working range and the working mode of the robot arm 101, the control module 130 is preliminarily provided with a speed or a torque between the working areas A1 to A3 and the mechanical arm 101. The relationship table, when determining that the working area (one of A1 to A3) that the person or the object enters is separated from the robot arm 101 by a distance, further includes step S12-1 and step S12-2, wherein step S12-1 is selected according to the distance a corresponding value between the working area (one of A1 to A3) entered in the relationship table and the speed or torque of the robot arm 101, and step S12-2 is to control the maximum moving speed or maximum of the robot arm 101 according to the corresponding value. Output torque. That is to say, when the person or object is closer to the robot arm 101, according to the distance between the human and the machine, for example, it can be sequentially set to reduce the moving speed of the robot arm 101 or the output torque is 80%, 50%, 30% of the maximum value. Etc., to reduce the risk and the probability of collision, but the invention is not limited by this setting.
請參照第5圖,依照本發明一實施例之機械手臂之手持操作系統140包括一壓力感測模組110以及一控制模組130。壓力感測模組110設置於一機械手臂101的任一部位或端部上,壓力感測模組110具有一觸碰感應表面112(請另參見第2圖所示),用以偵測施加於觸碰感應表面112上的一操作指令,操作指令例如是人員的手指觸摸產生的點訊號、軌跡訊號或其組合。觸碰感應表面112例如是由壓力感測器所設置成的陣列區域,以 形成一座標系。在手持操作模式中(請參照第4圖之步驟S16中),控制模組130用以接收觸碰感應表面112輸出的至少一壓力感測訊號,並輸出一馬達驅動訊號至機械手臂101,以回應操作指令。 Referring to FIG. 5, the handheld operating system 140 of the robot arm according to an embodiment of the present invention includes a pressure sensing module 110 and a control module 130. The pressure sensing module 110 is disposed on any part or end of a robot arm 101. The pressure sensing module 110 has a touch sensing surface 112 (see also FIG. 2) for detecting application. An operation command on the touch sensing surface 112 is, for example, a point signal generated by a human finger touch, a track signal, or a combination thereof. The touch sensing surface 112 is, for example, an array area provided by a pressure sensor to Form a standard system. In the handheld operation mode (refer to step S16 in FIG. 4), the control module 130 is configured to receive at least one pressure sensing signal outputted by the touch sensing surface 112, and output a motor driving signal to the robot arm 101 to Respond to the operation instructions.
控制模組130包括一關節馬達控制器132、一模式切換模組134、複數個關節馬達編碼器136以及一手持操作控制器138。模式切換模組134用以切換機械手臂101的操作模式,以選擇進入一手持操作模式或解除停止狀態(請參照第4圖的步驟S15),在手持操作模式下,關節馬達控制器132根據操作指令產生一組使機械手臂101移動的馬達扭力訊號,以控制各關節馬達102的扭力。 The control module 130 includes a joint motor controller 132, a mode switching module 134, a plurality of joint motor encoders 136, and a handheld operating controller 138. The mode switching module 134 is configured to switch the operation mode of the robot arm 101 to select to enter a hand-held operation mode or release the stop state (please refer to step S15 of FIG. 4). In the hand-held operation mode, the joint motor controller 132 operates according to the operation. The command generates a set of motor torque signals that move the robot arm 101 to control the torque of each joint motor 102.
此外,關節馬達編碼器136設置於機械手臂101的關節處,此些關節馬達編碼器136於手持操作模式下根據機械手臂101的移動軌跡產生一組關節角度訊號,以記錄各關節的姿態及方位。另外,手持操作控制器138連接關節馬達編碼器136,且於手持操作模式下記錄並儲存關節馬達編碼器136產生的此組關節角度訊號,當要重現機械手臂101的移動軌跡時,手持操作控制器138可將此組關節角度訊號轉換成使機械手臂101的移動軌跡重現的馬達驅動訊號。 In addition, the joint motor encoder 136 is disposed at the joint of the robot arm 101. The joint motor encoder 136 generates a set of joint angle signals according to the movement trajectory of the robot arm 101 in the handheld operation mode to record the posture and orientation of each joint. . In addition, the hand-held operation controller 138 is coupled to the joint motor encoder 136, and records and stores the set of joint angle signals generated by the joint motor encoder 136 in the hand-held operation mode, and when the movement path of the robot arm 101 is to be reproduced, the hand-held operation The controller 138 can convert the set of joint angle signals into motor drive signals that cause the movement of the robot arm 101 to reproduce.
此外,關節馬達控制器132更包括一重力補償器133,重力補償器133根據機械手臂101上每個關節的角度、每個手臂的重心到每個關節的重心的距離以及每個手臂的質量,來計算出作用於每個手臂上的重力補償力矩。另外,關節馬達控制 器132更包括一摩擦力補償器135,摩擦力補償器135根據機械手臂101上每個關節的轉動速度來計算出作用於每個關節上的摩擦力補償力矩。 In addition, the joint motor controller 132 further includes a gravity compensator 133 that varies according to the angle of each joint on the robot arm 101, the center of gravity of each arm to the center of gravity of each joint, and the mass of each arm. To calculate the gravity compensation torque acting on each arm. In addition, joint motor control The device 132 further includes a friction compensator 135 that calculates a frictional compensation torque acting on each joint based on the rotational speed of each joint on the robot arm 101.
由上述的說明可知,人員可透過壓力感測模組110給予機器手臂101移動的外部力量與方向資訊(操作指令),透過控制模組130轉化成機器手臂各關節處需補償之扭力值(重力補償力矩或摩擦力補償力矩),並由控制模組130控制各關節力量與姿態,以實現人與機器手臂協作的作業模式。此外,當有人員或物體靠近機械手臂101時,控制模組130可根據關係表(距離vs.移動速度或距離vs.輸出扭力)來控制機械手臂101的最大移動速度或最大輸出扭力,以確保人機協同作業的安全性與便捷性。再者,當人員或物體與機械手臂101發生觸碰時,控制模組130發出一停止訊號至機械手臂101,以控制機械手臂101停止,進而方便人員進行手持操作模式,以提高人機協同作業的便捷性。 It can be seen from the above description that the external force and direction information (operation command) that the human body 101 can move through the pressure sensing module 110 can be converted into the torque value to be compensated by the joints of the robot arm through the control module 130 (gravity The compensation torque or the friction compensation torque), and the control module 130 controls the joint strength and posture to realize the working mode in which the human and the robot arm cooperate. In addition, when a person or an object approaches the robot arm 101, the control module 130 can control the maximum moving speed or the maximum output torque of the robot arm 101 according to the relationship table (distance vs. moving speed or distance vs. output torque) to ensure The safety and convenience of man-machine collaborative work. Moreover, when a person or an object touches the robot arm 101, the control module 130 sends a stop signal to the robot arm 101 to control the stopping of the robot arm 101, thereby facilitating the person to perform the handheld operation mode to improve the human-machine cooperation. Convenience.
綜上所述,雖然本發明已以諸項實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In the above, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
100‧‧‧機械手臂之控制裝置 100‧‧‧Control device for robotic arm
101‧‧‧機械手臂 101‧‧‧ Robotic arm
102‧‧‧關節馬達 102‧‧‧ joint motor
110‧‧‧壓力感測模組 110‧‧‧ Pressure Sensing Module
112‧‧‧觸碰感應表面 112‧‧‧Touch touch surface
120‧‧‧工作範圍界定模組 120‧‧‧Working scoping module
122‧‧‧感應區 122‧‧‧Sensor area
130‧‧‧控制模組 130‧‧‧Control Module
A1~A3‧‧‧工作區域 A1~A3‧‧‧Working area
A4‧‧‧協作區域 A4‧‧‧Collaborative area
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611183950.8A CN107717982B (en) | 2016-08-12 | 2016-12-20 | Control device and operation method of mechanical arm |
US15/393,602 US10556353B2 (en) | 2016-08-12 | 2016-12-29 | Robot arm control device and robot arm operation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662374074P | 2016-08-12 | 2016-08-12 | |
US62/374,074 | 2016-08-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201805745A true TW201805745A (en) | 2018-02-16 |
TWI634400B TWI634400B (en) | 2018-09-01 |
Family
ID=62014243
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105137642A TWI651175B (en) | 2016-08-12 | 2016-11-17 | Control device of robot arm and teaching system and method using the same |
TW105138872A TWI634400B (en) | 2016-08-12 | 2016-11-25 | Robot control device and robot operation method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105137642A TWI651175B (en) | 2016-08-12 | 2016-11-17 | Control device of robot arm and teaching system and method using the same |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI651175B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI675269B (en) * | 2018-04-02 | 2019-10-21 | 新世代機器人暨人工智慧股份有限公司 | Posture switchable robot and method of adjusting posture thereof |
CN110340866A (en) | 2018-04-03 | 2019-10-18 | 台达电子工业股份有限公司 | The actuation method taught of mechanical arm and its applicable gesture instruct device |
TWI712475B (en) * | 2018-04-03 | 2020-12-11 | 台達電子工業股份有限公司 | Teaching method for robotic arm and gesture teaching device using the same |
JP6795559B2 (en) * | 2018-08-22 | 2020-12-02 | ファナック株式会社 | Control device and axis feed control method |
TWI725630B (en) * | 2019-11-21 | 2021-04-21 | 財團法人工業技術研究院 | Processing path generating device and method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373747A (en) * | 1991-03-30 | 1994-12-20 | Kabushiki Kaisha Toshiba | Robot hand and robot |
JPH11231925A (en) * | 1998-02-10 | 1999-08-27 | Yaskawa Electric Corp | Hand of direct teaching robot |
DE19943318A1 (en) * | 1999-09-10 | 2001-03-22 | Charalambos Tassakos | Trajectory path point position detection method e.g. for programming industrial robot, uses manual movement of robot tool along trajectory with force/moment sensor signals converted into movement control signals |
US8255079B2 (en) * | 2009-09-22 | 2012-08-28 | GM Global Technology Operations LLC | Human grasp assist device and method of use |
JP5180414B2 (en) * | 2011-01-27 | 2013-04-10 | パナソニック株式会社 | Robot arm control device and control method, robot, robot arm control program, and integrated electronic circuit |
US8965576B2 (en) * | 2012-06-21 | 2015-02-24 | Rethink Robotics, Inc. | User interfaces for robot training |
EP2838698B2 (en) * | 2012-07-10 | 2020-01-01 | Siemens Aktiengesellschaft | Robot arrangement and method for controlling a robot |
CN103170973B (en) * | 2013-03-28 | 2015-03-11 | 上海理工大学 | Man-machine cooperation device and method based on Kinect video camera |
CN103495981A (en) * | 2013-09-29 | 2014-01-08 | 中山大学 | Manipulator based on touch sensor |
-
2016
- 2016-11-17 TW TW105137642A patent/TWI651175B/en active
- 2016-11-25 TW TW105138872A patent/TWI634400B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI651175B (en) | 2019-02-21 |
TWI634400B (en) | 2018-09-01 |
TW201805127A (en) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107717982B (en) | Control device and operation method of mechanical arm | |
TWI634400B (en) | Robot control device and robot operation method | |
US10888996B2 (en) | Robotic system with intuitive motion control | |
US10300597B2 (en) | Robot and method of operating robot | |
CN107717981B (en) | Control device of mechanical arm and teaching system and method thereof | |
US11039895B2 (en) | Industrial remote control robot system | |
US9559515B2 (en) | Method for switching a sensor system between modes and switchable sensor system | |
US20120130541A1 (en) | Method and apparatus for robot teaching | |
US9919422B1 (en) | Methods and systems to provide mechanical feedback during movement of a robotic system | |
US9604357B2 (en) | Robot and device having multi-axis motion sensor, and method of use thereof | |
JP6450960B2 (en) | Robot, robot system and teaching method | |
WO2013027250A1 (en) | Robot system, robot, and robot control device | |
US20110118872A1 (en) | Medical Robot And Method For Meeting The Performance Requirements Of A Medical Robot | |
JP6730247B2 (en) | Robot operating device | |
DK2566667T3 (en) | Hand-held device and method for controlling and / or programming of a manipulator | |
Ren et al. | Design of direct teaching behavior of collaborative robot based on force interaction | |
KR20190079322A (en) | Robot control system | |
JP6939104B2 (en) | Control devices, robot systems and robot control methods | |
JP6696341B2 (en) | Control method | |
JP2017205819A (en) | Robot, control device and robot system | |
CN109551517B (en) | Robot system | |
JP6881525B2 (en) | Robot system, controller and control method | |
TW201819126A (en) | Non-contact gesture teaching robot enables the driving module to perform a motion instruction corresponding to a hand movement according to the user's hand movement | |
US20230219218A1 (en) | Robot System with Casing Elements | |
JP2008173711A (en) | Robot and its direct instructing device |